
HAL Id: hal-01728340
https://hal.science/hal-01728340

Submitted on 13 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BioVision: a Biomimetics Platform for Intrinsically
Motivated Visual Saliency Learning

Céline Craye, David Filliat, Jean-François Goudou

To cite this version:
Céline Craye, David Filliat, Jean-François Goudou. BioVision: a Biomimetics Platform for Intrin-
sically Motivated Visual Saliency Learning. IEEE Transactions on Cognitive and Developmental
Systems, 2018, �10.1109/TCDS.2018.2806227�. �hal-01728340�

https://hal.science/hal-01728340
https://hal.archives-ouvertes.fr


AUTHOR VERSION 1

BioVision: a Biomimetics Platform for Intrinsically
Motivated Visual Saliency Learning

Céline Craye, David Filliat, and Jean-Fraçois Goudou

Abstract—We present BioVision, a bio-mimetics platform
based on the human visual system. BioVision relies on the foveal
vision principle based on a set of cameras with wide and narrow
fields of view. We present in this platform a mechanism for
learning visual saliency in an intrinsically motivated fashion.
This model of saliency, learned and improved on-the-fly during
the robot’s exploration provides an efficient tool for localizing
relevant objects within their environment.

The proposed approach includes two intertwined components.
On the one hand, a method for learning and incrementally
updating a model of visual saliency from foveal observations.
On the other hand, we investigate an autonomous exploration
technique to efficiently learn such a saliency model. The proposed
exploration, based on the IAC (Intelligent Adaptive Curiosity)
algorithm is able to drive the robot’s exploration so that samples
selected by the robot are likely to improve the current model of
saliency.

We then demonstrate that such a saliency model learned
directly on a robot outperforms several state-of-the-art saliency
techniques, and that IAC can drastically decrease the required
time for learning a reliable saliency model. We also investigate
the behavior of IAC in a non static environment, and how well
this algorithm can adapt to changes.

Index Terms—Developmental robotics, visual saliency, convolu-
tional neural networks, intelligent adaptive curiosity, incremental
learning, bio-mimetics

I. INTRODUCTION

Biological systems have always been a wide source of
inspiration in robotics. In particular, the human vision system
is a perfect example of biological system that has inspired
number of applications related with computer vision. This
work proposes to exploit mechanisms of the human visual
attention, such as saliency to determine relevant targets in the
visual field, and the foveal vision principle that provides a
very high acuity in a restricted area of the field of view. In
addition, the development of skills and knowledge by infants
is actively studied in the developmental robotics community.
Understanding and applying such mechanism on a robot could
potentially lead to the new paradigm of conceiving robots able
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828 bd des Maréchaux, 91762 Palaiseau cedex France

Thales - SIX - Theresis - VisionLab 1, avenue Augustin Fresnel, 91767
Palaiseau, France

You can visit the project’s repository at https://github.com/cececr/RL-IAC

to learn with no or very limited human supervision. This topic
is also a central element of this work.

In a more practical context, object localization in cluttered
environments is still a difficult problem. Today, deep learning-
based methods provide efficient ways to localize and identify
a large set of objects in a wide variety of complex configura-
tions [36], but they generally require hours or days of offline
training, high GPU resources, thousand to millions of training
images, and are not really flexible to novelty. Furthermore,
a large variety of robots are meant to evolve essentially in
restricted environments, interact with a limited amount of
objects, to perform specific tasks. Thus, they do not require
such wide scope capacity. On the other hand, they should be
capable of some flexibility, being able to adapt to any novelty
or change in their environment by quickly updating their
representation. Learning to localize objects online and directly
within the environment is then a very desirable property.

Nevertheless, online learning must come with a methodical
exploration of the environment in order to gather relevant
training samples. The displacement of the robot makes it
possible to move to favorable observation conditions in order
to improve recognition performances, but a critical point is to
monitor this performance quality, and use this information to
drive the robot accordingly.

In this article, we consider a foveated system, capable of
visually exploring its environment to build a model of visual
saliency enhancing objects of interest. Based upon the previous
work [13], [15], we present a system able to:

• produce object-oriented visual saliency maps;
• learn the saliency model incrementally directly within the

robot’s environment;
• make the robot explore the environment autonomously

and efficiently, by visiting in priority areas able to im-
prove the saliency model.

