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randomness ∗†

El Karoui Nicole, ‡ Mrad Mohamed §

March 11, 2018

Abstract

The purpose of this paper is to develop an explicit construction of consistent utilities,

using the stochastic flows approach developed in [KM13] and [KM16]. Starting from a

family of utility functions indexed by some parameter α ( for example the risk aversion

of different agents), the idea is to randomize α and construct a non standard stochastic

utilities processes. Two approach are developed, the first one consists to built directly

from the class {Uα, α ∈ R} a global one U as a sup-convolution. The second approach

which is very different, consists to define from a class (Xα, Y α)α∈R of monotonic processes

a global pair (X∗, Y ∗) as a mixture. The non standard stochastic utility is then obtained

by composing stochastic flows and interpreted as the aggregate utility of all considered

agents .

1 Introduction

In the next section, we introduce the market model, the consistent utility’s definition and

we recall some results that we will use extensively in this paper (established in [KM13] and

[KM16]). In Section 3, we give ourselves a family of consistent utility processes indexed by

a parameter α: {Uα, α ∈ R} and a finite positive Borel measure m(dα). Denoting by Ũα

the dual convex conjugate of Uα, we define the convex process Ũ s(t, y) =
∫
Ũα(t, y)m(dα)
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and we show, assuming that all Ũα generate the same optimal dual process denoted by

Y ∗ (Pareto-Optimality principle), that Ũ s is the dual convex conjugate of a consistent

utility U s. We show also, Theorem 3.1, that U s(t, x) is the sup-convolution of the concave

functions Uα(t, x). Moreover, the optimal wealth processes associated with U s is a mixture

of optimal wealths X∗,α (associated with consistent utilities Uα) starting from given initial

conditions xα fixed by the problem,

X∗(t, x) =

∫
X∗,α(t, xα(x))m(dα), where xα(x) = (uαx)−1(ux(x)),

∫
xα(x)m(dα) = x.

Where we have denoted by u the inverse Fenchel-Transform of Ũ s(0, y). Note u is imposed

by definition as sup-convolution of Uα(0, .), α ∈ R.

Inspired by this observation, in section 4, we give ourselves a finite positive Borel measure

m(dα) and a family of deterministic utility functions {uα, α ∈ R}. In a first step, we

generate, from {uα, α ∈ R}, using techniques of change of numeraire and probability a

new family of consistent utilities processes {Uα, α ∈ R} whose optimal processes (strictly

increasing with respect to their initial conditions) are denoted by X∗,α and Y ∗,α, α ∈ R.

As processes Y ∗,α, α ∈ R are not necessarily the same, we put aside these processes

and we will consider another state density price that we denote Y ∗(y) := yY ∗ such that

Y ∗X∗,α is a martingale for any α. Thereafter, we will give ourselves a second family of

strictly increasing positive functions xα, α ∈ R. This is any family that we, only, impose

to satisfy
∫
xα(x)m(dα) = x, ∀x.

The next step is then to build a new portfolio X∗ that is strictly increasing with respect

to its initial condition, as a mixture of X∗,α, α ∈ R as follows

X∗(t, x) =

∫
X∗,α(t, xα(x))m(dα), X∗0 (x) =

∫
xα(x)m(dα) = x. (1.1)

From this, after verifying that X∗Y ∗ is a martingale and denoting by X the inverse of

X∗ with respect to its initial condition, we generate a new consistent utility U from any

initial condition u, using results of [KM13] and [KM16] as follows

U(t, x) := Y ∗t

∫ x

0
ux(X (t, z))dz.

Note: As it is defined this consistent utility, is not a mixture of processes Uα, α ∈ R.

It’s initial condition u is anyone, not necessarily equal to the sup-convolution of initial

functions uα as is the case of previous Section. In (1.2), {xα(.), α ∈ R} are also arbitrary

and not fixed as in Section 3.

These last two points give us additional degrees of freedom. Thus we can generate

a large class of consistent utilities. Finally, in section 5, to provide a utility class even

richer, we will build in the same way as for X∗ a dual process Y ∗ as a mixture of optimal

processes Y ∗,α for a given, by analogy, a family of strictly increasing functions yα, which
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play the role of xα concerning Y ∗, i.e.

Y ∗(t, y) =

∫
Y ∗,α(t, yα(y))m(dα), Y ∗0 (y) =

∫
yα(y)m(dα)

assumption
= y. (1.2)

The utility process proposed is, then, by results of [KM13] and [KM16], defined by

U(t, x) :=

∫ x

0
Y ∗t (ux(X (t, z)))dz.

For any utility function u satisfying some integrability conditions.

2 Preliminaries

Utility function: Throughout the paper, we make the classical assumptions for an

utility function V that is V : R→ R∪{−∞} is increasing on R, continuous on {V > −∞},
differentiable and strictly concave on the interior of {V > −∞} and that Vx tends to zero

when wealth tends to infinity,i.e.,

Vx(∞) := lim
x→∞

Vx(x) = 0.

As regards the behavior of the (marginal) utility at the other end of the wealth scale we

shall distinguish throughout the paper two cases.

Case 1 (negative wealth not allowed): in this setting we assume that V satisfies the

conditions V (x) = −∞, for x < 0, while V (x) > −∞, for x > 0, and that

Vx(0) := lim
x↘0

Vx(x) =∞. (2.1)

Case 2 (negative wealth allowed): in this case we assume that V (x) = −∞, for all

x ∈ R, and that

Vx(−∞) := lim
x↘−∞

Vx(x) =∞. (2.2)

In the first part of this work, we restrict ourselves only to the first case before considering

the second in the last section.

Prorper concave and convex functions: In mathematical convex analysis and

optimization, a proper convex function is a convex function f taking values in the extended

real number line such that f(x) < +∞ for at least one x and f(x) > −∞ for every x.

That is, a convex function is proper if its effective domain is nonempty and it never attains

−∞. A proper concave function is any function g such that f = −g is a proper convex

function.

Some Properties: The infimal convolution (or epi-sum) of two functions f and g is

defined as

(f�g)(x) = inf
y∈R
{f(x− y) + g(y)}.
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(ii) The convex conjugate f̃ of a lower semi-continuous (lsc) proper concave function f

is lsc proper convexe function.

(iii) Let f1, . . . , fm be proper, convex and lsc functions on R. Then the infimal convolution

is convex and lsc (but not necessarily proper), and satisfies

F := (f1� . . .�fm) is such that F̃ = f̃1 + . . .+ f̃m

The Model: Let W = (W1,W2, ...,Wn)T be a n-standard Brownian motion (n ≥ d),

defined on the filtered probability space (Ω,F ,P). (Ft)t≥0 is the P-augmented filtration

generated by the Brownian motion W , i.e. Ft = σ(Ws, 0 ≤ s ≤ t). An admissible portfolio

process Xκ ∈ X with strategy κ is an Itô martingale satisfying

dXκ
t = Xκ

t

[
rtdt+ κt.(dWt + ηtdt)

]
, κt ∈ Rt. (2.3)

Where Rt denote the set (linear space) of admissible strategies at time t and by R⊥t its

orthogonal. r and η ∈ R are a F-progressively measurable processes playing the role of

interest rate and the minimal risk premium.

In the following we will also need to define the family of admissible state prices density

which is the set Y of positive semimartingales Y ν whose the dynamics is

dY ν
t

Y ν
t

= −rtdt+ (νt − ηt).dWt, νt ∈ R⊥ (2.4)

Then, for any wealth process (Xκ, κ ∈ R), Y νXκ is a local martingale. These processes

are also called adjoint processes. Note that, for any ν ∈ R⊥, Y ν = Y 0E(ν) where E(δ)

denote the exponential martingale given by Et(δ) = exp
(
− 1

2

∫ t
0 ||δs||

2ds+
∫ t
0 δs.dWs

)
.

Consistent Utilities Let X any set of wealth processes we now recall the definition

of the X -consistent stochastic utility.

Definition 2.1 (X -consistent Utility). A X -consistent stochastic utility process U(t, x)

is a positive random field with the following properties:

∗ Concavity assumption : for t ≥ 0, x 7→ U(t, x) is an increasing concave function,

(in short utility function) .

• Consistency with the test-class: For any admissible wealth process X ∈ X ,

E(U(t,Xt)) < +∞ and

E(U(t,Xt)/Fs) ≤ U(s,Xs), ∀s ≤ t .a.s.

• Existence of optimal wealth: For any initial wealth x > 0, there exists an optimal

wealth process X∗ ∈X , such that X∗0 = x, and U(s,X∗s ) = E(U(t,X∗t )/Fs) ∀s ≤ t.
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Convex conjugate of consistent stochastic utility The convex conjugate of a

consistent stochastic utility is a random field defined by

Ũ(t, y)
def
= inf

x>0,x∈Q+

(
U(t, x)− x y

)
(2.5)

Ũ(t, y) is a progressive decreasing convex dual utility, with first derivative Ũy(t, .) =

−Ux(t, .)−1(y) is the inverse flow of the decreasing flow Ux(t, x). Moreover, as it is shown in

[KM13] and [KM16], Ũ(t, y) is consistent with the family Y of state price densities, that is

Ũ(t, Yt) is a submartingale and Ũ(t, Y ∗t ) is a martingale if Y ∗(t, y) = Ux
(
t,X∗t (−Ũy(0, y))

)
.

