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Research Article

Interconnection and damping assignment
passivity-based control for a compass-like
biped robot

VÍctor de-León-Gómez1, Vı́ctor Santibañez1 and Jesús Sandoval2

Abstract
A novel procedure for designing an interconnection and damping assignment passivity-based control to perform
different walking gaits of a compass-like biped robot is presented. The interconnection and damping assignment
passivity-based control method is often used to achieve asymptotic stability of the closed-loop desired equilibrium
point in underactuated systems. Nevertheless, in this article, for the first time, this method is used to shape the kinetic
energy of the robot and thus perform different gaits by modifying its limit cycle. One degree of underactuation of the
compass-like biped robot is considered, and a suitable change of coordinates is made in order to design the proposed
control law. The effectiveness of this controller and some advantages with respect to another similar approach are
shown through a deep numerical simulation study.
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Introduction

The study of control methods based on energy shaping has

been an useful tool for control designers. In particular, the

potential energy shaping has been considered for stabiliz-

ing equilibrium points, owing to the well-known fact that

trajectories of dissipative systems asymptotically approach

to the local minima of their potential energies. The natural

evolution in this field conduced to the study of the total

energy shaping: potential energy shaping plus kinetic

energy shaping. In this framework, we can refer basically

to the two most popular approaches: the controlled Lagran-

gian (CL) method proposed by Bloch et al.1,2 for Euler–

Lagrange (EL) systems and the interconnection and damp-

ing assignment passivity-based control (IDA-PBC) method

proposed by Ortega et al.3 for Hamiltonian systems. Both

methods shape the total energy function of a class of

dynamic systems with local minima at the desired equili-

brium points and then inject damping to ensure that the

trajectories asymptotically vanish at the desired equili-

brium points. Furthermore, the closed-loop energy func-

tions of these methods form natural Lyapunov function

candidates, thereby lending nice stability proofs. Both

methods have been applied to a general class of underac-

tuated mechanical systems by producing control laws that

stabilize a desired equilibrium point either EL systems4,5 or

Hamiltonian systems.6–8 However, the dynamic walking of
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a biped robot describes a limit cycle instead of an equili-

brium point, and this is one reason why these methods are

not often used for this kind of robots.

Through years, some researchers have focussed on

biped issues such as balancing9 or slipping at the contact

point with the walking surface10; however, the design of

control strategies that produce energy-efficient stable biped

locomotion is still one of the most important issues on the

biped robot control theory. State of the art of biped robots

shows preplanning walking motions as the preferred strat-

egy used for researchers using the zero moment point cri-

terion in order to ensure walking stability, while the legs

perform some desired trajectories using control standard

techniques.11–14 Nevertheless, this kind of motions are gen-

erally not “natural” (not human-like) and energy ineffi-

cient. On the other hand, an alternative strategy for

controlling bipedal locomotion is based on the phenom-

enon of passive dynamic walking,15 which describes a

walking pattern called limit cycle16 that arises from the

interaction of potential energy and kinetic energy during

the step and energy dissipation during impacts.

By taking this into account, there are only a few

approaches that use energy shaping for bipedal locomotion

as proposed by Spong and Bullo,17 where potential energy

shaping was used in order to make biped’s limit cycle invar-

iant to slope changes or in the study by Holm et al.18 where

the potential energy shaping was used in order to regulate the

forward walking speed; a kind of total energy shaping was

proposed by Spong et al.,19 where a desired energy function

was used for enlarging the basin of attraction of limit cycles,

increasing rates of convergence, and improving robustness

to disturbances. In the study by Holm and Spong,20 the

application of the CL method for an underactuated

compass-like biped robot (CBR) is shown, where by shaping

the kinetic energy, the biped’s limit cycle is scaled, namely,

the faster walking speed the longer step length and vice

versa; nevertheless, the understanding of this achievement

requires complex mathematical background. Recently, in the

study by Godage et al.,21 the CL proposed by Holm and

Spong20 was taken over to be applied to a new class of soft

robots, particularly the compass-gait soft biped. In that work,

the CL is slightly modified using a different set of functions

in the desired inertia matrix instead of a particular function

proposed by Holm and Spong.20 Then, based on the CL, an

equivalent IDA-PBC is obtained. However, no method is

proposed in order to develop new control laws.

As can be seen, a few studies on energy shaping have

been made in order to propose controllers that perform a

stable walking gait of a biped robot. Encouraged by this

issue, in this article, a novel scheme to design an IDA-

PBC that makes possible to perform different gaits of an

underactuated CBR by modifying its limit cycle is presented.

Furthermore, the proposed controller also increases the basin

of attraction of the limit cycle for small steps as will be seen

in “Simulation results” section. The lector will note many

other possibilities in the development of the proposed

controller that could allow to obtain different control laws

in “An IDA-PBC for the CBR” section. A suitable coordi-

nates transformation plays a key role in the design of the

IDA-PBC, which becomes the CBR dynamic model into a

similar model reported by Sandoval et al.,22 so that the pro-

cedure of design is straightforward. To the best of our

knowledge, this is the first time that the IDA-PBC method

is used to exploit and modify the natural gait of a CBR. In the

light of the theoretical analysis and exhaustive numerical

simulations, to be presented in this work, we can confirm

that our proposal of an IDA-PBC applied to a CBR with the

aim of producing and modifying its natural walking gait

surpasses to the CL control law20—counterpart based on

energy shaping—mainly in the capacity for performing very

short steps at slow velocities and in the increase of the basin

of attraction of the limit cycle for short steps. In contrast, the

CL control law is very sensitive to small disturbances on the

initial conditions for short and slow steps, causing instability

in the walking gait. Furthermore, the theoretical formalism

of the CL method requires more complex mathematical

background than that used for the IDA-PBC approach.