More precisely, the system is composed with two major
components. On the one hand, we present a method that
exploits the foveal vision principle to learn a visual saliency
model incrementally and without any user supervision. This
model can be exploited to enhance objects of interest in the en-
vironment. On the other hand, we describe an implementation
of the Intelligent Adaptive Curiosity (IAC) algorithm applied
to the problem of saliency learning that drives the robot in
its environment, so that learning is done is an efficient and
organized manner. IAC then encapsulates the saliency learning
technique and can be seen as a whole system for autonomous
exploration and efficient learning. We demonstrate that our
method for learning saliency online generates saliency maps
that are more accurate than most state-of-the-art technique
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in the robot’s environment. In addition, the efficiency of
IAC for exploration is evaluated with alternative environment
exploration techniques, and the behavior of such algorithm is
investigated when changes in the environment occurs.

In an earlier work [13], we have presented preliminary
results on learning saliency in foveated platforms. However,
the IAC algorithm was not applied yet for this kind of
setups, and the evaluation was conducted on publicly available
datasets rather than on the BioVision platform. In Craye et
al. [15], we investigated the use of IAC on a mobile robot,
where the goal was to displace the robots in different rooms
of a building to efficiently learn visual saliency. We aim to
demonstrate in this paper that the IAC mechanism is also
applicable to a foveated system by taking advantage of the
foveal and contextual views. We also present a new type of
feature extractor based on convolutional neural networks, and
present a batch of new experimentations to investigate the
behavior of IAC in more details.

The article is organized as follows: in Section II, we mention
some related work. Section III then presents the robotics
platform of which most experiments are carried out. Section IV
describes the method used to learn visual saliency incremen-
tally, while Section V explains the exploration strategy based
on IAC. We propose an experimental evaluation of our system
in Section VI, and finally provide concluding remarks and
perspectives in Section VII.

II. RELATED WORK

Our system is based on two major components, we then
consider separately the related work on saliency maps and
object localization, and the potential exploration strategies for
improving knowledge about the environment. We last highlight
our main contributions and positions towards state-of-the-art.

A. Visual attention and visual saliency

To efficiently analyze visual inputs and interact with ob-
jects in cluttered environments, robots often rely on a visual
attention strategy. This mechanism turns the raw visual scene
into selected and relevant information the robot should focus
on. This concept has been widely studied and discussed [8],
[29], [19], from biological and computer vision points of view.
We restrict visual attention in this study to the localization of
objects of interest.

Among robotics systems relying on visual attention, the
foveated systems constitute an interesting study case, as they
are designed based on bio-inpsired aspects. Foveated systems
are typically composed with a peripheral component that aims
to localize objects of interest, and a foveal component, used
to get a high resolution representation of the target. Our
robotics platform is typically classified among this type of
systems. Bjorkman, Kragik et al. [3], [4], [34], [35], [50]
have worked on a system of four cameras (two foveal, two
peripheral). Not only were the pairs of cameras alternating
between foveal and peripheral visions, but also estimating
the depth of the environment from stereoscopy. Hueber et
al. [27] have proposed a foveated platform based on foveal
and contextual cameras for detecting and tracking moving

targets. Other teams have simply used Pan-Tilt-Zoom (PTZ)
cameras to have an easier setup based on a single camera,
while alternative foveal and peripheral view points. Minut
et al. [44] have used this kind of setup to jointly learn to
localize and identify an object, while Kragic et al. [33] have
used a descriptor to adjust the zoom level and enable a better
recognition. Gould et al. [22] as well as Canas et al. [10] have
mounted a PTZ camera on a mobile platform able to explore
their environment by moving in a room and identifying simple
objects.

Whether using a foveated system or not, visual attention
is based on a pre-attentive stage, where potentially relevant
targets are selected and uninformative areas are discarded,
and an attentive stage, where more complex tasks (such as
grasping [34] or object recognition [50]) are performed on
the targets to obtain more information about them. This pre-
attentive stage is typically related with the concept of visual
saliency, defined as a ’subjective perceptual quality which
makes some items in the world stand out from their neighbors
and immediately grab our attention’ [29]. The first compu-
tational models of visual attention were relying on saliency
maps [30], representing the saliency of an image on a pixel-by-
pixel basis. General convention is to associate a pixel intensity
proportional to the pixel saliency.

Saliency maps can be either purely bottom-up [61], [17],
[25], or refined by top-down modulation [23], [62], [18], [20].
Bottom-up saliency highlights stimuli that are intrinsically
salient in their context, which may sometimes be sufficient for
scene exploration [64]. However, top-down modulation, which
highlights elements that are relevant for a specific task, is
more meaningful for the problem of object detection in indoor
environments. Saliency maps are either fixation-based [30],
[17] or area-based [11], [20], [61]. Fixation-based approach
is related with the probability of a human being to make a
fixation at a given pixel position, while area-based approach
consider salient elements (typically objects) as a whole area
of the image. The latter approach is then closely related to
object segmentation. In the context of a mobile robot in an
indoor environment, our technique aims to build top-down,
object-oriented models of saliency.