Ũ(t, y) is said to be a Y -consistent stochastic dual utility.

Example: The Power Consistent Stochastic Utilities Denote X + the set of

all positive wealth processes. We are locking for X +-consistent power utilities U (a)(t, x) =

Z
(a)
t

x1−a

1−a where a is the risk aversion coefficient and Z(a) a semimartingale that allows to

satisfy the consistency property. As in the deterministic framework, the conjugate function

Ũ (a)(t, y) is given by Ũ (a)(t, y) = −Z̃(a)
t

y1−
1
a

1− 1
a

with Z̃
(a)
t =

(
Z

(a)
t

) 1
a .

Thanks to the consistency property, there exists an optimal portfolio X
(a),∗
t (x) s.t.

U (a)(t,X
(a),∗
t (x)) = 1

1−aZ
(a)
t

(
X

(a),∗
t (x)

)1−a
is a martingale, and s.t. Ux(t,X

(a),∗
t (x)) =

Y
(a),∗
t (x−a) is a state price density process with initial condition x−a. In particular, using

the intuitive factorization Z
(a)
t = Z

(a,σ)
t .Z

(a,⊥)
t where Z

(a,⊥)
t is a exponential martingale

Et(δ⊥.W ), whose the martingale part belongs to R⊥, we see that Z
(a,σ)
t (X

(a),∗
t (x))−a =

x−aY 0
t , where Y 0

t is the minimal state price density. The optimal wealth X
(a),∗
t (x) is linear

with respect to the initial condition X
(a),∗
t (x) = xX

(a),∗
t (1) where X

(a),∗
t (1) also denoted

X
(a),∗
t is the optimal portfolio starting from x = 1, hence

(I)


Z

(a)
t = Z

(a,⊥)
t Y 0

t (X
(a),∗
t )a, Z̃

(a)
t = X

(a),∗
t

(
Y

(a),∗
t

) 1
a

X
(a),∗
t (x) = xX

(a),∗
t , Y

(a),∗
t (y) = yZ

(a,⊥)
t Y 0

t

U (a)(t, x) = 1
1−aY

(a),∗
t X

(a),∗
t ( x

X
(a),∗
t

)1−a, Ũ (a)(t, y) = −Y
(a),∗
t X

(a),∗
t

1− 1
a

( y

Y
(a),∗
t

)1− 1
a

where we have used the fact that Y (a),∗(y) = yY (a),∗ is linear with respect to y. Observe

also that the optimal portfolio and the optimal price density depend on a only by the

choice of the orthogonal volatility vector of Z(a).

Remark 2.1. Identities X
(a),∗
t (x) = xX

(a),∗
t and Y

(a),∗
t (y) = yY

(a),∗
t show that these

processes are increasing in x and y with inverse flows X (a)
t (x) = x/X

(a),∗
t and Y(a)

t (y) =

y/Y
(a),∗
t . From this point, it is straightforward to check that U (a)(t, x) and Ũ (a)(t, y),

taking u = x1−a

1−a , have the following representations,

U (a)(t, x) =

∫ x

0
Y

(a),∗
t

(
ux(X (a)

t (z))
)
dz, Ũ (a)(t, y) =

∫ +∞

y
X

(a),∗
t

(
− ũy(Y(a)

t (z))
)
dz.
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note, in particular, that Y
(a),∗
t (ux(x)) = U

(a)
x (t,X

(a),∗
t (x)).

We will return, in the next section, to this interesting representations of stochastic utility

and its dual convex and we recall, as established in [KM13] and [KM16], that this is

not specific to the utilities of power type. Also, a second interpretation of these utilities

and their stochastic optimal processes is given through a stochastic partial differential

equations.

Main recent results The class of consistent stochastic utilities was studied in [KM13]

and [KM16] under different aspects and different techniques. In [KM13] the approach

proposed is an approach by stochastic PDE’s, developed using tools of stochastic calculus

such as the generalized Itô formula also called Itô-Ventzel formula and calculating inverse

flows dynamics. While in [KM16] there is a direct approach which make minimal regularity

assumptions of processes and therefore the general results are obtained in abstract form

by methods of analysis and composition of monotonic flows. As it has established in

[KM13] a large class of this stochastic utilities are solution of the following HJB-SPDE,

dU(t, x) =
[
− xrtUx(t, x) +

1

2Uxx(t, x)
‖Ux(t, x)ηt + γσx (t, x)‖2

]
dt+ γ(t, x).dWt (2.6)

when the optimal policy κ∗ is given by

xκ∗t (x) = − 1

Uxx(t, x)
(Ux(t, x)ηt + γσx (t, x))

In this paper we are interested in stochastic utilities of this class. For this, some results

that we used extensively in this paper and which are established in [KM13] and [KM16]

are recalled. To get started, during this paper the optimal wealth process Xκ∗ is denoted

for simplicity by X∗. As in the classical theory of portfolio optimization in expected

utility framework the process Ux(t,X∗t ) has nice properties and a central place in the

study of the dual problem. Indeed, it is showed in [KM13] that if U is a regular consistent

progressive utility, its dual convex conjugate Ũ(t, y) (convex decreasing stochastic flows,

null if y = 0 satisfies) is consistent with the family of state density processes Y . That is

for any Y ν ∈ Y , Ũ(t, Y ν
t ) is a submartingale and a martingale for an optimal dual choice

given by yν∗(t, y) = γ⊥x
(
t,−Ũy(t, y)

)
.

Furthermore, for any y > 0 the equation dY ν∗
t = Y ν∗

t

(
− rtdt +

(
ν∗(t, Y ν∗

t ) − ηt
)
.dWt

)
.

admits at least one solution which is Y ∗t (y) := Ux(t,X∗t ((Ux)−1(0, y)). In other words

Ux(t,X∗t ) is a price density process which is the optimum of the dual problem.

The purpose of recalling this results, see [KM13] and [KM16] for more details, is to

highlight the role played by the processes Ux(t,X∗t ) and especially emphasize the perfect

symmetry between the primal problem whose optimum is X∗ and the dual problem whose

optimum is Y ∗(Ux(0, x)) := Ux
(
t,X∗t (x)

)
. This enables us in particular to prepare the

next result which is the general theorem of stochastic construction of utilities which is
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based on optimality conditions and the properties of optimal processesX∗ and Y ∗. Finally,

in what follows it is sometimes easier to consider the dual convex Ũ than the utility U as

is the case of the decreasing stochastic utilities introduced in the next paragraph , which

explains the interest that we bring to the duality in this work.

Next result, Theorem 4.3 in [KM13], show how by stochastic change of variable the con-

sistent stochastic utilities are constructed. This new approach called ”stochastic flow

method” start from a wealth process X∗ and a state density price Y ∗ and requires that

the processes X∗t (x) and Y ∗t (y) to be continuous and strictly increasing in x and y from

0 to +∞.

Theorem 2.1. Let (X∗, Y ∗) a pair of wealth process and a state density price assumed

to be continuous and increasing in x and y from 0 to +∞ s.t. X∗t (0) = Y ∗t (0) =

0, X∗t (+∞) = Y ∗t (+∞) = +∞ a.s. for any t. Denote by X and Y the inverse flows of

X∗ and Y ∗, if X∗xY
∗ is a martingale and u is an utility function s.t. x 7→ Y ∗t (ux(X (t, z)))

is integrable near to zero. Then the process U defined by

U(t, x) =

∫ x

0
Y ∗t
(
ux(X (t, z))

)
dz (2.7)

is a X +-Consistent stochastic utility s.t. Y ∗t (ux(x)) = Ux(t,X∗t (x)). The associated opti-

mal portfolio and the optimal state density price are X∗ and Y ∗ and the convex conjugate

is given by

Ũ(t, y) =

∫ +∞

y
X∗t
(
− ũy(Y(t, z))

)
dz. (2.8)

3 Sup Convolution of X -consistent stochastic util-

ities

The results of this section are obtained in a general way by considering any set X of

wealth processes (we do not need a model). Consider a family of X -consistent stochastic

utilities (with the same family of test portfolios X ). We are interested in mixtures of these

utilities that meet the property of consistency with respect to the given class of wealth

processes X . For instance, let us assume that we want to test the gain of diversification

over the different K business units of financial firm, equipped with different stochastic

utilities U i(t, x) assumed to be proper concave functions, for example with different risk

aversion coefficients. It should be noted that these utilities are not necessarily of the same

type. The case where the utilities are all of the same type, for example a power or or

exponential type, is a particular case.