The rest of the article is organized as follows. A brief review

of the IDA-PBC method is presented in “The IDA-PBC meth-

od” section. “Compass-like biped robot” section shows the

dynamic model for the continuous and discrete phases of the

CBR. In “Equivalent dynamic model of the CBR” section, an

equivalent dynamic model of the CBR for the continuous

phase is obtained using a change of coordinates proposed by

De-León-Gómez et al.23 The procedure to design the IDA-

PBC for the CBR is described in “An IDA-PBC for the CBR”

section. In “Simulation results” section, numerical simulations

are performed in order to validate the proposed IDA-PBC, and

a comparison between our IDA-PBC and the CL control law is

carried out in order to show the advantages and disadvantages

of our controller. Finally, some concluding remarks are pre-

sented in “Conclusions” section.

The IDA-PBC method

A brief review on the IDA-PBC method applied to the

control of a class of underactuated mechanical systems is

presented (see the work done by Ortega et al.3 for further

details). The procedure starts from the Hamiltonian

description of the system by means of the total energy

function (kinetic plus potential energies) given by

Hðq; pÞ ¼ 1

2
pT MðqÞ�1pþ VðqÞ (1)

where q and p 2 Rn are the vectors of generalized posi-

tions and momenta, respectively, M ¼ MT > 0 is the iner-

tia matrix and V is the potential energy. If we assume that

the system has not natural damping, the equations of

motion can be written as

d

dt

q

p

� �
¼

0n�n In�n

�In�n 0n�n

� � rqH

rpH

� �
þ

0n�m

GðqÞ

� �
u (2)
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being u 2 Rm, the vector of control inputs and G 2 Rn�m,

with rankðGÞ ¼ m where n > m for underactuated systems

(in our notation rxðyÞ ¼ @y

@x, being rxðyÞ 2 Rn for x 2 Rn

and y 2 R). The IDA-PBC method assigns a particular

desired structure in closed-loop system, with a desired energy

function given by

Hdðq; pÞ ¼
1

2
pT MdðqÞ�1pþ VdðqÞ (3)

where Md ¼ MT
d > 0 and Vd are the desired inertia matrix

and the desired potential energy function, respectively. The

desired closed-loop system is

d

dt

q

p

� �
¼ 0n�n M�1Md

�MdM�1 J2ðq; pÞ � GKvGT

� � rqHd

rpHd

� �
(4)

where J2 ¼ �JT
2 and Kv ¼ KT

v > 0 are free matrices. Now,

for this class of Hamiltonian systems, the main challenge of

the IDA-PBC method consists in solving the following set

of partial differential equations (PDEs), called matching

equations

G ⊥ frqðpT M�1pÞ �M�1
d MrqðpT M�1

d pÞ þ 2J2M�1
d pg ¼ 0n�m

(5)

G ⊥ frqV �M�1
d MrqVdg ¼ 0n�m (6)

where G ⊥ 2 Rðn�mÞ�n, such as G ⊥ G¼ 0ðn�mÞ�m, whose

solutions Md and Vd produce the control law given by

u ¼ ðGT GÞ�1
GTfrqH �MdM�1rqHd þ J2M�1

d pg
� KvGT M�1

d p (7)

Furthermore, if Md is a positive definite in a neighbor-

hood of q� and

q� ¼ arg minfVdg (8)

then ½qT pT �T ¼ ½q�T 0T
n �

T
is a stable equilibrium of equa-

tion (4) with a Lyapunov function Hd . This equilibrium is

asymptotically stable if it is locally detectable from the

output GTrpHd .

Compass-like biped robot

The simplest known biped robot is called CBR, which has two

rigid legs joined by the hip that presents a stable gait without

actuation in a determined slope, known as passive walking

gait.16 A schematic picture of the CBR is shown in Figure 1,

and the description of the parameters is presented in Table 1.

The motion of the CBR is restricted to the sagittal plane,

having a compass-like motion, that is the reason why this

biped robot is identified in the literature by that name. The

CBR configuration is defined as ys and yns which are the

angular positions of the support and nonsupport legs,

respectively, measured from the positive vertical axis.

Also, it is taken into account � as the slope inclination of

the ground on which the biped robot walks. The gait is split

into two phases: the balance phase and the foot impact as

shown in Figure 2. The equations that describe this entire

motion are presented next.

Balance phase

The behavior of the CBR during the balance phase is described

by the EL equations (see16 for further details) given for

MðθÞ€θ þ Cðθ; _θÞ_θ þ gðθÞ ¼ Gu (9)

where θ ¼ ½ys yns�T is the vector of generalized positions;
_θ and €θ are the vectors of velocities and accelerations,

respectively; MðθÞ ¼ MðθÞT > 0 is the inertia matrix;

Cðθ; _θÞ is the centrifugal and Coriolis forces matrix; and

gðθÞ is the gravitational torque vector, which is given by

MðθÞ ¼
ðmH þ mÞl2 þ ma2 �mlb cosðys � ynsÞ
�mlb cosðys � ynsÞ mb2

" #
;

Cðθ; _θÞ ¼
0 �mlb sinðys � ynsÞ _ys

sinðys � ynsÞ _yns 0

" #
; and

gðθÞ ¼
�ðmH l þ maþ mlÞg sinðysÞ

mbg sinðynsÞ

" #

Note that, for the case of the full-actuated system,

u ¼ ½u1 u2�T is the applied torque (at the support foot and

hip, respectively) and G ¼
1 �1

0 1

� �
. However, since in

this article we are considering an underactuated system

Figure 1. CBR diagram. CBR: compass-like biped robot.

Table 1. CBR parameters.

Parameter Value Description

m 5 kg Leg mass
mH 10 kg Hip mass
a 0.5 m Distance between foot and leg mass
b 0.5 m Distance between leg mass and hip mass
l ¼ aþ b 1 m Length of each leg
g 9.81 m/s2 Gravity acceleration

CBR: compass-like biped robot.

de-León-Gómez et al. 3



(i.e. u2 ¼ 0), G has to be defined as was done below of

equation (2). Thus, without loss of generality, in the rest of

the article, we consider G ¼ ½1 0�T and u ¼ u1.

