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FIXED POINTS IN SMOOTH CALOGERO-MOSER SPACES

by

CEDRIC BONNAFE & RUSLAN MAKSIMAU

Abstract. — We prove that every irreducible component of the fixed point variety under the
action of u, in a smooth Caloger-Moser space is isomorphic to a Calogero-Moser space asso-
ciated with another reflection group.

Consider a finite subgroup W c GL¢(V') of automorphisms of a finite dimensional com-
plex vector space V, generated by reflections and let ¢ be a complex valued function
on the set of conjugacy classes of reflections of W. To the triple (V, W, ¢), Etingof and
Ginzburg [8] have associated an affine variety Z.(V, W), the Calogero-Moser space, which
is defined as the spectrum of the center of the rational Cherednik algebra H, “at t =0"
(see Section 1 for a precise definition). The algebra H, carries a Z-grading (i.e. a C*-
action), which induces a C*-action on the Calogero-Moser space Z.(V, W).

We define a reflection subquotient of (V, W) to be a pair (V’, W’) where V' is a subspace
of V, W/ c GL¢(V’) is generated by reflections and there exists a subgroup H of W which
stabilizes V/ and whose image in GL(V”) is exactly W”.

Note that any element in GL¢(V) normalizing W acts on Z,(V,W). In [4, Conjec-
ture FIX], Rouquier and the first author proposed the following conjecture:

Conjecture F. Let 0 € GL¢(V) be an element of finite order and normalizing W
and let X be an irreducible component of Z.(V, W)° (endowed with its reduced
scheme structure). Then there exists a reflection subquotient (V', W’) of W and
a complex valued function ¢’ on the set of conjugacy classes of reflections in W’
such that ¥ ~ % ,,(V’', W’), as varieties endowed with a C*-action.

Note that the conjecture stated in [4, Conjecture FIX] does not give an explicit descrip-
tion of ¢’ in terms of c: it is just mentioned that the map ¢ — ¢’ should be linear. Note
also that, as stated, it might be a little bit optimistic: maybe one should replace Z by its
normalization (as it is not clear whether &' is normal or not). A special case of an element
o normalizing W is when o is a root of unity, viewed as the corresponding homothety
on V. The aim of this paper is to prove the following result:

Theorem. Conjecture F holds if Z.(V, W) is smooth and o is a root of unity.

The first author is partly supported by the ANR (Project No ANR-16-CE40-0010-01 GeRepMod).
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The proof is by case-by-case analysis, as the triples (V, W, c) such that Z.(V, W) is
smooth are classified (see the works of Etingof-Ginzburg [8], Gordon [10], Bellamy [1]).
The classification and the conjecture can be easily reduced to the case where W acts ir-
reducibly on V/VW and in this case, the smoothness of Z.(V, W) implies that W is of
type G(I,1,n) or G, in Shephard-Todd classification. The case of G, can be handled by
computer calculations (see Section 5), while the infinite family case will be handled by
using an isomorphism between Z,.(V, W) and a quiver variety.

1. Notation and main result

All along this note, we will abbreviate ®: as ®. By an algebraic variety, we mean a
reduced scheme of finite type over C.

Set-up. We fix in this paper a C-vector space V of finite dimension n
and a finite subgroup W of GL¢(V). We set

Ref(W)={se W | dimc V =n—1}

and we assume that
W = (Ref(W)).
We also fix an element o € GL¢(V) of finite order normalizing W.

Wesete: W — C*, w— det(w). If s € Ref(W), we denote by a) and a, two elements of
V and V* respectively such that V* =Ker(a;) and V** =Ker(a}), where a! is viewed as a
linear form on V*.

1.A. Rational Cherednik algebra at = 0. — All along this note, we fix a function c :
Ref(W) — C which is invariant under conjugacy. We define the C-algebra H. to be the
quotient of the algebra T(V @ V*)x W (the semi-direct product of the tensor algebra T(V &
V*) with the group W) by the relations

[x, x'1=[y,y'1=0,
[y, x]= D (&)=

V )
seRef(W) {as, as)

() (@)@, )

forall x ,x"eV*, y, y’ € V. The algebra H, is called the rational Cherednik algebra at t =0.
The first commutation relations imply that we have morphisms of algebras C[V]—H,
and C[V*]— H,. Recall [8, Corollary 4.4] that we have an isomorphism of C-vector spaces

(1.1) C[V]®CW ®C[V*]—H,

induced by multiplication (this is the so-called PBW-decomposition).

We denote by Z, the center of H,: it is well-known [8, Lemma 3.5] that Z is an integral
domain, which is integrally closed and contains C[V]" and C[V*]" as subalgebras (so it
contains P =C[V]" ® C[V*]"), and which is a free P-module of rank |W|. We denote by
% . the algebraic variety whose ring of regular functions C[Z] is Z: this is the Calogero-
Moser space associated with the datum (V, W, c). If necessary, we will write Z.(V, W) for
Z..
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Example12. — Let [ > 1, let { be a primitive /-th root of unity and let y; = (£). We
assume in this example that n =1 and W = (t) ~ w;, where t(v)={v for all v € V. Then
Ref(W)={r, r?,..., t"~1} and we set for simplification

-1
1 il
kj:7 E 4 U 1)Cti
i=1

(0<j<I1—-1). Note that kg+ k; +---k;_; =0. Then

-1
% ~{(x,y,)eC’| | [le—1k)=xy}

i=0
(see for instance [4, Theorem 18.2.2]). In particular, Z, is smooth if and only if
(ki—k;)#0.
0<i<j<I-1

Note also that the inclusion P ¢ Z, corresponds to the morphism of algebraic varieties
%~ C%(x,y,e)~(x,y).
The C*-action is given by the formula

E-(x,y,e)=('x,E "y, e),
where £ €C* and (x,y,e)e %Z,.. 1

1.B. Action of the normalizer. — The normalizer Ngy.(v)(W) of W in GL¢(V) acts on V
naturally, on V* by the contragredient action and on W by conjugation. This endows
T(V & V*)x W with an action of Ngp.(v)(W) and it is easily checked that the bunch of rela-
tions () is stable under this action. So H, inherits an action of Ng.(v)(W). In particular,
its centre Z, also inherits such an action, and this defines an action of Ngi(v)(W) on the
Calogero-Moser space Z,.

Theorem 1.3. — Assume that %, is smooth and that o is a root of unity, and let X be an
irreducible component of 27 . Then there exists a reflection subquotient (V', W’) of (V, W) and a
complex-valued map ¢’ on the set of conjugacy classes of reflections of W’ such that

,%' ~ ZC/(V’, W/),

as varieties endowed with a C*-action.

Remark 1.4. — Note that if Z is reduced to a point, then the theorem is easy because in
this case, ' ~ %,(0,1). m

This Theorem will be proved in Sections 3 and 5.



4 C. BONNAFE & R. MAKSIMAU

1.C. Filtration of the group algebra. — If w € W, we set cod(w) = codim¢(V"). We
define a filtration .Z,(CW) of the group algebra of W as follows: let

FCcw)= P cw.
cod(w)< i
Then
Cldy = Zy(CW)c F(CW)cC---cZ,(CW)=CW =ZF,,,(CW)=--.
is a filtration of CW. For any subalgebra A of CW, we set Z;(A) = AN.Z;(CW), so that
Cldy =CZy(A)c F1(A)Cc---Cc T, (A=A=F,1(A) ="

is also a filtration of A.