The problem is to find the fair allocation of the wealth x between the different units,
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in the following sense: find the wealth (x∗1, x
∗
2..., x

∗
K) with

∑K
1 x∗i = x such that

U s(t, x) = sup{
K∑
1

U i(t, xi)| ∀i xi ≥ 0, and
K∑
1

xi = x} (3.1)

achieves its maximum on (x∗1, x
∗
2..., x

∗
K) and then study the new progressive utility. In

particular, we are looking for sufficient conditions under which the new utility U s is X -

consistent utility. In convex analysis, the utility U s(t, x) is known as the sup-convolution

of the concave functions U i(t, x). Such utilities are easier to study from the dual point of

view since Ũ s(y) =
∑K

1 Ũ i(t, y). The same problem may be extended to a continuous set

of units U θ with a positive finite measure m(dθ).

Remark 3.1. Observe, by assuming that the functions U i(t, .) are proper guarantee that

U s(t, .) is well defined by (3.1).

Mixture of convex dual utilities and sup-convolution Let us start with a fam-

ily Ũ θ(t, y) of convex consistent dual utilities with a common set of state prices densities

Y , and define Ũ s(t, y) =
∫
Ũ θ(t, y)m(dθ). Assume that at any time t, the convex functions

Ũ(t, .) are proper continuously differentiable with continuously differentiable primal func-

tions U θ. Then, for any admissible state price density Y ν , Ũ s(t, Y ν
t ) =

∫
Ũ θ(t, Y ν

t )m(dθ)

is a submartingale, as sum of positive submartingales. The martingale property can be

obtained only for a process Y ∗t such that for a.s θ, Ũ θ(t, Y ∗t ) is a martingale.

Since X∗t (x) = −Ũ sy (t, Y ∗t (ux(x))), X∗t (x) is a mixture of optimal wealths,

X∗t (x) = −
∫
Ũ θy
(
t, Y ∗t (ux(x))

)
m(dθ)

on the other hand, as Y ∗ is the optimal dual process for all the consistent utilities U θ it

follows, denoting by Xθ the associated optimal wealth, that Xθ
t (x) = −Ũ θy (t, Y ∗t (uθx(x)).

From this point, it is easy to check that −Ũ θy (t, Y ∗t (ux(x)) = Xθ
t

(
(uθx)−1(ux(x))

)
which

implies

X∗(t, x) =

∫
X∗,θ(t, xθ(x))m(dθ), where xθ(x) = (uθx)−1(ux(x)).

Let us now, show the following result,

Theorem 3.1. Assume the existence of a state density process Y ∗ such that for a.s θ,

Ũ θ(t, Y ∗t ) is a martingale (Y ∗ is the optimal dual process for Ũ s), then

(i) The utility process U s is given as the Sup-Convolution:

U s(t, x) = sup{
∫
U θ(t, xθ(x))m(dθ);

∫
xθ(x)m(dθ) = x}

(ii) The supremum is achieved at the family {x̂θ(t, x) := (U θx)−1(t,−(Ũ sy )−1(t, x)), θ}
satisfying the condition

∫
x̂θ(t, x)m(dθ) = x.

(iii) U s is a consistent stochastic utility with optimal portfolio X∗(t, x) =
∫
X∗,θ(t, xθ(x))m(dθ).

Moreover, for any θ, the optimal wealth is x̂θ(t,X∗t (x)) = X∗,θ(t, xθ(x)).
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Proof. (i) and (ii): As it is defined the random field U s(t, x) is given by

U s(t, x) := inf
y>0
{Ũ s(t, y) + xy} = inf

y>0
{
∫
Ũ θ(t, y)m(dθ) + xy}

In particular for any family of functions xθ(x) :
∫
xθ(x)m(dθ) = x, U s(t, x) can be written

as

U s(t, x) = inf
y>0
{
∫ (

Ũ θ(t, y) + yxθ(x)
)
m(dθ)} (3.2)

On the other hand, as Ũ θ is the convex conjugate of U θ, it is rather obvious that

Ũ θ(t, y) + yxθ(x) ≥ U θ(t, xθ(x))

Which leads, in (3.2), to

U s(t, x) ≥
∫
U θ(t, xθ(x))m(dθ) with

∫
xθ(x)m(dθ) = x.

Therefore

U s(t, x) ≥ sup
xθ:

∫
xθ(x)m(dθ)=x

∫
U θ(t, xθ(x))m(dθ). (3.3)

To conclude it remains to establish the reverse inequality. For this, observe, from the

definition Ũ s(t, y) =
∫
Ũ θ(t, y)m(dθ) and by integrability and regularity assumptions,

that Ũ sy (t, y) =
∫
Ũ θy (t, y)m(dθ). Which gives, using (U sx)−1(t, y) = −Ũ sy (t, y), t ≥ 0

and (U θx)−1(t, y) = −Ũ θy (t, y), t ≥ 0 that
∫

(U θx)−1(U sx(x))m(dθ) = x so that the family

{x̂θ(t, x) := (U θx)−1(t, U sx(t, x)), θ} satisfies the condition∫
x̂θ(t, x)m(dθ) = x. (3.4)

Second, using the dual identity U θ(t, x) = Ũ θ(t, U θx(t, x)) + xU θx(t, x) it follows that

U θ(t, x̂θ(t, x)) = Ũ θ
(
t, U θx

(
t, (U θx)−1(t, U sx(t, x))

))
+ (U θx)−1

(
t, U sx(t, x)

)
U θx

(
t, (U θx)−1(t, U sx(t, x))

)
= Ũ θ

(
t, U sx(t, x)

)
+ U sx(t, x)(U θx)−1(t, U sx(t, x))

= Ũ θ
(
t, U sx(t, x)

)
+ U sx(t, x)x̂θ(t, x) (3.5)

Let now point out that it follows from (3.2), for any xθ(x) :
∫
xθ(x)m(dθ) = x, that

U s(t, x) = inf
y>0

{∫ (
Ũ θ(t, y) + yxθ(x)

)
m(dθ)

}
≤y=Usx(t,x)

∫ (
Ũ θ(t, U sx(t, x)) + U sx(t, x)xθ(x)

)
m(dθ)

Taking xθ(x) = x̂θ(t, x) and substituting the expression (3.5) into the last inequality yields

U s(t, x) ≤
∫
U θ(t, x̂θ(x))m(dθ)

9



which gives the desired inequality:

U s(t, x) ≤ sup
xθ:

∫
xθ(x)m(dθ)=x

∫
U θ(t, xθ(x))m(dθ).

Combining this with (3.3) yield (i) and (ii).

Let now focus on assertion (iii): by assumption Ũ is the convex conjugate of U s, which

is consistent with the family of state density processes Y, and achieves its maximum on

Y ∗ also optimal for all utilities Ũ θ, this leads by analogy between the dual and primal

problem, see [KM13], to the consistency of U s. We have now to show at first the opti-

mality of the process X∗t :=
∫
X∗,θ(t, xθ(x))m(dθ) and second the martingale property of

U s(t,X∗t ). For this, once again, from results of [KM13] and [KM16] and the correspon-

dence primal-dual problem, the optimal primal process is X∗t (x) = −Ũ sy (t, Y ∗t (U s(0, x))).

This on the one hand but on the other one, as Y ∗ = Y ∗,θ, ∀θ it follows that X∗,θt (x) =

−Ũ θy (t, Y ∗t (U θx(0, x))). Consequently,

X∗t (x) = −Ũ sy (t, Y ∗t (U s(0, x))) := −
∫
Ũ θy (t, Y ∗t (U s(0, x)))m(dθ)

=

∫
X∗,θt (−Ũ θy (0, U sx(0, x)))m(dθ) =

∫
X∗,θt (xθ(x))m(dθ)

Hence the optimality of
∫
X∗,θt (xθ(x))m(dθ). Now, the dual identity and the optimality

of X∗ and Y ∗ leed to

U s(t,X∗t (x)) = Ũ s(t,−Ũ sy (t,X∗t (x))) + Ũ sy (t,X∗t (x))X∗t (x))

= Ũ s(t, Y ∗t (−Ũ sy (0, x))) + Y ∗t (−Ũ sy (0, x))X∗t (x))

which implies, as it is the sum of two martingales, that (U s(t,X∗t (x)))t is a martingale. To

achieve the proof, let us show the identity x̂θ(t,X∗t (x)) = X∗,θ(t, xθ(x)), for this it suffices

to use the definition of xθ(t, .) above and the fact that U sx(t,X∗t (x)) = Y ∗t (U sx(0, x)) =

U θx(t,X∗,θ(−Ũ θy (0, U sx(0, x)) and conclude using xθ(x) := −Ũ θy (0, U sx(0, x), i.e.,

xθ(t,X∗t (x)) : = −Ũ θy (t, U sx(t,X∗(t, x))) = −Ũ θy (t, U θx(t,X∗,θ(−Ũ θy (0, U sx(0, x)))))

= X∗,θt (−Ũ θy (0, U sx(0, x)) = X∗,θt (xθ(x))

Remark Let us comeback to the case of power utilities, developed above. The param-

eter θ plays now the role of risk aversion, that is U θ(t, x) = Z
(θ)
t

x1−θ

1−θ , taking Z
(θ),⊥
t ≡ 1

(⇔ the orthogonal part of the volatility vector of Z(θ) is null), the state price density

Y ∗ = Y 0 is optimal for all U θ. According to (I), one easily gets that the convex conjugate

Ũ s of the consistent utility U s is given by

Ũ s(t, y) =

∫
− 1

1− 1
θ

Y 0
t X

(θ)
t

(
y/Y 0

t

)1− 1
θm(dθ)
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with fixed initial condition

Ũ s(0, y) = ũs(y) =

∫
− 1

1− 1
θ

y1−
1
θm(dθ).

