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In this paper we study a model of ferromagnetic material governed by a nonlinear Laudau-Lifschitz equation coupled with Maxwell equations. We prove the existence of weak solutions. Then we prove that all points of the ω-limit set of any trajectories are solutions of the stationary model. Furthermore we derive rigourously the quasistatic model by an appropriate time average method.

1 Introduction.

In this paper we study the following system

∂u ∂t + u ∧ ∂u ∂t = 2u ∧ H e in IR + × Ω, (1.1) 
where H e = ∆u + H -ϕ(u),

µ 0 ∂ ∂t (H + ū) + curl E = 0 in IR + × IR 3 , (1.2) 
ε 0 ∂E ∂t -curl H + σ1 Ω (E + f ) = 0 in IR + × IR 3 , (1.3) 
with the associated boundary conditions and initial data

                         ∂u ∂ν = 0 on IR + × ∂Ω, u(0, x) = u 0 (x)
in Ω, E(0, x) = E 0 (x) in IR 3 , H(0, x) = H 0 (x) in IR 3 .

(1.4)

We assume that |u 0 (x)| = 1 in Ω, div (H 0 + ū0 ) = 0 in IR 3 .

(1.5)

In the above equations Ω is a smooth bounded open domain of IR 3 , ν the unit normal on ∂Ω, 1 Ω is the characteristic function of Ω, ū is the extension of u by zero outside Ω.

This system of equations which couples the Landau-Lifschitz equation with Maxwell's equations describes electromagnetic waves propagation in a ferromagnetic medium confined to the domain Ω.

In the ferromagnetic model the magnetic moment denoted by u links the magnetic field H with the magnetic induction B through the relationship B = µ 0 (H + ū). Moreover u is a vector field which takes its values on S 2 the unit sphere of IR 3 . The conductivity of the body Ω is 1 denoted by σ ∈ IR + , the anisotropic term is patterned by ϕ(u) where ϕ : IR 3 → IR 3 is the gradient of Φ a positively defined quadratic form of IR 3 , f is a source term supported by IR + ×Ω. Finaly ε 0 is the dielectric permittivity and µ 0 is the magnetic permeability.

This model is described in detail in [START_REF] Brown | Micromagnetics, Interscince publisher[END_REF], [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF] and [START_REF] Wynled | Ferromagnetism[END_REF].

Remark 1.1 When the solution of (1.1) is regular enough, this equation is equivalent to

∂u ∂t = u ∧ H e -u ∧ (u ∧ H e ) in IR + × Ω. (1.6)
In [START_REF] Visintin | On Landau Lifschitz equation for ferromagnetism[END_REF] A. Visintin establishes the existence of weak solutions of the system (1.6),(1.2)- (1.5). When H e reduces to ∆u, F. Alouges and A. Soyeur show in [START_REF] Alouges | On global weak solutions for Landau Lifschitz equations: existence and non uniqueness, Nonlinear Anal[END_REF] the existence and the non uniqueness of the solutions of (1.1). F. Labbé establishes in [START_REF] Labbé | [END_REF] the non uniqueness of the solution for the quasistatic model. Numerical studies are carried on by P. Joly and O. Vacus in [START_REF] Joly | Mathematical and numerical studies of nonlinear ferromagnetic materials[END_REF], and by F. Alouges in the steady state case in [1]. At least in the case when H e reduces to H and Ω = IR 3 , J.L. Joly, G. Métivier and J. Rauch obtain existence and uniqueness results for the solutions of (1.6), (1.2), (1.3), (1.4).

Notations : in the sequel we denote IH 1 = (H 1 ) 3 and IL 2 = (L 2 ) 3 .

Statement of the results.

Let us assume that

u 0 ∈ IH 1 (Ω) , H 0 ∈ IL 2 (IR 3 ) , E 0 ∈ IL 2 (IR 3 ) , f ∈ IL 2 (IR + × Ω), |u 0 | = 1 a.e. , div (H 0 + ū0 ) = 0.      (H) Definition 2.1 We say that (u, E, H) is a weak solution of (1.1)-(1.5) if 1. (u, E, H) verifies u ∈ L ∞ (IR + ; IH 1 (Ω)) , ∂u ∂t ∈ IL 2 (IR + × Ω) , |u(t, x)| = 1 a. e., E ∈ L ∞ (IR + ; IL 2 (IR 3 )), H ∈ L ∞ (IR + ; IL 2 (IR 3 )).
(2.1)

2. For all Ψ ∈ C ∞ (IR + ; IH 1 (Ω)), IR + ×Ω ∂u ∂t (t, x) + u(t, x) ∧ ∂u ∂t (t, x) • Ψ(t, x)dx dt = -2 IR + ×Ω 3 i=1 u(t, x) ∧ ∂u ∂x i (t, x) • ∂Ψ ∂x i (t, x)dx dt +2 IR + ×Ω u(t, x) ∧ H(t, x) -ϕ(u(t, x)) • Ψ(t, x)dx dt.
(2.2)

3. u(0, x) = u 0 (x) in the trace sense.

4. For all Ψ ∈ IH 1 (IR + × IR 3 ), -

IR + ×IR 3 H(t, x) + ū(t, x) • ∂Ψ ∂t (t, x)dt dx + IR + ×IR 3 E(t, x) • curl Ψ(t, x)dx dt = IR 3 H 0 (x) • Ψ(0, x)dx + Ω u 0 (x) • Ψ(0, x)dx.
(2.3)

5. For all Ψ ∈ IH 1 (IR + × IR 3 ),

-

IR + ×IR 3 E(t, x) • ∂Ψ ∂t (t, x)dx dt - IR + ×IR 3 H(t, x) • curl Ψ(t, x)dx dt +σ IR + ×Ω E(t, x) + f (t, x) • Ψ(t, x)dx dt = IR 3 E 0 (x) • Ψ(0, x)dx.
(2.4)

6. For all t > 0, we have the following energy estimate :

E(t) + t 0 Ω | ∂u ∂t (t, x)| 2 dx dt + σ µ 0 t 0 Ω |E(t, x)| 2 dx dt ≤ E(0) + σ µ 0 t 0 Ω |f (t, x)| 2 dx dt (2.5)
where

E(t) = Ω |∇u(t, x)| 2 + 2Φ(u(t, x)) dx + IR 3 |H(t, x)| 2 + ε o µ 0 |E(t, x)| 2 dx.
Theorem 2.1 Under the assumption (H), there exists at least one weak solution of (1.1)- (1.5).

