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DAS—appear as a new paradigm in the field of applied sci-ences and engineering, and in particular in 
AS we mean a set of techniques that allow to link simulation tools with measurement devices for real-time 
 novel simulation technique is developed with an eye towards its employ in the field of DDDAS. The main 
tion of param-eters of the model as new dimensions in the parametric space. Such models often live in 

o-called curse of dimensionality. To avoid this problem related to mesh-based techniques, in this work an 
ecomposition—PGD—is developed, which is able to circumvent the redoubtable curse of dimensionality. 
marriage of DDDAS concepts and a combination of PGD ‘‘off-line’’ com-putations, linked to ‘‘on-line’’ post-

ilities in the context of process control, malfunctioning identification and system reconfiguration in real 
 in real engineering contexts.
1. Introduction: Dynamic Data-Driven Application Systems
(DDDAS)

Traditionally, Simulation-based Engineering Sciences (SBES)
relied on the use of static data inputs to perform the simulations.
These data could be parameters of the model(s) or boundary con-
ditions, outputs at different time instants, etc., traditionally
obtained through experiments. The word static is intended here
to mean that these data could not be modified during the
simulation.

A new paradigm in the field of applied sciences and engineering
has emerged in the last decade. Dynamic Data-Driven Application
Systems (DDDAS) constitute nowadays one of the most challenging
applications of SBES. By DDDAS we mean a set of techniques that
allow the linkage of simulation tools with measurement devices
for real-time control of simulations and applications. As defined
by the US National Science Foundation, ‘‘DDDAS entails the ability
to dynamically incorporate additional data into an executing appli-
nish Ministry of Science and
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cation, and in reverse, the ability of an application to dynamically
steer the measurement process’’ [37].

The term Dynamic Data-Driven Application System was coined
by Darema in a NSF workshop on the topic in 2000 [36]. The doc-
ument that initially put forth this initiative stated that DDDAS con-
stitute ‘‘application simulations that can dynamically accept and
respond to ‘online’ field data and measurements and/or control
such measurements. This synergistic and symbiotic feedback con-
trol loop among applications, simulations, and measurements is a
novel technical direction that can open new domains in the capa-
bilities of simulations with a high potential pay-off, and create
applications with new and enhanced capabilities. It has the poten-
tial to transform the way science and engineering are done, and
induces a major beneficial impact in the way many functions in
our society are conducted, such as manufacturing, commerce,
transportation, hazard prediction/management, and medicine, to
name a few’’ [14].

The importance of DDDAS in the forthcoming decades can be
noticed from the NSF Blue Ribbon Panel on SBES report [33], that
in 2006 included DDDAS as one of the five core issues or challenges
in the field for the next decade (together with multiscale simula-
tion, model validation and verification, handling large data and
visualization). This panel concluded that ‘‘Dynamic Data-Driven
Application Systems will rewrite the book on the validation and
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verification of computer predictions’’ and that ‘‘research is needed
to effectively use and integrate data-intensive computing systems,
ubiquitous sensors and high-resolution detectors, imaging devices,
and other data-gathering storage and distribution devices, and to
develop methodologies and theoretical frameworks for their inte-
gration into simulation systems’’ [33]. Moreover, the NSF believes
that ‘‘. . .The DDDAS community needs to reach a critical mass both
in terms of numbers of investigators, and in terms of the depth,
breadth and maturity of constituent technologies . . .’’ [37].

A DDDAS includes different constituent blocks:

(1) A set of (possibly) heterogeneous simulation models.
(2) A system to handle data obtained from both static and

dynamic sources.
(3) Algorithms to efficiently predict system behaviour by solv-

ing the models under the restrictions set by the data.
(4) Software infrastructure to integrate the data, model predic-

tions, control algorithms, etc.

Almost a decade after the establishment of the concept, the
importance of the challenge is better appreciated. As can be
noticed, it deals with very different and transversal disciplines:
from simulation techniques, numerical issues, control, modelling,
software engineering, data management and telecommunications,
among others. The three different blocks of interactions concern:
(i) the one between human systems and the simulation, (ii) the
simulation interaction with the physical system and (iii) the simu-
lation and the hardware/ data infrastructure. Physical systems
operate at very different time scales: from 10�20 Hz for cosmolog-
ical systems to 1020 Hz for problems at the atomic scales. Humans,
however, can be considered as a system operating at rates from
3 Hz to 500 Hz in haptic devices for instance to transmit realistic
touch sensations. A crucial aspect of DDDAS is that of real-time
simulation. This means that the simulations must run at the same
time (or faster) than data are collected. While this is not always
true (as in weather forecasting, for instance, where collected data
are usually incorporated to the simulations after long time peri-
ods), most applications require different forms of real-time simula-
tions. In haptic surgery simulators, for instance, the simulation
result, i.e., forces acting on the surgical tool, must be translated
to the peripheral device at a rate of 500 Hz, which is the frequency
of the free hand oscillation. In other applications, such as some
manufacturing processes, the time scales are much bigger, and
therefore real-time simulations can last for seconds or minutes.

As can be noticed from the introduction above, DDDAS can rev-
olutionize the way in which simulation will be done in the next
decades. No longer a single run of a simulation will be considered
as a way of validating a design on the basis of a static data set [33].