Now, assume that Z.(V, W) is smooth, let o be a root of unity and let Z be an irre-
ducible component of Z,.(V, W)?. According to Theorem 1.3, there exists a reflection sub-
quotient (V/, W’) of (V, W), a complex-valued map ¢’ on the set of conjugacy classes of re-
flections of W’ and a C*-equivariant isomorphism i : Z,/(V’, W’) = 2. We will view i as
a closed immersion i : Z,(V’,W’)— %.(V, W). By [10, Corollary 5.8], the smoothness of
Z.(V, W)implies that there exists a bijection between Irr(W) and Z.(V, W)T". As the fixed
point variety of a finite group in a smooth complex algebraic variety is still smooth, this
means that 2 is smooth, and so Z..(V’, W) is smooth. Applying again [10, Corollary 5.8],
we get another bijection between Irr(W’) and Z.(V/,W/)¢". As € c Z.(V,W)®", this
gives an injective map iy : Irr(W’) — Irr(W), depending on 2 and the choice of i. This
allows to define a surjective morphism of algebras

i3 1 Z(CW)—» Z(CW’)
as follows: if y € Irr(W), let e;V denote the corresponding primitive central idempotent
of CW and set
W) {ex"‘,’/ if y’ elrr(W’)is such that iy (y) =y,

iy(e, L : .
0 if y is does not belong to the image of iy .

Using results of Shan and the first author [5], Theorem 1.3 has the following consequence:

Corollary 1.5. — If i >0, then i},.(Z;(Z(CW))) C Z;(Z(CW")).

Proof. — If % is a complex algebraic variety endowed with a C*-action, we denote by
HL.(#%) the i-th group of equivariant cohomology, with coefficients in C. Let 7 be an
indeterminate and identify Hc«(pt) with C[#1] as usual, with 77 homogeneous of degree 2.
Since Z.(V, W) is smooth, it follows from [5, Theorem A] that

HZH (% .(V,W)=0 ifi>0,
HZ, ~Reesz(Z(CW)) as C[f1]-algebras,

where Reesz(Z(CW))=@; s o 1! Z:(Z(CW)) € C[h]®cZ(CW) is the Rees algebra associated
with the filtration .Z,(Z(CW)). Using the analogous result for Z,,(V’, W’) and the functo-
riality of equivariant cohomology, we get a morphism of algebras i* : Reesz(Z(CW)) —
Reesz(Z(CW)).

Now, we will use not only [5, Theorem A] but also its proof: the proof goes by re-
striction to the fixed point subvariety %.(V, W)®" and identifying HZ(Z,(V, W)C") with
C[h]® Z(CW) using [10, Corollary 5.8]. As the same strategy holds for %, (V’, W’), the
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functoriality of equivariant cohomology implies that the map i* fits into a commutative
diagram

» 3k

Rees z(Z(CW)) d Reesz(Z(CW"))

Idcrm ®cit
Clh)oc Z(CW) —— 1 7C2 i) ee Z(CWY).

This shows the corollary.

2. Preliminaries on quiver varieties
2.A. Quiver varieties. — Let Q; denote the cyclic quiver with [ vertices, defined as fol-
lows:
e Vertices: i €Z/17Z;
o Arrows: y;:i—i+1,i€Z/IZ.

We denote by Q; the double quiver of Q; that is, the quiver obtained from Q; by adding
an arrow x;:i+1—i for all i € Z/1Z (see Figure 1).

N 2
O-.
10«//_)
X1
W .
xO \\\
00 ,‘,
x—l /’l
V-1 2
O,
-1 -.

Fig. 1. The quiver Q,

Now, if d =(d;);ez/1z is a family of elements of N, we denote by GL(d) the direct product
6Ld)= | | 6L, (©)
i€Z/1Z.

by AC* the image of C* in GL(d) through the diagonal embedding A : C* — GL(d) and
we set

PGL(d)=GL(d)/AC™.

The group PGL(d) acts on the variety Rep(Q;, d) of representations of Q; in the family of

vector spaces (Ci )iez/1z- The orbits are the isomorphism classes of representations of Q,
of dimension vector d. We denote by

pa: Rep(Q,d) —  DjczizMaty,(C)
(Xi, Viezyiz — (XiYi—Yi 1 Xi)iez)iz
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the corresponding moment map. Finally, if 6 = (0;);cz/1z is a family of complex num-
bers, we denote by Iy(d) the family (0;1dcq;)iez/1z and by 0p(d) the closed subvariety of
Mat,,(C) consisting of matrices of rank <1 and trace =%, 5 0;d;. Finally, we set

y(d) =g lp(d)+Op(d))  and  Zp(d)=F(d)//PGL(d).

We will usually denote an element (X;, Y;);ez/1z of %(d) by (X,Y), where X = (X;)iez/1z
and Y =(Y;)jez/1z- Note that #(d) is endowed with a C*-action: if £ € C*, we set

(X, Y)=(E'X,EY).

This action commutes with the action of GL(d) and the moment map is constant on C*-
orbits, so it induces a C*-action on Zy(d).

Remark 2.1. — We extend the definition of 2(d) to the case where d € Z%/!Z by the
convention that Zy(d)=@ whenever at least one of the d;’s is negative. m

2.B. Action of the affine Weyl group. — If I >2, let W;* denote the affine Weyl group
of type A;_;. It is the Coxeter group with associated Coxeter system (W, $2), where
ST ={s; | i €2/1Z} and the Coxeter graph is given by

§

So

Fig. 2. Coxeter graph of (W31, 521

We extend this notation to the case where [ =1 by setting W;*=1.

Consider the Lie algebra g; = s[;(C) and its affine version g; = sl,(C) = s, (C)[t, V] @
Cl1e®Co. Let bh C g be the Cartan subalgebra formed by the diagonal matrices and set
h=heCleCo.

The C-vector space b* has a basis (ag, ay,..., @;_1,A), where @q, @j,..., a;_; are the
simple roots of §; and A, is such that Ay annihilates h and ¢ and Ay(1) = 1. Denote by
Rlaff and R; the affine and the non-affine root lattices respectively (i.e., Rlaff is the Z-lattice
generated by ap, a;,..., a;—; and R; is the sublattice generated by a;,..., a;_;.)

Following [17], we define two actions of Wlaff: a non-linear one on Z%/'Z, and a linear
one on C%'Z_ 1f | = 1, there is nothing to define so we may assume that [ >2. If d =
(di)icz)i1z € ZENZ and if j € Z/17, we set si(d)= (d))iez/12, Where

d - d; ifi#j,
i 5j0+di+l+di—l_di 1fl=]
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Remark 2.2. — We can identify Z%/!Z with the root lattice R by
d— Z d,-al-.
i€z]1z

Beware, the action considered here is not the usual action of Wlaff on the root lattice.
When we have w(d) = d’ with respect to the action define above, this corresponds to
w(Ag—d)=Ay—d’ for the usual action of Wlalcf onh*. m

If 0 =(0;)icz1z € C¥'%, we set 5;(0)=(0])iez/1z, where

0; ifid{j—1,j,j+1},
0,-/: 6j+9i lflE{]—l,]+1},
—0; ifi=j.