Foot impact

At the end of the balance phase, an impact with the ground

is produced. The impact of the CBR foot with the ground is

considered as an instantaneous change of the velocity and it

is obtained by applying the angular momentum conserva-

tion law. In order to know when the impact is produced, it is

useful to define the vertical distance from the nonsupport

foot to the ground, which is given by (see Figure 1)

yh ¼ l cosðys þ �Þ � cosðyns þ �Þ½ � (10)

where the derivative from equation (10) with respect to

time yields

_yh ¼ l � _ys sinðys þ �Þ þ _yns sinðyns þ �Þ
h i

(11)

An impact occurs when the next conditions are satisfied16:

1. yns < ys. The nonsupport leg is ahead of the support

leg.

2. yh ¼ 0. The foot of the nonsupport leg is touching

the ground.

3. _yh < 0. The foot of the nonsupport leg is moving

downwards.

When these conditions are satisfied, an instantaneous

change of velocities is applied,16 which is described as

_θþ ¼ Qþð�Þ½ ��1
Q�ð�Þ _θ� (12)

where

Q�ð�Þ ¼
�mab ðmH l2 þ 2ml2Þ cosð2�Þ � mab� 2mbl cosð2�Þ

0 �mab

" #

Qþð�Þ ¼
mb2 � mbl cosð2�Þ ðml2 þ ma2 þ mH l2Þ � mbl cosð2�Þ

mb2 �mbl cosð2�Þ

" #

with � ¼ y�s �y�ns

2
, being ð�Þ� and ð�Þþ a representation of the

measured state at instant immediately before and after of

the impact, respectively.

So, meanwhile equation (12) takes into account the change

of the angular velocities at the impact time, the roles of the

support and nonsupport legs also change (they swap). This

change of the angular positions yns and ys is described by

θþ ¼ Rθ� (13)

with R ¼
0 1

1 0

� �
.

Equivalent dynamic model of the CBR

The design of the IDA-PBC for the CBR follows the strat-

egy presented by Acosta et al.6 for systems with

underactuation degree one. A feature of the strategy in the

study by Acosta et al.6 is that the inertia matrix must

depend only on the nonactuated coordinates, and according

to equation (9), the M matrix of the CBR system depends

on both joint coordinates ys and yns.

Therefore, a change of coordinates is proposed in order

to achieve a suitable dynamic model of the CBR where the

second joint (i.e. the hip) is the nonactuated one, such as the

CBR dynamic model be similar to the Pendubot model

shown in the study by Sandoval et al.22 Thus, in the fol-

lowing, this model will be called Pendubot-like biped robot

(PBR). This model can be expressed in a compact form as

�MðqÞ€qþ �Cðq; _qÞ _qþ �gðqÞ ¼ u (14)

where q ¼ ½q1; q2�T is the vector of new coordinates which

represent the angular position of the support leg measured

(a) (b)

Figure 2. Walking gait phases of the CBR. (a) Balance phase and (b) foot impact. CBR: compass-like biped robot.
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with respect to the horizontal and the angular position of

the nonsupport leg measured from the extension of the

previous link as shown in Figure 3, �MðqÞ ¼ �MðqÞT > 0

is the inertia matrix, �Cðq; _qÞ is the centrifugal and Coriolis

forces matrix, �gðqÞ is the gravitational torque vector, and

u ¼ ½u1 u2�T is still the applied torque vector at the support

foot and hip, respectively, with u2 ¼ 0.

So, the matrices of equation (14) are defined as

�Mðq2Þ ¼
mH l2 þ mðl2 þ a2 þ b2Þ þ 2mlb cosðq2Þ mlb cosðq2Þ þ mb2

mlb cosðq2Þ þ mb2 mb2

� �
(15)

�Cðq; _qÞ ¼
�mlb sinðq2Þ _q2 �mlb sinðq2Þð _q1 þ _q2Þ
mlb sinðq2Þ _q1 0

� �
(16)

and

�gðqÞ ¼ mH gl cosðq1Þ þ mga cosðq1Þ þ mg
�

l cosðq1Þ þ b cosðq1 þ q2Þ
�

mgb cosðq1 þ q2Þ

" #
(17)

Furthermore, according to the study by De-León-Gómez

et al.,23 a relation between model (9) and (14) is given by

(equivalence (21) is used for the case of full-actuated system)

MðθÞ ¼ AT �MðAθ þ bÞA (18)

Cðθ; _θÞ ¼ AT �CðAθ þ b;A_θÞA (19)

gðθÞ ¼ AT �gðAθ þ bÞ (20)

G ¼ AT (21)

where the relationship between the generalized coordinates

θ and q is given by

q ¼ Aθ þ b

where A and b are

A ¼
1 0

�1 1

� �
; b ¼

p
2

�p

2
4

3
5

such as the time derivatives yield

_q ¼ A_θ
€q ¼ A€θ

Using the equivalences (18) to (21), it is possible to

transform the PBR model (14) into the CBR model (9) and

viceversa by making the corresponding operations (see

the relationship of models reported by De-León-Gómez

et al.23 for further details). Therefore, the PBR dynamic

model will be used to design an IDA-PBC and the CBR

dynamic model will be used to carry out numerical

simulations.

An IDA-PBC for the CBR

In this section, the design of an IDA-PBC for producing a

stable limit cycle for the CBR is presented. Inspired by

Holm and Spong,20 where a controller based on the kinetic

energy shaping using the CL method is proposed, our IDA-

PBC also only shapes the kinetic energy by leaving unal-

tered the original potential energy of the system, that is,

Vd ¼ V . Then, the PBR dynamic model (14) is used to

follow a similar procedure to that shown in the study by

Sandoval et al.22 to get an IDA-PBC.