While research on DDDAS should involve applications, mathe-
matical and statistical algorithms, measurement systems, and
computer systems software methods, see for instance
[16,17,21,28,29], our work focuses on the development of mathe-
matical and statistical algorithms for the simulation within the
framework of such a system. In brief, we intend to incorporate a
new generation of simulation techniques into the field, allowing
to perform faster simulations, able to cope with uncertainty, mul-
tiscale phenomena, inverse problems and many other features that
will be discussed. This new generation of simulation techniques
has received the name of Proper Generalized Decomposition—
PGD—and has received an increasing level of attention by the SBES
community. PGD was initially introduced for addressing multidi-
mensional models encountered in science and engineering (see
[1,2] and the references therein) and was then extended to address
general computational mechanics models [10]. We are revisiting
the motivation and the key ideas of such technique in the next
sections.
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1.1. When the solution of many direct problems is needed

An important issue encountered in DDDAS, related to process
control and optimization, inverse analysis, etc., lies in the necessity
of solving many direct problems. Thus, for example, process opti-
mization implies the definition of a cost function and the search
of optimum process parameters, which minimize the cost function.
In most engineering optimization problems the solution of the
model is the most expensive step. Real-time computations with
zero-order optimization techniques can not be envisioned except
for very particular cases. The computation of sensitivity matrices
and adjoint approaches also hampers fast computations. Moreover,
global minima are only ensured under severe conditions, which are
not (or cannot be) verified in problems of engineering interest.
There are many strategies for updating the set of design parame-
ters and the interested reader can find most of them in books
focusing on optimization procedures. Our interest here is not the
discussion on optimization strategies, but pointing out that stan-
dard optimization strategies need numerous direct solutions of
the problem that represents the process, one solution for each ten-
tative choice of the process parameters, plus those required for
sensitivity.

As we discussed in the previous paragraphs, the solution of the
model is a tricky task that demands important computational
resources and usually implies extremely large computing times.
Usual optimization procedures are inapplicable under real-time
constraints because they need numerous solutions. The same is-
sues are encountered when dealing with inverse analysis in which
material or process parameters are expected to be identified from
numerical simulation, by looking for the unknown parameters
such that the computed fields agree in minute with the ones mea-
sured experimentally. However, some previous references exist on
the treatment of problems that require extensive solution proce-
dures for different parameter values. The interested reader can
consult, for instance [6,7,20].

1.2. Towards generalized parametric modelling

One possibility for solving many problems very fast consists of
using some kind of model order reduction based on the use of
reduced bases [18,34]. In these works authors proved the capabil-
ities of performing real time simulation even using light-comput-
ing devices, as smartphones for example. The tricky point in such
approaches is the construction of such reduced bases and the
way of adapting them when the system explores regions far from
the ones considered in the construction of the reduced model.
Solutions to this issue exist and others are been developed to fulfil
with real time requirements.

Multidimensionality offers an alternative getaway to avoid too
many direct solutions. In our opinion it could represent a new par-
adigm in computational mechanics. For the sake of clarity, the use
of multidimensional modelling in an academic physical problem is
illustrated and motivated.

Imagine for example that we are interested in solving the heat
equation but the material’s thermal conductivity is not known,
because it has a stochastic nature or simply because prior to solve
the thermal model it is necessary to measure it experimentally.
Three possibilities arise: (i) wait to know the conductivity before
solving the heat equation (a conservative solution); (ii) solve the
equation for many values of the conductivity (a sort of Monte Carlo
method); or (iii) solve the heat equation only once for any value of
the conductivity.

Obviously the third alternative is the most appealing one. To
compute this quite general solution it suffices to introduce the con-
ductivity as an extra independent coordinate, taking values in a
certain interval and playing a similar role as standard space and



time coordinates. Note, that there is no need to have derivatives
involving this extra-coordinate. Thus, by solving only once the
resulting multidimensional thermal model, the most general solu-
tion is computed; that is, a solution that produces at each physical
point and instant the value of the temperature for any value of the
thermal conductivity.

This procedure works very well, as will be proven later. Note
that it can be extended to introduce many other extra-coordinates:
source term, initial conditions, boundary conditions and even the
domain geometry. Thus, moving loads in structural mechanics,
geometrical parameters in shape optimization, material parame-
ters in material characterization, boundary conditions in inverse
analysis or process optimization, etc., can be treated as extra-coor-
dinates to compute off-line multidimensional parametric solutions
that could then be used on-line, running in real time. These general
solutions computed off-line could be introduced in very light com-
puting devices, as for example smartphones, opening an unimagin-
able field of applications that Fig. 1 caricatures. This methodology
constitutes in our opinion a new paradigm of real-time simulation.

The procedure outlined above introduces a major difficulty. If
unknown parameters are considered as new dimensions of the
problem, we will rapidly attain a high-dimensional model. Prob-
lems defined in high dimensional spaces are well known in the lit-
erature for the so-called curse of dimensionality [24]. This curse is
related to the exponential growth of the number of degrees of free-
dom if such a multidimensional model is discretized by standard
mesh-based discretization techniques.