It is readily seen that these definitions on generators extend to an action of the whole
group W™ We also define a pairing Z%/'%Z x C%/'2 - C, (d,0)— d -0, where

d-0= > d;b,

i€z/17,
Then
(2.3) sj(d)-s;(0)=(d-0)—b jobp.
It is proved in [17, Corollary 3.6] that
(2.4) Zs0)(sj(d))~ Xy (d) if 8; #0.

Note that this isomorphism takes into account the convention of Remark 2.1.
Recall also from [8, §11] the following result, which follows from the fact that Z(n0o;)
is isomorphic to some Calogero-Moser space.

Lemma 2.5. — If n >0, then Zy(nd,) is normal and irreducible of dimension 2n.

Recall that the affine Weyl group has another presentation. We have Wlaff =W, xRy,
where W, = &, is the non-affine Weyl group, that is, the subgroup generated by s,...,
s;—1. For each a € R, denote by ¢, the image of a in Wlaff. Each element of Wlaff can be
written in a unique way in the form w - ¢,, where w € W; and a € R;. Let §; denote the
constant family 6 = (1);ez/1z € ZEL In the following lemma we identify ZEIZ with Rlaff.

Lemma 2.6. — Assume a € R, and d € Z%/'Z, Then we have t,(d)=d —a mod Z§,.
Proof. — This statement is a partial case of [13, (6.5.2)] (see also Remark 2.2). O

Lemma 2.7. — For each d € Z*/'%, there exists a unique n € Z such that d and néd; are in the
same WT-orbit.
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Proof. — Let us prove the existence of n. Set « =d —dy0;. Then « is clearly an element of
R;. Then by Lemma 2.6, the element #,(d) is of the form nd;.
Let us prove the uniqueness of n. Assume that n;6; and n,6; are in the same W;*-

orbit. Since n,0; is Wj-stable, the Wlaff-orbit of n;6; coincides with the R;-orbit of n;6;.
So there exists @ € R; such that f,(n,0;) = n,6,. By Lemma 2.6, this forces a = 0 and
ny =ny. O

Consider the Z-linear map
R CEIZE  de—d,

given by
(@r)i =20y —0ir1—0i,r1-
The kernel of this map is Zd;. Set

¥(0)= Z 0;.

icz/1z

Lemma 2.8. — For each a € R; and 6 € CZ/'Z  we have t,(0)= 0 +>(0)a.

Proof. — The Wlaff-action on C%/'Z defined above coincides with the (usual) action of Wlaff
on the dual of the span of ay, a3, ...,a;_; in b*. The statement follows from [13, (6.5.2)]. O

We denote by (Z%/7), the set of d € Z*/'Z which belong to the orbit of some 1n§;, with
n 2 0. This set has a more precise combinatorial description. For example, it will follow
from Proposition 4.4 that an element d € ZEIL ig in (ZZ/12)  if and only if d is a residue of
some Young diagram. In particular, the set (Z%/!%), is contained in N%/Z.

Lemma 2.9. — Assume that d € Z%/'? is such that there exists a simple representation in %p(d).
Then

(a) the variety Xy(d) is normal and irreducible,
(b) we have d € (Z%/'%), .

Proof. — LetneZand w e Wlaff be such that no; = w(d). Let us show that (2.4) implies an
isomorphism Zg(d) ~ X, 9)(nd;). (In particular, we must have n > 0.) The only difficulty
that we have is caused by the condition 6; # 0 in (2.4). But [7, Lemma 7.2] implies that we
can find a sequence of reflections such that s; s;, ...s; (d) = n6; and such that we can apply
a sequence of isomorphisms (2.4) with no danger to get 6;, =0 while applying s;,. O
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2.C. Smoothness. — The following result is proved in [11, Lemma 4.3 and its proof]
(which is based on [15, Theorem 1.2] and [7, Theorem 1.2]):

Theorem 2.10. — Let n > 0. Then the following are equivalent:

(1) The variety Z9(no;) is smooth.

(2) Every element of %p(nd;) defines a simple representation of the quiver Q.
(3) The family 0 satisfies

¥(6) ]_[ (6 + ;41 +-+-+0;)+ kX(6)) £ 0.
1<i<j<i-1
—(n—-1)< k< n-1
If these equivalent conditions hold, then PGL(né;) acts freely on %y(no;), and so, as a set,
Xy(nd,) identifies with GL(nd,)-orbits in %y(no;).

2.D. Fixed points. — For every m > 1, the group of m-th roots of unity u,, acts on
Xp(nd;) (this is the restriction of the C*-action defined in §2.A). We aim to compute
the fixed point variety Zy(no;)*» whenever Zy(no;) is smooth. Note first that y; acts
trivially on 2% (né;): indeed, if { € w; and if (X,Y) € #(nod;), then {-(X,Y) = 8(X,Y),
where g, = (¢! Idcn)iez/iz € GL(no;). This means that, in order to describe Xy(né,;)*n, we
may replace u,, by (w,,, ;) or, in other words, we may assume that ! divides m.

Hypothesis. We fix in this subsection a non-zero natural number k and
we set m=kl.

If 0 =(0,)icz/1z € CZ/'Z we define 0[k] to be the element (0[k]}) jez/mz such that
0lk1; = 0;

if j =i mod I. Roughly speaking, (k] is the concatenation of k copies of 8.
We denote by ZZ/™Z[n§, ] the set of d =(d;) jez/mz € Z“/™* such that

JEZ/mZ
j=i mod!
for all i € Z/IZ. Set also &(k,I,n) = ZE/"Z(nG,|N(ZE/MP),. 1f d € &(k,1,n) and (X, V) €
Rep(Q,,,d), we set
X, Y)=(x"Y),
where X/ =@ jez/mz Xj and Y/ =@ jez/mz Yj. By the definition of &(k, 1, n), we have
j=i mod ! j=i mod !

X, YL/E Mat,(C). In other words, (X’, Y/) € Rep(Q;, nd;): it is clear that i,(cd) :Rep(Q,,,, d) —
Rep(Q;, néd;) is a closed immersion.

Lemma 2.11. — Ifd € §(k,1,n)and (X,Y) € ¥yi(d), then i,(cd)(X, Y)e %(né;).
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Proof. — Write i;cd)(X, Y)=(X",Y’) and let i € Z/1Z. Write p, for the rank one matrix
XO YO — Y—lX—l — H[k]o Id(CdO . Then

/ / / /
Xi Yz - Yi—IXi—l @ (X]- Y] - YJ’—IXJ'—I)

JEZ/MZ
j=i mod [
B 0lk];1deq; + 6010
JEZ/MZ
j=i mod!

