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Abstract

In this paper, a method to find equivalences among dynamic models is pre-

sented. The models are given in different generalized coordinates for the same

mechanical system. This novel method is valid for planar biped robots, i.e.,

those whose motions are executed only in a plane.

R1C1

R2C1We show that no matter

which generalized coordinates are used to get the dynamic models,

there is always an equivalence among them by using a particular in-

put matrix. Without loss of generality, we exhibit some advantages

of getting the dynamic model using absolute coordinates instead of

relative coordinates, and we show how to calculate the input ma-

trix for getting the equivalence between these models. Because of

its simplicity, a compass-like biped robot model is used as example

to explain in detail the novel procedure. In order to appreciate the

benefits of the proposed procedure in biped robots of high degrees of

freedom, we also present the equivalence between two dynamic mod-

els for the single support phase of a 5 degrees of freedom biped robot

using absolute coordinates and relative ones.
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1. Introduction

The dynamic model of biped robots is divided into three main phases: the

single support phase (SSP), where the robot is supported by one foot; the double

support phase (DSP), where the system is supported by two feet; and the flying

phase (FP), where no feet are touching the ground. This dynamic model is5

important in the development of control strategies and analysis of these robots,

such as: the study of passive gaits without energy input [1, 2]; the design of

energy based controllers that exploit passive features [3, 4]; the development of

control techniques that attempt to achieve certain objectives in terms of motion

velocity or energy consumption needed to produce a gait [5, 6, 7, 8]; as well as10

stability analysis of the limit cycle of the closed-loop systems. In this paper,

we will focus into the study of the SSP dynamic model, which can be obtained

from the application of the Euler-Lagrange equation of motion and is similar to

the model of planar manipulator robots.

The selection of the reference frame where each generalized coordinate will15

be measured to obtain the dynamic model is important. The reason is that the

applied torques in the Euler-Lagrange equations could not include the dynam-

ics of subsequent links. For many robotic systems, the generalized coordinates

chosen to obtain the dynamic model are those measured from the extension

of the previous link (relative generalized coordinates), except by the first one20

which is measured with respect to an inertial reference frame. We show that

by using these relative generalized coordinates, the torque applied to each joint

is directly obtained. On the other hand, not much has been said in the lit-

erature if the model is derived by selecting generalized coordinates measured

from different reference frame orientations. In this paper, we are focused on25

discussing such a problem. R1C2

R2C3

R3C2

We show how to get different representa-

tions of dynamic models for the same system (representations with
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different elements in the inertia matrix, Coriolis matrix and gravita-

tional vector) derived from the Euler-Lagrange equation of motion,

which may be useful for many purposes, like control design and mo-30

tion planning. Although these dynamic models may look different,

we prove that there exists a relationship among them. An example of

a dynamic model representation is the one obtained by using absolute

coordinates θ (instead of using relative generalized coordinates q) for

planar biped robots. The dynamic model obtained by using absolute35

coordinates θ has the following advantages:

• The elements into the matrices of a dynamic model obtained

from Euler-Lagrange equation of motion with absolute coordi-

nates θ, are simpler than those obtained from using relative gen-

eralized coordinates q. Thus, the implementation of a dynamic40

model obtained by using the coordinate θ, will help saving time

of calculations in limited systems (such as embedded systems or

in systems where optimization algorithms based on the dynamic

model are used, etc.).

• The calculation of singularities [9] in the Jacobian matrix is eas-45

ier by using absolute coordinates than the calculation of that

obtained by using relative coordinates, since the determinant of

the matrix is easier to compute.

• As known in literature, for biped robots it is particularly impor-

tant the change of support at the impact of the free foot with50

the ground. So, by using absolute generalized coordinates θ, the

interchange of the position variables, among the stance and free

legs, is straightforward.

• Also, by using θ will allow achieving a better walking analysis

of the robot. The reason is that it allows analysing limit cycles55

of each joint by observing when that joint is part of the support

leg or the free one, without having discontinuities in position.
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• It is easier to analyse the motion of a particular link by using

absolute coordinates than relative ones, as will be shown in the

simulations section of this paper.60

R3C2On the other hand, some control design procedures may need specific

matrix structures, for instance, they could need that inertia matrix

M depends only on the underactuated coordinate or the actuated

one (for example in [10]). By choosing different generalized coordi-

nates we could make M accomplishes such a requisite. Nevertheless,65

there are a lot of possibilities for choosing generalized coordinates:

some of them could be relatives, absolutes, measured from the posi-

tive vertical axis or measured from the negative one, measured from

the extreme of a link, positive in clockwise or in counter-clockwise

direction, etc. Thus, the resulting matrices would be different and70

would be useful for some specific purposes. The given analysis will also

be helpful to understand how to calculate the nontrivial input matrix which ap-

pears multiplying the vector of applied torques in biped robot models reported

in the literature, such as [11, 12, 13, 14], among others. This work also com-

plements those studies of the direct and inverse kinematics of planar redundant75

robots [15]. In order to make clear the proposed procedure, we analyse in detail

two models in SSP of the compass-like biped robot (CBR). Also we compare

the dynamic model of a 5 degrees-of-freedom (DOF) biped robot obtained in

two different ways, each one taking into account generalized coordinates for the

robot link position measured from different reference frames. Thus, an input80

matrix is needed to make the equivalence between the two models.

R1C1Given the advantages of modelling the dynamics of planar biped

robots by using absolute generalized coordinates θ, it arises the need

of relating such a model with one obtained with relative generalized

coordinates, whose elements in general are more complex, but they85

consider the whole dynamics of the robot including the reaction forces

and torques of subsequent links, which are not considered in the ab-

solute coordinate-based model because the fixed references frames

4



decouple the links. In this paper, our main contribution is the in-

troduction of a novel procedure to find equivalences among dynamic90

models of planar biped robots, making easy the whole modelling pro-

cedure. The benefits of our proposal are more evident in planar biped

robots with high DOF.