To illustrate the technique proposed here to circumvent this
curse of dimensionality, consider a problem defined in a space of
dimension d for the unknown field u(x1 , . . . ,c,xd). Here, the coordi-
nates xi denote any coordinate (scalar or vectorial) related to phys-
ical space, time or any model parameter. We thus seek a solution
for each (x1, . . . ,xd) 2X1 � � � � b �Xd in separated forms:

uðx1; . . . ; xdÞ �
XN

i¼1

F1
i ðx1Þ . . . Fd

i ðxdÞ: ð1Þ

The Proper Generalized Decomposition (PGD) (the interested reader
can find a complete state of the art with all up to now published
papers in [13]) consists in the construction of a separated represen-
tation of the model solution from N functional products involving
each a number d of functions Fj

iðxjÞ; j ¼ 1; . . . c;d, that are unknown
a priori. This approximation is constructed by successive enrich-
ment up to a prescribed accuracy, whereby each functional product
is determined in sequence. At a particular enrichment step n + 1, the
functions Fj

iðxjÞ are known for i 6 n from the previous steps, and one
must compute the new product involving the d unknown functions
Fj

nþ1ðxjÞ; j ¼ 1; . . . c;d. This is achieved by invoking the weak form of
the problem under consideration. The resulting formulation is non-
Fig. 1. ‘‘Off-line’’ solution of a general enough parametric model and ‘‘on-line’’ particula
wiki/Archivo:UPM-CeSViMa-SupercomputadorMagerit. jpg>.
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linear, which implies that iterations are needed at each enrichment
step. By using a fixed-point alternating-directions strategy a low-
dimensional problem can thus be defined in Xj for each of the d
functions Fj

nþ1ðxjÞ.
If M degrees of freedom are used to discretize each coordinate,

the total number of PGD unknowns is N �M � d instead of the Md

degrees of freedom involved in standard mesh-based discretiza-
tions. Moreover, all numerical experiments carried out to date with
the PGD show that the number of terms N required to obtain an
accurate solution is not a function of the problem dimension d,
but rather depends on the regularity of the solution, very much like
Singular Value Decomposition methods. The PGD thus avoids the
exponential complexity with respect to the problem dimension.

In many applications studied to date, N is found to be as small
as a few tens. Moreover, the approximation converges towards
the solution associated with the complete tensor product of the
approximation bases considered for each Xj. Thus, we can be con-
fident on the generality of the separated representation (1). When
an exact solution of a particular problem can be represented with
enough accuracy by a reduced number of functional products, the
PGD approximation is suitable. If the solution is a strictly non-sep-
arable function, the PGD solver proceeds to enrich the approxima-
tion until including all the elements of the functional space, i.e. the
Md functions involved in the full tensor product of the approxima-
tion bases considered for each Xj.

The foundations and some recent advances in the proper gener-
alized decomposition based discretization strategies can be found
in [1–12,19–32,35] and the references therein.

1.3. Paper outline

Section 2 illustrates the construction of a separated, PGD, repre-
sentation of the solution of a parametric boundary valued problem.
The off-line solution construction procedure is analysed and thor-
oughly described. Then, Section 3 simulates a breakdown scenario
that implies (i) identifying the malfunctioning device and (ii) the
process reconfiguration. Both tasks should be performed as fast
as possible and using the lightest possible computational resources
(e.g. a smartphone, for instance) for real-time decision making.
This is particularly crucial when the device is operated by person-
nel without a technical background. These on-line calculations on
light computing platforms are described in Section 4.

2. Proper Generalized Decomposition for a parametric model of
a material flowing in a heated die

In this section the main ideas related to casting the model into a
multidimensional framework, followed by process optimization,
rization of such a general solution in a particular context. <http://es.wikipedia.org/

http://es.wikipedia.org
http://es.wikipedia.org


are introduced. For the sake of clarity in what follows we consider
the thermal model related to a material flowing into a heated die.
Despite the apparent simplicity, the strategy here described can be
extended to address more complex scenarios.

The 2D thermal process is sketched in Fig. 2. The material flows
with a velocity v inside a die X of length L and width H. The tem-
perature of the material at the die entrance is u0. The die is
equipped with two heating devices of lengths L1 and L2 respec-
tively, whose temperatures h1 and h2, respectively, can range with-
in an interval [hmin,hmax].

The steady state temperature field u(x) in any point of the die
x ¼ ðx; yÞ 2 X � R2 can be obtained from the solution of the 2D
heat transfer equation that involves advection and diffusion
mechanics as well as a possible source term Q. The velocity field
is everywhere unidirectional, i.e. vT = (0,v). The steady-state heat
transfer equation thus reduces to:

qc v @u
@x

� �
¼ kDuþ Q ; ð2Þ

where k is the thermal conductivity, q is the density and c is the
specific heat.

2.1. Building-up the parametric solution in the framework of a
multidimensional model

The die is equipped with two heating devices as depicted in
Fig. 2 whose temperatures constitute the process parameters to
be optimized and, eventually, controlled. For the sake of simplicity
the internal heat generation Q is assumed constant, as well as the
velocity v and the inlet temperature u0.