0; 1dcn +00; po,

as desired. O

It is also clear that, if (X, V) and (X, Y) are two elements of %p1k)(d) which are conjugate
under GL(d), then i](cd)(X ,Y)and i;cd)()N( ,Y) are conjugate under GL(n6;). This means that

i](cd) induces a morphism of algebraic varieties still denoted by

i\ pr(d)— Zp(nd)).
For d € §(k,1, n), set
Zq =i X (d))  Zo(nd)).
For the moment, we allow the possibility that the varieties Z(r)(d) and 2; are empty.
Set
&k, l,n)z={d € &(k,1,n); X4 #2}.
But we will show in Corollary 4.13 that we have &(k, [, n).; = &(k, 1, n).

The next result describes the fixed point variety Zy(nd;)*=: it is the main step towards
the proof of Theorem 1.3.

Theorem 2.12. — Assume that Zy(no6;) is smooth. Then:

(a) Xy(no;)m is smooth.
(b) We have
Xo(no)Hm = ]_[ ZXa
des(k,l,n)sp
and X4 are exactly the irreducible components of Zg(no;)Hm.
(c) If d € &(k, 1, n)4g, then i,(cd): Xor)(d) — X g is an isomorphism.

Proof. — (a) follows from the fact already mentioned in the proof of Corollary 1.5 that
the fixed point variety under the action of a finite group on a smooth variety is again
smooth.

We will now prove (b). Let & be a primitive m-th root of unity and let { = &F (it is a
primitive [-th root of unity). Let g, denote the element ({’Idcn)jcz/1z in GL(nd;). This
element satisfies

(%) 8(X,Y)=({"'X,Y)
forall (X,Y)e #%y(no;). We will use the following variety:
Z={(X,Y,8)€¥(nd,)xGL(n&;) | 8(X,Y)=(£7'X,EY) and gpx,y = px,v},
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where px y =([X;, Y;]—0;)icz/1z: it is 0 except on the 0-th component, where it is equal to a
rank one matrix of trace —nX(0) (recall from Theorem 2.10 that >(8) # 0 because Xy(nd;)
is assumed to be smooth).

We denote by p’ : & — #(nd,;) the projection on the first two factors, by p : Z —
ZX9(nd;) the map induced by p’ and by q : Z — GL(n6,) the projection on the third factor.
Note that PGL(n6;) acts on & by conjugacy on the three factors, and so the maps p’ and
q are equivariant for this action.

First, it is clear that p(%) c Zy(né;)*~. Conversely, if (X,Y) € #(no;) is a represen-
tative of an element of 2y(no;)*=, then there exists g € PGL(n6;) such that 8(X,Y) =
(E71X,EY). In particular, Epx y = px,y. So g stabilizes the image of px y, which is of di-
mension 1: this means that g acts by a non-zero scalar w on Im(py y). Setting g’ = w™'g,
we see that (X, Y, g) € Z. So we have proved the following fact:

Fact 1. p(Z)=Zp(nd;)*n.

The next fact follows from the freeness of the action of PGL(n6;) on %, (néd;) (see The-
orem 2.10).

Fact 2. If (X,Y,g)and (X, Y, g’) belong to %, then g =g’ and g~ =g,.

Indeed, the hypothesis implies that §(X, Y) = 8(X,Y)and 8 k(X ,Y)=8(X,Y). So there
exists two non-zero complex numbers @ and f such that g’ = ag and g* = B g,. But the
condition gpy vy =g px,y = 8oPx,y forces a = =1 because py,y #0.

Now, let 6 denote the set of elements g € GL(n§;) such that gk = g,. Since g, is central
in GL(nd;), ¢ is a disjoint union of finitely many semisimple conjugacy classes (which
are the irreducible components of ¢). We fix g € ¢ such that g~!(g) # @ and we denote
by € its conjugacy class in GL(n6,). We will describe g~'(g). For this, let E =@;cz,,7 C"
and let E; = E $'8 (for j € Z/mZ). In other words, E jis the & J-eigenspace of g in E: it
is contained in the i-th component of E, where i is the element of Z/IZ such that j =i
mod [. Let d] = dlm(c(E]) and let d = (d])]GZ/mZ

If (X,Y,g)€ %, then X sends E; to E;_, (we denote by X; : E; — E;_; the induced map)
while Y sends E; to E;;; (we denote by Y; : E; — E;; the induced map). By Choosing
a basis of every E;, the family (X}, Y})jez/mz defines a representation of the quiver Q,,,

of dimension vector d. This means that we have defined a map g~'(g) — Rep(Q,,, d),
which is clearly a closed immersion, and whose image is %p(d) (because Im(py y) is
contained in E).

Note that by construction we have d € ZZIMZ ;). Moreover, by Lemma 2.9 (b) and
Theorem 2.10 we also have d € (Z%/™Z),. This means that d is an element of &(k, 1, n) =
ZEIMIp§, 1N (Z2/™ME), . Moreover, it is clear that the set of elements d that can apper as
above (from some g € 6 such that g~'(g) #©) is &(k, I, n)sg.

This shows the following fact.

Fact 3. With the above notation, q~'(g) ~ %px)(d) . In particular, g='(g) is irreducible.
Fact 3 and its proof imply the following.
Fact 4. We have p(q~' (€)= Z4.

Denote by 7 the projection 7: % (nd;) — Zy(nd;). Fact 2 implies that the map p’: Z —
1 (Zy(nd )Pn)is bijective. Moreover, since 7! (X (n6;)*n) is smooth (the group PGL(n6))
acts freely on %(n0;)), this bijection is an isomorphism of algebraic varieties. Let

(P (Xe(né M) > %
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be its inverse.

Consider the morphism 7: 71 (Zy(nd;)*n) — GL(nd;) given by T =g o(p’)~!. Since we
have n 1 (Zy(nd;)"n)//GL(nd ;)= Xg(nd;)*n, we geta morphism 7: Xy (né ;"= — GL(nd,)//GL(nd,),
where the group GL(n0;) acts on itself by conjugation.

Moreover, since we clearly have T_l(‘ég) = p(q_l(‘ég)), Fact 4 implies the following.

Fact 5. We have 77Y( 6g)=Xq. In particular X is closed.

This completes the proof of (b). Now we prove (c¢). The group GL(nd;) acts transitively
on 6. So we get an isomorphism of varieties

a~ (&) Covins)(8)— q~'(65)//GL(n&)).

Now, if d = (dimC(E‘ffjg))]-ez/mZ, q~'(g) identifies with %4 (d) and Couns,)(g) identifies
with GL(d). Glueing this with Facts 3 and 4, we get an isomorphism of varieties

Lop(d)— Xy,

which is the map i](cd). This proves (c). O
Corollary 2.13. — If k > n, then we have Zy(nd;)*n = Xp(nd;)*".