This paper is organized as follows: in Section 2, the dynamic model of planar

biped robots obtained from different reference frames is shown. In Section 3,95

the procedure to find the equivalence among dynamic models of the same planar

biped robot is explained. In order to exemplify our approach, the CBR is anal-

ysed in Section 4. First, its dynamic model is obtained by taking into account

the generalized coordinates measured from previous links (relatives coordinates,

as is done with serial manipulator robots), and by taking into account the gen-100

eralized coordinates measured from inertial frames (absolutes coordinates, as

is normally used in the literature of biped robots, i.e., measured at the end of

the feet from vertical axes). Simulations results are given in order to explain

the difference between the torques obtained from the two dynamic models pre-

sented. The equivalence between the two obtained models is also shown. As105

another example, in Section 5, the equivalence between two dynamic models of

a 5 DOF biped robot is presented. Here, relative and absolute coordinates are

used to show the advantages of the proposed approach of equivalency between

models. Finally the conclusions derived from our study are given in Section 6.

2. Dynamic models for planar biped robots in SSP110

The dynamic model of a planar biped robot in SSP can be obtained by

applying the Euler-Lagrange equation of motion using generalized coordinates

that define the robot configuration. It should be noticed that if different refer-

ence frames to measure the generalized coordinates are used, different dynamic

model representations are obtained.115

Usually, the generalized coordinates chosen for getting the dynamic model

of a serial robot are those measured from the extension of the previous link, as
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Figure 1: Kinematic model of a planar biped robot with relative generalized coordinates q.

shown in Figure 1. Thus, by applying the Euler-Lagrange equation of motion,

the dynamic model for this robot could be represented in a compact form as

M(q)q̈ + d(q, q̇) = τ (1)

where q, q̇, q̈ ∈ Rn, are the vector of joint position, velocity and acceleration,120

respectively, M(q) = M(q)T > 0 is the inertia matrix, d(q, q̇) is a vector with

the remaining dynamic terms, and τ ∈ Rn is the vector of applied torques. Each

torque τi applied in each joint includes the whole dynamic of the robot due to

the motion and masses of subsequent links.

On the other hand, without loss of generality, by choosing as generalized125

coordinates those measured from the horizontal1 as shown in Figure 2, and by

applying the Euler-Lagrange equation of motion for getting the dynamic model,

1We can choose any other reference frame to measure the generalized coordinates, such as

those measured from the vertical or from other links
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Figure 2: Kinematic model of a planar biped robot with absolute generalized coordinates θ.

we get

M̄(θ)θ̈ + d̄(θ, θ̇) = τ̄ , (2)

where θ, θ̇, θ̈ ∈ Rn, are the vector of joint position, velocity and acceleration,

respectively, M̄(θ) = M̄(θ)T > 0 is the inertia matrix, d̄(θ, θ̇) is a vector with130

the rest of the dynamic terms, and τ̄ ∈ Rn is the vector of quasi-applied torques.

In this framework, the resulting inertia and Coriolis matrices are commonly

simpler than those in equation (1). Nevertheless, the torque vector that appears

in equation (2) does not include the whole dynamics of the system, such as

reaction torques of subsequent links. In other words, the signal τ̄ (t) can not135

be used as the applied torques at the joints for simulations or experimental

purposes. However, it is possible to relate the simpler representation given by

τ̄ (t) in (2) to the applied torques at the joints τ (t) given in (1), which considers

the whole dynamic of the robot, as will be seen in the next.
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3. Equivalence among dynamic models obtained with different coor-140

dinates

A mechanical system expressed with generalized coordinates q has associated

a Lagrangian given by

L(q, q̇) = K(q, q̇)− U(q), (3)

where

K(q, q̇) =
1

2
q̇TM(q)q̇ (4)

is the kinetic energy of the system and U(q) its potential energy.145

By following the Euler-Lagrange equation of motion given by

d

dt

[
∂

∂q̇
L(q, q̇)

]
− ∂

∂q
L(q, q̇) = τ , (5)

the dynamic model of a mechanical system is obtained. Then, it is posible to

achieve a simple representation of equation (5) as follows [16]:

d

dt

[
∂

∂q̇
K(q, q̇)

]
− ∂

∂q
K(q, q̇) +

∂

∂q
U(q) = τ ,

which can be also expressed by using (4) as

d

dt

[
∂

∂q̇

(
1

2
q̇TM(q)q̇

)]
− ∂

∂q

(
1

2
q̇TM(q)q̇

)
+

∂

∂q
U(q) = τ , (6)

where150

∂

∂q̇

(
1

2
q̇TM(q)q̇

)
= M(q)q̇,

d

dt

[
∂

∂q̇

(
1

2
q̇TM(q)q̇

)]
= M(q)q̈ + Ṁ(q)q̇, (7)

and

∂

∂q
U(q) = g(q). (8)

By using equations (7) and (8) into (6) we obtain a compact set of equations

given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (9)
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with155

C(q, q̇)q̇ = Ṁ(q)q̇ − 1

2

∂

∂q

(
q̇TM(q)q̇

)
(10)

where C(q, q̇) is the n×n centrifugal and Coriolis matrix and g(q) is the vector

of gravitational forces and torques of dimension n.

The generalized coordinates q have a linear relation with other generalized

coordinates θ, which is given by

q = Aθ + b,

being A ∈ Rn×n a non singular constant relation matrix between q and θ,160

and b ∈ Rn a constant vector. This relation is written as q = q(θ), such

that q̇ = q̇(θ̇) = Aθ̇ and q̈ = q̈(θ̈) = Aθ̈. By applying these relations to the

Lagrangian in equation (3), we get

L(q(θ), q̇(θ̇)) = K(q(θ), q̇(θ̇))− U(q(θ)).