Dynamic model

The Hamiltonian model of the PBR shown in Figure 3 can

be described by equation (2) with the matrices

Mðq2Þ ¼
c1 þ c2 þ 2c3 cosðq2Þ c2 þ c3 cosðq2Þ

c2 þ c3 cosðq2Þ c2

� �
(22)

G ¼
1

0

� �
(23)

and the potential energy function

V ¼ c4g sinðq1Þ þ c5g sinðq1 þ q2Þ (24)Figure 3. PBR diagram. PBR: pendubot-like biped robot.

de-León-Gómez et al. 5



where the constants ci with i ¼ 1; 2; . . . ; 5 are defined as

c1 ¼ mH l2 þ ml2 þ ma2

c2 ¼ mb2

c3 ¼ mlb

c4 ¼ mH l þ maþ ml

c5 ¼ mb

For convenience of notation, the elements of the matrix

Mðq2Þ given in equation (22) are named as follows

M ¼
a1 a2

a2 a3

� �
(25)

IDA-PBC design

First, we define q ¼ ½q1 q2�T and p ¼ ½p1 p2�T and apply the

results shown in “The IDA-PBC method” section, where

G ⊥ ¼
0

1

� �
(26)

such as G ⊥ G ¼ 0. Next, the assignment of Md ¼ Mdðq2Þ
will ease the solution of the algebraic equations, such as we

will see later on. A key step in the design is the particular

assignment of the matrix

J2 ¼
0 �pT �ðq2Þ

��pT �ðq2Þ 0

� �
¼ �pT �W (27)

being �p ¼ M�1p, �ðq2Þ ¼ ½�1ðq2Þ�2ðq2Þ�T free, and

W 2 soð2Þ. With Md and J2 matrices, and utilizing the

identity22

dM�1

dqi

¼ �M�1 dM

dqi

M�1 (28)

the first PDE (5) yields

� pT M�1 dM

dq2

M�1pþ G ⊥ MdM�1e2p
T M�1

d

dMd

dq2

M�1
d p

þ 2pT M�1
d �G ⊥ WM�1

d p ¼ 0

(29)

where e2 is a base vector. Now, equation (29) can be

expressed as

pT

�
�M�1 dM

dq2

M�1 þ G ⊥ MdM�1e2

� �
M�1

d

dMd

dq2

M�1
d

�M�1
d

2�1 �2

�2 0

" #
M�1

d

#
p ¼ 0

(30)

where uniquely has been assigned the symmetric part of the

matrix 2�G ⊥ W given by A ¼ 2�G ⊥ W � ½2�G ⊥ W �T
which is

2�G ⊥ W ¼ �2
�1 0

�2 0

� �
¼ �

2�1 �2

�2 0

� �
�

0 ��2

�2 0

� �
(31)

It is worth to remark that the matrix A is crucial in

the design. A detailed analysis of the incorporation of

this matrix in the solution of equation (5) is shown in

the study by Acosta et al.6 Next, from equation (30), we

have

�M�1 dM

dq2

M�1 þ G ⊥ MdM�1e2

� �
M�1

d

dMd

dq2

M�1
d

�M�1
d

2�1 �2

�2 0

" #
M�1

d ¼ 0 (32)

which pre-multiplying and post-multiplying by Md and

defining L ¼
l1 l2

l3 l4

� �
¼ MdM�1, yields

c3 sinðq2ÞL
2 1

1 0

� �
LT þ l4

dMd

dq2

�
2�1 �2

�2 0

� �
¼ 0

(33)

Before continuing, it is convenient to notice that until

now, the strategy of design that we have followed seeks to

ease the solution of Md in equation (5). In our case, the set

of PDEs shown in equation (5) has been transformed into

the set of differential equations in equation (33), which

presents no obstacle in the solution of Md , because �1 and

�2 are free. Now, we continue our design considering from

the definition of the matrix L that

Md ¼ LM ¼
d1 d2

d3 d4

� �
(34)

d1 ¼ l1 c1 þ c2 þ 2c3 cosðq2Þ½ � þ l2 c2 þ c3 cosðq2Þ½ �
d2 ¼ l1 c2 þ c3 cosðq2Þ½ � þ l2c2

d3 ¼ l3 c1 þ c2 þ 2c3 cosðq2Þ½ � þ l4 c2 þ c3 cosðq2Þ½ �
d4 ¼ l3 c2 þ c3 cosðq2Þ½ � þ l4c2

(35)

By taking into account (34) and (35) in equation (33), a

set of algebraic equations given by

ð2l2
1 þ 2l1l2Þ sinðq2Þc3 þ l4

d

dq2

d1 � 2�1 ¼ 0

ð2l3l1 þ l3l2 þ l1l4Þ sinðq2Þc3 þ l4

d

dq2

d2 � �2 ¼ 0

ð2l3l1 þ l3l2 þ l1l4Þ sinðq2Þc3 þ l4

d

dq2

d3 � �2 ¼ 0

ð2l2
3 þ 2l3l4Þ sinðq2Þc3 þ l4

d

dq2

d4 ¼ 0

(36)
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is obtained. Since d2 ¼ d3 must be satisfied, just three equations are considered, and using equation (35) in equation (36),

we have

�2�1 þ 2c3 sinðq2Þl2
1 þ 2c3 sinðq2Þl1l2 þ l4

d

dq2

�
l1 c1 þ c2 þ 2c3 cosðq2Þ þ l2c2 þ c3 cosðq2Þ½ �

�
¼ 0 (37)

��2þ c3 sinðq2Þl2l3 þ c3 sinðq2Þl1ð2l3 þ l4Þ þ l4

d

dq2

�
l1 c2 þ c3 cosðq2Þ½ � þ l2c2

�
¼ 0 (38)

2c3 sinðq2Þl2
3 þ 2c3 sinðq2Þl3l4 þ l4

d

dq2

�
l3 c2 þ c3 cosðq2Þ½ � þ l4c2

�
¼ 0 (39)
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Figure 4. Limit cycles corresponding to different gaits of a CBR using the IDA-PBC (7) with equations (48) and (53). By varying k, the
limit cycle is modified, while for k ¼ 1, the limit cycle corresponds to the passive walking gait. Left and right figures show the evolution
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compass-like biped robot; IDA-PBC: interconnection and damping assignment passivity-based control.
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On the other hand, from the second PDE (6), due to

Vd ¼ V , it results

G ⊥ rqV � LrqV
� �

¼ 0

G ⊥ I2�2 � L½ �rqV
� �

¼ 0

where substituting V , we have

l3 c4g cosðq1Þ þ c5g cosðq1 þ q2Þ½ �
þ ðl4 � 1Þc5g cosðq1 þ q2Þ ¼ 0 (40)