This theorem is established in section 3 using a Galerkine approximation for a relaxed problem. Definition 2.2 Let u be a weak solution of (1.1)-(1.5). We call ω-limit set of the trajectory u the following set

ω(u) = v ∈ IH 1 (Ω), ∃ t n , lim t n = +∞, u(t n , .) v in IH 1 (Ω) weakly
From the energy estimate (2.5), for any u, ω(u) is non empty.

Theorem 2.2 Under the assumption (H), if u is a weak solution of (1.1)-(1.5), each point v in ω(u) is a weak solution of the steady state system

v ∈ H 1 (Ω), |v| = 1 a.e., (2.6) 
3 i=1 ∂ ∂x i v ∧ ∂v ∂x i + v ∧ (H -ϕ(v)) = 0 in Ω, (2.7) 
             H ∈ IL 2 (IR 3 ), curl H = 0 in D (IR 3 ), div (H + v) = 0 in D (IR 3 ).
(2.8)

Remark 2.1 As v lies in IH 1 (Ω), ∆v lies in IH -1 (Ω) so the product v ∧ ∆v makes sense in

W -1,t (Ω) with 1 t = 1 2 + 1 6
(see J. Simon [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure[END_REF]). Moreover from the equation (2.7) this product belongs to IL 2 (Ω).

Theorem 2.2 is proved in section 4. The limit process for v is carried out thanks to the estimate

IR + Ω | ∂u ∂t (t, x)| 2 dx dt < +∞.
On the other hand an averaging technique is used to justify the limit for H.

The last part of this article is devoted to the validation when ε 0 and µ 0 go to zero of the quasi-stationary model. We suppose for this result that the source term f is zero.

Let us assume that

u 0 ∈ IH 1 (Ω) , H 0 ∈ IL 2 (IR 3 ) , E 0 ∈ IL 2 (IR 3 ), |u 0 | = 1 a.e. , div (H 0 + ū0 ) = 0.      (H q ) Definition 2.3
We say that u is a weak solution of the quasi-stationary model if

1. u satisfies u ∈ L ∞ (IR + ; IH 1 (Ω)) , ∂u ∂t ∈ IL 2 (IR + × Ω) , |u| = 1 a.e.
(2.9)

2. For all Ψ ∈ C ∞ (IR + ; IH 1 (Ω)),

IR + ×Ω ∂u ∂t (t, x) + u(t, x) ∧ ∂u ∂t (t, x) • Ψ(t, x)dx dt = -2 IR + ×Ω 3 i=1 u(t, x) ∧ ∂u ∂x i (t, x) • ∂Ψ ∂x i (t, x)dx dt +2 IR + ×Ω u(t, x) ∧ (H(t, x) -ϕ(u(t, x))) • Ψ(t, x)dx dt, (2.10) 
3. u(0, x) = u 0 (x) in the trace sense.

4. For all t ∈ IR + , H(t, x) is the unique solution of

             curl H(t, •) = 0, div (H(t, •) + ū(t, •)) = 0, H(t, .) ∈ IL 2 (IR 3 ).
(2.11)

5. For all t we have the following energy estimate

E q (t) + t 0 Ω | ∂u ∂t (t, x)| 2 dx dt ≤ E q (0), (2.12 
)

where E q (t) = Ω |∇u(t, x)| 2 + 2Φ(u(t, x)) dx + IR 3 |H(t, x)| 2 dx.
Theorem 2.3 We consider two sequences (ε n ) n and (µ n ) n which tend to zero as n → +∞ and such that µ n /ε n remains bounded. Under the assumption (H q ) if u n denote a weak solution of (1.1)-(1.5) with ε 0 = ε n and µ 0 = µ n , there exists a subsequence still denoted (u n ) n such that u n tends to a limit u in L ∞ (IR + ; IH 1 (Ω)) weak where u is a solution of the quasi-stationary model (2.9)-(2.12). This result is obtained via a time average process on H which avoid the high frequency oscillations of H. Proposition 2.1 Every point of the ω-limit set of any trajectory of (2.9)-(2.11) is solution of the steady state model (2.7).

This last result is straightforward from the estimate

IR + Ω | ∂u ∂t (t, x)| 2 dx dt < +∞
and from the continuity of the map u → H given by (2.11).

3 Proof of the existence.

The main point is to establish that |u| = 1 almost everywhere. In order to construct a solution which satisfies this condition we first solve a relaxed problem P λ where u λ takes its values in IR 3 . The penalization term takes the form 1 λ (|u| 2 -1)u, λ tends to 0. In fact instead of (1.1) we solve the following equation

∂u λ ∂t -u λ ∧ ∂u λ ∂t -2∆u λ -2ϕ(u λ ) + 1 λ (|u λ | 2 -1)u λ = 2H. ( 3.1) 
By a Galerkine process we construct a solution of (3.1) satisfying an energy estimate, that allows us to pass to the limit as λ goes to zero. This limit u takes its values on S 2 and by a suitable test function we show that u satisfies (1.1).

First step. Resolution of (3.1).

Let us recall that the eigenfunctions of the operator A = -∆ + I with domain

D(A) = {u ∈ IH 2 (Ω), ∂u ∂ν = 0 on ∂Ω} build an orthonormal basis {ϕ k } k in IL 2
(Ω) and an orthogonal basis in IH 1 (Ω) and IH 2 (Ω). We denote V N the N dimensional vector space spaned by {ϕ k } 1≤k≤N . Now we introduce the Hilbert space

IH curl (IR 3 ) = {ψ ∈ IL 2 (IR 3 ), curl ψ ∈ IL 2 (IR 3 )} We denote {ψ k } k an hilbertian basis of IH curl (IR 3 ) orthonormal in IL 2 (IR 3
) and W N the N dimensional vector space spaned by {ψ k } 1≤k≤N .