Proof. — Take d € &(k,1,n)4y. Since k > n, some component of d must be zero. This
implies that C* acts trivially on Zyj(d) because the action of C* is induced by elements
of GL(d).
Since i;cd) is C*-equivariant and
Zo(ném = ]_[ i;(cd)(%e[k](d))
deé(k,l,n)y

(by Theorem 2.12(b)), the C*-action on the variety Zy(no;)*» is also trivial. O

3. Proof of Theorem 1.3

First, the explicit description of Z, whenever n =1 (see Example 1.2) allows to prove
easily Theorem 1.3 in this case. Also, let us decompose V as

v=v"eVie oV,
where the V; are the non-trivial irreducible components of V' as a CW-module. Then W

decomposesas W = Wj x---x W,, where (V;, W;) is then a reflection subquotient (subgroup)
of W. Let ¢; denote the restriction of ¢ to W;. Then

Z(V, W) VI x VI X Z (i, W) x oo x 2, (Vi W)

so that the proof of Theorem 1.3 is easily reduced to the case where W acts irreducibly on
v/ vW,

In this case, the smoothness of %.(V, W) implies that W is of type G, or G(I,1, n) for
some [ > 1. The case of type G, will be handled by computer calculations: see Section 5
for details. This means that we can work under the following hypothesis:
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Hypothesis. From now on, and until the end of this section, we assume
that n > 2, that V =C" and that W = G(l,1, n). We also assume that o
is an m-th root of unity, where m =kl for some k > 1.

Recall that G(I,1,n) is the group of monomial matrices with coefficients in w; (the
group of [-th root of unity in C*) and recall that n > 2.

3.A. Quiver varieties vs Calogero-Moser spaces. — We fix a primitive /-th root of unity
{. We denote by s the permutation matrix corresponding to the transposition (1,2) and
we set

t =diag(Z,1,...,1)e W.

Then s, ¢, t2,..., t'~! is a set of representatives of conjugacy classes of reflections of W.
We set for simplification

-1
1 -
a=c and ch:7 E U=V,
i=1

for j€Z/17Z. Then
(3.1) ko+--+k_1=0 and  ci= > Uk
jez/iz

for 1<i<[—1. Finally, if i € Z/1Z, we set

k_j—ki_; if i £0,
(32) o= i 7
—a+ky—k, ifi=0.
and 0 =(0;)icz/1z-
The following result is proved in [11, Theorem 3.10]. (Note that our k; is related with
Gordon’s H; via H; = k_; — kj_;.)

Theorem 3.3. — With the above notation, there is a C*-equivariant isomorphism of varieties

%, — Xp(nd)).

The theorem above is also true for n = 1. But in this case, the variety Z, has no param-
eter a. On the other hand, the variety Zy(0;) is independent of 6.
Putting Theorems 2.10 and 3.3 together, one gets:

Corollary 3.4. — The variety %, is smooth if and only if
a l_l (ki—kj—ra)#0.

0<i#j<lI-1
0<r<n-—1
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Proof of Theorem 1.3. — Assume now that Z, is smooth and let 2" be an irreducible com-
ponent of Z+". Using the isomorphism of Theorem 3.3, we see that

g’g’m ;h%e(nal)“m'

So, by Theorem 2.12, there exists d € &(k, [, n),y such that Z' ~ Zg(d). By Lemma 2.7,
there exists r >0 and w € Wr:ff such that w(d) =rd,,. So it follows from the isomor-
phism (2.4) that
X > X0k m)

(see also Lemma 2.9 and its proof). Using Theorem 3.3 in the other way, we see that
there exists a complex valued function ¢’ on the set of conjugacy classes of reflections
of W' = G(m,1,r) such that Z (k)76 ) = Z(W’). Moreover, as the action of Wrsz on
C%/mZ is linear, this implies that the map ¢ — ¢’ is linear.

This proves almost every statement of Theorem 1.3, except that W’ can be realized as
a reflection subquotient of (V, W). For this, we need the following fact.

Fact. We have kr < n.

Indeed, the element d —r6,, is in the W 2T-orbit of 0. Then Proposition 4.4 implies that
d—rd,, is a residue of some m-core. In particular, each coordinates of d —ré,, must be
positive. Since the sum of the coordinated of d is nl, this gives nl —rkl > 0. This implies
kr<n.

Now, using the fact proved above, let x denotes the matrix

X = dlag(g', 1,...,1)- M(1,2,...,k) (S GL]C((C),
N——

k terms
where M(; » ) is the permutation matrix associated with the cycle (1,2,..., k). Now, let g
be the matrix

g =diag(x,...,x,Idc.—) € G(I, 1, n).

r terms
Let V’ denote the £-eigenspace of g, where £ is a primitive m-th root of unity such that
£k = . Then Cy/(g) acts on V’, V' is of dimension r and, if we denote by K the kernel
of this action, then Cy/(g)/K ~ G(m,1,r). So (V/,G(m,1,r)) is a reflection subquotient of
(v, w). O

Remark 3.5. — The formula (3.2) above yields a bijection between C%/'% and the set of
(I+1)-tuples of complex numbers (a, ky, ..., k;—1) such that ky+k; +...+k;—; =0. Moreover,
the Wlaff—action on CZ/'Z (see Section 2.B) translates to the action on the (I + 1)-tuples in
the following way

Sr(d,ko,..., kl_r, kl_H_l,...,kl_l):(a, ko,...,kl_r+1, kl_r,..., kl—l)! for r = 1,2,...,1—1
and
So(a, ko, klr k2,..., kl_l):(a, kl +a, ko—(l, k2,..., kl—l)'

In particular, we see that the subgroup W; of W;*" acts by permutation of the parameters
ko, k..., ki—y.

The next result follows from [2], but we provide here a different proof (which works
only in type G(I,1, n)).
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Corollary 3.6. — A permutation of parameters ko, ky,...,k;—; does not change the Calogero-
Moser space %, (up to an isomorphism of algebraic varieties).

Proof. — The subgroup W; of Wlaff stabilizes ;. Then by (2.4), for each w € W}, n € Z,
and 6 € CZ/'Z, we have 2(né;)~ Zwe)(no6;). This proves the statement by Theorem 3.3
and Remark 3.5 O

4. Combinatorics

In this subsection, we aim to make the statement of Theorem 1.3 more precise in the
case where W = G(l,1, n): we wish to describe precisely the map ¢ — ¢’ in terms of the
combinatorics of partitions, cores, [-quotients, etc.

4.A. Partitions and cores. — Let [ and n be positive integers. A partition is a tuple
A =(A1,Ay,...,A;) of positive integers (with no fixed length) such that A, > A, > --- > A,.
Set |[A|= Z;:l Ai. If |A| = n, we say that A is a partition of n.

Denote by & (resp. 22[n]) be the set of all partitions (resp. the set of all partitions of
n). By convention, 22[0] contains one (empty) partition. We will identify partitions with
Young diagrams. The partition A corresponds to a Young diagram with r lines such that
the ith line contains A; boxes. For example the partition (4,2, 1) corresponds to the Young
diagram

Let b be a box of a Young diagram in the line r and column s. The [-residue of the box
b is the number s —r modulo /. (We also say that the integer s—r is the co-residue of the
box b). Then we obtain a map

Res;: & -zt A+— Res;(A),

such that for each i € Z/IZ the number of boxes with residue i in A is (Res;(A));. (Similarly,
we obtain a map Resq,: ? — ZZ.)

Example 4.1. — For the partition A =(4,2,1) and ! =3 the residues of the boxes are

0/1[2]0]
210
1

In this case we have Res;(A) = (3,2,2) because there are three boxes with residue 0, two
boxes with residue 1 and two boxes with residue 2. ®

We say that a box of a Young diagram is removable if it has no boxes on the right and on
the bottom. For A, u € 2, we write u < A if the Young diagram of u can be obtained from
the Young diagram of A by removing a sequence of removable boxes.
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Definition 4.2. — We say that the partition A is an I-core if there is no partition u < A such that
the Young diagram of u differs from the Young diagram of A by I boxes with I different [-residues.