Then, it is necessary to find the values of the ele-

ments of matrix L that are solution of equations (37) to

(40). By inspection, it is proposed l3 ¼ 0 and l4 ¼ 1,

which are solution of equations (39) and (40). With this,

we have

L ¼ MdM�1 ¼
l1 l2

l3 l4

" #
¼

d1 d2

d2 d3

" #
a1 a2

a2 a3

" #�1

¼
l1 l2

0 1

" #
¼ 1

D

d1a3 � d2a2 d2a1 � d1a2

d2a3 � d3a2 d3a1 � d2a2

" #

(41)

where D ¼ a1a3 � a2
2. Thereby, examining the elements

ð�Þ21 and ð�Þ22 of both sides of equation (41), it results

d2a3 � d3a2 ¼ 0 (42)

d3a1 � d2a2 ¼ D (43)

By solving these equations, we have that d2 ¼ a2 and

d3 ¼ a3. Hence, until now the matrix Md is defined as
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Figure 6. Gait parameters corresponding to each walking gait of the CBR for those values of k shown in Figure 5 with the IDA-PBC (7)
with equations (48) and (53). CBR: compass-like biped robot; IDA-PBC: interconnection and damping assignment passivity-based control.

Table 2. Initial conditions and gait parameters for each limit cycle of the CBR obtained with different values of the gain k in the IDA-
PBC (7) with equations (48) and (53).

Gain Initial conditions Gait parameters (leg 1, leg 2)

k xT
0 ¼ ½ys;0; yns;0; _ys;0; _yns;0� Period T (s) Step length S (m) Average velocity v (m/s)

1.98 (0.0484, �0.1531, �0.1990, �0.1342) 0.9996 0.2012 0.2013
1 (0.2187, �0.3234, �1.0918, �0.3772) 0.7341 0.5354 0.7293
0.5 (0.2318, �0.3365, �1.3323, �0.3556) 0.6974 0.5608 0.8041
0.4 (0.2373, �0.3420, �1.3804, �0.3417) (0.7029, 0.6827) (0.5592, 0.5771) (0.7955, 0.8365)
0.3 (0.2447, �0.3494, �1.4333, �0.3369) (0.7164, 0.6512) (0.5491, 0.5855) (0.7666, 0.8991)

CBR: compass-like biped robot; IDA-PBC: interconnection and damping assignment passivity-based control. The bold values correspond to the passive
walking gait.
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Md ¼
d1 a2

a2 a3

� �
(44)

That is, it only remains to define the element d1. Then,

proposing l1 ¼ k where k will be a free parameter strictly

positive, we have from the definition of L that

Md ¼ LM ¼
k l2

0 1

" #
a1 a2

a2 a3

" #

¼
ka1 þ l2a2 ka2 þ l2a3

a2 a3

" #
(45)

Due to Md ¼ MT
d , then we have that

ka2 þ l2a3 ¼ a2 (46)

where by solving for l2, we get

l2 ¼ �
a2ðk � 1Þ

a3

¼ �

�
c2 þ c3 cosðq2Þ

�
ðk � 1Þ

c2

(47)

and by substituting equation (47) into equation (45), finally

Md yields
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Figure 8. Gait parameters corresponding to each walking gait of the CBR for those values of k shown in Figure 7 with the CL control
law (54). CBR: compass-like biped robot; CL: controlled Lagrangian.
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Md ¼
kða1a3 � a2

2Þ þ a2
2

a3

a2

a2 a3

2
64

3
75 (48)

Positivity of matrix Md . In order to achieve that Md be definite

positive, it must be fulfilled that d1 > 0 and detjMd j > 0.

Notice that

d1 ¼ kða1a3 � a2
2Þ þ a2

2 > 0 (49)

detjMd j ¼ kða1a3 � a2
2Þ > 0 (50)

is satisfied, since a1a3 � a2
2 is the determinant of M and it

is known that M > 0, so that Md > 0 for any value of

k > 0.

Matrix J2. Then, using equations (37) and (38) with l3 ¼ 0

and l4 ¼ 1, these equations can be reduced to

� 2�1 þ 2c3 sinðq2Þ l2
1 þ l1l2

� �
þ d

dq2

�
l1 c1 þ c2 þ 2c3 cosðq2Þ½ � þ l2 c2 þ c3 cosðq2Þ½ �

�
¼ 0

(51)

� �2þ c3 sinðq2Þl1

þ d

dq2

�
l1 c2 þ c3 cosðq2Þ½ � þ l2c2

�
¼ 0 (52)

By solving equations (51) and (52) for�1 and�2, we have

�1 ¼ c3 sinðq2Þ½l2
1 þ l1l2� þ

1

2

d

dq2

ðl1½c1 þ c2 þ 2c3 cosðq2Þ�

þl2½c2 þ c3 cosðq2Þ�Þ

�2 ¼ c3 sinðq2Þl1 þ
d

dq2

ðl1½c2 þ c3 cosðq2Þ� þ l2c2Þ

where by substituting l1 ¼ k and l2 from equation (47), we

get

�1 ¼ ðk � 1Þc3ðc2 � ðk � 1Þc3 cosðq2ÞÞ sinðq2Þc2

�2 ¼ c3 sinðq2Þðk � 1Þ

which are used to define the J2 matrix from equation (27),

which is

J2 ¼
0 Ja

�Ja 0

� �
(53)

with Ja ¼ pT M�1½�1ðq2Þ�2ðq2Þ�T given by

Ja ¼ �
a2p2 � c2p1

kc2ða2
4 � c1c2Þ

ðk � 1Þc3 sinðq2Þða4ðk � 1Þ � c2Þ

þ a2p1 þ ½kða2
4 � c1c2Þ � a2

2�p2

kc2ða2
4 � c1c2Þ

c3 sinðq2Þðk � 1Þ

being a4 ¼ c3 cosðq2Þ.

Table 4. Extreme initial conditions values for the passive gait,
IDA-PBC (7), and CL control law (54).

