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NOTES ON COMPLETE MONOTONICITY RELATED TO THE

DIFFERENCE OF THE PSI AND LOGARITHMIC FUNCTIONS

FENG QI AND AI-QI LIU

Abstract. In the paper, the authors simply survey complete monotonicity of

several functions involving the difference of the psi and logarithmic functions
and present a concise proof for complete monotonicity of a function involving

the difference of the psi and logarithmic functions.

1. Motivations and main results

Recall from [10, Chapter XIII], [14, Chapter 1], and [15, Chapter IV] that a
function f is said to be completely monotonic on an interval I if f has derivatives
of all orders on I and

(−1)nf (n)(x) ≥ 0

for all x ∈ I and n ∈ {0} ∪ N. Theorem 12b in [15, p. 161] states that a necessary
and sufficient condition for f(x) to be completely monotonic on (0,∞) is that

f(x) =

∫ ∞
0

e−xt dµ(t),

where µ is a positive measure on [0,∞) such that the above integral converges on
(0,∞).

In [2, pp. 374–375, Theorem 1] and [8, Theorem 1], it was verified that the
function

xα[lnx− ψ(x)]

for α ∈ R is completely monotonic on (0,∞) if and only if α ≤ 1.
In [13, Theorem 1.7], it was proved that the function

x2[ψ(x)− lnx] +
x

2

is strictly decreasing and convex on (0,∞) and, as x→∞, tends to − 1
12 .

In [3, Theorem 1], it was discovered that the function

x2[ψ(x)− lnx] +
x

2
+

1

12

is completely monotonic on (0,∞).
In [1, p. 259, 6.3.18] and [11, p. 140, 5.11.2], the asymptotic formula

ψ(z) ∼ ln z − 1

2z
−
∞∑
n=1

B2n

2nz2n
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= ln z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · ·

as z →∞ in | arg z| < π was listed, where B2n denotes the Bernoulli numbers.
The above conclusions motivate us to guess that the functions

Fn(x) = (−1)n+1

(
x2n[ψ(x)− lnx] +

1

2
x2n−1 +

n∑
k=1

B2k

2k
x2(n−k)

)
for n ≥ 2 are also completely monotonic on (0,∞). Actually, this guess is wrong,
because

[F2(x)]′ = −1

6
x
[
6x3ψ′(x) + 24x2ψ(x)− 24x2 lnx− 6x2 + 9x+ 1

]

→


0, x→ 0+

24γ − π2 − 4

6
, x→ 1

96γ − 8π2 − 43 + 96 ln 2

3
, x→ 2

=


0

−0.0027380 . . .

−0.0006673 . . .

shows that the derivative [F2(x)]′ is not monotonic on (0,∞), where γ = 0.577 . . .
denotes the Euler–Mascheroni constant.

In this paper, motivated by the second proof of [8, Theorem 1], we will present
a concise proof, which is simpler than the corresponding proof in [3, Theorem 1],
for complete monotonicity of the function x2[ψ(x)− lnx] + x

2 + 1
12 on (0,∞).

Theorem 1. The function

x2[ψ(x)− lnx] +
x

2
+

1

12

is completely monotonic on (0,∞), with the limits

lim
x→0

(
x2[ψ(x)− lnx] +

x

2
+

1

12

)
=

1

12
(1)

and

lim
x→∞

(
x2[ψ(x)− lnx] +

x

2
+

1

12

)
= 0. (2)

2. A concise proof of Theorem 1

In [11, p. 140, 5.9.13], it was listed that

ψ(z) = ln z +

∫ ∞
0

(
1

t
− 1

1− e−t

)
e−tz d t.

By integration by part, this formula can be reformulated as

ψ(x)− lnx+
1

x
=

∫ ∞
0

(
1

t
− 1

et − 1

)
e−xt d t

= − 1

x

{[
h(t)e−xt

]∣∣t=∞
t=0
−
∫ ∞
0

h′(t)e−xt d t

}



DIFFERENCE OF THE PSI AND LOGARITHMIC FUNCTIONS 3

=
1

2x
+

1

x

∫ ∞
0

h′(t)e−xt d t,

where the function

h(t) =


1

t
− 1

et − 1
, t 6= 0

1

2
, t = 0

satisfies

lim
t→0+

h′(t) = − 1

12
, lim

t→∞
h′(t) = 0, (3)

and is concave on (−∞, 0) and convex on (0,∞). For information on the function
h(t), please refer to [16, Theorem 1] and [4, 5, 6, 7, 9, 12]. Consequently, integrating
by part again yields

x2[ψ(x)− lnx] +
x

2
+

1

12
=

1

12
+ x

∫ ∞
0

h′(t)e−xt d t

=
1

12
−
∫ ∞
0

h′(t) d
(
e−xt

)
=

∫ ∞
0

h′′(t)e−xt d t.

Accordingly, by virtue of [15, p. 161, Theorem 12b] mentioned at the beginning of
this paper, the convexity of the function h(t) on (0,∞) implies that the function
x2[ψ(x)− lnx] + x

2 + 1
12 is completely monotonic on (0,∞), while the limits in (3)

imply the limits (1) and (2) immediately. The proof of Theorem 1 is complete.
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[14] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions—Theory and Applications,
2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012;

Available online at http://dx.doi.org/10.1515/9783110269338.

[15] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
[16] S.-Q. Zhang, B.-N. Guo, and F. Qi, A concise proof for properties of three functions involving

the exponential function, Appl. Math. E-Notes 9 (2009), 177–183.

(Qi) Institute of Mathematics, Henan Polytechnic University, Jiaozuo, Henan, 454010,
China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao,

Inner Mongolia, 028043, China; Department of Mathematics, College of Science, Tian-

jin Polytechnic University, Tianjin, 300387, China
Email address: qifeng618@gmail.com, qifeng618@hotmail.com

URL: https://qifeng618.wordpress.com

(Liu) Department of Mathematics, Sanmenxia Polytechnic, Sanmenxia, Henan, 472000,

China

Email address: smxptliu@hotmail.com

http://dlmf.nist.gov/
https://doi.org/10.1016/j.jnt.2015.07.021
http://dx.doi.org/10.1090/S0025-5718-04-01675-8
http://dx.doi.org/10.1090/S0025-5718-04-01675-8
http://dx.doi.org/10.1515/9783110269338
mailto: F. Qi <qifeng618@gmail.com>
mailto: F. Qi <qifeng618@hotmail.com>
https://qifeng618.wordpress.com
mailto: A.-Q. Liu <smxptliu@hotmail.com>

	1. Motivations and main results
	2. A concise proof of Theorem 1
	References