See [3] for more details about the combinatorics of [-cores. Let 6; € & be the set of
l-cores. Set 6;[n]=Z[n]N ;.

If a partition A is not an [-core, then we can get a smaller Young diagram from its Young
diagram by removing [ boxes with different /-residues. We can repeat this operation
again and again until we get an [-core. It is well-known, that the /-core that we get is
independent of the choice of the boxes that we remove. Then we get an application

Core;: & — 6.

If u = Core, (1), we will say that the partition u is the I-core of the partition A.

Example 4.3. — The partition (4,2,1) from the previous example is not a 3-core because
it is possible to remove three bottom boxed. We get

0[1]2]0]

But this is still not a 3-core because we can remove three more boxes and we get

o]

This shows that the partition (1) is the 3-core of the partition (4,2,1). m

As mentioned in Lemma 2.7, for each d € Z%/'Z  the Wlaff—orbit of d contains an element
of the form no; for a unique n € Z.

Proposition 4.4. — Let d be an element of Z*/'“. The following statements are equivalent.
(a) d is of the form d =Res;(A) for some [-core A,
(b) d is in the W2T-orbit of 0.

Proof. — Consider the W;*-action on %; as in [3, Sec. 3]. By construction, the map
Res;: 6, — Z%/'Z i Wlaff—invariant. Moreover, the residue of the empty partition is zero.

The stabilizer of the empty partition in W2 is W} and the stabilizer of 0 € ZZ/!Z in W
is also W;. This shows that the map Res; yields a bijection between the set of I-cores and
the Wlaff—orbit of 0 in Z%/1Z, O

Denote by 7 the obvious surjection 7: Z%/1% — 72/127,5,.
Proposition 4.5. — The chain of maps

Res;

6 gzlz T 7212175,

yields a bijection between 6; and Z%/'2|7.5,.

Proof. — We have seen in the proof of Proposition 4.4 that Res; yields a bijection between
%, and the W-orbit of 0 € ZZ/'Z. This proves the statement because the restriction of 7
to the W;*-orbit of 0 € ZZ/'Z is bijective by Lemma 2.7. O
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For d = (d;)icz/1z € Z%'% we set |d| = Diczyizdi- Set ZE2p) = {d € Z%'Z;|d| = n}.
Denote by %;[= n] the subset of %6, that contains only [-cores with the number of boxes

congruent to n modulo I. Proposition 4.5 yields the following bijection &: Z%/Z[n] <>
6= n).

Lemma 4.6. — Assume d € Z*/'%[n]. Then d is in (Z*/'?), if and only if |e(d)| < n.

Proof. — By construction, &(d) is the unique /-core A € 6)[= n] such that Res;(A) is con-
gruent to d modulo 6;. Write d = Res;(A) +ro;. Since by Proposition 4.4, the element
Res;(A) is in the Wlaff—orbit of 0, then d is in the Wlaff—orbit of r6;. Then, by definition, the
element d is in (Z%/'%), if and only if r > 0. Now, let us count the sum of the coordinates
in the sides of the equality d = Res;(A)+rd;. We obtain n = |A|+ rl. This shows that we
have r >0 if and only if |A| < n. O

Let v be an [-core. Denote by %, , the set of partitions with the /-core v. In particular
we denote by 2, ,, the set of partitions with trivial I-core. Let 2/ be the set of [-partitions
(i.e., the set of I-tuples of partitions). If A is a partition, we denote by B;(A) its [-quotient
(see for example [16, Sec. 2.2]).

Lemma 4.7. — If v is an l-core, then By restricts to a bijection By ,: 2 , < P".

4.B. Description of &(k, [, n) in terms of cores. — Let k be a positive integer. Set m = k1.
Set also (6n)1,y =21,y N G-
Recall that we have a bijection &: Z%/"%[nl] < 6,,[= nl]. Assume d € ZZ/™Z[nl].

Lemma 4.8. — We have d € Z*/"™%[n3§,] if and only if the I-core of £(d) is trivial, where the set
ZEI™MZI s, is as in Section 2.D.

Proof. — By definition, &(d) is the unique m-core A € 6,,[= nl] such that Res,,(4) is equal
to d modulo 6,,. On the other hand, by Proposition 4.4, the partition A is an [-core if and
only if Res;(A) is a multiple of 6;. By commutativity of the following diagram,

P

Rejm/ st I

ZZ/mZ ZZ/IZ

this condition is clearly equivalent to d € ZEIMZIpg, ). O

Recall that the set &(k, 1, n) was defined as the intersection &(k,1,n) = Z%™Z[ng§;1N
(ZZImZy, Combining Lemmas 4.6 and 4.8, we obtain the following.

Lemma 4.9. — The bijection &: Z%/™%[nl] ~ 6,,[= nl] restricts to a bijection
£':8(k,1,n)— Cpl=nllNEpl< nllN(6n) o
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For A=(A%,..., Al ") e 22! we set |A| =|A|+---+|A!7)). Setalso 2! [n]={Ae2!; |A|=n}.
We say that an element of 2 ![n] is an [-partition of n.

Now recall the bijection f; ,: 2, < ! obtained by restriction from f; as in Lemma
4.7. By construction, it has the following properties.

Lemma 4.10. — (a) For each A € 2, 5, we have A € 6,, if and only if B; 5(A) € (6.
(b) For each A€ %, ,, we have |A|=1-|B; ,(A)l+ V.

Part (a) of the lemma above shows that 8,y can be restricted to a bijection (6,,); 5 ~
(61)!. Moreover, part (b) shows that new bijection restricts to a bijection

Gml= 11N Gul< nIN(Cn)1 o~ (6) [En,< 1,
where
(€)' [=n,<nl={1e(6)}; IAl<nand [A|=n mod k}.
Combining this with Lemma 4.9, we get a bijection

6:&(k,1,n)— (€)' [=n,< nl.

This bijection (and Corollary 4.13 below) yileds a parametrization of the irreducible com-
ponents of Zp(nd;)#n by the set (6;)![= n,< n].

4.C. Parametrization of the u,, -fixed points. — We have proved in Theorem 2.12 that
the subset &(k, [, n)4, of (k, I, n) parametrizes the irreducible components of Z(n6 ;).
(But we will show in Corollary 4.13 that we have &(k, [, n).y = &(k, 1, n).) Then the bijec-
tion &’ above gives another parametrization of the irreducible components of Zy(né;)*n
in terms of 6,,[=nl]N6,,[< nl]N(6,,); . For each A € 6, [=nlIN6,[< nl]N(6y) g We
set %A = %3/71()&).

This new parametrization has the following nice property.

Lemma 4.11. — Fix positive integers k, and k, such that k, divides k,. Set my = kil and
my =kyl. Fix A) € 6, [= nlING,y,, [< nlIN(6y,) 1,5 and Ay € 6, [= nlING,,, [< RLIN(Cn, )10
Then we have %, C %), if and only if Core,, (A5)= A;.