New interpretation and a Direct characterization of decreasing consistent

utilities Herein, we are concerned with the class of increasing (in time) consistent

utilities which was studied and fully characterized in the literature by Berrier & al. [FB09]

and Musiela & al. [MZ08b]. Considered in a market model without interest rate (r ≡ 0),

this utilities have a volatility vector γ identically zero. It is an example where the dual

SPDE is easier to study than the primal one. Indeed, taking γ = 0 it follows, from

equation (2.6), that U is a solution of the following PDE

dU(t, x) =
1

2

Ux(t, x)2

Uxx(t, x)
||ηt||2dt (3.6)

where the convex conjugate Ũ satisfies

Ũt(t, y)(ω) = −1

2
y2Ũyy(t, y)(ω)||ηt(ω)||2 (3.7)

which implies, by convexity, that t 7→ Ũ(t, y) is a decreasing function. Moreover, it is easy

to recognize in this PDE that the right hand side of the equation is nothing other than the

operator of diffusion LGBt,y (ω) of a geometrical Brownian motion with coefficients ηt(ω) and

rt(ω) applied to Ũ : Ũt(t, y)(ω) = −LGBt,y Ũ(t, y)(ω). From this point, the idea is to look

for positive solutions which are space-time harmonic functions of a geometric Brownian

motion. Using the result of Widder, D.V [Wid63, Wid75], F. Berrier & al. [FB09] and

Musiela & al. [MZ08b] show the following result which characterizes all regular dual

convex conjugate of decreasing consistent utilities

Theorem 3.2. Let U(t, x) be a regular random field of class C1 × C3 on (t, x). Assume

U satisfies the PDE (3.6). Then U is a consistent stochastic utility if and only if there

exists a constant C ∈ R and a finite Borel measure m, supported on the interval (0,+∞)

with everywhere finite Laplace transform, such that Ũ(t, y) =
∫
R∗+

1
1− 1

α

(
1− y1−

1
α e−

1−α
2α

∫ t
0 ||ηs||

2ds
)
m(dα) + C.

Ũy(0, y) = −
∫
R∗+
y−

1
αm(dα)

Moreover the optimal wealth process is strictly increasing and regular with respect to its

initial condition x.

These utilities were essentially studied by Zariphopoulou and al. [MZ08b] and by

M. Tehranchi and al. [FB09]. In [MZ08b], the authors developed some examples with

different measures m as well as properties of the associated optimal wealth.
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Evidently, there is an interesting interpretation of these stochastic utilities: At date t = 0

the derivative Ũy(0, y) can be easily interpreted as the integral of −y−
1
α weighted by the

measure m, which is other than the derivative of the convex conjugate of power utility

with risk aversion α. Hence, one can imagine that the investor starts from a power utility

for which he pull at random the risk aversion, for any realization α he associate the power

utility uα weighted by m. The derivative of the convex conjugate of his utility at any

date t is then the integral of the derivatives of the convex conjugates of power utility

where the deterministic measure m becomes stochastic mt(dα) := e−
1−α
2α

∫ t
0 ||ηs||

2dsm(dα).

Moreover, the stochastic measure mt(dα) is the unique one which ensure that the process

Ũ constructed is the derivative of a decreasing consistent utility.

This interpretation combined with the results of previous Pargraph, readily give us a

direct charracterisation of the decreasing (in time) utility as a sup-convolution.

Theorem 3.3 (New Characterization). According to Theorem 3.1, any decreasing forward

utility U is a Sup-Convolution:

U(t, x) = sup
xα:

∫
xα(x)m(dα)=x

∫
(xα(x))1−α

1− α
e

1−α
2

∫ t
0 ||ηs||

2dsm(dα)

4 Random risk aversion and decreasing consis-

tent utilities

The interpretation of decreasing utilities in the last paragraph is the starting point for the

rest of the paper where more general method to construct consistent utilities processes

from a family of classical utilities functions is developed.

To illustrate this idea, the method proposed in this paper will be first developed in details

in the context of power utilities that are present in this last result. This allows us to

explain the different steps and different parameters that are involved in the construction

in a simple case before describing the general method. On the other hand this allows us

to recover from this procedure the decreasing consistent utilities of last Theorem, which

will supports our approach.

4.1 Random Risk Aversion

To get started, we recall a result which gives sufficient conditions under which X +-

Consistent stochastic utilities are obtained by combining a power utility function v with

some positive process Z satisfying

dZt
Zt

= µZt dt+ δZt .dWt.
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To alleviate the notations, for any random field (Mt(z))t,z the process (Mt(1))t (the process

(Mt)t starting from 1 at t = 0) is simply denoted by Mt. We also denote by E(δ) the

exponential local martingale defined by Et(δ) = exp
(
− 1

2

∫ t
0 ||δs||

2ds+
∫ t
0 δs.dWs

)
.

The following result is obtained from Proposition 5.1 recalled below stated for any utility

function v.

Proposition 4.1. Let uα be a power utility with risk aversion α that is uα(x) = x1−α

1−α .

Assume that parameters of diffusion µZ , δZ of Z satisfy the following equation

µZt = −(1− α)rt −
1− α

2α
‖ηt + δZ,σt ‖2. (4.1)

Then the stochastic process Uα defined by Uα(t, x) = Ztu
α(x) is a X +-consistent utility

with optimal policy

κ∗,αt (x) =
1

α

(
ηt + δZ,σt

)
In turn, the optimal wealth process Xα,∗ and the optimal dual process Y α,∗ are given by, X∗,αt (x) : = xX∗,αt = xe

∫ t
0

(
rs+

1
α

(
ηs+δZs

)
.ηs
)
dsEt(η+δ

σ

α )

Y α,∗
t (y) : = Uαx (t,X∗t (y−

1
α )) = yY δ⊥

t = ye−
∫ t
0 rsdsEt(δ⊥ − η)

(4.2)

Notice that the optimal wealth X∗,α and the optimal dual process Y ∗,α are linear with

respect to their initial conditions. This property will play an important role in the sequel.

In particular, it provides an explicit formula for the corresponding inverse flows. Note

also, that Y ∗,α is independent on the risk aversion α.

Random risk aversion: At this stage the coefficient α, which is the relative risk

aversion, was supposed constant, it is about the simplest case of the power X +-Consistent

utilities. But it is completely conceivable that this risk aversion is in general random.

Indeed we can imagine at date t = 0 that the investor pulls at random the value of this

coefficient. For every value α he associates:

(i) a weight m(α) (m is a finite positive measure s.t
∫
R∗+
m(dα) = 1),

(ii) a proportion xα(x) of its initial wealth (strictly increasing on x, xα(x) → ∞ if

x → ∞ and xα(0) = 0) that he is going to invest on the financial market by considering

the utility process Uα. He will so realize a wealth X∗,α(xα(x)) associated with this edition

and achieved by the optimal strategy κα,∗.

His final wealth is consequently the sum of the processes X∗,α(xα(x)) weighted by the

measure m, i.e., using the notation X∗,αt := X∗,αt (1) X∗t (x) =
∫
R∗+
X∗,αt (xα(x))m(dα) =

∫
R∗+
xα(x)X∗,αt m(dα),

X∗0 (x) = x =
∫
R∗+
xα(x)m(dα).

By monotony assumption of xα, X∗ is strictly increasing on x and satisfies

dX∗t (x)

X∗t (x)
= rtdt+ κ∗t (X

∗
t (x)).

(
dWt + ηtdt

)
.
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Where the volatility vector κ∗t (X
∗
t (x)) is given, using κ∗,αt (x) = 1

α

(
ηt + δZ,σt

)
, by

κ∗t (X
∗
t (x)) :=

[ ∫
R∗+

X∗,αt (xα(x))

X∗t (x)

1

α
m(dα)

](
ηt + δZ,σt

)
. (4.3)

Denote by X the inverse flow of X∗ and let u be an utility function such that ux(X (x)) is

integrable near to zero (see [KM13, KM16] for explicit conditions on X∗ and u such that

this assumption is satisfied) and assume for the rest of this paragraph that

Assumption 4.1. The process η and δZ are uniformly bounded.