In the approximate problem we seek (u

N , H N , E N ) in V N × W N × W N such that u N (t, x) = N k=1 v k (t)ϕ k (x), H N (t, x) = N k=1 h k (t)ψ k (x), E N (t, x) = N k=1 e k (t)ψ k (x), which satisfies 1. For any Φ N in V N , Ω ∂u N ∂t (t, x) -u N (t, x) ∧ ∂u N ∂t (t, x) • Φ N (x)dx + 2 Ω ∇u N (t, x) • ∇Φ N (x)dx + 4 λ Ω (|u N (t, x)| 2 -1)u N (t, x) • Φ N (x)dx -2 Ω H N (t, x) -ϕ(u N (t, x)) • Φ N (x)dx = 0. (3.2) 2. For any Ψ N in W N , µ 0 IR 3 ∂ ∂t (H N (t, x) + ūN (t, x)) • Ψ N (x)dx + IR 3 E N (t, x) • curl Ψ N (x)dx = 0. (3.3) 3. For any Θ N in W N ε 0 IR 3 ∂E N ∂t (t, x) • Θ N (x)dx - IR 3 H N (t, x) • curl Θ N (x)dx +σ Ω (E N (t, x) + f (t, x)) • Θ N (x)dx = 0. (3.4)
4. With the initial data

             u N (0) = Π V N (u 0 ), E N (0) = Π W N (E 0 ), H N (0) = Π W N (H 0 ), (3.5) 
where Π V N (resp. Π W N ) denotes the orthogonal projection on V N (resp. W N ).

Let us remark that v → v -u∧v is one to one in IR 3 so the equation (3.2) can be solve for the derivative in time. Then by Cauchy Picard theorem there exists a local solution of (3.2)-(3.5).

The following a priori estimates show that, in fact, the approximate solution is global in time.

Taking Φ N = ∂u N ∂t in (3.2) one has Ω | ∂u N ∂t (t, x)| 2 dx + d dt Ω |∇u N (t, x)| 2 dx + 1 λ d dt Ω (|u N (t, x)| 2 -1) 2 dx +2 d dt Ω Φ(u N (t, x)) = Ω ∂u N ∂t (t, x) • H N (t, x) (3.6) 
Now we put

Ψ n = H N in (3.3) µ 0 2 d dt IR 3 |H N (t, x)| 2 dx + IR 3 curl E N (t, x) • H N (t, x)dx = -µ 0 Ω ∂u N ∂t (t, x) • H N (t, x)dx (3.7)
In the same way taking

Θ N = E N in (3.4), 1 2 ε 0 d dt IR 3 |E N (t, x)| 2 dx - IR 3 H N (t, x) • curl E N (t, x)dx +σ Ω |E N (t, x)| 2 + f (t, x) • E N (t, x) dx = 0 (3.8)
Combining (3.6), (3.7) and (3.8) we derive the following estimate through Young inequality

d dt Ω |∇u N (t, x)| 2 dx + 1 λ Ω (|u N (t, x)| 2 -1) 2 dx + Ω Φ(u N (t, x))dx + 1 2 d dt IR 3 (|H N (t, x)| 2 + ε 0 µ 0 |E N (t, x)| 2 )dx + Ω | ∂u N ∂t (t, x)| 2 dx + σ µ 0 Ω |E N (t, x)| 2 dx ≤ σ µ 0 Ω |f (t, x)| 2 dx
As Φ(u N ) is non negative we obtain the following bound for u 0 in IH 1 (Ω), E 0 and H 0 in IL 2 (IR 3 ) and f in L 2 (IR + × Ω) :

There exists constants k i independant of N and λ such that

∇u N L ∞ (IR + ; IL 2 (Ω)) ≤ k 1 , ∂u N ∂t IL 2 (IR + ×Ω) ≤ k 2 , u N L ∞ (IR + ;IL 4 (Ω)) ≤ k 3 , E N L ∞ (IR + ; IL 2 (IR 3 )) ≤ k 4 , H N L ∞ (IR + ; IL 2 (IR 3 )) ≤ k 5 .
So we can suppose that there exists a subsequence still denoted (u N , H N , E N ) such that when N goes to +∞,

u N u λ in L ∞ (IR + ; IH 1 (Ω)) weak , ∂u N ∂t ∂u λ ∂t in L 2 (IR + ; IL 2 (Ω)) weak , E N E λ in L ∞ (IR + ; IL 2 (IR 3 )) weak , H N H λ in L ∞ (IR + ; IL 2 (IR 3 )) weak .
And according to Aubin's Lemma

u N → u λ in L 4 (0, T ; IL 4 (Ω)
) strong for all T,

Taking the limit in the equation (3.2)-(3.5) we obtain

1. For any Φ in IH 1 (Ω) Ω ∂u λ ∂t (t, x) • Φ(x)dx - Ω u λ (t, x) ∧ ∂u λ ∂t (t, x) • Φ(x)dx +2 Ω ∇u λ (t, x) • ∇Φ(x)dx + 4 λ Ω (|u λ (t, x)| 2 -1)u λ (t, x) • Φ(x)dx -2 Ω H λ (t, x) -ϕ(u λ (t, x)) • Φ(x)dx = 0 in L 2 (IR + t ).
(3.9)

2. For any Ψ in IH curl (IR 3 ),

µ 0 < ∂H λ ∂t + ∂ ūλ ∂t , Ψ > + IR 3 E λ (t, x) • curl Ψ(x)dx = 0 in D (IR + ). (3.10) 3. For any Θ in IH curl (IR 3 ) ε 0 < ∂E λ ∂t , Θ > - IR 3 H λ (t, x) • curl Θ(x)dx +σ Ω E λ (t, x) + f (t, x) • Θ(x)dx = 0 in D (IR + ) (3.11)
4. With the initial data

u λ (0) = u 0 in IL 2 (Ω), E λ (0) = E 0 , H λ (0) = H 0 in H curl (IR 3 ) .
(3.12)

As the L 2 (resp. L ∞ ) norm is lower semi continuous for the weak (resp. weak ) topology we obtain the energy estimate

∀ t > 0, E λ (t) + t 0 Ω | ∂u λ ∂t (t, x)| 2 dx dt + σ 2µ 0 t 0 Ω |E λ (t, x)| 2 dx dt ≤ σ 2µ 0 t 0 Ω |f (t, x)| 2 dx dt + E λ (0), (3.13) 
where

E λ (t) = Ω |∇u λ (t, x)| 2 dx + 1 λ Ω (|u λ (t, x)| 2 -1) 2 dx + Ω Φ(u l (t, x))dx + 1 2 IR 3 |H λ (t, x)| 2 + ε 0 µ 0 |E λ (t, x)| 2 dx.
Second step. Limit as λ tends to 0.