Therefore, the computing of the Euler-Lagrange equation of motion for the new

generalized coordinates θ is given by165

d

dt

[
∂

∂θ̇
L(q(θ), q̇(θ̇))

]
− ∂

∂θ
L(q(θ), q̇(θ̇)) = τ̄ ,

which can also be written as

d

dt

[
∂

∂θ̇
K(q(θ), q̇(θ̇))

]
− ∂

∂θ
K(q(θ), q̇(θ̇)) +

∂

∂θ
U(q(θ)) = τ̄ . (11)

Note that, the generalized forces τ̄ for equation (11) is not equivalent to τ in

equation (5) since Euler-Lagrange equations are being computed with respect

to coordinate θ. However, there is a relationship between τ̄ and τ that we will

show in the next. By using the chain rule for the first term of the left hand side170

of (11) we get

∂

∂θ̇
K(q(θ), q̇(θ̇)) =

[
∂KT

∂q

∂q

∂θ̇

]T
+

[
∂KT

∂q̇

∂q̇

∂θ̇

]T
= 0 +

[[
M(q(θ))q̇(θ̇)

]T
A

]T
= ATM(q(θ))q̇(θ̇), (12)

9



where ∂q̇

∂θ̇
= A, and the time derivative of (12) is given by

d

dt

[
∂

∂θ̇
K(q(θ), q̇(θ̇))

]
= ATM(q(θ))q̈(θ̈)

+AT Ṁ(q(θ))q̇(θ̇). (13)

By using again the chain rule for the second term of the left hand side of (11)

we have

∂

∂θ
K(q(θ), q̇(θ̇)) =

[
∂KT

∂q

∂q

∂θ

]T
+

[
∂KT

∂q̇

∂q̇

∂θ

]T
=

[[
1

2

∂

∂q

(
q̇(θ̇)TM(q(θ))q̇(θ̇)

)]T
A

]T
+ 0

=
1

2
AT

∂

∂q

(
q̇(θ̇)TM(q(θ))q̇(θ̇)

)
(14)

where ∂q
∂θ = A. By doing the same for the third term of the left hand side of175

(11) we get

∂

∂θ
U(q(θ)) =

[
∂U(q(θ))

∂q

T
∂q

∂θ

]T

=

[
∂U(q(θ))

∂q

T

A

]T
= AT

∂U(q(θ))

∂q
(15)

Then, by substituting equations (13)-(15) into equation (11), we obtain

ATM(q(θ))q̈(θ̈) +AT Ṁ(q(θ))q̇(θ̇)

−1

2
AT

∂

∂q

(
q̇(θ̇)TM(q(θ))q̇(θ̇)

)
+AT

∂U(q(θ))

∂q
= τ̄ , (16)

where, according to equations (10) and (8), we can write

ATC(q(θ), q̇(θ̇))q̇(θ̇) = AT
[
Ṁ(q(θ))q̇(θ̇)− 1

2

∂

∂q

(
q̇(θ̇)TM(q(θ))q̇(θ̇)

)]
,

and

ATg(q(θ)) = AT
∂U(q(θ))

∂q
,

10



so that equation (16) can be expressed as180

ATM(q(θ))q̈(θ̈) +ATC(q(θ), q̇(θ̇))q̇(θ̇) +ATg(q(θ)) = τ̄ . (17)

Finally, by replacing the relations q = Aθ + b, q̇ = Aθ̇ and q̈ = Aθ̈, we obtain

ATM(Aθ + b)Aθ̈ +ATC(Aθ + b, Aθ̇)Aθ̇ +ATg(Aθ + b) = τ̄ ,

which in compact form is given by

M̄(θ)θ̈ + C̄(θ, θ̇)θ̇ + ḡ(θ) = τ̄ , (18)

where

M̄(θ) = ATM(Aθ + b)A, (19)

C̄(θ, θ̇) = ATC(Aθ + b, Aθ̇)A, (20)

ḡ(θ) = ATg(Aθ + b). (21)

Moreover, equation (17) can be rearranged so that

AT [M(q)q̈ + C(q, q̇)q̇ + g(q)] = τ̄ , (22)

where dependencies on θ, θ̇ and θ̈ were omitted. Now, by substituting equation185

(9) into equation (22) we get

AT τ = τ̄ , (23)

which is the relationship between the torques of both models. Thus, we can use

the simplest dynamic model representation, commonly obtained from the left

hand side of equation (18), combined with the torques that consider the whole

dynamic obtained from right hand side of equation (9) as follows:190

M̄(θ)θ̈ + C̄(θ, θ̇)θ̇ + ḡ(θ) = AT τ . (24)

R1C4Notice that, from the fact of the relation matrix A is nonsingular,

this procedure can also be used to find M(q), C(q, q̇) and g(q) starting

11



from M̄(θ), C̄(θ, θ̇) and ḡ(θ), by means of the following equivalence

equations obtained from (19), (20), (21):

M(q) = A−T M̄(A−1q −A−1b)A−1, (25)

C(q, q̇) = A−T C̄(A−1q −A−1b, A−1q̇)A−1, (26)

g(q) = A−T ḡ(A−1q −A−1b). (27)

195

As an additional fact, since the total energy E of a mechanical system is

conserved (if dissipative forces as friction are not taken into account), we can

note that, regardless of which generalized coordinate is used to represent the

system, the power obtained from each one of these system representations is the

same, i.e.,200

Ė = q̇T τ = θ̇
T
τ̄ ,

where Ė is the power consumption of the system (see proof in Appendix).

4. The compass-like biped robot

In order to show the advantages of the proposed method of equivalence

between models, we present a discussion for the CBR. Specifically, the relative

coordinate-based model and the absolute coordinate-based are developed and205

simulations in order to show the relevance of the generalized forces in both

models are given. Besides, the equation (23) is used to find the equivalence of

one model to the another.

4.1. Modelling as a manipulator robot (relative coordinates)

We report the procedure to obtain the dynamic model of the CBR as is210

usually done for a serial manipulator robot, i.e., q1 is the position of the link

attached at the base (in this case represented as the support leg) measured

from the positive horizontal axis (X+) and q2 is the angle measured from the

extension line of the support leg to the second one (called the non-support, free

or swing leg), as shown in Figure 3.215
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Figure 3: CBR with generalized coordinates as are normally taken for serial manipulator

robots.