Different values of prescribed temperatures at both heating de-
vices can be considered. The resulting 2D heat transfer equation
can be then solved. As noted earlier, optimization or inverse iden-
tification will require many direct solutions or, as named in the
introduction, static data computations. Obviously, when the num-
ber of the process parameters involved in the model is increased,
standard approaches fail to compute optimal solutions in a reason-
able time. Thus, for a large number of process parameters,
real-time computations are precluded and, moreover, performing
‘‘on-line’’ optimization or inverse analysis is a challenging issue.

The method proposed here consists of introducing both process
parameters, i.e. temperatures of the heating devices, h1 and h2, as
extra coordinates.

Remark 1. If some of these desired extra-coordinates are fields
depending on other coordinates instead independent parameters
(temperatures of the heating devices evolving in time, source term
evolving in time and/or space etc.) prior to introduce them as
extra-coordinates one should parametrize such evolutions in an
Fig. 2. Thermal process consisting of two heating devices located on the die walls
where the temperature is enforced to the values h1 and h2, respectively.
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appropriate manner, and finally introduce the coefficients involved
in those parametrizations as extra-coordinates as considered in
[25].

Other parameters such as q, c, v, k, . . . , c, can be set as extra-
coordinates as well. The temperature field can be thus computed
at each point and for any possible value of the temperatures h1

and h2. As soon as this multidimensional solution u(x,y,h1,h2) is
available, it is possible to particularize it for any value of the pro-
cess parameters without the necessity of further executions of
the code. Thus, optimization procedures can proceed from the only
knowledge of an ‘‘off-line’’ pre-computed parametric solution.

To circumvent the curse of dimensionality related to the high
dimensional space in which the temperature field u(x,y,h1,h2) is
defined—which we retain to be four-dimensional for the ease of
exposition—we consider a separated representation of that field:

uðx; y; h1; h2Þ �
XN

i¼1

Fiðx; yÞH1
i ðh1ÞH2

i ðh2Þ; ð3Þ

where all the functions involved in such separated representation
are computed by applying the Proper Generalized Decomposition
technique, described below.

Remark 2. Because the geometrical simplicity of X that can be
written as X = Xx �Xy, we could consider a fully separated
representation of the unknown field that now writes:

uðx; y; h1; h2Þ �
XN

i¼1

XiðxÞ � YiðyÞ �H1
i ðh1Þ �H2

i ðh2Þ: ð4Þ

This fully separated representation can be also applied in complex
domains as proved in [19], however when the physical domain is
complex the most natural representation is the one given in Eq. (3).

The prescribed essential boundary conditions write:

uðx ¼ 0; y; h1; h2Þ ¼ u0;

uðx 2 I1; y ¼ 0 or y ¼ H; h1; h2Þ ¼ h1;

uðx 2 I2; y ¼ 0 or y ¼ H; h1; h2Þ ¼ h2;
@u
@x ðx ¼ L; y; h1; h2Þ ¼ 0;

8>>><>>>: ð5Þ

where I1 and I2 are the intervals of the x coordinate where the heat-
ing devices of length L1 and L2 respectively are defined. A null heat
flux is assumed in the remaining part of the domain boundary.
Thus, the temperature field u depends on four different coordinates,
the two space coordinates (x,y) and the two temperatures pre-
scribed in both regions on the die wall. Parameters h1 and h2 now
take values in the intervals I1 and I2 respectively.

The case of essential (Dirichlet) boundary conditions as param-
eters of the model deserves some comments. Non-homogeneous
essential boundary conditions in PGD methods are usually treated
by means of a simple change of variable

u ¼ wþ z; ð6Þ

where w is a function verifying essential boundary conditions. This
leads to a problem in the z variable with homogeneous boundary
conditions. Efficient construction of w functions in the framework
of PGD approximations has been deeply analysed in [19]. We refer
the interested reader to this reference for further details. This func-
tion w can, for the problems addressed here, be expressed in sepa-
rated form

wðx; y; h1; h2Þ ¼
X3

i¼1

Fiðx; yÞH1
i ðh1ÞH2

i ðh2Þ; ð7Þ

where each functional product is used to impose initial conditions
and the two non-homogeneous essential boundary conditions,
one for each heater position. These functions are depicted in Fig. 3



The resulting PGD approximation reads

uðx; y; h1; h2Þ � wðx; y; h1; h2Þ þ
XN

i¼4

Fiðx; yÞH1
i ðh1ÞH2

i ðh2Þ: ð8Þ

Functions Fi; H1
i and H2

i ; i ¼ 4; . . . c;N, are determined by solving a
sequence of non-linear problems with homogeneous boundary con-
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ditions, as described below. Assuming that the first n functional
products of Eq. (8) have already been computed, we look for the
n + 1 term:

unþ1ðx; y; h1; h2Þ ¼
Xn

i¼1

Fiðx; yÞH1
i ðh1ÞH2

i ðh2Þ þ Rðx; yÞSðh1ÞTðh2Þ ð9Þ
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or, equivalently,

unþ1ðx; y; h1; h2Þ ¼ unðx; y; h1; h2Þ þ Rðx; yÞSðh1ÞTðh2Þ: ð10Þ

Note that in the weak form associated to (2) the unknown functions
R, S, and T are determined and the test function are

u�ðx; y; h1; h2Þ ¼ R�ðx; yÞSðh1ÞTðh2Þ þ Rðx; yÞS�ðh1ÞTðh2Þ
þ Rðx; yÞSðh1ÞT�ðh2Þ: ð11Þ

This approach allows us to determine the unknown functions R(x,y),
S(h1) and T(h2) in an alternating directions fixed-point algorithm. In
fact, we proceed by determining sequentially each one of these
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functions, as described below, until reaching convergence. For more
details we refer the interested reader to [10].