We first note that as |u 0 | = 1, E λ (0) does not depend on λ.

The estimate (3.13) allows us to suppose via the extraction of a subsequence that when λ goes to 0

u λ u in L ∞ (IR + ; IH 1 (Ω)) weak , ∂u λ ∂t ∂u ∂t in IL 2 (IR + × Ω) weakly, u λ → u in L 2 ((0, T ); IL 2 (Ω)
) strongly for all T > 0 and a.e.,

E λ E in L ∞ (IR + ; IL 2 (IR 3 )) weak , H λ H in L ∞ (IR + ; IL 2 (IR 3 )) weak .
• We remark, and it is the main point of the proof, that |u| = 1 a.e. in IR + ×Ω, as u λ → u a.e.

• Now we derive the equation satisfied by u by taking in (3.9) Φ = u λ (t, x) ∧ ξ(t, x) where ξ is any test function given in IL 2 loc (IR + ; IH 2 (Ω)).

T 0 Ω ∂u λ ∂t (t, x) • (u λ (t, x) ∧ ξ(t, x))dx dt - T 0 Ω u λ (t, x) ∧ ∂u λ ∂t (t, x) • (u λ (t, x) ∧ ξ(x))dx dt +2 T 0 Ω 3 i=1 ∂u λ ∂x i (t, x) • ∂ ∂x i u λ (t, x) ∧ ξ(t, x) dx dt -2 T 0 Ω H λ (t, x) -ϕ(u λ (t, x) • u λ (t, x) ∧ ξ(t, x) dx dt + 4 λ T 0 Ω (|u λ (t, x)| 2 -1)u λ (t, x) • u λ (t, x) ∧ ξ(t, x) dx dt = 0 (3.14)
The last term of the left-hand side of (3.14) vanishes identically. Furthermore we remark that

∂u λ ∂x i • ∂ ∂x i (u λ ∧ ξ) = -(u λ ∧ ∂u λ ∂x i ) • ∂ξ ∂x i .
Now we can take the limit when λ goes to 0 to obtain

T 0 Ω ∂u ∂t (t, x) -u(t, x) ∧ ∂u ∂t (t, x) • (u(t, x) ∧ ξ(t, x)) dx dt -2 T 0 Ω 3 i=1 ∂ξ ∂x i (t, x) • u(t, x) ∧ ∂u ∂x i (t, x) dx dt -2 T 0 Ω H(t, x) -ϕ(u(t, x)) • (u(t, x) ∧ ξ(t, x)) dx dt = 0, that is T 0 Ω ∂u ∂t (t, x) + u(t, x) ∧ ∂u ∂t (t, x) • ξ(t, x)dx dt +2 T 0 Ω 3 i=1 (u(t, x) ∧ ∂u ∂x i (t, x)) • ∂ξ ∂x i (t, x)dx dt -2 T 0 Ω u(t, x) ∧ (H(t, x) -ϕ(u(t, x))) • ξ(t, x)dx dt = 0 (3.15) as ∂u ∂t • (u ∧ ξ) = -(u ∧ ∂u ∂t ) • ξ, and -(u ∧ ∂u ∂t ) • (u ∧ ξ) = - ∂u ∂t • ξ since |u| = 1 a.e. in IR + × Ω.
• Moreover as the L 2 (resp. L ∞ ) norm is lower semi continuous for the weak (resp. weak ) the energy estimate (3.13) remains valid for |u 0 | = 1.

• Next from (3.15) we derive that

3 i=1 ∂ ∂x i (u ∧ ∂u ∂x i ) belongs to L 2 loc (IR + ; IL 2 (Ω)) so u ∧ ∂u ∂ν makes sense in L 2 loc (IR + ; IH -1/2 (∂Ω)).
Moreover as |u| 2 = 1, one has u • ∂u ∂ν = 0. So from the equality

∂u ∂ν = u • ∂u ∂ν u + u ∧ u ∧ ∂u ∂ν = ∂u ∂ν
which is valid in H -1-η (∂Ω) for any η > 0 according to the product of function in sobolev spaces (see L. Hörmander [START_REF] Hörmander | Progress in Nonlinear Differential Equations and their Applications[END_REF] ) so in fact ∂u ∂ν makes sense in L 2 loc (IR + ; H -1-η (∂Ω)) for any η > 0.

• As the Maxwell equations are linear, it is straightforward to take the limit in (3.10) and (3.11) to obtain (2.3) and (2.4).

4 Description of the ω-limit set.

Consider a weak solution u of (1.1)-(1.5). From the energy estimate (2.5), the ω-limit set ω(u) is not empty. We denote u ∞ a point of this set.

Hence there exists a sequence (t n ) n≥1 , with lim n→+∞ t n = +∞ such that u(t n , .) tends to u ∞ in IH 1 (Ω) weak, in IL 2 (Ω) strong, and almost everywhere in Ω. In particular one has |u| = 1 a.e. in Ω.

First step. Let be a a non negative real number. For s in (-a, a) and x in Ω we define for n large enough U n (s, x) = u(t n + s, x).

The sequence (U n ) n≥1 tends to u ∞ in IL 2 ((-a, a)×Ω) strongly and in L 2 ((-a, a); IH 1 (Ω)) weakly.

In fact following [START_REF] Langlais | Stabilization of solutions of nonlinear and degenerate evolution equation[END_REF], we have the estimate Moreover we obviously see that the sequence (∇U n ) n≥1 is bounded in IL 2 ((-a, a) × Ω) so there exists a subsequence still noted (U n ) n≥1 such that U n tends to u ∞ in L 2 ((-a, a); IH 1 (Ω)) weakly, in L 2 ((-a, a); IL 2 (Ω)) strongly and almost everywhere in Ω.