For the potential energy calculation, the vertical distances hH , h1, h2, to

the center of mass of the hip, leg 1 and leg 2 (mH , m1, m2 respectively) of the

CBR measured from the support foot ΣO are

hH = l sin(q1), h1 = a sin(q1), h2 = l sin(q1) + b sin(q1 + q2), (28)

where l = a+ b; and for the kinetic energy calculation, the position xH , x1, x2,

of each center of mass with respect to the support foot ΣO are220

xH =

 l cos(q1)

l sin(q1)

 , x1 =

 a cos(q1)

a sin(q1)

 ,
x2 =

 l cos(q1) + b cos(q1 + q2)

l sin(q1) + b sin(q1 + q2)

 . (29)

Now, by getting the time derivative from (29) we found the velocities of each

center of mass given by

vH =

 −l sin(q1)q̇1

l cos(q1)q̇1

 , v1 =

 −a sin(q1)q̇1

a cos(q1)q̇1

 ,
v2 =

 −l sin(q1)q̇1 − b sin(q1 + q2)(q̇1 + q̇2)

l cos(q1)q̇1 + b cos(q1 + q2)(q̇1 + q̇2)

 . (30)

13



Once we have obtained the velocities, it is possible to get the kinetic energy

of the system given by

K =
1

2
m1||v1||2 +

1

2
m2||v2||2 +

1

2
mH ||vH ||2,

with m = m1 = m2. In a similar way, to get the potential energy of the system,225

we substitute (28) into

U = mgh1 +mgh2 +mHghH .

Thus, the Lagrangian of the system is calculated as L = K−U . After applying

the Euler-Lagrange equation of motion given by

d

dt

(
∂

∂q̇
L(q, q̇)

)
− ∂

∂q
L(q, q̇) = τ , (31)

the compact form

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (32)

is obtained, where τ is the vector of applied torques considering the whole230

dynamic of the robot, i.e., torques due to acceleration, gravity and reaction

forces of subsequent links. Specifically, for the CBR model in (32) we have that

M(q) =

 mH l
2 +m(l2 + a2 + b2) + 2mlb cos(q2) mlb cos(q2) +mb2

mlb cos(q2) +mb2 mb2

 ,

C(q, q̇) =

 −mlb sin(q2)q̇2 −mlb sin(q2)(q̇1 + q̇2)

mlb sin(q2)q̇1 0

 ,
and

g(q) =
∂

∂q
U =

 g1(q)

g2(q)

 ,
with235

g1(q) = mHgl cos(q1) +mga cos(q1) +mg(l cos(q1) + b cos(q1 + q2)),

g2(q) = mgb cos(q1 + q2).

14



4.2. Modelling as in the biped robot literature (absolute coordinates)

Now, we show the procedure for getting the dynamic model of the CBR

system, but as is it usually done in the literature of biped robots (see [11] for

further details), i.e., θs and θns are the positions of the support and non-support

legs, respectively, measured at the end of the feet from the positive vertical axis240

(Y+), as shown in Figure 4.

Figure 4: CBR with generalized coordinates as is usually done in the literature.

The vertical distances to each center of mass of the CBR for the potential

energy calculation measured from the support foot ΣO are

hH = l cos(θs), h1 = a cos(θs), h2 = l cos(θs)− b cos(θns). (33)

The positions of each center of mass with respect to the support foot ΣO for

the kinetic energy calculation are245

xH =

 −l sin(θs)

l cos(θs)

 , x1 =

 −a sin(θs)

a cos(θs)

 ,
x2 =

 −l sin(θs) + b sin(θns)

l cos(θs)− b cos(θns)

 . (34)

Now, by getting the time derivative from (34) we find the velocities of each

15



center of mass given by

vH =

 −l cos(θs)θ̇s

−l sin(θs)θ̇s

 , v1 =

 −a cos(θs)θ̇s

−a sin(θs)θ̇s

 ,
v2 =

 −l cos(θs)θ̇s + b cos(θns)θ̇ns

−l sin(θs)θ̇s + b sin(θns)θ̇ns

 . (35)

As done in the previous section, once the expression of the velocities are

obtained, it is possible to get the kinetic energy of the system given by .

K̄ =
1

2
m1||v1||2 +

1

2
m2||v2||2 +

1

2
mH ||vH ||2,

with m = m1 = m2. In a similar way, we use250

Ū = mgh1 +mgh2 +mHghH

to get the potential energy of the system. Now, the Lagrangian L̄ = K̄ − Ū of

the system can be calculated. By using the Euler-Lagrange equation of motion

given by

d

dt

(
∂

∂θ̇
L̄(θ, θ̇)

)
− ∂

∂θ
L̄(θ, θ̇) = τ̄ , (36)

it is possible to obtain a compact form equation given by

M̄(θ)θ̈ + C̄(θ, θ̇)θ̇ + ḡ(θ) = τ̄ , (37)

where255

M̄(θ) =

 mH l
2 +m(l2 + a2) −mlb cos(θs − θns)

−mlb cos(θs − θns) mb2

 , (38)

C̄(θ, θ̇) =

 0 −mlb sin(θs − θns)θ̇ns
mlb sin(θs − θns)θ̇s 0

 , (39)

and

ḡ(θ) =
∂

∂θ
Ū(θ) =

 −mHgl sin(θs)−mga sin(θs)−mgl sin(θs)

mgb sin(θns)

 . (40)
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Notice that, in this case the torques τ̄ do not include the whole dynamic of the

robot compared with the torques τ obtained previously. Since θs and θns are

measured from fixed references, the links are considered decoupled, so that the260

reaction torque produced for link 2 (swing leg) into link 1 (stance leg) is not

considered, as we will see in the next.

4.3. Simulations

Figure 5: Different scenarios to evaluate the torques of dynamic models (32) and (37).

R1C4The validation of previous dynamic models have already been con-

sidered in [9, 16] for serial robots, [6, 11, 13, 17] for planar biped265

robots and [18] for the 5 DOF planar biped robot of Section 5.

Now, according to theory explained in Section 3, here we perform some

simulations for the motion of a CBR (which can be seen as a robot manipulator

of 2 DOF) with the aim of comparing the torques in both models. We will

show that, for the dynamic model of the CBR in equation (37), the torques270

needed to be applied to execute a motion are not complete for all links, except

for the last one. The reason is that the torques τ̄ do not take into account the

reaction torque of subsequent links. The parameters of the model considered

for simulation are: m = 5 [kg], mH = 10 [kg], a = b = 0.5 [m] and g = 9.81

[m/s2].275

There were considered three cases (shown in Figure 5): a) torques applied to

keep the robot without moving, with the link 1 inclined 45 degrees (q1 = π/4 or

θ1 = −π/4 [rad]) and the link 2 horizontal (q2 = −π/4 or θ2 = π/2 [rad]), which

are shown in Figure 6; b) torques applied to keep the link 1 inclined 45 degrees

17
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Figure 6: Torques applied to keep robot without moving. τ in continuous line and τ̄

in dashed line for dynamic models (32) and (37), respectively.
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Figure 7: Time evolution of generalized coordinates q and θ for case study

(b).