At first, this assumption implies that the process X∗Y δ⊥
t

1 is a martingale. Take Y ∗t (y) =

yY δ⊥
t ( Y δ⊥

t := Y δ⊥
t (1)), it follows, according to Theorem 2.1 (Theorem 4.3 in [KM13])

that the process U(t, x) defined by

U(t, x) = Y δ⊥
t

∫ x

0
ux(X (t, z))dz, (4.4)

is a consistent stochastic utility. The associated optimal portfolio and the optimal state

density price are X∗ and Y ∗. Furthermore, the convex conjugate of U denoted by Ũ , is

given by

Ũ(t, y) =

∫ +∞

y
X∗(t,−ũy(

z

Y δ⊥
t

))dz =

∫ +∞

y

∫
R∗+
xα(−ũy(

z

Y δ⊥
t

))X∗,αt m(dα)dz (4.5)

with ũ denote the convex conjugate of the given utility function u.

Thus we generate a family of non-standard consistent utilities from the optimal wealth

processes X∗,α associated with a family of power consistent utilities. Notice that, this

stochastic utilities depend, first on the family of functions xα, α ∈ R∗+, second on the

choice of the measure m, third on the process Z (δZ) and finally on the initial condition

u. This gives us a large family of consistent utilities.

Remark 4.1. The initial utility function u is not necessarily a power one, the only re-

striction is that u must satisfies: ux(X (x))) is integrable near to x = 0. In other words,

the asymptotic behavior of ux near to zero must be recompensed by that of X .

It is interesting to note that this stochastic utilities are built from simple initial utilities

indexed by a parameter α by reasoning only in terms of the optimal wealth and optimal

dual process by considering random editions of the parameter α.

To close this section let us show how the increasing consistent utilities (Theorem 3.2) are

deduced from the class of utilities given by equations (4.4) and (4.5). For this let u in

(4.5) be an utility function such that its inverse is given by

(ux)−1(x) =

∫
R∗+
x−

1
αm(dα)

1where we recall that Y δ
⊥

is the process defined by
dY δ

⊥
t

Y δ
⊥

t

= −rtdt+ (δ⊥t − ηt).dWt
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and take xα = [(ux)−1]−
1
α it follows that xα(ux)(x) = x−

1
α . Take r ≡ 0 and the volatility

of Z; δ ≡ 0, it follows that Y δ⊥ is Y 0 (the inverse of the market numeraire portfolio:

ν = 0 in (2.4)).

Ũ(t, y) =

∫
R∗+

1

1− 1
α

(
1− y1−

1
αX∗,αt (Y 0

t )
1
α
)
m(dα)

To conclude, remark that X∗,αt (Y 0
t )

1
α = exp(−1−α

2α

∫ t
0 ||ηs||

2ds) and finally

Ũ(t, y) =

∫
R∗+

1

1− 1
α

(
1− y1−

1
α e−

1−α
2α

∫ t
0 ||ηs||

2ds
)
m(dα).

Which is the convex conjugate of a decreasing consistent (forward) utilities in time (see

Theorem 3.2).

4.2 Direct Characterization of Decreasing Stochastic Utili-

ties from the Optimal Wealth

An interesting class of consistent utilities is the class of increasing consistent utilities

which was studied and fully characterized in the literature by Berrier & al. [FB09] and

Musiela & al. [MZ08b]. The volatility characteristic of these utilities is the null random

field γ ≡ 0.

In contrast to previous sections, the utility volatility characteristics is given in place of

the volatility coefficient. Since the optimal dual policy ν∗ ≡ 0 is equal to 0, the optimal

density price is linear with respect to its initial condition and is given byY ∗t (y) = yY 0
t .

On the other hand, the optimal policy κ∗ is given in terms of the risk tolerance Ux
Uxx

(the

inverse of the absolute risk aversion) by

xκ∗(t, x) = − Ux(t, x)

Uxx(t, x)
ηt (4.6)

From now, the problem is so to characterize the utility process. On the beginning, observe

that, under assumption γ ≡ 0, we have that, the utility process U and its dual convex Ũ

satisfy the following ODE

Ut(t, x) = −(Ux)2(t, x)

2Uxx(t, x)
||ηt||2, Ũt(t, y) = −1

2
y2Ũyy(t, y)||ηt||2 (4.7)

Clearly the dual equation is simpler to study than the primal. So we will invest the

problem in terms of the dual convex. In addition, we will not work directly in terms

of Ũ but in terms of Ũy(t, yY
0
t ) because it has better properties. Indeed, by martingale

property of Ũ(t, yY 0
t ), one can easily observe, using Itô-Ventzel’s formula, that

dŨ(t, yY 0
t ) = −yY 0

t Ũy(t, yY
0
t )ηtdWt (4.8)
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which becomes, noting by Ṽ (t, y) := Ũ(t, yY 0
t ),

dṼ (t, y) = −yṼy(t, y)ηtdWt (4.9)

Assumption 4.2. Assume the initial condition u is such that there exists a positive finite

Borel measure µ supported on R such that y 7→ ũ(y)yp is integrable with respect to µ for

any p ∈ R and t.

A simple example of such functions ũ satisfying this integrability condition, is the

class of ũ bounded by a power function, that is there exists p0 ∈ R such that |ũ(y)| ≤
cy−p0 , c, y > 0 (considered in the financial framework by Karatzas & ali in [IS01]). In

this case, one can easily sees that y 7→ ũ(y)yp ≤ yp−p0 is integrable with respect to any

measure ν supported on ]0,∞[ for any p < p0 − 1.

Let now introduce the Mellin-Transform of the process Z(t, y) which is an integral trans-

form that may be regarded as the multiplicative version of the bilateral Laplace transform

of Z(t, ey) and is defined by

Mt(p) :=

∫ +∞

0
yp−1Ṽ (t, y)µ(dy)

which, by the martingale property of the process Ũ(t, yY 0
t ), is well defined, finite almost

surely. Indeed

E(Mt(p)) ≤
∫ +∞

0
yp−1ũ(y)µ(dy) < +∞.

Let us, now, focus on the dynamic of the process M , for this remark that the Mellin-

Transform M̂ of the process yṼy(t, y) is given, using integration by part and integrability

conditions, by

M̂t(p) : =

∫ +∞

0
ypṼy(t, y)µ(dy) = −p

∫ +∞

0
ypṼ (t, y)µ(dy)

= −pMt(p) + C(p)

With C(p) := limy→0 y
pṼ (t, y) and it is null except for at most a single point p0. So

without loss of generality, we assume C(p) = 0 everywhere. This implies that the process

Mt(p) satisfies the following dynamic

dMt(p) = pMt(p)ηt.dWt

which have a unique solution given by

Mt(p) = M0(p)E(p

∫ t

0
ηs.dWs)

Where we recall that E
(
p
∫ t
0 ηs.dWs

)
= exp

(
p
∫ t
0 ηs.dWs − p2

2

∫ t
0 ‖ηs‖

2ds
)

. In particular,

introducing the process Y 0 in the formula of Mt(p), leads by easy computations to

Mt(p) = M0(p)(Y
0
t )−pe−p

p+1
2

∫ t
0 ‖ηs‖

2ds (4.10)
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To comeback to Ṽ (t, y) = Ũ(t, yY 0
t ), we apply the Mellin inverse Transform, there exists

a constant C1 such that

Ũ(t, yY 0
t ) =

∫ +∞

−∞
y−pMt(p)µ(dp) + C1 (4.11)

which becomes, using (4.10),

Ũ(t, yY 0
t ) =

∫ +∞

−∞
(yY 0

t )−pe−p
p+1
2

∫ t
0 ‖ηs‖

2dsM0(p)µ(dp) + C1 (4.12)

and finally, by change of variable yY 0
t 7→ y, we conclude that

Ũ(t, y) =

∫ +∞

−∞
y−pe−

p(1+p)
2

∫ t
0 ‖ηs‖

2dsM0(p)µ(dp) + C1

On the other hand, one can easily find that the condition Ũt < 0 is true if and only if p

is chosen s.t. p > −1 which leads to

Ũ(t, y) =

∫ +∞

−1
y−pe−

p(1+p)
2

∫ t
0 ‖ηs‖

2dsM0(p)µ(dp) + C1

by change of variable q = p+ 1

Ũ(t, y) = −
∫ +∞

0

1

1− q
y1−qe−

q(1−q)
2

∫ t
0 ‖ηs‖

2ds(1− q)M0(q − 1)µ(dq) + C1

by denoting ν the finite Borel measure supported on [0,∞[ defined by ν(dp) := M0(p)µ(dp)/p,

we get

Ũ(t, y) =

∫ +∞

0

1

1− q
(
1− y1−qe−

q(1−q)
2

∫ t
0 ‖ηs‖

2ds
)
ν(dq) + C

For some constant C. In particular, we have that the initial data ũ is necessarily of the

form

ũ(y) =

∫ +∞

0

1

1− q
(1− y1−q)ν(dq) + C (4.13)

Which is other than the characterization of decreasing consistent utility showed by Za-

riphopoulou & ali and Tehranchi & ali using the Widder’s Theorem characterizing space

time harmonic functions.