Machine learning, and especially deep learning have also
been used for the generation of saliency maps. The best
performance reported on saliency benchmarks [38], [37] is so
far CNN-based. More interestingly, it was shown that CNN
activation maps can be used as powerful objects detectors
and trained on a weakly-supervised basis [63], [47]. For that
reason, we investigate in this article the benefits of using CNN-
based feature extractors in our technique.

B. Exploration strategies for learning

Visual attention in itself provides a potential exploration
strategy. In this case a visual focus of interest is selected
in the environment (from saliency maps computations for
example), and the actions performed by the robot aim to
provide more information about the selected target. When the
robot is equipped with a foveated system [5], [58], the actions
are typically saccades, so that the zoomed camera is oriented
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towards informative regions. In the case of a mobile robot,
actions are displacement to get a closer or better point of
view of areas of interest [43], [33], [41], [7]. However, this
kind of exploration supposes that a good model for selecting
targets and reaching them is already available. Conversely, we
are interested in this work about exploring for learning such
visual attention capacities.

Exploration strategies for learning visual attention have been
proposed for two kinds of applications. The first one [45], [18],
[50] consists in refining a saliency map by finding appropriate
weights to combine the extracted features. In particular, in the
work of Rasoladeh et al. [50], the weights were refined online
by alternating between bottom-up and top-down attentions. For
that, a system of temporal differential equations was used to
weight the importance of each component. The second type
of methods aims to learn eye saccades in order to better
perceive the objects of interest. These approaches typically
rely on reinforcement learning techniques. Minut et al. [44]
have presented a system based on a PTZ camera able to learn
areas that most likely contains objects. Small saccades are
also exploited to precisely localize and identify the object.
Saccades can also be directed towards areas of interest within
an object to improve its identification [49]. Lastly, Borji et
al. [7] have proposed to learn a top-down attentional model
able to simultaneously discriminate objects in an environment
from their visual appearance, and learn a sequence of actions
to reach a goal.

In the scope of developmental robotics, intrinsic motivations
are also used as a drive for robot’s acquisition of skills through
experience and exploration. Intrinsic motivation, defined as a
behavior driven by an intrinsic reward system (i.e. not related
to an external goal, but to the acquisition of competences
or knowledge), is a possible approach for guiding explo-
ration in that regard. For example, Huang et al. [26] have
used novelty to guide visual exploration, while Chentanez et
al. [12] have used the error of prediction of salient event
to speed up a classical reinforcement learning approach. To
overcome limitations related to novelty or error in unlearnable
situations, intrinsic motivation based on progress has been
proposed [46], [1], [56]. The Intelligent Adaptive Curiosity
(or IAC) [48] is one of the most emblematic implementation
of intrinsically motivated exploration using progress. Learning
progress has also been exploited in a reinforcement-learning
context, typically with artificial curiosity [31], [55], or to make
exploration flexible to changes in the environment or wrong
assumptions [42].

Visual attention is an excellent study case for intrinsic
motivation. In a general case, eye saccades and fixations can be
seen as a way to actively sample information, and, as a result
a form of intrinsically motivated exploration strategy [21], [2].
In neuroscience, several studies have highlighted the fact that
eye movement patterns are not the same when trying to learn
a skill, and once this skill is acquired [54]. In developmental
robotics, visual attention is also considered as a common study
case, most of the time used as a way to develop proprioceptive
skills (for example, predict the position of the hand in a
field of view [1]) or visual servoing skills (learning options
from visual inputs [32], smooth pursuit [60], simultaneous

gaze control and reaching [28]). However, learning the visual
aspect of salient elements has not been examined so far in a
developmental robotics framework, although clear evidences
show that such saliency is, at least partially, learned [24], [6].

C. Contributions

So far, saliency maps are mostly used as black boxes and are
not learned (although sometimes refined) directly during the
exploration of a particular environment. Our first contribution
is a method that incrementally learns saliency as the robot
observes the environment. The produced saliency maps are
therefore dedicated to the environment that was explored, but
remain flexible to novelty. The model that is learned here is a
top-down type of saliency, dedicated for generic robotics tasks
(i.e. a saliency that detects objects the robot can interact with).
The term saliency in this article is then more related to the
concept of objectness, and the model that is learned is used to
produce object-oriented saliency maps. Unlike most saliency
techniques based on learning, ours is self-supervised, so that
the robot is able to learn without any human annotation or
assistance. The main mechanism consists in a transfer learning
method between a weak object recognition in the fovea and
the contextual view.