Second step. We consider a C ∞ non negative function ρ a supported by (-a, a) satisfying

ρ a (τ ) = 1 for τ ∈ (-a + 1, a -1), 0 ≤ ρ a (τ ) ≤ 1, |ρ a (τ )| ≤ 2.
We set

H n a (x) = 1 2a a -a H(t n + s, x)ρ a (s)ds and E n a (x) = 1 2a a -a E(t n + s, x)ρ a (s)ds.
From the estimate (2.5), E and H are bounded in L ∞ (IR + ; IL 2 (IR 3 )). Then H n a and E n a are bounded in IL 2 (IR 3 ) independently of n and a. So by extracting a subsequence we may suppose that (E n a , H n a ) n≥1 converges in IL 2 (IR 3 ) weakly to (E a , H a ) when n goes to +∞. Third step. In the weak formulation (2.2) we take as test function ρ a (t -t n )Ψ(x) where Ψ is a function lying in D( Ω). We obtain after the change of chart s

= t -t n 1 2a a -a Ω ∂U n ∂t (s, x) + U n (s, x) ∧ ∂U n ∂t (s, x) • Ψ(x)ρ a (s)dx ds +2 1 2a a -a Ω 3 i=1 U n (s, x) ∧ ∂U n ∂x i (s, x) • ∂Ψ ∂x i ρ a (s)dx ds -2 1 2a a -a Ω U n ∧ H(t n + s, x) -ϕ(U n (s, x)) • Ψ(x)ρ a (s)dx ds = 0. (4.1)
To pass through the limit in (4.1) we bound separately each term of (4.1).

• First term. 

1 2a a -a Ω ∂U n ∂t (s, x) • Ψ(x)ρ a (s)dx ds ≤ 1 2a a -a ρ a (s) Ω ∂U n ∂t (s, x) 2 dx 1/2 Ω |Ψ(x)| 2 dx 1/2 ds ≤ 1 √ 2a Ω |Ψ(x)| dx 1/
Ω 3 i=1 u ∞ (x) ∧ ∂u ∞ ∂x i (x) • ∂Ψ ∂x i (x)dx. • Third term. 1 2a a -a Ω U n (s, x) ∧ H(t n + s, x) • Ψ(x)ρ a (s)dx ds = 1 2a a -a Ω U n (s, x) -u ∞ (x) ∧ H(t n + s, x) • Ψ(x)ρ a (s)dx ds + 1 2a a -a Ω u ∞ (x) ∧ H(t n + s, x) • Ψ(x)ρ a (s)dx ds. (4.2) 
The first term of (4.2) goes to zero as (U n -u ∞ ) n tends strongly to zero in IL 2 ((-a, a) × Ω) and as H is bounded in L ∞ (IR + ; IL 2 (IR 3 )). The second term is equal to

Ω u ∞ (x) ∧ H n a (x) • Ψ(x)dx,
and tends obviously to

Ω u ∞ (x) ∧ H a (x) • Ψ(x)dx.
As ϕ is linear, it is straightforward to take the limit in the last term. So from equation (4.1) we derive that u ∞ solve the equation

Ω 3 i=1 u ∞ (x) ∧ ∂u ∞ ∂x i (x) • ∂Ψ ∂x i (x) + Ω u ∞ (x) ∧ ϕ(u ∞ (x)) • Ψ(x)dx 2a a -a ρ(s)ds Ω u ∞ (x) ∧ H a (x) • Ψ(x)dx = 0. (4.3)
Forth step. In order to obtain the desired result it remains to take the limit in (4.3) when a tends to +∞.

We first remark that lim a→+∞ 2a a -a ρ(s)ds

= 1.
Through estimate (2.5) and by definition of H a , (H a ) a≥1 is uniformly bounded in IL 2 (IR 3 ).

Hence, by extraction we can suppose that H a tends to H ∞ weakly in IL 2 (IR 3 ). So at the limit one has

- Ω 3 i=1 u ∞ (x) ∧ ∂u ∞ ∂x i (x) • ∂Ψ ∂x i (x)dx + Ω u ∞ (x) ∧ H ∞ (x) -ϕ(u ∞ (x)) • Ψ(x)dx = 0
Fifth step. In order to derive the equation satisfied by H ∞ we first recall the equation verified by H n a and E n a . In equation ( 2.3) we take Ψ(t, x) = θ a (t -t n )∇ξ(x) with ξ in D(IR 3 ) and θ a is defined by

θ a (t) = t a ρ a (s)ds.
We obtain that for every ξ in

D(IR 3 ) - a -a IR 3 H(t n + s, x) + ū(t n + s, x) • ∇ξ(x)ρ a (s)ds = IR 3 H 0 (x) + ū0 (x) • ∇ξ(x)dxθ a (0).
As div (H 0 + ū0 ) = 0 in D (IR 3 ), we obtain after dividing by 2a

IR 3 H n a (x) + 1 2a a -a ū(t n + s, x)ρ a (s)ds • ∇ξ(x)dx = 0.
When n goes to +∞ we obtain that

IR 3 H a (x) + ū∞ (x) • ∇ξ(x)dx = 0,
and so when a goes to infinity we get div (H ∞ + ū∞ ) = 0 in D (IR 3 ). Now we take Ψ(t, x) = ρ a (t -t n )ξ(x) in (2.4). We obtain that

1 2a a -a IR 3 E(t n + s, x) • ρ a (s)ξ(x)dx ds - IR 3 H n a (x) • curl ξ(x)dx +σ Ω E n a (x) • ξ(x)dx + σ 1 2a a -a Ω f (t n + s, x) • ρ a (s)ξ(x)dx ds = IR 3 E 0 (x) • ξ(x)dx ρ a (-t n ). (4.4)
For n large enough, the righthand side of (4.4) vanishes identically. Let us bound the first term of (4.4). As ρ a is identically zero on (-a + 1, a -1) and is bounded by 2, one has