(q1 = π/4 [rad]) without moving and moving the link 2 in a sinusoidal way with280

π/4 [rad] of amplitude, a period of T = 6 [s] and starting from inclined position

(q2 = −π/2 [rad]), whose result for the joint position and torques are shown

in Figures 7 and 8; and c) torques applied to move the link 1 in a sinusoidal

way with π/4 [rad] of amplitude, a period of T = 6 [s], starting from vertical
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Figure 8: Torques applied to keep link 1 inclined 45 degrees without moving and link 2

continuously moving from downward vertical to horizontal position. τ in continuous

line and τ̄ in dashed line for dynamic models (32) and (37), respectively.
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Figure 9: Time evolution of generalized coordinates q and θ for case study

(c).

position, and keeping the link 2 downward inclined without moving (inclined to285

θ2 = π/4 [rad] for all t), which resulted in the joint positions and torques shown

in Figures 9 and 10.

As observed in the case a), Figure 6 reveals that to keep the link 1 fixed,

19
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Figure 10: Torques applied to continuously move link 1 from -45 to 45 degrees from

vertical position and keep link 2 fixed in an inclined position. τ in continuous line and

τ̄ in dashed line for dynamic models (32) and (37), respectively.

it is necessary to apply a torque τ1 of 145.9175 [Nm]. However, we note that

τ̄1 for the link 1 is considerably smaller than τ1 (τ̄1 = 121.3925 [Nm]), and if290

the torque needed to keep in position the link 2 (24.525 [Nm]) is added to τ̄1,

the result is the same as τ1, i.e. τ1 = τ̄1 + τ̄2. In fact, τ̄1 does not consider

the reaction torque applied from the link 2 to link 1, it only considers gravity

torques, and torques due to acceleration forces (since the robot is not moving

the torques due to acceleration forces do not appear in this case).295

For the case b), as seen in Figure 8, the maximum torque τ1 applied for

the link 1 is 144.46 [Nm] (and not 145.9175 [Nm]) this is because the forces

and torques due to acceleration of the mass of link 2 (which do not appear in

the first case) help to achieve the desired position. Moreover, gravity torque of

link 2 and reaction torque from the link 2 are considered. The reaction torque300

into the link 1 due to link 2 is referred as the necessary torque applied by the

actuator in the link 1 to compensate the torque applied by the actuator 2 at

the link 2 to perform the desired motion of the second link. Nevertheless, τ̄1

takes into consideration all torques except the one due to reaction torque from

20



the link 2.305

Finally, for the case c) in Figure 10, we see how the shape of waves of

the torques are similar. However, we can observe that the maximum torque τ1

needed to perform the motion of link 1 is bigger than τ̄1 (152.73 [Nm] and 135.38

[Nm], respectively), this is because τ1 considers the reaction torque applied for

the actuator of link 2 to keep it fixed into an inclined position. Note that in all310

figures, the torque applied to the last link (in this case the link 2) will be always

the same (i.e., τ2 = τ̄2) for both models since there are not reaction torques at

the end of link 2 from other links or external forces.

R2C3As a conclusion, we can say that, in order to get directly gen-

eralized forces τ that consider all forces and torques due to gravity,315

acceleration and reaction among links, we should use relative general-

ized coordinates q in the Euler-Lagrange equation of motion. Equiv-

alently, absolute generalized coordinates can be used but employing

the equation (24).

4.4. Relationship between the two CBR models320

Now, our purpose in this subsection is to show the equivalence between these

two models, and also to explain how the input matrix, which is often used in

the literature of biped robots, is obtained (see for example [19] or [17]). The

dynamic model used in [19] and [17] is quite similar to the equation (37) but

instead of using τ̄ it is correctly used Bτ , where τ = [τ1 τ2]T are the torques325

at the support ankle and at the hip, that is,

M̄(θ)θ̈ + C̄(θ, θ̇)θ̇ + ḡ(θ) = Bτ . (41)

We have already seen that it is not possible to get directly the applied torques τ

at the support ankle and at the hip, by taking as generalized coordinates θs and

θns to obtain the dynamic model of the CBR (we already know that the applied

torques τ̄ do not take into account the whole dynamic of the robot and must330

not be considered to perform simulations or experimental tests). Nevertheless,
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Figure 11: Comparison of generalized coordinates of both models.

when we use the generalized coordinates q1 and q2, the applied torques τ at the

support ankle and at the hip, are directly obtained.

So, it is clear that matrix B in (41) is used for applying the torques τ that

consider the whole dynamic of the robot to the simpler dynamic model (37). To335

get the components of the matrix B it is required to find the relation between

the generalized coordinates used in both models, as was explained in Section 2.

By doing a geometric analysis (see Figure 11), the relation between θ and q is

q1 = θs − 3
2π,

q2 = θns − θs + π,

or  q1

q2

 =

 1 0

−1 1


︸ ︷︷ ︸

 θs

θns

+

 − 3
2π

π


︸ ︷︷ ︸

. (42)

A b

where A is the relation matrix between relative and absolute coordinates and b340

is a suitable constant vector.
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By getting the time derivative from (42), the velocity relation is given by

q̇ = Aθ̇. (43)

Then, by applying the time derivative to (43) we get the acceleration relation

q̈ = Aθ̈. (44)

Once the relation between θ and q has been obtained, we substitute (42),

(43) and (44) into the dynamic model equation (32), getting345

M(θs − 3
2π, θns − θs + π)Aθ̈ + C(θs − 3

2π, θns − θs + π, θ̇s, θ̇ns − θ̇s)Aθ̇

+g(θs − 3
2π, θns − θs + π, ) = τ . (45)

As can be shown, the matrix

M(θs − 3
2π, θns − θs + π)A

will not result necessarily into a symmetric matrix (which is a property of the

matrix M),

M(θs − 3
2π, θns − θs + π)A =

 µ11 µ12

µ21 µ22

 , (46)

µ11 = mH l
2 +m(l2 + a2 + b2)−mlb cos(θns − θs)−mb2,

µ12 = −mlb cos(θns − θs) +mb2,

µ21 = −mlb cos(θns − θs),

µ22 = mb2.