Our second contribution is the use of intrinsic motivation,
and more precisely learning progress to drive the robot’s
exploration for the task of learning. To this end, we adapt the
Intelligent Adaptive Curiosity (IAC) algorithm for the problem
of saliency learning on a foveated platform.

A major difference between our approach and traditional
visual attention systems is then the way we consider salient
regions. Our purpose here is to consider saliency as something
to learn rather that something to direct attention towards. We
then direct our attention towards areas able to improve learning
rather than towards salient elements themselves. Our focus
of attention is therefore, in our system, at highly progressing
areas.

III. THE BIOVISION PLATFORM

The BioVision platform was developed in the scope of a bio-
mimetics project, aiming to study and exhibit some aspects of
the human vision. BioVision consists in a bio-mimetic head
imitating the human vision system to develop new strategies
for learning, recognition, or tracking. The platform first takes
into account the properties of a human eye by relying on both
foveal and contextual fields of view. Then, the visual cortex
is modeled by deep convolutional neural networks performing
object recognition. We use both the robotics platform and the
object recognition system described in Section IV-B as tools
for developing our algorithms.

BioVision is presented in Figure 1. It is composed of a
single foveal camera, which is an EXG50 Baumer camera1

with a narrow field of view of 5◦. An Optotune EL-10-30TC
liquid lens2 is used on this camera to adjust the focus within

1http://www.baumer.com/us-en/products/identification-image-
processing/industrial-cameras/

2http://www.optotune.com/technology/focus-tunable-lenses
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Fig. 1. The BioVision platform

  

Fig. 2. Samples from foveal and contextual images

a few milliseconds. An RGB-D Asus Xtion Pro live camera3

plays the role of the peripheral camera with a field of view of
57◦ horizontally. The pan-tilt motors are piezoelectric ones4.
In this setup, the two cameras move along the same pan-tilt
angles and are oriented the same way depending on the pan-
tilt position. In addition, foveal and contextual cameras are
calibrated so that an accurate position of the fovea’s visual
field can be mapped onto the peripheral one (See Figure 2).

IV. INCREMENTAL LEARNING OF VISUAL SALIENCY

This section describes the module able to learn a model of
visual saliency from environment observations, and generates
dedicated saliency maps. Figure 3 presents the general block
architecture of the system. In a learning stage, the system
extracts RGB features (see Section IV-A) from the peripheral
stream and learns the visual aspect of salient elements within
their context using an object classifier in the fovea as a
supervision signal (see Section IV-B). Saliency learning is
performed by a classifier (Section IV-C) that produces and
constantly updates a saliency model. In an exploitation stage,
the saliency model is used to generate environment specific
saliency maps on the peripheral camera (Section IV-D).

An important aspect of our approach is that the learning
signal is partial as only present in the fovea. Learning is
also weakly supervised: saliency is estimated at the pixel
level, while classification in the fovea provides a single label
for the whole foveal area. By learning a model of saliency,
we generate saliency maps estimating saliency on the whole
frame. The online classifier is then able to generalize saliency
over a weak and partial learning signal.

3https://www.asus.com/3D-Sensor/Xtion PRO LIVE/
4Pan: ServoCity DDP125. Tilt: ServoCity DDP500
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Fig. 3. General architecture of the saliency learning algorithm

A. Feature extraction

In this work, feature extraction is based on convolutional
neural networks and is fully independant from the classifi-
cation step. Considering deep learning frameworks, an end-
to-end neural network architecture may be used for saliency
learning, starting with convolutional layers and ending up with
fully connected one. However, meta-parameters (learning rate,
minibatch size, etc.) are hard to configure to allow an efficient
incremental learning. A bad configuration could significantly
deteriorate weights that were correctly learned for another
problem. We then consider another approach to exploit deep
neural networks: the use of the first layers of a well-trained
network as a feature extractor. This way, we avoid instability
problems, and the module is easily plugged in our architecture.

We base our feature extraction upon the ideas of Zhou et
al. [63]. In their article, a GoogLeNet architecture is used
and fine tuned to perform object localization. The end of the
network is replaced by a global average pooling layer, fol-
lowed by fully connected layers providing strong localization
capacities and trained on a weakly supervised dataset. This
type or architecture is then able to produce, in some sense,
class specific saliency maps. In addition, the weights of this
network are publicly available.