Note in passing that the optimal wealth process X∗ is given by the closed formula

X∗(t, x) =

∫ ∞
0

(ux(x)Y 0
t )−pe

−p(1−p)
2

∫ t
0 ‖ηs‖

2dsν(dp) (4.14)

and it is a strictly increasing with respect to it’s initial condition x. Moreover, as the

optimal dual process Y ∗(y) = yY 0 which implies Y(y) := (Y ∗)−1(y) = y/Y 0, one can

easily verifies that the random field Ũy is obtained by the general form of Theorem 2.1,

that is Ũy(t, y) := −X∗
(
t,−ũy

(
Y(t, y)

))
.
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Of course, this result was already established in [FB09] and & al. [MZ08b] but the novelty

here, that merits to be integrated into this work, is that we propose a very simple and

direct proof of the result, without using the time change techniques and Widder’s results.

But we must note that in their paper [MZ08b], M. Musiela and T. Zariphopoulou devel-

oped several examples with different measures m as well as properties of the associated

optimal wealth, something we do not develop here.

More Examples Another point that needs to be clarified once and for all is the

following: In a first reading one might think that the necessary condition (4.13) on the

initial function u and the dependence (4.14) of the optimal wealth on this function is in

contradiction with the rest of the paper where we emphasize that the choice of u does

not play a very important role in our main results. Contrary to what one might think,

this result is entirely consistent with previous paragraphs and even a nice example that

supports the efficiency of our results. Indeed, starting from the optimal portfolio X∗

equation (4.14), it is easily to construct a new consistent utility having X∗ as optimal

starting from an initial data v and generating a monotone optimal dual process Y ν∗(y)

(not necessarily equal to yY 0) with inverse Y as follows:

Ṽy(t, y) = −X∗
(
t,−ṽy(Y(t, y))

)
= −

∫ ∞
0

(
ux
(
− ṽy(Y(t, y))

)
Y 0
t

)−p
e
−p(1−p)

2

∫ t
0 ‖ηs‖

2dsν(dp)

Clearly this process is strictly convex non-zero volatility. Moreover Ṽ is the Fenchel-

Transform of a consistent utility V . To be convinced, just apply the results of Theorem

2.7, equation (2.9) of [KM13], to the compound process X∗
(
t,−ṽy(Y(t, y))

)
, using the

fact that Y is a solution of a SPDE since it is the inverse process of Y ∗ solution of a SDE.

Integrate the dynamics in y and compare it to the dynamics (3.6) Theorem 3.2 of the dual

convex of a consistent utility in [KM13].

5 General Construction

In the construction proposed in the previous section, the volatility δZ of Z is independent

of α, while the investor can decide to assign to each function uα a process Zα whose

volatility δα depends on the risk aversion α. Moreover, for simplicity we have chose the

process Y ∗(y) proportional to Y δ⊥(1), i.e. Y ∗(y) = yY δ⊥(1), so it is possible to construct

by the same reasoning for X∗ a process Y ∗ using a family of functions yα α ∈ R∗+. All

these observations combined with the possibility of taking X∗,α not necessarily positive

(with a little more integrability conditions), open the way for a natural generalization

to the construction proposed above even in the context of utility functions uα that are

not of a power type. This will be the target of this section where a generalization of the
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method is proposed and a more general class of consistent utilities is built. The power

and exponential utilities in what follows are also a concrete examples to illustrate the

proposed method.

In order to pursue our investigations, we begin by recalling how it is possible to generate

stochastic utilities from any family of utility functions uα indexed, for example, by the

parameter of risk aversion α others those of power type. The idea is the same as that of

Proposition 4.1. Let uα an utility function not necessary of power type and let Nα
t and

Zαt two positive processes satisfying

dNα
t

Nα
t

= µN,αt dt+ δα,Nt .dWt,
dZαt
Zαt

= µα,Zt dt+ δα,Zt .dWt, Z0 = 1.

Note that Zα and Nα depend on the choice of the parameter α. Next result, showed at

first in the PhD Thesis of Mrad M. [Mra09], generalizes Proposition 4.1. In particular, it

gives a sufficient conditions on the triplet (uα, Nα, Zα) under which the process Uα(t, x) :=

Zαt u
α(x/Nα

t ) is a consistent utility.

Proposition 5.1. Let uα be an utility function.

(i) Assume that N is an admissible positive wealth process, i.e.(δN,α ∈ R, µN,α = r +

η.δN,α) and Z is a martingale such that ZXκ/N, κ ∈ R are local martingales. Then

the process Uα defined by Uα(t, x) = Ztu
α(x/Nt) is a consistent stochastic utility

with optimal wealth process Xα,∗ = N .

(ii) If uα is a power or exponential utility, then condition : ”Z is martingale, ZXκ/N

is a local martingale for any κ ∈ R ” can be relaxed.

X In the case where uα is a power utility the result is given by Proposition 4.1.

X If uα is an exponential utility that is uα(x) = 1
αe
−αx it suffices to take Z and N

satisfying µα,N = r + σα,N .η, µα,Z = 1
2‖η − δ

α,N + δα,Z,σ‖2, δα,N ∈ R where

the optimal policy κα,∗ is given by xκα,∗t (x) = xδα,Nt +
Nα
t
α

(
ηt − δα,Nt + δα,Z,σ

)
.

Moreover, x 7→ xκα,∗t (x) is globally Lipischitz function.

In all cases X∗,α(x) is strictly increasing in x.

This result, whose the proof can be found in the last chapter of [Mra09], gives sufficient

conditions under which U , defined above, is an X -consistent stochastic utility. Note also

that this example generalizes the one in [MZ08a] in which case u is an exponential utility

and provides a similar sufficient conditions.

As in previous Section, the optimal wealth process associated to the stochastic utility Uα

is denoted by X∗,α := Xκα,∗,α and satisfies

dX∗,αt
X∗,αt

= rtdt+ κα,∗t (X∗,αt ).
(
dWt + ηtdt

)
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Also, Y ∗,α denote the optimal state density process given by Y ∗,αt (y) := Uαx

(
t,X∗,αt ((uαx(x))−1(y))

)
which is attained by ν∗,α, that is

dY ∗,αt (y)

Y ∗,αt (y)
= −rtdt+

(
να,∗t (Y ∗,αt (y))− ηt

)
dWt, να,∗t (Y ∗,αt (y)) ∈ R⊥t , Y

∗,α
0 (y) = y.

Random risk aversion : The idea developed in the previous section is generalized

as follows.

At date t = 0 the investor pulls at random the value of the risk aversion coefficient. For

every value α he associates:

(i) a weight m(α) (m is a finite positive measure s.t
∫
R∗+
m(dα) = 1),

(ii) a proportion xα(x) of its initial wealth (positive strictly increasing on x) that he

is going to invest on the financial market by considering uα as utility, he will so realize

X∗,α(xα(x)) as wealth (associated with this edition) achieved by the optimal policy κα,∗.

(iii) a function yα(.), α ∈ R∗+ (strictly increasing y, yα(y) → ∞ if y → ∞ and null for

y = 0).

His final (global) wealth is consequently the sum of the processes X∗,α(xα(x)) weighted

by the measure m, i.e.

X∗t (x) =

∫
R∗+
X∗,αt (xα(x))m(dα), X∗0 (x) = x =

∫
R∗+
xα(x)m(dα)

By monotonicity of xα and that of X∗,α, X∗ is strictly increasing on x and satisfies

dX∗t (x) = rtX
∗
t (x)dt+X∗t (x)κ∗t (X

∗
t (x)).

(
dWt + ηtdt

)
where the volatility vector κ∗t (X

∗
t (x)) is given by

X∗t (x)κ∗t (X
∗
t (x)) :=

∫
R∗+
X∗,αt (xα(x))κα,∗t (X∗,αt (xα(x)))m(dα) (5.1)

By analogy, we consider the state density price Y ∗ defined as the sum of the processes

Y α,∗ weighted by the measure m, i.e.

Y ∗t (y) =

∫
R∗+
Y ∗,αt (yα(y))m(dα), Y ∗0 (y) = y

def
=

∫
R∗+
uαx(yα(y))m(dα) (5.2)

Consequently, the increasing process Y ∗t (x) solves

dY ∗t (y)

Y ∗t (y)
= −rtdt+

(
ν∗t (Y ∗t (y))− ηt

)
dWt.

with

ν∗t (Y ∗t (y)) :=

∫
R∗+

Y α,∗
t (xα(y))∫

R∗+
Y α,∗
t (yα(y))m(dα)

να,∗t (Y α,∗
t )m(dα) (5.3)

By definition, the pair of processes (X∗t (x), Y ∗t (y)) is increasing with respect to its initial

condition (x, y) and such that X∗(x)Y ∗(y) is a local martingale. Assume κ∗ and ν∗ to be
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bounded then X∗Y ∗ is a martingale. Furthermore, let X (t, z) = (X∗(t, .))−1 the inverse

flow of X∗ and u an utility function such that x 7→ Y ∗(t, ux(X (t, z))) is integrable near

to zero (see [KM13] for explicit conditions on Y ∗, X∗ and u such that this assumption

is satisfied see also [KM16] for a more general framework). Then, according to Theorem

2.1, the process U defined by

U(t, x) =

∫ x

0
Y ∗(t, ux(X (t, z)))dz

is a X -Consistent stochastic utility. The associated optimal portfolio is X∗ and the

optimal state density price is Y ∗, in particular Y ∗t (ux(x)) = Ux(t,X∗t (x)).