Therefore, it is necessary pre-multiply the matrix (46) by AT in order to recover350

the Lagrangian properties of the model. Thus, the whole equation (45) must be

pre-multiplied by AT resulting

ATM(θs − 3
2π, θns − θs + π)Aθ̈ +ATC(θs − 3

2π, θns − θs + π, θ̇s, θ̇ns − θ̇s)Aθ̇

+ATg(θs − 3
2π, θns − θs + π, ) = AT τ ,
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which is equivalent to the model in (41), and therefore equivalent to the model

presented in the biped robot literature. So, we can identify

M̄(θ) = ATM(θs − 3
2π, θns − θs + π)A,

C̄(θ, θ̇) = ATC(θs − 3
2π, θns − θs + π, θ̇s, θ̇ns − θ̇s)A,

ḡ(θ) = ATg(θs − 3
2π, θns − θs + π),

and furthermore355

B = AT ,

where in this case B is

B =

 1 −1

0 1

 .
R2C3Thus, the input matrix B, the matrices M̄(θ), C̄(θ, θ̇) and vector

ḡ(θ) with simplest elements defined by the left hand side of equation

(37), i.e. equations (38)-(40) and the torques τ from equation (32)

(which considers the whole dynamic of the robot), can be related

forming equation (41). Note that, it is not necessary to calculate both360

models. In practice, we just choose some generalized coordinates θ

for obtaining the dynamic model of the planar biped (or serial) robot,

then we get the relation of θ with the relative generalized coordinates

q, to get the relation matrix A, and calculate the input matrix B = AT .

Finally, B is used along with the torques τ applied by the actuators365

attached to the joints for obtaining the model equation (41).

Notice that this approach can also be used to calculate M(q),

C(q, q̇) and g(q) directly from M̄(θ), C̄(θ, θ̇) and ḡ(θ) by means equa-

tions (25)-(27), and vice versa by using equations (19)-(21).

R1C3

5. Dynamic model of a 5 DOF biped robot370

Since planar biped robots are commonly composed by kinematic

chains of high degrees of freedom and due to these kind of robots
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are not usually modelled by means of relative coordinates, the mod-

elling of this class of robots is benefited by the equivalence procedure

proposed in this work.375

With the aim of showing the advantages of the proposed proce-

dure, now, we show two different models for the SSP of the Bip-

ITLag biped robot built at the “Instituto Tecnológico de la Laguna”

in México (further details of this biped robot are found in [18]).

5.1. Modelling using relative coordinates380

Figure 12: Kinematic model of the Bip-ITLag using relative coordinates.

By using the relative coordinates q = [q1, q2, q3, q4, q5, q6]T shown

in Figure 12, the position vectors of each center of mass (CoM) mea-

sured from the reference frame attached to the ankle are calculated
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and given by

xm1
=


lc1 cos(q1)

lc1 sin(q1)

0

 , xm2
=


l cos(q1) + lc2 cos(q1 + q2)

l sin(q1) + lc2 sin(q1 + q2)

0

 ,

xms
=


l cos(q1) + l cos(q1 + q2)

l sin(q1) + l sin(q1 + q2) + h2

− 1
2d

 , xmc
=


l cos(q1) + l cos(q1 + q2)

l sin(q1) + l sin(q1 + q2) + h2 + h3

− 1
2d+ r

 ,
385

xm3
=


l cos(q1) + l cos(q1 + q2) + (l − lc3) cos(q4 + π

2 )

l sin(q1) + l sin(q1 + q2) + (l − lc3) sin(q4 + π
2 )

−d

 ,

xm4
=


l cos(q1) + l cos(q1 + q2) + l cos(q4 + π

2 ) + (l − lc4) cos(q4 + q5 + π
2 )

l sin(q1) + l sin(q1 + q2) + l sin(q4 + π
2 ) + (l − lc4) sin(q4 + q5 + π

2 )

−d

 ,

xmI
=


l cos(q1) + l cos(q1 + q2) + l cos(q4 + π

2 ) + l cos(q4 + q5 + π
2 )

l sin(q1) + l sin(q1 + q2) + l sin(q4 + π
2 ) + l sin(q4 + q5 + π

2 )− h1 + lci

−d

 .
In a similar way as for the CBR, by using the Euler-Lagrange equation

of motion, a compact form of the Bip-ITLag robot dynamic model is

obtained. i.e.,390

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (47)

where the respective matrices are defined by

M(q) =



m11 m12 m13 m14 0

m12 m22 m23 m24 0

m13 m23 m33 m34 0

m14 m24 m34 m44 0

0 0 0 0 m55


,
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with

m11 = KA +KB + 2KF cos(q2),

m12 = KB +KF cos(q2),

m13 = −KG sin(q1 − q4)−KG sin(q1 + q2 − q4)−KH sin(q1 − q4 − q5)

−KH sin(q1 + q2 − q4 − q5),

m14 = −KH(sin(q1 − q4 − q5) + sin(q1 + q2 − q4 − q5)),

m22 = KB ,

m23 = −KG sin(q1 + q2 − q4)−KH sin(q1 + q2 − q4 − q5),

m24 = −KH sin(q1 + q2 − q4 − q5),

m33 = KC +KD − 2KH cos(q5),

m34 = KD −KH cos(q5),

m44 = KD,

m55 = mc,

C(q, q̇) =



c11 c12 c13 c14 0

c21 0 c23 c24 0

c31 c32 c33 c34 0

c41 c42 c43 0 0

0 0 0 0 0


,

whose elements are given by

c11 = −KF sin(q2)q̇2,

c12 = −KF sin(q2)(q̇1 + q̇2),

c13 = KG cos(q1 − q4)q̇4 +KG cos(q1 + q2 − q4)q̇4 +KH cos(q1 − q4 − q5)(q̇4 + q̇5)