Proof. — Consider the map
p P L gEmE pay = Y,

j=i mod m,
Let d! € &(k;,1,n) and d? € &(k,, [, n) be such that ¢'(d') = A, and ¢'(d?) = A,. We have
Xa =2, and Zg2 = Z),. It is clear from the definition that we have 2. ¢ 2 if and
only if p(d?)=d'. Then the statement follows from the commutativity of the following
diagram

E(ky, 1, n) —_ &(ky, 1, n)
e’l e’l
Corey,
Cm,[=Enl]NCp,[< nlIN(Cp g —— G, [E RN Cp, [< RN (6,10
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Note that the set 6,,[= nl]N6,,[< nl]N(6,,); s considered above is nothing else but the
image of Z[nl]N %) 4 by Core,,. In other words, the set 6,,[= nl]N 6€,[< nlIN(6,) » is
the same thing as the set of m-cores of partitions of nl with trivial /-cores.

Proposition 4.12. — The C*-fixed points in Zy(no ) are parametrized by the set 2 [nlINZ; .
This parametrization Zy(no N =1 Pus W€ P[nlINZ 5} can be chosen in such a way that for
each k € Z, each A € 6,,[= nl]N6,,[< nlIN(6y,); g and each u € 2[nl1N 2P 5 we have p, € X
if and only if A is the m-core of u.

Proof. — Assume k > n. Then by Corollary 2.13, we have Zp(nd;)*n = 2(nd;)¢" . More-
over, the set 2(n6;)C" is finite. We already know that Zy(no;)*» is in bijection with
a subset of 6,,[= nl]N 6,,[< nllN(6,,);». Moreover, k > n also implies that we have
Cml= nllNCpul< nlIN(6m)ig = 2InllN P 4. This shows that Zp(no ;) = Xp(né ;)"
is in bijection with a subset of 2[nl]N 2, Moreover, by Lemma 4.11, this bijection
is independent of the choice of k. But it is well-known (see [10]) that Z(né ) and
2! [n]~2[nl]N P, 4 have the same cardinalities. This shows that the bijection above is a
bijection between Xp(n6;)C" and 2[nl] NP » (not just a subset of Z[nl]N 2 ).

The second statement follows from Lemma 4.11. O

Corollary 4.13. — For each A € 6,,[= nlINC (< nlIN(6); o, we have X, #@. In particular,
we have &(k,1,n)=&(k,1,n)4g.

Proof. — Assume A € 6,,[= nl]N 6,,[< nl]N(6)1 s Then there exists u € #[nl] such
that Core,,(u) = A. Then u is also automatically in &, 5. Then &, is not empty because we
have p, € Z, by Proposition 4.12. O

Proposition 4.12 and the bijection f3; ,, yields a parametrization of 2 (né ¢ by & n).

4.D. C*-fixed points. — The parametrization of the points of 2(né; )& given in Propo-
sition 4.12 is constructed as a parametrization of the irreducible components of Zy(1n6;)"m
for a very big m. This parametrization can be seen in an "m-independent way" if we re-
place the quiver Q,, with a very big m by an infinite quiver. This can be done in the
following way.
Let Qo be the quiver difined in the same way as Q; with respect to the vertex set Z
instead of Z/IZ. The dimention vectors of the quiver Qo are in ZZ. Set
7L

fin = {d € Z%; d has finitely many non-zero components}.

Consider the map

-~

.7 Z]17Z N
p:zh »ZH'E, (pd)i= > d;.

fin
j=i mod!
f,» we have a linear map igf,): Rep(Qeo» d) )— Rep(al, p(i )), defined in the
same way is in Section 2.D. Now, for each 0 € C%/!Z we consider the element [co] € C%
given by 08[00]; = 0; 10q:- Then we obtain a C*-invariant morphism of algebraic varieties

ié@: %9[00](0?) — %g(p(J)). But the variety %9[00]((:[) is obviously C*-stable because the C*

For each d € 7Z
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action is induced by elements of GL(dA ). Since Zg[co)( 1) is connected, it is a singleton (if it
is not empty). Set

&(00,1,d)={d € Z ; p(d) = d, Zp(oo(d) #@}.

If d e &(c0,1,d), the image of ig‘? is a C*-fixed point in 2 (d). Let us call this point p.

Now, we assume d = nod;, n = 0 and that Zy(d) is smooth. The construction of the
parametrization of the C*-fixed points in 2 (n6;) given in Proposition 4.12 implies that
each C*-fixed point p,, u € Z[nl]N P, 4, in X(nd;) is of the form p; for a unique de
&(00, 1, nd;). Moreover, this d is given by d= Res o ().

4.E. Explicit construction of ¢’. — We know from Theorem 2.12 that each irreducible
component X of Xy(nd ;) is of the form X = 2,;. Moreover, by Theorem 1.3 there
exists a reflection subquotient (V/, W) of (V, W) and a complex-valued map ¢’: W/ — C
such that 2 ~ %, (V’,W’). The reflection subquotient was constructed in the proof of
Theorem 1.3. Now we give an explicit construction of ¢’.

Recall from §1.A that the parameter ¢ is determined by the sequence of parameters
(a, ko, ky,..., ki—1). Similarly, the parameter ¢’ is determined by (a’, k;, ki, ..., k;,_,). We
are going to give explicit expressions for (a’, k, ki, ..., k,,_,) in terms of d € &(k, I, m) and
(ﬂ, k(), kl’ ceey kl—l)'

First, we recall the construction of ¢’ in the proof of Theorem 1.3. There is an element
w e Wniff such that w(d) is a multiple of §,,,. Then we put 8’ = w(0[k]). Finally, we can
obtain (a’, kg, ..., k/,_,) from 6’ using (3.1) and (3.2).

This construction of ¢’ is not canonical because there is no preferable choice of an
element w. Note that 6, is stable by the subgroup W,, of W3, So the element w can
be replaced by any elements of W,,, w. (By Remark 3.5, a different choice of w yields just
a permutation of the parameters k, k{,...,k/,_,.) The affine Weyl group W2l is of the
form W, x R,,, where R,, is the root lattice for sl,,. In particular, there is an element of
w’ € W, w that is in R,,. More precisely, we have w’ = t,, where a = d — dy6,, (see the
proof of Lemma 2.7).

Then, by Lemma 2.8, we have w’(0[k]) = t,(0[k]) = 0[k]+X(0[k])- @ = O[k]+ kx(0)-d.
(Where the notation @ and d is as in Section 2.B.) This means that we have

0] =(0[k)); + kX(0)2d; —d;—y + di1) =04 moan—ka2d;—d;_y+d; 1)

Passing back to the k;-notations, we get a’ = ka and

r—=1] k-1
=Ko moan+a | |- 5 K, — )
forr=1,...,m—1,m. (Here ky=k,,.)
Example 4.14. — Let us make the above formula explicit in the case [ = 1. In this case we

have m = k. Then we get 0 = §y=—a and 0[k]=(—a,—a,...—a) (k times). This gives
0/ =—a—ak(2d;—d;_—d;y),
forieZ/kZ.

k+1
k;:a(r—T+k(d1_r—d_r))
forr=1,...,k—1,k. (Here ky=k;.)m
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Example 4.15. — Assume | =2, k =2 and d = (0,0). In this case c¢ is determined by
(a, kg, k) such that ky+ k; =0. Put k; = b (and then ky =—b). Let us make the formulas
for k] explicit in this case. We have

ky, = —b+a/2,

ki = b—a/2,

k; = —b-a/2,

ky = b+a/2.
5. Type G,

Hypothesis. In this section, and only in this section, we assume that
V =C?, we identify GLc(V) with GLy(C), we fix a primitive third root of
unity w, we set

(w0 p t_l—a)z
S7 lw? 1 an 0w

and we assume that W = (s, t), so that W is of type G, in Shephard-
Todd classification. We denote by (y,, y») the canonical basis of V and by
(x1, X,) its dual basis.