In the following paragraphs an explicit illustration of this method, based on utilities

functions of power and exponential type, is given. Main tools are the results of Proposition

5.1.

5.1 Example 1: Consistent Utilities From Optimal pro-

cesses Associated with Power Utilities Functions

In this paragraph, we are interested by applying the previous construction to the case

where utilities uα are of power type. For this, we consider a family {Zα;α > 0} such that

Zα satisfies, for each α, the following dynamics

dZαt
Zαt

= −
(
(1− α)rt +

1− α
2α
‖ηt + δα,σt ‖2

)
dt+ δαt .dWt, Z0 = 1.

To ensure that X∗Y ∗ is a martingale we make the following assumption

Assumption 5.1. The minimal risk prime η is bounded and the family of the volatility

vector processes δα are uniformly bounded.

According to Proposition 4.1 the process Uα(t, x) = Zαt
x1−α

1−α , is a X +-Consistent dynamic

utility such that the optimal policy κ∗ is given by κ∗t (x) = 1
α

(
ηt + δα,σt

)
. By Proposition

4.1, the optimal wealth process Xα,∗ and the optimal dual process Y α,∗ associated with

the power utility Uα are given by, X∗,αt (x) = xX∗,αt = xe
∫ t
0

(
rs+

1
α

(
ηs+δZs

)
.ηs
)
dsEt(η+δ

α,σ

α )

Y α,∗
t (y) = yY α,∗

t = ye−
∫ t
0 rsdsEt(δα,⊥ − η).

(5.4)

From this and the previous construction, we are concerned with the following processes

X∗ and Y ∗ given by X∗t (x) =
∫
R∗+
xα(x)X∗,αt m(dα), X∗0 (x) = x =

∫
R∗+
xα(x)m(dα)

Y ∗t (y) =
∫
R∗+
yα(y)Y α,∗

t m(dα), Y ∗0 (y) = y =
∫
R∗+
yα(x)m(dα)

(5.5)

By assumptions, X∗ is a wealth process and Y ∗ is a state density process which are

strictly increasing from 0 to ∞, we denote respectively X and Y their inverse with
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respect to their initial conditions. Consequently, for any utility function u such that

x 7→ Y ∗(t, ux(X (t, z))) is integrable near to zero the process U defined by

U(t, x) =

∫ x

0
Y ∗(t, ux(X (t, z)))dz

is a consistent utility.

Although this class of utilities processes is simply generated from optimal processes as-

sociated with a power utilities (the simplest utilities we can consider) nevertheless it is a

richer class. To be convinced it suffices to fix one of the parameters: xα, yα or the initial

condition u.

5.1.1 The Case xα(x) = xg(α) :

This choice implies that the wealth process X∗ is linear with respect to its initial value x

and is given by

X∗t (x) = x

∫
R∗+
g(α)Xα,∗

t m(dα)

and X∗t := X∗t (1) =
∫
R∗+
g(α)Xα,∗

t m(dα). In particular, we have the explicit formula for

the inverse flow X of X∗, i.e., Xt(x) = x/X∗t . Composing the stochastic flows Y ∗ and X ,

the derivative Ux of the stochastic utility constructed above satisfies

Ux(t, x) = Y ∗t (ux(Xt(x))) =

∫
R∗+
yα ◦ ūx

( x

X∗t

)
Y α,∗
t m(dα)

Integrating yields

U(t, x) =

∫
R∗+

(∫ x

0
yα ◦ ux

( z

X∗t

)
dz
)
Y α,∗
t m(dα) (5.6)

If, moreover, we take yα(y) = yf(α), then the utility processes U rewrites, after

integration with respect to z,

U(t, x) = X∗t

∫
R∗+
f(α)ū

( x

X∗t

)
Y α,∗
t m(dα) = X∗t Y

∗
t u(

x

X∗t
) (5.7)

thus the utility process U is simply the transformation of the utility function u to a

consistent one using the techniques of change of numeraire and probability: the numeraire

N is the optimal portfolio X∗ and the change of probability Z is the martingale Y ∗X∗,

which is in a perfect concordance with results of Proposition 5.1.

Particular form of the initial utility function u: Let {vα, α > 0} be a family of

utilities functions (not necessarily of power type) and define the utility function v by

vx(x) :=

∫
R∗+
vαx (x)m(dα).
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By definition vx is strictly decreasing with inverse (vx)−1, take yα(y) := vαx ((vx)−1(y))

and observe that

y =

∫
R∗+
vαx ((vx)−1(y))m(dα) =

∫
R∗+
yα(y)m(dα).

Requirements of our construction being respected, the utility U is given by

U(t, x) =

∫
R∗+

∫ x

0
vαx

( z

X∗t

)
dzY α,∗

t m(dα)

Integrating, yields

U(t, x) = X∗t

∫
R∗+
vα
( x

X∗t

)
Y α,∗
t m(dα) (5.8)

which can be interpreted as the sum of consistent utilities X∗t Y
α,∗
t vα

(
x
X∗t

)
which are the

transformation of the utilities vα by the same change of numeraire X∗ and a different

probability processes X∗t Y
α,∗
t .

5.1.2 The Case yα(y) = f(α)y:

In this case it is more convenient to calculate the dual convex of the utility U because the

inverse of the state price density process Y ∗ is simply given by (Y ∗t )−1(y) = y
Y ∗t

where we

recall, Y ∗t := Y ∗t (1) =
∫
R∗+
f(α)Y α,∗

t m(dα). The dual convex conjugate Ũ of U becomes

Ũ(t, y) =

∫ +∞

y
X∗t
(
(Y ∗t )−1((ux)−1(z))

)
dz

=

∫
R∗+

[ ∫ +∞

y
xα ◦ (ux)−1(

z

Y ∗t
)dz
]
X∗,αt m(dα) (5.9)

It is important to note the symmetry between this equation and equation (5.6). In par-

ticular taking xα = g(α)x one get the dual conjugate of U given by (5.7) and f(α) = 1,

the dual conjugate of U given by (5.8).

Particular form of the initial utility function u: Let {vα, α > 0} be a family of

utilities functions (not necessarily of power type) and define the utility function v via its

conjugate by

(vx)−1(y) :=

∫
R∗+

(vαx )−1(y)m(dα).

By definition (vx)−1 is strictly increasing with inverse vx, take xα(x) := (vαx )−1(vx(x))

and observe that

x =

∫
R∗+

(vαx )−1(vx(y))m(dα) =

∫
R∗+
xα(x)m(dα).

Requirements of our construction being respected, the convex conjugate Ũ of U is

given, taking u = v in (5.9), by

Ũ(t, y) =

∫
R∗+

[ ∫ +∞

y
(vαx )−1(

z

Y ∗t
)dz
]
X∗,αt m(dα)
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Denoting by ṽ the convex conjugate of v, integrating yields

Ũ(t, y) = Y ∗t

∫
R∗+
ṽα(

z

Y ∗t
)X∗,αt m(dα) (5.10)

which is, by analogy to (5.8), interpreted as the sum of the convex conjugate Y ∗t X
∗,α
t ṽα( z

Y ∗t
)

of consistent utilities X∗t Y
α,∗
t vα

(
x
X∗t

)
in (5.8), which are the transformation of the utilities

vα by the same change of numeraire X∗ and a different probability processes X∗t Y
α,∗
t .

We can content ourselves with this simple example of our construction, but there is

a sub-case of (5.10) corresponding to the case of decreasing consistent utilities which has

been studied in the literature by Berrier & al and Musiela &al. This utilities can be obtain

by a particular choice of functions xα and the initial data u.

Case of decreasing X-Consistent utilities To get started let ū be the function

defined by

(ūx)−1(x) =

∫
R∗+
x−

1
αm(dα)

and take xα = [(ūx)−1]−
1
α it follows that xα(ūx)(x) = x−

1
α . Hence, always in the case

where yα(y) = yf(α)

Ũ(t, y) = Y ∗t

∫
R∗+

[
(1− 1

1− 1
α

y1−
1
α (

1

Y ∗t
)−

1
αdz

]
X∗,αt m(dα)

where we recall that Y ∗t =
∫
R∗+
f(α)Y α,∗

t m(dα).

From now taking r ≡ 0, δα ≡ 0, it follows that Y ∗(1) is Y 0 (the inverse of the market

numeraire portfolio: ν = 0 in (2.4)).

Ũ(t, y) =

∫
R∗+

1

1− 1
α

(
1− y1−

1
αX∗,αt (1)(Y 0

t )
1
α
)
m(dα)

To conclude, remark that X∗,αt (1)(Y 0
t )

1
α = exp(−1−α

2α

∫ t
0 ||ηs||

2ds) and finally, one easily

obtain the convex conjugate of decreasing consistent utilities.