+KH cos(q1 + q2 − q4 − q5)(q̇4 + q̇5),

c14 = KH(cos(q1 − q4 − q5) + cos(q1 + q2 − q4 − q5))(q̇4 + q̇5),

c21 = KF sin(q2)q̇1,

c23 = KG cos(q1 + q2 − q4)q̇4 +KH cos(q1 + q2 − q4 − q5)(q̇4 + q̇5),
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395

c24 = KH cos(q1 + q2 − q4 − q5)(q̇4 + q̇5),

c31 = −KG cos(q1 − q4)q̇1 −KH cos(q1 − q4 − q5)q̇1 −KG cos(q1 + q2 − q4)(q̇1 + q̇2)

−KH cos(q1 + q2 − q4 − q5)(q̇1 + q̇2),

c32 = −(KG cos(q1 + q2 − q4) +KH cos(q1 + q2 − q4 − q5))(q̇1 + q̇2),

c33 = KH sin(q5)q̇5,

c34 = KH sin(q5)(q̇4 + q̇5),

c41 = −KH(cos(q1 − q4 − q5)q̇1 + cos(q1 + q2 − q4 − q5)(q̇1 + q̇2)),

c42 = −KH cos(q1 + q2 − q4 − q5)(q̇1 + q̇2),

c43 = −KH sin(q5)q̇4,

and

g(q) =



g(KL cos(q1) +KM cos(q1 + q2))

KMg cos(q1 + q2)

g(KN sin(q4) +KO sin(q4 + q5))

KOg sin(q4 + q5)

0


.

In order to reduce the dimension of the expressions some constants

were defined as follows:

KA = l2c1m1 + l2(m2 +mc +ms +m3 +m4 +mI) + I1,

KB = l2c2m2 + l2(ms +mc +m3 +m4 +mI) + I2,

KC = (l − lc3)2m3 + l2(m4 +mI) + I3,

KD = (l − lc4)2m4 + l2mI + I4,

KF = llc2m2 + l2(ms +mc +m3 +m4 +mI),

KG = −l(l − lc3)m3 − l2(m4 +mI),

KH = −l(l − lc4)m4 − l2mI ,

KL = m1lc1 + l(m2 +mc +ms +m3 +m4 +mI),

KM = m2lc2 + l(ms +mc +m3 +m4 +mI),

28



KN = −m3(l − lc3)− l(m4 +mI),

KO = −m4(l − lc4)− lmI ,

where mI , ms and mc are the masses of the free foot, support foot,400

and hip, respectively. m1, m2, m3 and m4 are the masses of the tibias

and femurs of the support and free legs. lc1, lc2, lc3 and lc4 are the

distances to the CoM from each joint, as shown in Figure 12 and 13 .

5.2. Modelling using absolute coordinates

Figure 13: Kinematic model of the Bip-ITLag using absolute coordinates.

Now, by taking into account the absolute generalized coordinates405

θ1, θ2, θ3 and θ4 shown in Figure 13, the positions of CoM of each link
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measured from support ankle are given by

xm1 =


lc1 cos(θ1)

lc1 sin(θ1)

0

 , xm2 =


l cos(θ1) + lc2 cos(θ2)

l sin(θ1) + lc2 sin(θ2)

0

 ,

xms =


l cos(θ1) + l cos(θ2)

l sin(θ1) + l sin(θ2) + h2

− 1
2d

 , xmc =


l cos(θ1) + l cos(θ2)

l sin(θ1) + l sin(θ2) + h2 + h3

− 1
2d+ r

 ,

xm3
=


l cos(θ1) + l cos(θ2)− (l − lc3) cos(θ3)

l sin(θ1) + l sin(θ2)− (l − lc3) sin(θ3)

−d

 ,

xm4
=


l cos(θ1) + l cos(θ2)− l cos(θ3)− (l − lc4) cos(θ4)

l sin(θ1) + l sin(θ2)− l sin(θ3)− (l − lc4) sin(θ4)

−d

 ,
410

xmI
=


l cos(θ1) + l cos(θ2)− l cos(θ3)− l cos(θ4)

l sin(θ1) + l sin(θ2)− l sin(θ3)− l sin(θ4)− h1 + lci

−d

 ,
and after applying the Euler-Lagrange equation of motion, the dy-

namic model in a compact form is defined as

M̄(θ)θ̈ + C̄(θ, θ̇)θ̇ + ḡ(θ) = τ̄ , (48)

with elements given by

M̄(θ) =



KA KF cos(θ12) KG cos(θ13) KH cos(θ14) 0

KF cos(θ12) KB KG cos(θ23) KH cos(θ24) 0

KG cos(θ13) KG cos(θ23) KC −KH cos(θ34) 0

KH cos(θ14) KH cos(θ24) −KH cos(θ34) KD 0

0 0 0 0 mc


, (49)
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C̄(θ, θ̇) =



0 KF sin(θ12)θ̇2 KG sin(θ13)θ̇3 KH sin(θ14)θ̇4 0

−KF sin(θ12)θ̇1 0 KG sin(θ23)θ̇3 KH sin(θ24)θ̇4 0

−KG sin(θ13)θ̇1 −KG sin(θ23)θ̇2 0 −KH sin(θ34)θ̇4 0

−KH sin(θ14)θ̇1 −KH sin(θ24)θ̇2 KH sin(θ34)θ̇3 0 0

0 0 0 0 0


, (50)

and

ḡ(θ) =



KLg cos(θ1)

KMg cos(θ2)

KNg cos(θ3)

KOg cos(θ4)

0


. (51)

where θij = θi− θj. The constants KA, . . . ,KO were defined previously.415

It is clear that M̄(θ), C̄(θ, θ̇) and ḡ(θ) have simpler elements than

M(q), C(q, q̇) and g(q), and the longer the kinematic chain, the longer

the complexity of elements of the model where relative coordinates

are used. Thus, in order to implement the model in microprocessor-

based systems, such as embedded systems, or where online optimiza-420

tion algorithms that use the dynamic model are used, it is a reason-

able good idea to use absolute coordinates to get the dynamic model.