We then use this available trained model and do not consider
the layers after the global average pooling one. The feature
extraction is done at the level of the class activation mapping,
or CAM layer (called CAM-CONV in the network). This
corresponds to the last fully convolutional layer of the network.
According to Zhou et al., this layer is the one at which highly
discriminative areas are enhanced.

To get a set of feature maps, we then feed the network with
the original RGB input image, without resizing it, and extract
the 1024 maps of the CAM layer (See Figure 4).

Because of striding and pooling in the network, the output
feature maps have a resolution that is 16 times lower than the
input image. To overcome this loss of resolution, we present
in Section IV-D a method to reconstruct saliency maps at the
original scale.

B. Salient object identification

To learn a model of saliency, we base our method upon
an object classifier applied to the foveal stream, playing the
role of a learning signal. This learning signal has the property
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of being reliable, but only provides a partial and weakly
supervised information. The goal is then to use the result of
the object classifier as a local estimation of the saliency, and
to transfer this information to the peripheral view. This way,
the learning signal is generalized to produce saliency maps in
the contextual view.

To generate the learning signal, we consider an object
classifier based on convolutional neural networks, and more
precisely, an Alexnet [36] architecture pre-trained on the
ImageNet dataset [52]. We replaced the last layer of the
network to identify 8 different categories of objects, and a last
class called ’other’, containing any other types of elements.

To train the network, we constituted a dataset of objects
captured from the foveal camera. In total, 8 different objects
were placed on a white table and recorded at thousands
of different points of view (see Figure 5). The additional
class ’other’ was collected similarly with various kinds of
background surrounding the objects. In total, around 10 000
images were collected this way. The network was finally fine-
tuned with the collected dataset, and an accuracy of 99 % was
measured on the validation set.

To exploit this classifier as a learning signal for saliency
learning, we take this classifier already trained, and use it to
infer in real time the class of the object observed by the fovea.
This output is then converted into a saliency label, where
the eight objects are considered to be salient (annotated with
the ’salient’ label), and any other visual item as being ’not

Foveal stream 

Contextual stream 

CNN-based 
classifier 

Recognition label 
 CAR 

Foveal label  
SALIENT 

Output mask 

Context label  
UNDETERMINED 

Camera   
calibration 

Fig. 6. Segmentation mask from foveal object recognition

salient’. Therefore, if the output of the classifier is the class
’other’, the fovea is annotated ’not salient’.

In a second stage, we convert this learning signal into a
mask of the same size as the peripheral camera, on which
saliency should be learned. For that, we rely on the extrinsic
calibration of the foveal and peripheral cameras, to precisely
determine the boundaries of the fovea in the peripheral field
of view. Then, the mask, having the same dimensions as
the peripheral images, is such that the label determined in
the fovea (’salient’ or ’not salient’) is attributed to each
pixel of the fovea’s boundaries on the peripheral frame. Each
pixel outside the fovea is then labeled ’undetermined’. Figure
6 illustrates the general approach to transfer the result of
classification in the fovea to a segmentation mask.

C. Online learning

Learning is made possible by using the feature maps,
the segmentation mask as a learning signal, and an online
classifier. The classifier is continuously updated based on the
foveal and contextual observations, turned into a set of labels
and features: the segmentation mask is first resized to the same
size as the feature maps. For each pixel, the 1024 associated
features are collected and turned into a feature vector so that a
sample of features-label is associated for each of them. These
samples constitute the dataset send to our classifier to train
our saliency model. Only pixels of the fovea are selected to
feed the saliency model.

The classifier used in our implementation is an online
version on random forests. Random forests are natively not de-
signed for online training, although a few incremental versions
have been proposed [53], [40]. Nevertheless, none of these
online versions was satisfying in terms of speed and perfor-
mance, so we adapted the offline version of random forests to
make re-training fast enough. For each new frame, we consider
the annotated pixels, and add the corresponding data to a
dataset cumulated from the beginning of the sequence. Then,
we update the classifier by only re-training a small fraction of
the forest at a time: we randomly select 4 trees among the 50
in the forest, and we retrain those tree with 70% of the dataset
cumulated from the beginning of the sequence. Lastly we
restrict the size of the cumulated dataset to 100000 samples.
If the dataset exceeds this size, we randomly remove samples
to meet the maximum size requirement. As a result, after each
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update, the classifier is able to estimate the saliency of an input
based on the model trained with the previous observations, and
the peripheral image only. More implementation details can be
found in [16].