1 2a a -a IR 3 E(t n + s, x) • ρ a (s)ξ(x)dx ≤ 1 a ||ξ|| IL 2 (IR 3 ) ||E|| L ∞ (IR + ; IL 2 (IR 3 )) . (4.5) Moreover 1 2a a 
-a IR 3 f (t n + s, x) • ρ a (s)ξ(x)dx ds ≤ 1 2a a+tn -a+tn ||f (s)|| 2 IL 2 (Ω) 1/2 a -a ρ a (s) 2 ds 1/2 ||ξ|| IL 2 (Ω) , that is 1 2a a -a IR 3 f (t n + s, x) • ρ a (s)ξ(x)dx ds ≤ 1 √ 2a a+tn -a+tn ||f (s)|| 2 IL 2 (Ω) 1/2 ||ξ|| IL 2 (Ω) (4.6) since 0 ≤ ρ a (s) ≤ 1.
When n goes to infinity, by extraction of a subsequence the first term of the left-hand side of (4.4) tends to a real α a satisfying

|α a | ≤ 1 2a ||E|| L ∞ (IR + ; IL 2 (IR 3 )) ||ξ|| IL 2 (Ω) (4.7) 
Due to (4.6), the fourth term of the left-hand side of (4.4) goes to zero as

IR + Ω |f (t, x)| 2 dx dt < +∞.
Hence we obtain

α a - IR 3 H a (x) • curl ξ(x)dx + σ Ω E a (x) • ξ(x)dx = 0.
Then taking the limit as a goes to infinity, one has from (4.7)

IR 3 H ∞ (x) • curl ξ(x)dx = σ Ω E ∞ (x) • ξ(x)dx. (4.8) 
In the same way, taking Ψ(t, x) = ρ a (t n -t)ξ(x) in (2.3) we derive that

IR 3 E ∞ (x) • curl ξ(x)dx = 0, that is curl E ∞ = 0. So it is valid to take ξ(x) = E ∞ (x) in (4.8) which leads to σ Ω |E ∞ (x)| 2 dx = 0. This (4.8) gives curl H ∞ = 0. Finaly H ∞ is uniquely determined by              div (H ∞ + ū∞ ) = 0 in IR 3 , curl H ∞ = 0 in IR 3 , H ∞ ∈ IL 2 (IR 3 ).
Therefore u ∞ is a solution of the stationary model (2.6)-(2.8).

Remark 4.1 Following an idea of G. Métivier, it is possible to prove Theorem 2.2 without average Maxwell Equations. This is due to the fact that H(t, .) -H(u(t)) tends to zero in L 2 loc when t tends to +∞ (see [START_REF] Joly | [END_REF]).

5 Quasi-stationary model

The last part of this paper is devoted to the justification of the quasi-stationary model.

We recall that we suppose f ≡ 0. We consider ε n and µ n such that ε n , µ n and ε n /µ n tend to zero. In the sequel we denote (u n , H n , E n ) a family of weak solutions of (1.1)-(1.5) with ε 0 = ε n and µ 0 = µ n .

We recall the energy estimate satisfied by (u n , H n , E n ).

E n (t) + t 0 Ω | ∂u n ∂t (t, x)| 2 dx dt + σ µ n t 0 Ω |E n (t, x)| 2 dx dt ≤ E n (0) (5.1)
where

E n (t) = Ω |∇u n (t, x)| 2 + 2Φ(u n (t, x)) dx + IR 3 |H n (t, x)| 2 + ε n µ n |E n (t, x)| 2 dx.
Since ε n /µ n remains bounded, the right hand-side term of (5.1) remains bounded uniformly in n. Therefore, by the energy estimate (5.1), u n is bounded in L ∞ (IR + ; IH 1 (Ω)) and ∂u n ∂t is bounded in IL 2 (IR + × Ω) uniformly in n. Furthermore H n and ε n /µ n E n are uniformly bounded in L ∞ (IR + ; IL 2 (IR 3 )). Extracting a subsequence we can suppose that

u n u in L ∞ (IR + ; IH 1 (Ω)) weak , u n → u in L 2 ((0, T ); IL 2 (Ω)
) strong for all T > 0,

∂u n ∂t ∂u ∂t in L 2 ((0, T ); IL 2 (Ω)
) weak for all T > 0.

First step.

For any a > 0 we set 

u n a (t
u n a L ∞ (IR + ; IH 1 (Ω)) ≤ u n L ∞ (IR + ; IH 1 (Ω)) , (5.3 
)

∂u n a ∂t IL 2 (IR + ×Ω) ≤ ∂u n ∂t IL 2 (IR + ×Ω) , (5.4) 
H n a L ∞ (IR + ; IL 2 (IR 3 )) ≤ H n L ∞ (IR + ; IL 2 (IR 3 )) , (5.5) 
E n a L ∞ (IR + ; IL 2 (IR 3 )) ≤ E n L ∞ (IR + ; IL 2 (IR 3 )) .
(5.6)

Proof. The estimates (5.3), (5.5) Second step. We choose a n = (ε n µ n ) 1 4 , and we denote in the sequel u n := u n an , H n := H n an , and E n := E n an .

Thanks to the energy estimate (5.1) and Lemma 5.1, we can suppose after extraction of a subsequence that 

u n u ∞ in L ∞ (IR + ; IH 1 (Ω)) weak , u n → u ∞ in L 2 ((0, T ); IL 2 (Ω)) strong for all T > 0, H n H ∞ in L ∞ (IR + ; IL 2 (IR
+ IR + ×Ω ρ(t)ξ(x) • 1 a n an 0 u n (t + s, x) -u n (t, x) ∧ ∂u n ∂t (s, x)ds dt dx.
The definition of u n shows that this is equal to

IR + ×Ω 1 a n an 0 u n (t + s, x) ∧ ∂u n ∂t (t + s, x) • ξ(x)ρ(t)ds dx dt = IR + ×Ω ρ(t)ξ(x) • u n (t, x) ∧ ∂u n ∂t (t, x) dt dx + IR + ×Ω ρ(t)ξ(x) • 1 a n an 0 u n (t + s, x) -u n (t, x) ∧ ∂u n ∂t (s, x)ds dt dx.
(5.8)

The first term of (5.8) tends to

IR + ×Ω ρ(t)ξ(x) • u ∞ (t, x) ∧ ∂u ∞ ∂t (t, x) dt dx as u n → u ∞ in L 2 loc (IR + ; IL 2 (Ω)) strongly and ∂u n ∂t ∂u ∞ ∂t in IL 2 (IR + × Ω) weakly.
Now we prove that the second term goes to zero. We use the Cauchy-Schwarz inequality to obtain

A := IR + ×Ω ρ(t)ξ(x) • 1 a n an 0 (u n (t + s, x) -u n (t, x)) ∧ ∂u n ∂t (t + s, x)ds dx dt A ≤ ξ IL ∞ (Ω) ρ IL ∞ (IR + ) 1 a n IR + ×Ω an 0 s 0 ∂u n ∂t (t + τ, x)dτ 2 dx dt ds 1 2 × IR + ×Ω an 0 | ∂u n ∂t (t + s, x)| 2 ds dx dt 1 2 
.