Note that there is only one W-orbit of reflection hyperplanes (let us
call it Q) and we set for simplifying k; = kq,;, so that ko+ky+k, =0. We
also set p =1+ 2w, so that p?> =—3.

In this case, we will check Conjecture F even if Z, is not smooth (and for all elements
0 € GLc(V) normalizing W, as any such elements belong to C* - W, as we will see in the
proof below).

Theorem 5.1. — If W is of type G,, then Conjecture F holds.

Proof. — Let o € GLy(C) be of finite order and normalizing W. The conjugacy class of s
is

{s,t,sts, s?ts2=rtst7'},

and is the unique conjugacy class of reflections of determinant w. Since o so ™" is a reflec-
tion of W of determinant w, there exists w € W such that wo commutes with s. Since W
acts trivially on Z,, we may, and we will, assume that cso™! =s. Now, oto~! belongs to
this conjugacy class and is different from s, so there exists i € Z such that sio commutes
with ¢. So, replacing o by sto, we may, and we will, assume that o commutes with s
and t. In other words, o is a root of unity.

Since Z(W) =~ u,, we may also assume that the order of o is even, equal to 2d for some
d > 2 (because the case d =1 is obvious). Let I; denote the ideal of Z, generated by the
0(z)— 2z, where z runs over a set of generators of Z,. Then

(&%) ClZl=Z./V14.

1
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Let { denote the root of unity by which o acts: then o(z)—z =({ I_NDzifzis homogeneous
of Z-degree I. This shows that I; is generated by the generators of Z. of degree not
divisible by 2d. As we will see below, there is a set of generators of Z, whose Z-degrees
belong to the interval [—6,6]. So, if d >4, then Z7 = Z fx, so it is a finite set and the
Conjecture F is checked in this case. So we may assume that d € {2, 3}.

In [6], Thiel and the first author have provided algorithms for computing presentations
of the algebra Z, and such algorithms have been included in the MAGMA package CHAMP
developed by Thiel [20] (about the MAGMA software, see [18]). These algorithms provide
an explicit presentation of the center Z,. given as follows:

Generators:
Y, V3, X;, X5, eu, A, B, D;
Relations:
(Z1) eu*+4pYX,—AB+3peuD +18(k? + ki k + k2)eu?
+756(k2k, + ki kZ)eu=0
(z2) peulA—4X,euB—DA—pY,X,—30p(ki+ ki k, + kZ)euA
—108p(k2k, + ky k2)A=0
(Z3) Y,A—euB?+p Y, D +54(k2+ ki, + k2) Y;eu—324(k2k, + ky k2)Y; =0
(z4) peu’B—4X,Y,—pYieuA—BD —30p(kZ+ ki k, + kZ)euB
—108p(kZk,+ k1 k2)B=0
(Z5) euA?—4X,D—X,B+72p(k?+ kik, + k2)Xeu—432p(kik, + k1 k2)X; =0
(Z6) Yyeu®+3Y2A—3YieuB—B*+3p Y, D + 144(k2 + ki k, + k2) Y, B
+18(k? + ki ky + k2)Yeu+ 756(kik, + k1 k2)Y, =0
(Z27) 4pX,eu?!A—A*—16X2B+ X,eu® +3p X, D +18(k? + ki k; + k) X,eu
—192p(kZ + kykp + k2) X, A+ 756(kZky + ky k2) X, =0
(28) eu®+4pY,Xjeu*+2pDeu’— Y, X, + D?—36(k + ki ky + kZ)eu*
+12p(k2 + ky ky + k2)euD +216p (k2k, + ky k2)D + 1080(k2k, + k; k2)eu’
+1620(kZ + ky ky + k2)?eu? —3888(kZk, + ky k2)(k? + ky k, + kZ)eu
—34992(kZky + ky k2> =0
(29) pYA*+4X,B*+4ew’D —p Y, X, +4pD*—24p(k? + ki ky + kZ)eu*
—288(k? + ky ky + k2)euD —576(k2 + ki k, + k2) Y X,
+2160p (k2 + ky ky + k2)%eu? + 432 (k2k, + ky k2)eu® —864(k2k, + k; k2)D
+20736p (kZky + ky k2)(kZ + ky ky + kZ)eu +46656p (k2 ky + ky k2> =0
The generators have Z-degrees given by the following map
(Y;, %, X, X,,eu, A, B, D)— (—4,—6,4,6,0,2,—2,0).

Moreover, in this presentation, C[V]" =C[X}, X;] and C[V*]" =C[ Y, Y,].
We can deduce from this that %, is smooth if and only if
<) koky k(Ko — Ky )(ko — k2) (k1 — ko) # 0.

First case: assume that d = 2. In this case, the above presentation shows that, when-
ever () holds, then Z7 has four irreducible components &', p, g and r where 2 has
dimension 2 and is isomorphic to

©) Z ~{(x,y,e)eC’| e(e—12ky)(e — 12k;)(e —12k,) = x y'},

and p, g and r are three points (which belong to Q’fx). If (&) does not hold, then Z? still
contains an irreducible component of dimension 2 with the same description as above,
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and a few other isolated points (the number depends on the exact values of the k;). By Re-
mark 1.4, we only need to consider the irreducible component . But it follows from (©)
and Example 1.2 that then & is isomorphic to the Calogero-Moser associated with a cyclic
group of order 4 acting on a one-dimensional space: as there is an element w of order 4
in W, one can choose for V' an eigenspace of w and for W’ the cyclic group (w) and
Conjecture F is checked in this case (note also that the map ¢ — ¢’ is linear).

Second case: assume that d = 3. In this case, the above presentation shows that, when-
ever () holds, then Z¢ has two irreducible components 2 and p where Z has dimen-
sion 2 and is isomorphic to

() 2 ~{(x,y,e)eC’ | (e—6ko)e—6k;)(e —6ky)(e —12k)(e —12k;)(e — 12kp) = x '},

and p is a point (which belongs to £ fx). If (<) does not hold, then Z7 still contains an
irreducible component of dimension 2 with the same description as above, and maybe
one extra point according to the values of the k;. By Remark 1.4, we only need to consider
the irreducible component Z. But it follows from (#) and Example 1.2 that then 2" is
isomorphic to the Calogero-Moser associated with a cyclic group of order 6 acting on a
one-dimensional space: as —s € W is of order 6, one can choose for V’ the w-eigenspace
of s and for W’ the cyclic group (—s) and Conjecture F is checked in this case (note also
that the map ¢ — ¢’ is linear). O
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