Ũ(t, y) =

∫
R∗+

1

1− 1
α

(
1− y1−

1
α e−

1−α
2α

∫ t
0 ||ηs||

2ds
)
m(dα).

5.2 Example 2: Consistent Utilities From Optimal pro-

cesses Associated with Exponential Utilities Functions

In this section uα is an exponential utility with risk aversion α that is uα(x) = 1− 1
αe
−αx

According to Proposition 5.1, the numeraire Nα and the process Zα are solutions of the

following dynamics
dNα

t

Nα
t

=
(
rt + δα,Nt .ηt

)
dt+ δα,Nt .dWt, δα,Nt ∈ Rt, t ≥ 0, N0 = 1

dZαt
Zαt

=
1

2
‖ηt − δN,σt + δα,Z,σt ‖2dt+ δα,Zt .dWt, t ≥ 0, Z0 = 1

To ensure that X∗Y ∗ is a martingale we make the following assumption
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Assumption 5.2. The minimal risk prime η is bounded and the volatility vectors δα,N , δα,Z , α ∈
R∗+ are uniformly bounded.

The optimal policy xκ∗, according to Proposition 5.1 is given by

xκα,∗t (x) = xδα,Nt +
Nα
t

α

(
ηt − δα,Nt + δα,Z,σ

)
.

In turn, the optimal portfolio X∗,α satisfies

dX∗,αt (x) = rtX
∗,α
t (x)dt+

(
X∗,αt (x)δα,Nt +

Nα
t

α

(
ηt − δα,Nt + δα,Z,σ

))
.
(
dWt + ηtdt

)
Applying Itô formula to the process

X∗t (x)
Nα
t

, simple calculations lead to

d
X∗,αt (x)

Nα
t

=
1

α

(
ηt − δα,Nt + δα,Z,σt

)
.
(
dWt +

(
ηt − δα,Nt )dt

)
Which is equivalent to

Xα,∗
t (xα(x)) = Nα

t

[
xα(x) +

1

α

∫ t

0

(
ηs − δα,Ns + δα,Z,σs

)
.
(
dWs +

(
ηs − δα,Nt )ds

)]
Consequently the global wealth process is written

X∗t (x) =

∫
R∗+
X∗,αt (xα(x))m(dα)

=
[ ∫

R∗+
xα(x)Nα

t m(dα) +

∫
R∗+
Nα
t

( 1

α

∫ t

0

(
ηs − δα,Ns + δα,Z,σs

)
.
(
dWs +

(
ηs − δα,Ns )ds

)
m(dα)

]
To achieve the construction in this exponential framework, after X∗ we shall give an

explicit form to Y ∗. For this, we begin by calculating Y α,∗ before integrating with respect

to α and the measure m. From previous equations, it follows

e
−αX

∗,α
t (x)

Nαt = e
−αx−

∫ t
0

(
ηs−δα,Ns +δα,Z,σs

)
.

(
dWs+

(
ηs−δα,Ns

)
ds

)
Multiplying by Zαt , one can easily obtain Zαt e

−αX
∗,α
t (x)

Nαt = e−αxEt(δZ,⊥−η). Which implies

Y α,∗
t (y) := Uαx (t,X∗,αt ((uαx)−1(y))) =

Zαt
Nα
t

e
−αX

∗,α
t ((uαx )−1(y))

Nt = yY δα,Z,⊥
t

where Y δα,Z,⊥ denote the state price density process given by (2.4) for ν = δα,Z,⊥ and

with initial value equal to 1. Integrating with respect to α, the process Y ∗(y) is given by

Y ∗t (x) =

∫
R∗+
yα(y)Y δα,Z,⊥

t m(dα)
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Case Nα = N : In this case, it is immediate, using δα,N = δN , that the global wealth

process X∗ is given by

X∗t (x) = Nt

[
x+

∫
R∗+

1

α

∫ t

0

(
ηs − δNs + δα,Z,σs

)
.
(
dWs +

(
ηs − δNs )ds

)
m(dα)

]
(5.11)

Where in the last line we have used the identity X∗0 (x) = x =
∫
R∗+
xα(x)m(dα) (see

equation (4.3)). Hence X∗ is strictly increasing with respect to its initial capital with

inverse flow X given by,

Xt(x) =
x

Nt
−Mα

t (5.12)

Mα
t =

∫
R∗+

1

α

∫ t

0

(
ηs − δNs + δα,Z,σs

)
.
(
dWs +

(
ηs − δNs )ds

)
m(dα).

Let u be an utility function u : R 7→ R with good integrability conditions. Composing

the stochastic flows Y ∗, ux and X , the derivative Ux of the stochastic utility constructed

satisfies

Ux(t, x) = Yt
(
ux(Xt(x))

)
=

∫
R∗+
yα

(
ux
( x
Nt
−Mα

t

))
Y δα,Z,⊥
t m(dα)

Integrating yields

U(t, x) =

∫
R∗+

[ ∫ x

0
yα

(
ux
( z
Nt
−Mα

t

))
dz
]
Y δα,Z,⊥
t m(dα)

Note that in this case of exponential utilities uα when Nα = N the functions xα, contrary

to the power case, do not play any role.

X Case where yα(y) = y: the last identity becomes

U(t, x) = Nt

∫
R∗+
u
( z

Nt
−Mα

t

)
Y δα,Z,⊥
t m(dα)

X Case where yα(y) = e−α(ux)
−1(y), we get

U(t, x) = Nt

∫
R∗+

(
1− 1

α
e
−α x

Nt
+αMα

t

)
Y δα,Z,⊥
t m(dα)

5.3 Example 3: Consistent Utilities From Optimal pro-

cesses Associated with Different Types of Utilities Functions

In the examples above consistent utilities processes are constructed from a family of

utility functions uα either power type or exponential type. The most natural question

one might ask is: This construction, is it valid if the utilities functions are of different

types, such as a mixture of power and exponential utilities? The answer to this question,

under uniform integrability assumptions of the parameters of diffusion of Zα and Nα,

is in fact positive. An intuitive explanation that makes this construction valid is the
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fact that despite the initial functions uα are of a different types the optimal processes

(Xα,∗)α∈R∗+ and (Y α,∗)α∈R∗+ are such that (Xα,∗Y α′,∗)α 6=α′ are a martingales (portfolios

versus state price density processes). Assuming uniform integrability assumptions of the

diffusion parameters of Zα and Nα the strictly increasing processes X∗ and Y ∗ are, then,

such that X∗Y ∗ is a martingale, which is enough to apply the general construction result

of consistent utilities, Theorem 2.1.

Example Let us give an example based on a mixture of power and exponential utilities.

To simplify, let δα be the Dirac measure in α and let the measure m be λδα1 + (1−λ)δα1 .

Let also uα1 of a power type and uα2 of an exponential type. Denoting by Mα2
t :=∫ t

0

(
ηs− δα2,N

s + δα,Z,σs

)
.
(
dWs+

(
ηs− δα2,N

s )ds
)]

, by Proposition 4.1 and Proposition 5.1,

we get that  X∗,α1
t (x) = xX∗,α1

t , Xα2,∗
t (x) = Nα2

t

[
x+Mα2

t

]
Y α1,∗
t (y) = yY δα1,Z,⊥

t , Y α2,∗
t (y) = yY δα2,Z,⊥

t

with X∗,α1
t given by (5.4), it follows that{

X∗t (x) = x
(
λX∗,α1

t + (1− λ)Nα2
t

)
+ (1− λ)Mα2

t Nα2
t

Y ∗t (y) = y
(
λY δα1,Z,⊥

t + (1− λ)Y δα2,Z,⊥
t

)
Denote by Xλ :=

(
λX∗,α1

t + (1 − λ)Nα2
t

)
and Y λ :=

(
λY δα1,Z,⊥ + (1 − λ)Y δα2,Z,⊥

)
and

assume that Xλ and Y λ are a.s. non null processes. Then, X∗(x) and Y ∗(y) are strictly

monotonous with respect to their initial conditions, with inverses flows

Xt(x) =
x−(1−λ)Mα2

t N
α2
t

Xλ
t

, Yt(y) =
y

Y λ
t

Let u an utility function defined on R, by Theorem 2.1, the progressive utility U defined

by

U(t, x) = Y λ
t

∫ x

0
ux(

z − (1− λ)Mα2
t Nα2

t

Xλ
t

)dz,

is a X -consistent utility.

Conclusion The key point of this paper is to argue directly in terms of the optimal

wealth and dual process and not in terms of consistent utilities for the simple reason that

the sum of two consistent utilities is not a consistent utility, except in the very particular

case where both optimal wealths and optimal dual processes are identical. On the other

hand the sum of two acceptable wealths is always an acceptable wealth. Note also that the

fact that Xα,∗Y α′,∗, α 6= α′ is martingale plays a crucial role in the construction proposed.

Indeed, else the global wealth process X∗ and the global state density price Y ∗ do not

satisfy the necessary martingale condition, i.e. X∗Y ∗ is not a martingale.
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