Now by the Cauchy-Schwarz inequality and Fubini theorem we get

A ≤ ξ IL ∞ (Ω) ρ IL ∞ (IR + ) 1 √ a n IR + ×Ω an 0 s an 0 | ∂u n ∂t (t + τ, x)| 2 dτ ds dt dx 1 2
∂u n ∂t IL 2 (IR + ×Ω) .

So after integration

A ≤ a n √ 2 ξ IL ∞ (Ω) ρ IL ∞ (IR + ) ∂u n ∂t 2 IL 2 (IR + ×Ω) .
Hence by the energy estimate (5.1), A tends to zero as a n .

In the same way as in the previous section we obtain finally

IR + ×Ω ∂u ∞ ∂t (t, x) + u ∞ (t, x) ∧ ∂u ∞ ∂t (t, x) • ξ(x)ρ(t)dx dt + 2 IR + ×Ω 3 i=1 u ∞ (t, x) ∧ ∂u ∞ ∂x i (t, x) • ∂ξ ∂x i (x)ρ(t)dx dt -2 IR + ×Ω u ∞ (t, x) ∧ H ∞ (t, x) -ϕ(u ∞ (t, x)) • ξ(x)ρ(t)dx dt = 0.
(5.9)

Fourth step. As for the study of the ω-limit set we can prove that div (H ∞ + ū∞ ) = 0. Now it remains to obtain curl H ∞ = 0.

(5.10)

We recall that for all ξ in D(IR 3 ) and ρ in D([0, +∞)) we have according to (2.4) that -

IR + ×IR 3
ε n E n (s, x) • ∂ρ ∂t (s)ξ(x)ds dx - (5.11)

IR + ×IR 3
Formally, the identity (5.10) is obtained taking ρ = 1 (t,t+an) in (5.11). Unfortunately this function is not regular enough, so we introduce a regularised function ρ δ .

For each δ > 0 given, 0 < δ < a n , we denote H n (s, x) • (1 -ρ δ (s -t))curl ξ(x)dx ds.

ρ δ (s) =              1 δ ≤ s ≤ a n -δ 0 s ≤ 0
(5.12)

The two first terms of the left-hand side of (5.12) are bounded by 2 ε n a n E n L ∞ (IR + ; IL 2 (IR 3 )) ξ IL 2 (IR 3 ) .

(5.13)

The last term of the left-hand side of (5.12) is bounded by σ E n L ∞ (IR + ; IL 2 (Ω)) ξ IL 2 (Ω) .

(5.14)

The right-hand side of (5.12) is bounded by 2 δ a n H n L ∞ (IR + ; IL 2 (IR 3 )) curl ξ IL 2 (IR 3 ) .

(5.15)

According to the energy estimate (5.1) we have

E n L ∞ (IR + ; IL 2 (IR 3 )) ≤ k µ n ε n E n L ∞ (IR + ; IL 2 (Ω)) ≤ k √ µ n
for some constant k So by choosing a n = (ε n µ n ) Since ε n /µ n tends to zero, E n (0) tends to E q (0). Therefore using the semi continuity of the norms for the weak topology, we derive the desired energy estimate (2.12).

H 3 E 0

 30 n (s, x) • curl ξ(x)ρ(s)dx ds +σ IR + ×Ω E n (s, x) • ρ(s)ξ(x)ds dx = IR (x) • ξ(x)ρ(0)dx.

  |U n (s, x) -u(t n , x)| 2 dx ds = 0. Since u(t n , .) tends to u ∞ in IL 2 (Ω) strongly, U n tends to u ∞ in L 2 ((-a, a); IL 2 (Ω)) strongly.

		1 2a	a -a Ω	|U n (s, x) -u(t n , x)| 2 dx ds =	1 2a	a -a Ω	0	s	∂u ∂t	(t n + τ, x)dτ	2	dx ds
						≤	1 2a	a -a	|s|	Ω		+∞ tn-a	∂u ∂t	(τ, x)	2	dτ dx ds
						≤ a	+∞ tn-a Ω	∂u ∂t	(τ, x)	2	dx dτ.
	Now, as	∂u ∂t	lies in IL 2 (IR + × Ω), one gets					
				lim n→+∞	1 2a	a -a Ω					

  Since∂u ∂t belongs to IL 2 (IR + × Ω), this last term tends to zero as n goes to +∞. In the same way, as U n takes its values on S 2 , one also has

					2	tn+a tn-a	Ω	∂t ∂u	(s, x)	2	dx ds	1/2
	lim n→+∞	1 2a	a -a Ω	U n (s, x) ∧	∂U n ∂t	(s, x)ρ a (s) • Ψ(x)dx ds = 0
	• Second term. As (U n ) n≥1 tends to u ∞ strongly in IL 2 ((-a, a) × Ω), as ( IL 2 ((-a, a) × Ω) and since ∂Ψ ∂x i ρ a belongs to IL ∞ ((-a, a) × Ω), the second term of (4.1) tends to ∂U n ∂x i ) n≥1 tends to ∂u ∞ weakly in ∂x i
	2	1 2a	a -a	ρ a (s)ds			

  and (5.6) follow directly from the definition (5.2).