However, as we have seen before the torque τ̄ does not take into ac-

count the reaction forces between links. So, it is necessary to use the

equivalence with τ .425

5.3. Relation between the two Bip-ITLag robot models

It is convenient to use the matrices with the simplest elements of

the dynamic model (48), but using the torques of equation (47). For

doing this, it is enough to know the relation between the generalized

coordinates used for getting the models (47) and (48). This relation430
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is given by

q1

q2

q4

q5

r


=



θ1

θ2 − θ1

θ3 + π
2

θ4 − θ3

r


=



1 0 0 0 0

−1 1 0 0 0

0 0 1 0 0

0 0 −1 1 0

0 0 0 0 1


︸ ︷︷ ︸



θ1

θ2

θ3

θ4

r


+



0

0

π
2

0

0


︸ ︷︷ ︸

. (52)

A b

Therefore, the velocity and acceleration relations are given by

q̇ = Aθ̇,

q̈ = Aθ̈,

respectively. By using the relation matrix A given in (52) and equa-

tions (49)-(51), the relation (24) given between the model obtained in

absolute coordinates and the model expressed in relative coordinates435

is found, and vice versa. It is worthwhile to notice that equation (23)

is only required to compute the input matrix B, so that we can have

M̄(θ)θ̈ + C̄(θ, θ̇)θ̇ + ḡ(θ) = Bτ (53)

where

B = AT =



1 −1 0 0 0

0 1 0 0 0

0 0 1 −1 0

0 0 0 1 0

0 0 0 0 1


,

which is invertible.

6. Conclusions440

In this paper, a procedure to find the equivalence among different dynamic

model representations of planar biped (or serial) robots was shown. These
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model representations come from using any particular generalized coordinates.

Without loss of generality, the absolute coordinate-based model and the relative

coordinate-based model were studied. R1C1

R2C3

R3C2

We have introduced a novel proce-445

dure to find the relation between a dynamic model and another one

(see equations (19),(20),(21) and (23)). This procedure is useful for

the development of control laws and implementation of the dynamic

model in embedded platforms by reducing the number of calculations,

and by reducing the computing time when the dynamic model is used450

in optimization problems, the design of control laws, and so on.

The CBR dynamic model was used as example to explain such a procedure,

where we clearly showed how to obtain the input matrix that appears in the

models reported in the biped robot literature. R1C1

R2C3

R3C2

Simulations showed that for

getting directly torques vector τ that considers all forces and torques455

due to gravity, acceleration and reaction among links, relative gener-

alized coordinates in the Euler-Lagrange equation of motion should be

used. Absolute coordinates were helpful to obtain a dynamic model

with matrices with simpler elements compared with the ones derived

from relatives coordinates. Furthermore, we showed that no matter460

which generalized coordinates are used to obtain the dynamic models,

there is always an equivalence among them by using a particular input

matrix. In addition, the comparison between two dynamic models of

the SSP of a 5 DOF biped robot was performed in order to show the

advantages of our approach, where biped robots with high DOF are465

modelled.
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Appendix. Proof of power equivalence between model (9) and (18).

The dynamic model of a mechanical system can be represented in a compact

form as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (A.1)

where q, q̇, q̈ ∈ Rn, are the joint position, velocity and acceleration vectors,530

respectively, M(q) = M(q)T > 0 is the inertia matrix, C(q, q̇) is the matrix

of Coriolis and centrifugal forces, g(q) = ∂U(q)
∂q is the vector of gravitational

torques and τ ∈ Rn is the vector of applied torques. Furthermore, the energy

of the mechanical system (A.1) can be defined by the sum of its kinetic energy

K(q, q̇) = 1
2 q̇

TM q̇ and potential energy U(q) as535

E(q, q̇) =
1

2
q̇TM q̇ + U(q). (A.2)

So, the time derivative of (A.2), i.e., the power, is given by

Ė(q, q̇) =
1

2
q̇T Ṁ q̇ + q̇TM q̈ +

∂U(q)

∂q

T

q̇. (A.3)

Then, by substituting the system (A.1) into (A.3) we get

Ė(q, q̇) =
1

2
q̇T Ṁ q̇ + q̇T (−C(q, q̇)q̇ − g(q) + τ ) +

∂U(q)

∂q

T

q̇

= q̇T
[

1

2
Ṁ q̇ − C(q, q̇)

]
q̇ − q̇T ∂U(q)

∂q
+ q̇T τ +

∂U(q)

∂q

T

q̇.(A.4)

By applying the skew-symmetry property [16] the first term of the right hand

side of (A.4) is null, then it remains

Ė(q, q̇) = q̇T τ . (A.5)
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If we use the generalized coordinate θ instead of q and their corresponding540

torques τ̄ instead of τ , we will get the same structure, as we will see next: the

energy of the mechanical system (A.1) can be defined by the sum of its kinetic

energy K(θ, θ̇) = 1
2 θ̇

T
ATMAθ̇ and potential energy U(θ) as

E(θ, θ̇) =
1

2
θ̇
T
ATMAθ̇ + U(Aθ + b) (A.6)

where by using equivalence (19) in (A.6) we get

E(θ, θ̇) =
1

2
θ̇
T
M̄ θ̇ + Ū(θ). (A.7)

So, the time derivative of (A.7), i.e. the power, is given by545

Ė(θ, θ̇) =
1

2
θ̇
T ˙̄M θ̇ + θ̇

T
M̄ θ̈ +

∂Ū(θ)

∂θ

T

θ̇. (A.8)

By substituting the system (18) into (A.8) we get

Ė(θ, θ̇) =
1

2
θ̇
T ˙̄M θ̇ + θ̇

T
(
−C̄(θ, θ̇)θ̇ − ḡ(θ) + τ̄

)
+
∂Ū(θ)

∂θ

T

θ̇

= θ̇
T
[

1

2
˙̄M θ̇ − C̄(θ, θ̇)

]
θ̇ − θ̇

T ∂Ū(θ)

∂θ
+ θ̇

T
τ +

∂Ū(θ)

∂θ

T

θ̇,(A.9)

where ḡ(θ) = ∂Ū(θ)
∂θ . Thus, by applying the skew-symmetry property [16] the

first term of the right hand side of (A.9) vanishes. Therefore,

Ė(θ, θ̇) = θ̇
T
τ̄ . (A.10)

By using (23) into (A.10) we have

Ė(θ, θ̇) = θ̇
T
AT τ =

[
Aθ̇
]T
τ ,

where by using the equivalence q̇ = Aθ̇ and comparing with (A.5), it is clear550

that Ė(q, q̇) = Ė(θ, θ̇).
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