2.1.1. Determining R(x,y) assuming S(h1) and T(h2) known
First, the weak form associated to (2) and boundary conditions

defined in (5) must be determined. It readsZ
X�I1�I2

u�qc v @u
@x

� �
þru�kru

� �
dXdh1dh2

¼
Z

X�I1�I2

u�Q dXdh1dh2; ð12Þ
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Fig. 5. Location of the thermocouples P1 and P2 whose measurements serve for
controlling the process, identify malfunctioning devices and reconfigure the system
after a breakdown.
where the integration by parts, to reduce the order of derivation,
has only been used for the spatial domain, X. Then, since an alter-
nating direction approach is used to solve this problem, see the def-
inition of the test function in (11), and inasmuch as S and T are
assumed known, (11) reduces to:

u�ðx; y; h1; h2Þ ¼ R�ðx; yÞSðh1ÞTðh2Þ:

For the sake of clarity, in what follows functional dependencies of
each function are omitted. Approximation un+1, see (10), is substi-
tuted in (12). Thus, only R, S, and T must be determined. Now, as
noted earlier, S and T are assumed known, and, consequently the
unknown is R and the test function, defined above, induces the fol-
lowing problem: find R for all R⁄ (in the appropriate functional
spaces) such thatZ

X�I1�I2

S2T2 qcvR�
@R
@x
þ krR�rR

� �
dXdh1dh2 ¼ rðR�ST;unÞ; ð13Þ

where r(�, �) the weak residual, see (12), evaluated for u⁄ = R⁄ST at
iteration n, i.e. u = un,

rðu�;uÞ ¼
Z

X�I1�I2

u�qc v @u
@x

� �
þru�kru� u�Q

� �
dXdh1dh2:

Since functions involving the parametric coordinates h1 and h2 are
assumed known in the present step, integrals in the parametric
domain I1 � I2 can be calculated, leading to a problem defined in
the two-dimensional space domain X whose solution is precisely
the searched unknown function R(x,y). This domain can be discret-
ized, of course, by standard finite elements. Note however, that the
resulting problem is a convection–diffusion equation along the x
coordinate, which eventually may need some form of stabilization.

2.1.2. Determining S(h1) assuming R(x,y) and T(h2) known
In this case, the test function reads

u�ðx; y; h1; h2Þ ¼ Rðx; yÞS�ðh1ÞTðh2Þ

and the weak problem, see (12), becomes: find S for all S⁄ (in the
appropriate functional spaces) such thatZ

X�I1�I2

T2 qcvR
@R
@x
þ krRrR

� �
S�SdXdh1dh2 ¼ rðRS�T;unÞ: ð14Þ

Again, integrations involving the domain X� I2 can be performed,
leading to a one-dimensional algebraic problem defined in I1, be-
cause the model does not contain derivatives with respect to the ex-
tra-coordinate h1. Its solution allows computing the function S(h1).

The calculation of function T(h2) can be performed in a similar
way.
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Remark 3. In the present case we assumed a linear model,
however many problems encountered in science and engineering
are in fact non-linear. For example the heat equation here
addressed becomes non linear as soon as dependences of thermal
parameters on the temperature field are taken into account.

In the non-linear case additional linearization techniques are
required. Application of standard linearization strategies within
the PGD framework were addressed in [3,35].

A better way to address strongly non-linear models consists in
using the LATIN technique [22]. However its extension to the case
of multidimensional parametric modelling is not straightforward.
2.2. ‘‘Off-line’’ optimization procedure

Optimization procedures look for optimal parameters minimiz-
ing an appropriate single or multi objective cost function (some-
times subjected to many constraints). In this work we consider a
simple scenario, in which the cost function only involves the cold-
est thermal history of an imaginary material particle traversing the
die, it is expressed as:

Cðh1; h2Þ ¼
1
2

Z L

0
u x;

H
2
; h1; h2

� �
dx� b

� �2

; ð15Þ

where b denotes the optimal value of the thermal history able to en-
sure a certain material transformation. Values lower than b imply
that the material has not received the necessary amount of heat,
whereas values higher than b imply an unnecessary extra-heating.

Now, optimal process parameters hopt
1 and hopt

2 must be calcu-
lated by minimizing the cost function. There exist many techniques
for such minimization. The interested reader can refer to any book
on optimization. Many of them proceed by evaluating the gradient
of the cost function and then moving on that direction. The gradi-
0.5
1

1.5
2

2.5
3

X

100

150

200

250

300

350

erature of both heating devices: u x; y; hopt
1 ¼ 275:8; hopt

2 ¼ 353:4
� �

.