Extreme
Ini. con.
point Controller

Value of
gain k

Maximum
percentage
allowed in
position Py

Maximum
percentage
allowed in
velocity P _y

1 None (passive) — 9.3% 0
2 None (passive) — �15% 0
3 None (passive) — 0 26%
4 None (passive) — 0 �70%
1 CL 1 9.3% 0
2 CL 1 �13% 0
3 CL 1 0 24%
4 CL 1 0 �58%
1 IDA-PBC 0.5 5% 0
2 IDA-PBC 0.5 �13% 0
3 IDA-PBC 0.5 0 19%
4 IDA-PBC 0.5 0 �18%
1 CL �7 9.4% 0
2 CL �7 �22% 0
3 CL �7 0 37%
4 CL �7 0 �36%
1 IDA-PBC 1.8 42% 0
2 IDA-PBC 1.8 �39% 0
3 IDA-PBC 1.8 0 73%
4 IDA-PBC 1.8 0 �468%

CL: controlled Lagrangian; IDA-PBC: interconnection and damping assign-
ment passivity-based control.

Table 3. Initial conditions and gait parameters for each limit cycle of the CBR obtained with different values of the gain k in the CL
control law (54).

Gain Initial conditions Gait parameters (leg 1, leg 2)

k xT0 ¼ ½ys;0; yns;0; _ys;0; _yns;0� Period T(s) Step length S (m) Average velocity v (m/s)
�10 (0.1079, �0.2126, �0.7231, �0.4859) (0.7188, 0.7993) (0.3655, 0.3193) (0.5085, 0.3994)
�9 (0.1176, �0.2223, �0.7553, �0.4982) (0.7029, 0.6827) (0.5592, 0.5771) (0.5083, 0.4290)
�8 (0.1328, �0.2376, �0.8008, �0.5193) (0.7603, 0.7627) (0.3699, 0.3685) (0.4865, 0.4831)
�7 (0.1404, �0.2451, �0.8291, �0.5214) 0.7591 0.3831 0.5046
�6 (0.1482, �0.2529, �0.8586, �0.5201) 0.7565 0.3985 0.5267
0 (0.2187, �0.3234, �1.0918, �0.3772) 0.7341 0.5354 0.7293
6 (0.3513, �0.4560, �1.3832, 0.6833) 0.7136 0.7856 1.1010

CBR: compass-like biped robot; CL: controlled Lagrangian. The bold values correspond to the passive walking gait.
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Simulation results

The controller (7) with Kv¼ 02�2 and matrices Md and J2

given by equations (48) and (53) applied to the system (9)

allows modifying the limit cycle causing a simultaneous

change in the velocity and the step length of the gait of the

robot for small variations of k. The performance of our

proposed controller is somehow similar to that shown in

the study by Holm and Spong,20 however, it is different in

its structure. Furthermore, the design of the proposed con-

trol law was carried out in a very different form by applying

less complex mathematical tools.

It could be noted, from equations (48) and (53), that with

k ¼ 1, the system is not modified and the dynamic model is

still the same, since Md ¼ M and J2 ¼ 0, thereby a limit

cycle is produced by an intrinsic property of the system,

which represents a walking without actuation called pas-

sive walking gait. However, this limit cycle can be modi-

fied; namely, the gait of the robot can be changed, by

varying k in our controller as shown in Figures 4 and 5.

The phase diagram of both legs using coordinates of posi-

tion q and momentum p since these are the coordinates

used in the IDA-PBC method is depicted in Figure 4. Nev-

ertheless, due to this representation is not common in biped

robots literature, the phase diagram for both legs but using

generalized coordinates of position q and velocity _q is

shown in Figure 5.

Let us remark that small changes in the gain k produce a

big change in the limit cycle. In fact, our controller can

produce very short steps at very slow velocities, as shown
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Figure 9. Four extreme initial conditions for the natural passive gait of the CBR, that is, without actuators. Initial conditions are marked with
solid circle. Evolution of the states for leg one and leg two is shown in left and right figures, respectively. CBR: compass-like biped robot.
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Figure 10. Five seconds of walking with a large step length of the CBR, using CL (in blue) or IDA-PBC (in red). IDA-PBC produces
faster steps than CL. CBR: compass-like biped robot; CL: controlled Lagrangian; IDA-PBC: interconnection and damping assignment
passivity-based control.
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in Figures 5 and 6. However, these figures also show that it

is not possible to perform very large step lengths since the

walking of the robot becomes asymmetrical. It is observed

that for k < 0:5, limit cycles of leg one and leg two are not

identical (see Figure 5), and gait parameters T , S, and v,

defined in Table 2, are different for each leg (see Figure 6).

Table 2 shows the initial conditions for each limit cycle

produced for each value of k and also the corresponding

gait parameters of each walking gait.

Controlled Lagrangian

As mentioned before, the design of the IDA-PBC shown in

“An IDA-PBC for the CBR” section is inspired in the

energy-based controller reported in the study by Holm and

Spong.20 In order to compare both control laws, in this

section, a very brief review is given. The CL control law

is given by20

uCL ¼ ðGT GÞ�1
GT MðθÞfMðθÞ�1

Cðθ; _θÞ_θ � gðθÞ
� �

�MðθÞ�1
c Ccðθ; _θÞ_θ � gcðθÞ
� �

g (54)

where MðθÞ, CðθÞ, gðθÞ, G, θ, and _θ were defined in equa-

tion (9), and McðθÞ is the controlled inertial matrix, Ccðθ; _θÞ
is the controlled Coriolis matrix, and gcðθÞ is the controlled

gravity vector. Holm and Spong20 propose to shape only

the kinetic energy function, thus the control law (54) is

applied to the CBR with gcðθÞ ¼ gðθÞ
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Figure 11. Similar limit cycles on the position (step length) for large gaits of the CBR using CL (in blue) or IDA-PBC (in red). Initial
conditions are marked with solid circle. Evolution of the states for leg one and leg two is shown in left and right figures, respectively.
CBR: compass-like biped robot; CL: controlled Lagrangian; IDA-PBC: interconnection and damping assignment passivity-based control.
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Figure 12. Five seconds of walking with a small step length of the CBR using CL (in blue) or IDA-PBC (in green). CL produces faster
steps than IDA-PBC. CBR: compass-like biped robot; CL: controlled Lagrangian; IDA-PBC: interconnection and damping assignment
passivity-based control.