D. Saliency map reconstruction

Saliency maps are generated by applying the classifier to the
peripheral images. To this end, features are extracted from an
input image and are sent to the classifier to produce a saliency
evaluation. For each pixel of the feature map, the classifier
outputs a probability of the pixel to be salient. The output
score is then a value between 0 (’not salient’) and 1(’salient’)
corresponding to a fuzzy state of saliency (this fuzzy state
is represented as grayscale or heatmaps in the experimental
results). To rescale this low-resolution saliency map to the
original input image size (recall that the deep feature extraction
downsamples the image by a factor of 16), we generate SEEDS
superpixels [57] from the original image (350 superpixels for
640×480 images in our experiments). We associate a low-
resolution pixel to each superpixel by finding the pixel that
would be the closest to the superpixel centroid if rescaled at
the same size. The saliency value estimated for this pixel is
then used to cover the entire superpixel.

V. INTRINSICALLY MOTIVATED EXPLORATION

A. Mechanisms

Intrinsically motivated exploration is done by using the
Intelligent Adaptive Curiosity (IAC) algorithm. IAC can be
seen as a way to guide the robot’s actions when exploration is
dedicated to the task of learning something. Unlike exploration
strategies whose aim is to have an extensive coverage of the
exploration space, IAC focuses on particular areas of the space
so that learning is done efficiently. The essential component of
this technique is a local measure of the learning progress, that
catches the attention of the robot until knowledge has been
acquired. We here focus on describing the mechanism in our
particular framework.

IAC is constituted of four main components:
• a learner that learns a particular model;
• a way to divide the exploration space into regions;
• a meta-learner that monitors the learning evolution in

each region and estimates progresses5;
• a policy that determines the next action to take given the

state of progress in each region.
Figure 7 summarizes the main components of the architec-

ture and the way they interact with each other. We here provide
a brief recall on the basic procedure for using it. At time t,
the robot receives observations from the foveal and peripheral
streams. They are, on the one hand, turned into a segmentation
mask St, and, on the other hand, sent to the online classifier
to estimate the saliency map S̃t. Then, the learner and meta-
learner are both updated: St is first turned into labels and sent
with the extracted features Ft to the online classifier (learner)

5For more simplicity, we consider the meta-learner and the knowledge
gain assessor [48] as a unique module, both monitoring error and deriving
progress.
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Fig. 7. General architecture of the IAC algorithm for saliency learning.

for a model update. Second, as this observation was taken at
a particular point of view, in a region R, the prediction error
‖St− S̃t‖ is added to the error history of R, and the progress
in region R is re-evaluated. Lastly, the next action of the robot
is calculated from a policy depending on the learning progress.
The robot then takes the action, ends up in a new position and
receives an new visual input that is to be processed, and so
on.

B. Learner

In our implementation, the learner is the online classifier
used in the saliency learning technique of Section IV. More
formally, our learner tries to construct a prediction function
M : I → S̃, able to estimate the saliency S̃ of the visual
field given an input RGB image I . This process is done by
moving in the environment, collecting observations after each
displacement, and updating the learner’s model M after each
observation.

After an observation at time t, features FI(t) are extracted
from the peripheral stream, and the segmentation mask S(t)
is derived from the fovea, playing the role of labels for the
learner. The features are sent to the learner to infer the saliency
map S̃(t) from Mt−1. This saliency map is used by the meta-
learning module later on for learning quality estimation (see
Section V-D). Then, both FI(t) and S(t) are used to update
the learner’s model Mt.

C. Regions definition

In our experiments BioVision is placed on a table. To
modify the point of view, a pan or tilt motor command is
used so as to change the inclination of the cameras.

Positions of the reachable points of view are then defined
as a pan and tilt position (p, t). Regions are defined by cutting
the pan and tilt spaces in regular intervals. The robot is then
in region R if the pan tilt position falls within the boundaries
of this region. Figure 8 illustrates the regions boundaries and
makes the link between the pan-tilt axes and the foveal point
of view.

Of course, pan and tilt positions are not so easily convertible
to a foveal point of view. However, we make the assumption
that objects are far enough to consider the optical center of
the foveal camera to be at the interserction of the pan and tilt
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Fig. 8. Regions definition in the pan-tilt space

axes. Pan and tilt values are easy to obtain and actions are
simple pan and tilt motor commands. Our second assumption
is to consider each displacement command to fall in the right
position which, given the precision of the motor, is realistic.