0
0.5

1
1.5

2
2.5

3

0
0.2

0.4
0.6

0.8
1

100

150

200

250

300

350

400

450

XY

Te
m

pe
ra

tu
re

100

150

200

250

300

350

400

Fig. 6. Multidimensional solution particularized for the optimal temperature after reconfiguring the system: u x; y; h�1; h
est
2

� �
.

ent computation involves the necessity of performing first deriva-
tives of the cost function with respect to the process parameters.
Other techniques involve the calculation of second derivatives. To
this end, one should calculate the derivatives of the problem solu-
tion with respect to the optimization parameters.

It is important to note that separated representations of the
process parameters drastically simplifies this task because as the
solution depends explicitly on the parameters its derivation is
straightforward, namely,

@u
@h1
ðx; y; h1; h2Þ �

XN

i¼1

Fiðx; yÞ
@H1

i

@h1
ðh1ÞH2

i ðh2Þ

and

@u
@h2
ðx; y; h1; h2Þ �

XN

i¼1

Fiðx; yÞH1
i ðh1Þ

@H2
i

@h2
ðh2Þ:

Note that second derivatives are also similarly obtained. The calcu-
lation of the solution derivatives is a tricky point when proceeding
Fig. 7. Optimal temperatures
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from standard discretization techniques because the parametric
dependency of the solution is, in general, not explicit.

Moreover, the separated rank-N representation of the solution,
see (3), further simplifies the expression of the cost function. That
is, substituting (3) in (15), induces

Cðh1; h2Þ ¼
1
2

XN

i¼1

aiH
1
i ðh1ÞH2

i ðh2Þ � b

!2

; ð16Þ

where ai ¼
R L

0 Fi x; H
2

� �
dx, and the different derivatives of the cost

function becomes:

@C
@h1
ðh1; h2Þ ¼

PN
i¼1

aiH
1
i ðh1ÞH2

i ðh2Þ � b

� � PN
i¼1

ai
@H1

i
@h1
ðh1ÞH2

i ðh2Þ
� �

;

@C
@h2
ðh1; h2Þ ¼

PN
i¼1

aiH
1
i ðh1ÞH2

i ðh2Þ � b

� � PN
i¼1

aiH
1
i ðh1Þ

@H2
i

@h2
ðh2Þ

� �
:

8>>><>>>:
In the simulations carried out in what follows, the minimization of
the cost function was performed by using a Levenberg–Marquardt
algorithm, see [15] for further details.
of both heating devices.



2.3. Defining the process control

Once the optimal parameters hopt
1 and hopt

2 are determined, the
general solution, see (3), can be evaluated for those optimal values
of the process parameters, namely

u x; y; hopt
1 ; hopt

2

� �
�
XN

i¼1

Fiðx; yÞH1
i hopt

1

� �
H2

i hopt
2

� �
to obtain the temperature field everywhere in the domain X.

For the sake of clarity, in what follows, we illustrate the dy-
namic data driven thermal model trough a numerical example
without physical relevance. We consider the thermal model de-
scribed above, see Fig. 2, with the following values of the different
Fig. 8. Optimal temperatures at positions P1 and P2 w

Fig. 9. Simulating a failure by considering a tempera
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parameters (units are omitted because all are defined in the metric
system): q = 1, c = 1, k = 1, Q = 50, v = 1, u0 = 100, L = 3, and H = 1.
The first heating device acts in the interval I1 = [0.2,1.4] whereas
the second one is defined by I2 = [1.6,2.8], both having the same
length L1 = L2 = 1.2.

To solve the parametric model one needs to approximate the
functions Fi(x) involved in the solution’s separated representation
(3), as well as functions H1

i ðh1Þ and H2
i ðh2Þ. Space functions are

approximated by using a finite element mesh composed of 4-nodes
quadrilateral elements, on a uniform nodal distribution composed
of 60 � 20 nodes in the x and y directions, respectively. Functions
depending on the process parameters h1 and h2 are approximated
by two uniform 1D linear finite meshes (300 nodes each) over
hen both heaters work at the optimal conditions.

ture at position P2 different of the optimal one.



the interval of variation of these parameters ðI1 ¼ ½100;400� and
I2 ¼ ½100;500�).

The parametric solution u(x,h1,h2) is computed by using the
Proper Generalized Decomposition strategy illustrated in Section
2.1. This solution implies 42 functional products in the sum, that
is N = 42 in (3). From this general solution we compute the optimal
process parameters hopt

1 and hopt
2 with respect to the cost function

introduced in (15) where b = 897. The convergence of the Leven-
berg–Marquardt algorithm is reached in only 4 iterations, being
the optimal values hopt

1 ¼ 275:8 and hopt
2 ¼ 353:4. Fig. 4 depicts

the resulting temperature field related to the optimal process
parameters.

Remark 4. Up to now, the convergence criterion that we use
concerns the norm of the residuals. We have considered in our
former works more sophisticated error estimators, as the one
based on quantities of interest [4].
Fig. 10. Malfun

Fig. 11. Identification of the real process parameters,
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Error estimators based on quantities of interest are preferred
because they are more adapted to the outputs considered in
control strategies. However, at present we have not extended these
estimators to the multidimensional parametric modelling. Thus,
prior to consider any parametric solution computed off-line in on-
line procedures we should proceed to verification and validation.