	For (5.4) we write										
				∂u n a ∂t	(t, x) =		1 a	(u n (t + a, x) -u n (t, x)) =	0	1	∂u n ∂t	(t + θa, x)dθ,
	so	IR +	|	∂u n a ∂t	(s, x)| 2 ds ≤	IR +	0	1	∂u n ∂t	(t + θa, x)dθ	2	dt ≤	IR +	|	∂u n ∂t	(s, x)| 2 ds.
	That is						IR + ×Ω	|	∂u n a ∂t	(s, x)| 2 ds dx ≤	IR + ×Ω	|	∂u n ∂t	(s, x)| 2 ds dx.
	Lemma 5.2 For every a > 0 we have the following estimate
							u n a -u n	L ∞ (IR + ; IL 2 (Ω)) ≤	√ a	∂u n ∂t IL 2 (IR + ×Ω) .
	Proof. From the definition (5.2) one gets
					u n a (t, x) -u n (t, x) =	1 a	0	a	(u n (s + t, x) -u n (t, x))ds
														=	1 a	0	a	0	s	∂u n ∂t	(t + τ, x)dτ ds,
	so				|u n a (t, x) -u n (t, x)| 2 ≤	1 a	0	a	0	s	|	∂t ∂u n	(t + τ, x)|dτ ds	2
															≤		0	a	|	∂t ∂u n	(t + τ, x)|dτ	2
															≤ a	t	t+a	|	∂u n ∂t	(s, x)| 2 ds,
	hence					Ω	|u n a (t, x) -u n (t, x)| 2 dx ≤ a	IR + Ω	|	∂u n ∂t	(s, x)| 2 ds dx.

  Furthermore Lemma 5.2 ensures that u ∞ = u and u n (0, •) → u 0 (•) in IL 2 (Ω) strong.Third step. For t given in IR + we take Ψ(s, x) = 1 [t,t+a[ (s)ξ(x) in(2.1). After dividing by a n we obtain that

			Ω	∂u n ∂t	(t, x) • ξ(x)dx +	Ω	1 a n	0	an	(u n (t + s, x) ∧ δdtu n (t + s, x)) • ξ(x)ds dx
						+2	Ω		1 a n	0	an	3 i=1	u n (t + s, x) ∧	∂u n ∂x i	(t + s, x) •	∂ξ ∂x i	(x)ds dx
			-2	Ω	1 a n	0	an	u n (t + s, x) ∧ H n (t + s, x) -ϕ(u n (t + s, x)) • ξ(x)ds dx = 0.
	Multiplying this last formula by a test function ρ(t), we obtain after integration
												IR + ×Ω	∂u n ∂t	(t, x) • ξ(x)ρ(t)dx dt
				+	IR + ×Ω	1 a n	0	an	u n (t + s, x) ∧	∂u n ∂t	(t + s, x) • ξ(x)ρ(t)ds dx dt
		-	+ 2 a n IR + ×Ω IR + ×Ω	1 a n t t+an an 0 u (5.7) 3 i=1 u n (t + s, x) ∧ ∂u n ∂x i (t + s, x) • ∂ξ ∂x i (x)ρ(t)ds dx dt
	As	∂u n ∂t		∂u IR + Ω	∂u ∞ ∂t	(t, x) • ξ(x)ρ(t)dx dt.
	Let us now study the second term.
						IR + ×Ω	1 a n	0	an	u n (t + s, x) ∧	∂u n ∂t	(t + s, x) • ξ(x)ρ(t)ds dx dt =
							IR + ×Ω	ρ(t)ξ(x) • u n (t, x) ∧	1 a n	0	an	∂u n ∂t	(t + s, x)ds dx dt
												3 )) weak ,
							∂u n ∂t			∂u ∞ ∂t	in IL 2 (IR + × Ω) weak.

n (s, x) ∧ H n (s, x) -ϕ(u n (s, x)) • ξ(x)ρ(t)ds dx dt = 0. ∞ ∂t in IL 2 (IR + × Ω)

weakly, the first term of (5.7) tends to

  or s ≥ a n linear 0 ≤ s ≤ δ and a n -δ ≤ s ≤ a n Now, for ρ = ρ δ (s -t) equation (5.11) gives

			-	ε n a n	t	t+δ	IR 3	E n (s, x)	∂ρ δ ∂t	(s -t) • ξ(x)ds dx
	-	ε n a n	t+an t+an-δ IR 3	E n (s, x)	∂ρ δ ∂t	(s -t) • ξ(x)ds dx -	IR 3	H n a (x) • curl ξ(x)dx
			+ ρ = -t+an σ a n t Ω 1 t+an a n t IR 3

δ (t -s)E n (t, x) • ξ(x)dx ds

1 4

 1 and δ = a 2 n we get, for any test function ϕIR 3 H ∞ (t, x) • curl ξ(x)ϕ(t)dx dt = 0.Fifth step. Energy estimate. By convexity and thanks to the definition (5.2), one has

							Ω	|∇u n a (t, x)| 2 dx + 2	Ω	Φ(u n a (t, x)) +	IR 3	|H n a (t, x)| 2 dx
	≤	1 a	0	a	Ω	|∇u n (t + s, x)| 2 dx + 2	Ω	Φ(u n (t + s, x)) +	IR 3	|H n (t + s, x)| 2 dx
													≤	1 a	0	a	E n (t + s)ds.
	On the other hand							
					t 0 Ω	|	∂u n a ∂t	(s, x)| 2 dx ds =	t 0 Ω	1 a	0	a	∂u n ∂t	(τ + s, x)dτ	2	dx ds
										≤	1 a	0	a	0	t+s	Ω	|	∂u n ∂t	(τ, x)| 2 dτ dx ds.
	Hence											
	Ω	|∇u n a (t, x)| 2 dx + 2			IR 3	|H n a (t, x)| 2 dx +	t 0 Ω	|	∂u n a ∂t	(s, x)| 2 dx ds
					≤	1 a					

Ω Φ(u n a (t, x)) + a 0 E n (t + s) + t+s 0 Ω | ∂u n ∂t (τ, x)| 2 dτ dx ds ≤ E n (0).

Acknowledgements:

The authors wish to thank professors T. Colin, J.L. Joly, M. Langlais, and G. Métivier for many stimulating discussions.