12 International Journal of Advanced Robotic Systems



McðθÞ ¼ MðθÞ þ
2k sinðysÞ 0

0 0

� �

and Ccðθ; _θÞ obtained, by means of the coefficients of the

so-called Christoffel symbols, from McðθÞ. The behavior of

the CBR with this controller is shown in Figures 7 and 8. In

the study by Holm and Spong,20 only values for

k ¼ �6; 0; 6 were reported. We notice that this controller

was unable to produce small walking gaits since it starts to

perform asymmetrical gaits (the same undesirable beha-

viour than the ID-PBC (7) but for large gaits). It is observed

that for k < �7, limit cycles of leg one and leg two are not

identical (see Figure 7), and gait parameters T , S, and v are

different for each leg as shown in Table 3 (see also Figure

8). Initial conditions for each limit cycle produced for each

value of k and the corresponding gait parameters of each

walking gait are shown in Table 3.

Analysis and comparison

Before comparing the CL control law (54) and the IDA-

PBC (7), let us recall the natural behavior of the passive

walking gait. As we know, the natural passive gait of the

CBR is not robust, that is, a small variation of the initial

conditions affects the evolution of the states and it could

turn them away from the limit cycle, that is, the basin of

attraction is very small.16 In other words, a little distur-

bance in the gait of the robot can make it fall. In order to

introduce a perturbation on the initial conditions, a percent-

age of their current values is added as follows
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Figure 13. Similar limit cycles on the position (step length) for small gaits of the CBR using CL (in blue) or IDA-PBC (in green). Initial
conditions are marked with solid circle. Evolution of the states for leg one and leg two is shown in left and right figures, respectively.
CBR: compass-like biped robot; CL: controlled Lagrangian; IDA-PBC: interconnection and damping assignment passivity-based control.
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Figure 14. Large steps. Four extreme initial conditions for the walking gait of the CBR, with the CL control law (54) with k ¼ 1. Initial
conditions are marked with solid circle. Evolution of the states for leg one and leg two is shown in left and right figures, respectively.
CBR: compass-like biped robot; CL: controlled Lagrangian.
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x0 ¼

ys;0

yns;0

_ys;0

_yns;0

2
66664

3
77775þ

Pyys;0

Pyyns;0

P _y
_ys;0

P _y
_yns;0

2
66664

3
77775 ¼

ð1þ PyÞθ0

ð1þ P _yÞ_θ0

� �
(55)

where Py is the percentage added to both initial positions θ0

and P _y is the percentage added to both initial velocities _θ0.

The inclined slope is always 3� for all cases. The

extreme values of the initial condition that the passive gait

can handle are shown in Table 4 and plotted in Figure 9.

The convergence to the limit cycle is slow but effective at

these values.

On the other hand, the energy-based controllers (the CL

control law (54) and the IDA-PBC (7)) do not pretend to

increase the basin of attraction of the robot but to change

the limit cycle shape and thus the walking behavior. Nev-

ertheless, it is interesting to test the basin of attraction using

both controllers in order to know if they also improve or not

this feature. Since both controllers produce different shap-

ing of the limit cycle as shown previously (Figure 5 for

IDA-PBC and Figure 7 for CL), two limit cycles that per-

form similar step lengths have been chosen in order to

compare them. The two chosen cases are

1. The limit cycle for the larger symmetrical step length

that the IDA-PBC (7) with equations (48) and (53)

can perform, that is, with k ¼ 0:5. In counterpart,

k ¼ 1 has been chosen for the CL control law (54).

As observed in Figure 10, both controllers produce a

similar step length but with the IDA-PBC, the steps
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Figure 15. Large steps. Four extreme initial conditions for the walking gait of the CBR, with the IDA-PBC (7) with equations (48) and
(53) with k ¼ 0:5. Initial conditions are marked with solid circle. Evolution of the states for leg one and leg two is shown in left and right
figures, respectively. CBR: compass-like biped robot; IDA-PBC: interconnection and damping assignment passivity-based control.
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Figure 16. Small steps. Four extreme initial conditions for the walking gait of the CBR, with the CL control law (54) with k ¼ �7. Initial
conditions are marked with solid circle. Evolution of the states for leg one and leg two is shown in left and right figures, respectively.
CBR: compass-like biped robot; CL: controlled Lagrangian.
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are faster. The limit cycles produced for both control-

lers are plotted in Figure 11, where it is shown the

similitude in the limit cycle along the x-axis corre-

sponding to the step length, but a larger limit cycle is

produced by the IDA-PBC on y-axis corresponding to

the velocity.

2. The limit cycle for the smaller symmetrical step

length that the CL control law (54) can perform,

that is, with k ¼ �7. In this case, a value of k ¼ 1:8
has been chosen for the IDA-PBC (7). As depicted

in Figure 12, both controllers produce a similar step

length but with the CL, the steps are faster. The

limit cycles produced for both controllers are

plotted in Figure 13, where it is shown the simili-

tude in the limit cycle along the x-axis

corresponding to the step length, but a larger limit

cycle is produced by the CL controller on y-axis

corresponding to the velocity.

Case 1. Large steps. Using (55), the initial condition for the

CL (54) when k ¼ 1 was changed. The maximum allowed

perturbations are shown in Table 4 and plotted in Figure 14.

As observed in Figure 14, the basin of attraction and evolu-

tion of the states are quite similar to the natural passive gait

shown in Figure 9.