In order to control the process we could imagine two thermocou-
ples located at two points on the axis of symmetry, namely
P1 = (1,0.5) and P2 = (2,0.5), see also Fig. 5. Obviously, for negligible
validation and verification errors, the ‘‘on-line’’ measurements ~u1

and ~u2 will give values coincident, or almost, with the predictions
of our model. These predictions are easily computed from the sep-
arate representation of the solution, i.e.

uoptðP1Þ ¼ uð1;0:5; hopt
1 ; hopt

2 Þ ¼ 286:6;

uoptðP2Þ ¼ uð2;0:5; hopt
1 ; hopt

2 Þ ¼ 352:
ction alert.

i.e. the real temperatures of both heating devices.



Fig. 12. System reconfiguration by adjusting the temperature of the first heating device.

Fig. 13. New optimal temperature field related to the reconfigured heating system.
Under these circumstances the process can be considered working
in optimal conditions, the one related to the optimal temperatures
of both heating devices.

However, if the heating devices do not run optimally the ther-
mocouple measures ~u1 and ~u2 will differ from the predicted opti-
mal conditions uopt(P1) and uopt(P2). Under these circumstances
we could infer a breakdown in the system. Thus, checking the state
of the system seems quite easy, however, the most important point
is the identification of the malfunction and the reconfiguration of
the system taking into account the real state of the system. These
questions are addressed in the next section.
3. Simulating a breakdown scenario

In this section we simulate a breakdown scenario, whose solu-
tion requires both: (i) identifying the device malfunction and (ii)
the process reconfiguration. Both tasks should be performed as fast
as possible and using the lightest computational resources (e.g. a
smartphone) in order to be able to do real-time decision making
independently of the expertise of the personnel in charge of the
process.
11
3.1. ‘‘On-line’’ inverse analysis

A possible scenario of a breakdown is a malfunction of the sec-
ond heating device. For illustration purposes, we will assume that
it only applies a fraction of the desired temperature. That is, the de-
vice is only able to prescribe a temperature of
hbrk

2 ¼ 0:4hopt
2 ¼ 141:4, instead of the optimal one (the slight gap

is due to the fact of considering few iterations in order to fulfill real
time requirements). Under these circumstances, both thermocou-
ples will indicate temperatures at P1 and P2 equal to

ubrkðP1Þ ¼ uð1;0:5; hopt
1 ; hbrk

2 Þ ¼ 254;

ubrkðP2Þ ¼ uð2;0:5; hopt
1 ; hbrk

2 Þ ¼ 165:
ð17Þ

These values are obtained from the representation of the general
solution, see (3), because validation and verification errors are as-
sumed negligible.

To reproduce the practical scenario, it is assumed that a deci-
sion must be taken with the only information of the thermocouple
temperatures, namely (17). That is, it is not known which device is
malfunctioning and, of course, that the real prescribed temperature
is hbrk

2 . In fact, the only available data is (17) which clearly indicates



that uopt(P1) – ubrk(P1) and uopt(P2) – ubrk(P2). Under these circum-
stances, the system should be reconfigured to ensure that the pro-
cess continues working.

The first step is to determine which are the actual working tem-
peratures. Thus, an inverse analysis is required. The following step,
see the next subsection, will be to reconfigure the process in order
to impose the desired thermal history, see (15). Obviously, both
steps require a swift resolution if real-time decision are required.
That is ‘‘on-line’’ computations are designed.

The ‘‘on-line’’ inverse analysis minimizes the following least-
squares problem

eCðh1; h2Þ ¼
1
2

X2

i¼1

ubrkðPiÞ � uðxi; 0:5; h1; h2Þ
� �2

; ð18Þ

where xi for i = 1, 2 are the coordinates of the points at which the
thermocouples are located. The Levenberg–Marquardt algorithm,
see [15], reaches convergence after three iterations and the esti-
mated temperatures for both heating devices are hest

1 ¼ 261 and
hest

2 ¼ 146, agree with the considered scenario (hopt
1 ¼ 275:8;

hbrk
2 ¼ 141:4). The inverse identification runs very fast and it only

involves slight calculations, so it could be performed ‘‘on-line’’ on
a very light computing devices, such as a smartphone.

3.2. ‘‘On-line’’ process reconfiguration

Finally, the process is reconfigured to impose the desired ther-
mal history, see (15). Obviously, there are many possibilities and
strategies. Here, since the second heating device is the one not giv-
ing the desired optimal heating. The action consists in keeping the
second heating device in its present state, i.e. hest

2 ¼ 146 and look-
ing for the optimal value of h�1 minimizing the cost function (15) for
a fixed and known h2 ¼ hest

2 ¼ 146, namely

Cðh1Þ ¼
1
2

Z L

0
u x;

H
2
; h1; h

est
2

� �
dx� b

� �2

:

In three interactions of the Levenberg–Marquardt algorithm con-
vergence is attained to the value h�1 ¼ 400. Fig. 6 depicts the result-
ing temperature field related to the new optimized process
parameters h�1 ¼ 400 and hest

2 ¼ 146.