In practice, we divide the pan positions (ranging from -60◦

to 60◦) into 4 intervals and the tilt (ranging from -30◦ to 30◦)
into 4 intervals as well. We then have the space divided into
16 regions.

D. Meta-learner

The meta-learner aims to monitor the local error made by
the learner, and derive an estimate of the learning progress.
The local estimation is made possible by grouping and making
statistics on samples collected within the same region. Recall
that the robot is in region Ri at time t if its current position
falls within Ri’s boundaries. We provide in this section a
method for estimating learning progress.

The error made by the learner at time t is computed by
comparing the segmentation mask S(t) with the corresponding
saliency map S̃(t). For that, we consider the image labels set
L(t) by keeping only pixels labeled ’salient’ or ’not salient’
in S(t). We binarizefootnoteRecall that each pixel of S̃(t) is a
probability of being salient. We binarize these probabilities by
a threshold at 0.5 the saliency map S̃(t) for each of these pixels
to obtain the image estimation set E(t)L̇astly, we compute the
corresponding estimated error Err(t) based on Equation 1:

Err(t) = 1− F1(L(t), E(t)) (1)

where F1(., .) is the F1 score:

F1 = 2 · precision · recall
precision+ recall

=
2tp

2tp+ fp+ fn
(2)

with tp, fp and fn the true positives, false positives and false
negatives6.

To evaluate learning progress, the meta-learner stores a
history of the prediction error for each region. Suppose now
that at time t, the robot is in region Ri and makes an
observation in this region. Suppose that in this region, n − 1
observations were already recorded and added to the history
from the beginning of the experiment. The observation at time
t is then the nth of region Ri, and the learning error Erri(n)

6We use the F1 score as our error metrics, because ’not salient’ pixels are
representing more than 90% of the samples, making accuracy inappropriate
for error estimation.

associated with this observation is then added to the history
of Ri.

The estimation of the learning progress in Ri, is obtained
by exploiting the error history sequence. For that, we apply a
linear regression of the error history over the last τ samples:Erri(n− τ)...

Erri(n)

 = βi(n)×

n− τ...
n

+

ε(n− τ)...
ε(n)

 (3)

with ε(n) the residual error and βi(n) the regression coeffi-
cient. βi(n) then represents the derivative of the learning error
after n observations. The learning progress being defined as
the derivative of the learning curve (opposite of the predic-
tion error), we obtain the progress LPi(n) in region Ri by
Equation 4:

LPi(n) =
2

π
|atan(−βi(n))| (4)

We transform the slope βi with an arctangent to have the
learning progress normalized between -1 and 1, and we
consider the absolute value of the arctangent to force the robot
to explore regions where learning is decreasing as well.

E. Action policy

In most IAC implementations, learning progress is used
directly as an intrinsic reward the robot should follow. More
precisely, many implementations select the region having the
highest learning progress and randomly choose an action
among all possible actions leading to that region. As the
next action is selected based on immediate learning progress,
without any long term planning consideration, we call this
behavior greedy.

We also follow an ε-greedy procedure to select the next
action. However, we do not directly select the most progressing
region, but select the region with a probability proportional
to the learning progress. This idea was already proposed by
Baranes et al. [1], and suggests that the probability of the next
region to visit r being region Ri is given by equation 5

Pr(r = Ri)



LPi(t)
N∑
j=1

LPj(t)

if v > ε

1

N
otherwise

(5)

where LPi(t) is the learning progress, v is a uniform
random variable, and ε = 0.25 is used to select a random
region 25% of the time.

Once the next region is selected, a position within this
region is randomly determined as the target to reach. The
corresponding action to reach this position is then used to
displace the robot.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

To demonstrate the efficiency of our approach, we carry
out experiments on the BioVision platform, as well as on a
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Fig. 9. Contextual images (top) and associated ground truth mask (bottom)

publicly available database. We describe in this section the
main features of our datasets.

During the sequence acquisition, BioVision was put at the
extremity of a two meters-length table, looking mainly at
objects at the other end. The table and adjacent wall are all
white, so that objects on the table are likely to be naturally
salient in this local context. However, the background of the
room is largely visible by BioVision, and contains a lot of
distractors. To make the experiment consistent with the object
classifier described in Section IV-B, we put the same list of
objects on the table, sometimes with additional distractors
(such as pens).

Our dataset is composed with 10 sequences recorded at
different times of the day. For each sequence, we placed an
arbitrary configuration of objects on the table, either known
by the object classifier or not. We then let BioVision observe
the environment for about three minutes, meaning that the
robot was randomly selecting a pan-tilt position, reaching
this position, acquiring both contextual and foveal images at
this position, and selecting a new one. In total, around 2000
observations were collected this way (see a few examples in
Figure 2.