On the other hand, the basin of attraction of the limit

cycle produced by the IDA-PBC (7) is slightly reduced com-

pared with that produced by the CL control law (54). Table 4

shows the maximum disturbances allowed for the IDA-PBC

for k ¼ 0:5 and the evolution of states is shown in Figure 15.
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Figure 17. A little bit bigger disturbance than the maximum specified in Table 4 for the initial conditions makes robot fall. Here, a
position disturbance Py ¼ 9:5% (without velocity disturbance P _y ¼ 0%) was applied to the CL with k ¼ �7, where according to Table
4, the maximum disturbance allowed is Py ¼ 9:4%. CL: controlled Lagrangian.
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Figure 18. Small steps. Four extreme initial conditions for the walking gait of the CBR, with the IDA-PBC (7) with equations (48) and
(53) with k ¼ 1:8. Initial conditions are marked with solid circle. Evolution of the states for leg one and leg two is shown in left and right
figures, respectively. CBR: compass-like biped robot; IDA-PBC: interconnection and damping assignment passivity-based control.
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Case 2. Small steps. Using (55), the initial condition for the

CL (54) when k ¼ �7 was changed. The maximum

allowed perturbations are shown in Table 4 and plotted in

Figure 16. Again we can observe that the basin of attraction

and evolution of the states are quite similar to the natural

passive gait shown in Figure 9.

In order to underline the fragility of the basin of attraction,

a disturbance of Py ¼ 9:5% was applied to the initial condi-

tion of CL with k ¼ �7. Namely, the perturbed initial states

are now x�0 ¼ ½0:1537; � 0:2684; � 0:8291; � 0:5214�T

instead of x�0 ¼ ½0:1404; � 0:2451; � 0:8291; � 0:5214�T
according to Table 3. As we can see, the initial error is

~x0 ¼ x�0 � x0 ¼ ½0:0133; � 0:0233; 0; 0�T . It means that

the support leg ys and the free leg yns are 0.76� and�1.33� out

of their nominal values, respectively (a little bit more than the

maximum permissible). As a consequence, the walking gait is

unstable as shown in Figure 17. In fact, the maximum distur-

bance allowed in velocity for the CL according to Table 4 is

P _y ¼ �37%; it means a variation of 2.97�/s in the velocity of

support leg _ys and�5.19�/s in the free leg _yns is tolerated. Thus,

this implies that we must be very precise in the chosen initial

conditions in order to converge to the limit cycle. We can

conclude that, effectively, the CL (54) scales the limit cycle

modifying the gait of the robot, but also it holds a similar small

basin of attraction as the natural passive limit cycle.

In contrast, the proposed IDA-PBC in equation (7)

increases the basin of attraction when the walking gait is

small, in this case with k ¼ 1:8. As shown in Table 4 and

plotted in Figure 18, the maximum perturbation allowed is

really big, providing a less restrictive initial conditions to

converge to the limit cycle. As we can see in Figure 18, the

convergence of those extreme initial conditions is also

faster than the convergence for the CL in Figure 16. In this

case, the maximum disturbance in position of Py ¼ 42%

means 3.46� of variation in the support leg ys and�5.98� in

the free leg yns; and the maximum disturbance in velocity

of P _y ¼ �468% means �38.62�/s of variation in the velo-

city of support leg _ys and 66.70�/s in the free leg _yns.

In order to test the robustness of the proposed IDA-PBC,

several arbitrary initial conditions were chosen. The

extreme initial conditions for the IDA-PBC (in green) and

CL (in blue) for both legs are shown in Figure 19 (this

figure is a close-up of initial conditions of Figures 16 and

18). Intuitively, we have chosen initial conditions inside of
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Figure 19. Different initial conditions for the walking gait of the CBR, with the IDA-PBC (7) with equations (48) and (53) with k ¼ 1:8.
Blue circles are the extreme values of the initial conditions that CL can handle for the limit cycle with k ¼ �7 (see Fig. 16). Green circles
are the extreme values of the initial conditions that IDA-PBC can handle for the limit cycle with k ¼ 1:8 (see Figure 18). Dark green
color shows the initial condition in the limit cycle. Black, cyan, and magenta colors correspond to arbitrary initial conditions that
converge to the limit cycle. Left and right figures show the initial condition for leg one and leg two, respectively. CBR: compass-like
biped robot; CL: controlled Lagrangian; IDA-PBC: interconnection and damping assignment passivity-based control.

Table 5. Arbitrary initial conditions to test robustness of IDA-PBC for k ¼ 1:8 and gait parameters.

Initial conditions Color Gait parameters

xT
0 ¼ ½ys;0; yns;0; _ys;0; _yns;0� Period T (s) Step length S (m) Average velocity v (m/s)

(0.1441, �0.2488, �0.4829, �0.2795) Dark green (in the limit cycle) 0.9059 0.3903 0.4308
(0.16, �0.23, �0.7, �0.2) Magenta
(0.14, �0.25, �0.8, 0.4) Black
(0.12, �0.27, �0.6, 0) Cyan

IDA-PBC: interconnection and damping assignment passivity-based control.
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the extreme values. Table 5 shows the particular values for

each initial condition. The convergence to the gait para-

meters T , S, and v defined for gain k ¼ 1:8 in the IDA-PBC

is observed in Figure 20, where it can be noticed that less

than seven steps takes to converge to the gait parameters

(i.e. to the limit cycle). Based on this results, we can con-

clude that the proposed IDA-PBC not only changes the

walking behavior of the robot by shaping the limit cycle

but also increases its robustness for slow steps.

Conclusions

This article has presented the design of an IDA-PBC in

order to modify the natural walking gait of a CBR making

possible to increase or reduce the step length and velocity

simultaneously. A change of coordinates has been an

important issue that gave us the possibility of using the

method proposed by Acosta et al.6 The simulation results

have shown an enlargement or reduction of the limit cycle

of the robot, which are similar to those obtained by the CL

proposed by Holm and Spong.20 However, the proposed

IDA-PBC was obtained by following a simpler mathemat-

ical procedure than the CL control law. Furthermore, some

advantages of the proposed control law (IDA-PBC) with

respect to the CL control law have been evidenced by

means of a numerical simulation study, such as the ability

of performing very short step at slow velocities and the

increase in the basin of attraction of the limit cycle for short

steps, in contrast with the CL control law, which is very

sensitive to small disturbances on the initial conditions for

short and slow steps.
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