4. Parametric solution post-processing by using light
computing platforms

As soon as the parametric solution u(x,y,h1,h2) has been com-
puted only once and off-line, the subsequent processes, i.e. optimi-
zation, control and system reconfiguration, only involve very light
calculations that could be performed on-line and using mobile
computing platforms, like smartphones.

To illustrate this capability, we assume that the parametric
solution previously considered has already been computed and
that it is available in a separated form. Now this solution can be
introduced in a smartphone that will perform all the on-line calcu-
lations described in the previous sections. Only the most significa-
tive modes of the separated representation are retained in order to
speed-up the computations. In our applications we considered a
Nokia platform, with 256 MB of RAM, 16 GB of internal memory,
a 680 MHz ARM 11 CPU and with Symbian 3 as operating system.

Figs. 7–13 illustrate all the scenarios analyzed in the previous
sections. Fig. 7 shows the output for the optimal values of both
heating devices hopt

1 ¼ 276:82 and hopt
2 ¼ 354:97. They are slightly

different from the ones previously computed because as just
argued the parametric solution introduced into the smartphone
has been restricted to the most significant modes of the off-line
parametric solution to alleviate the on-line calculations performed
by the smartphone.
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The temperatures at the thermocouple positions P1 = (1,0.5)
and P2 = (2,0.5) are then computed for the optimal temperatures
of both heating devices. Fig. 8 shows both temperatures
uopt(P1) = 283.43 and uopt(P2) = 353.12.

A failure scenario is then simulated by considering that the
temperatures at positions P1 and P2 are not the optimal ones. In
fact we consider the scenario defined by ubrk(P1) = 283.43 and
ubrk(P2) = 224.60 illustrated in Fig. 9. The system identifies the mal-
function and displays an alert message as shown in Fig. 10. The sys-
tem then identifies the real temperatures of both heating devices,
by applying the inverse strategy previously discussed. The real
temperatures of both heating devices are identified as
hest

1 ¼ 297:98 and hest
2 ¼ 205:97 instead of the optimal ones

hopt
1 ¼ 276:82 and hopt

2 ¼ 354:97 as depicted in Fig. 11.
We can decide to reconfigure the system by choosing to

change the temperature of one (or eventually both) heating de-
vices. In our case we decide to calculate the new temperature
of the first heating device able to ensure optimal process condi-
tions. For this purpose we select the first heater as shown in
Fig. 11. The system then recomputes on-line the optimal temper-
ature of the first heating device: h�1 ¼ 474:61 as shown in Fig. 12.
The new temperature field corresponding to the new operational
conditions u x; y; h�1 ¼

�
474:61; hest

2 ¼ 205:97Þ is illustrated in
Fig. 13.
5. Conclusions

This work presents a first attempt of applying dynamic data dri-
ven simulation for controlling industrial processes whose model-
ling involves complex linear or non-linear partial differential
equations. For the sake of simplicity we addressed in the present
work the linear case, the non-linear one constituting a work in
progress.

The procedure that we propose combines heavy ‘‘off-line’’ cal-
culations for solving the partial differential model associated to
the industrial process by introducing all the sources of variability
or process parameters as extra-coordinates. Thus, the resulting
model becomes multidimensional making the use of the well expe-
rienced mesh-based discretization techniques impossible. How-
ever, the use of separated representations within the Proper
Generalized Decomposition framework allows us to circumvent
the curse of dimensionality that multidimensional models suffer.

As soon as this parametric solution is available, one could pro-
ceed to optimize the process, still ‘‘off-line’’, by calculating the
optimal process parameters in order to minimize an appropriate
cost function.

However, the system’s response faced to a breakdown should be
computed ‘‘on-line’’ and as fast as possible. Separated representa-
tion of the solution built-up by applying the PGD-based solver al-
lows computing explicitly the derivatives of the solution with
respect to the process parameters, making the fast calculation of
minimization strategies possible. Thus, malfunctioning devices
can be identified ‘‘on-line’’ and the systems reconfigured by mak-
ing some light calculations that we could perform using for exam-
ple a simple smartphone.

This paper constitutes a first attempt of solving complex models
by combining ‘‘off-line’’ and ‘‘on-line’’ computations in the frame-
work of Proper Generalized Decompositions, in scenarios needing
real time responses. In our opinion the possibility of computing
parametric solutions that are then used by simply post-processing
opens an unimaginable number of potential applications. For in-
stance, uncertainty in the measurements (that has not been con-
sidered here), and that constitutes an essential ingredient in
DDDAS, could eventually be efficiently treated in the PGD frame-
work by considering uncertain parameters as additional dimen-



sions. Worst-case scenarios could be computed in a similar way
than the here proposed optimization procedures. This constitutes
our current effort of research and will be published elsewhere.

In the numerical, academic, examples here addressed ‘‘off-line’’
calculations needed two minutes of computing time (using
matlab, a standard laptop and a non optimized simulation code)
whereas all the ‘‘on-line’’ calculations were performed in
0.0015 s. The examples here addressed are too simple to be conclu-
sive, but at least, they prove the pertinence of the proposed
approach.
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