To evaluate our results from this dataset, we constituted a
training and a testing set. The training set is composed with
the observations taken from 7 out of the 10 sequences, and
the testing set is composed with the 3 last sequences. In those
three sequences, we randomly selected 150 samples that we
annotated. To do so, we manually segmented the contextual
images of the selected samples, to create ground truth masks
of salient and non salient elements. Note that in this context,
the only salient elements that were manually segmented are
the one placed on the table, even if some elements present
in the background (such as computers and keyboards) could
also have been annotated as salient elements. Figure 9 shows
an example of contextual images and associated ground truth
masks.

To demonstrate that our saliency method is also efficient
on other types of data, we performed experiments on a public
dataset. We chose for that the Washington dataset, and more
precisely the RGB-D scenes dataset [39]. This dataset is
composed with 8 video sequences of indoor scenes with
everyday-life objects placed on tabletops. In total, around
1500 RGB-D frames are available in this dataset along with
bounding boxes around objects. As this dataset is not providing

any foveal images, we cannot use the object classifier in the
fovea as a learning signal. We instead use an object detector
based on the depth-map to this end. This depth-based object
detection has been described in previous publications that one
could refer to for more details [14], [15]. Apart from this, the
saliency learning process is exactly the same.

B. Incremental saliency learning

Our first evaluations are related with the mechanism of
incremental saliency learning, without considering any explo-
ration aspect. We here provide quantitative and qualitative re-
sults to demonstrate the efficiency as well as the generalization
capacity of the classifier. In this section saliency maps are
represented either as a grayscale image (black standing for ’not
salient’ and white for ’salient’), or as a heatmap for which red
are the most salient areas and blue are the least salient ones.

1) Saliency evolution: Figure 10 illustrates the evolution
of the saliency in time for a fixed image. In this setup,
the robot is learning by making random observations in the
exploration space and updating the model after each of them.
After each model update, we re-estimate the saliency of a
given frame, that the robot does not see during learning. We
display in Figure 10 a few of these saliency maps. The first
observation is made with the fovea centered at the penguin’s
face, which is the only salient area of the saliency map at
this time. Then, as the system takes additional observations,
the saliency map is progressively refined. For a better under-
standing of the process, a video illustrating this mechanism
is available 7.Regarding result on Figure 10, the experiment
is done so that BioVision’s head is scanning sequentially the
field of view. This means that at frame 1, BioVision looks
at the bottom left corner of the scene, and only perceives
the penguin as being salient. At the end of the experiment,
BioVision is looking at the top right hand corner of the scene
and has gone through all the salient objects. However, this
sequential scan is not a good strategy for learning, as the
system tends to forget the first seen elements (typically the
penguin). For that reason, a wise exploration strategy such as
IAC is of paramount importance.

2) Generalization from foveal observation: To demonstrate
the generalization capability from foveal observations, we train
and evaluate the model on the same sequence. In Figure 11,
we display a sample frame (cropped around salient elements
of the scene) and some foveal observations used to feed
the saliency model. All of these observations (and therefore,
each pixels within the fovea) were labeled ’salient’ by the
object recognizer, while it is clear that a large fraction of
the pixels are not part of salient objects. Nevertheless, when
looking at the resulting saliency map, the classifier was able
to discriminate areas that were part of the objects, and areas
from the background (walls behind or table). Of course, the
discrimination process is not perfect: elements such as plastic
bottles were not clearly learned as salient, and portions of the
wall behind objects were partially classified salient, but the
weak supervision can indeed lead to more precise saliency
maps.

7https://github.com/cececr/RL-IAC
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Fig. 10. Evolution of the saliency by applying the model on a fixed image, while the model is improved by observation taken from different images.

Fig. 11. Generalization capabilities from a weakly supervised signal (the
foveal image). All the orange rectangles were labeled Salient after foveal
object recognition, but the classifier is able to refine this labeling to provide
better object segmentation.

In figure 12, we point out two additional features of the
saliency model. First, distractors such as the pen (sample 1)
that would be naturally salient are correctly classified not
salient. Second, the classifier is able to retrieve similarities
in areas that have not been observed by the fovea. In sample
2, a computer keyboard and monitor are detected at the other
side of the room.

3) Comparison with state-of-the-art: To evaluate the
saliency model versus existing state-of-the-art approaches,
we analyze the final performance reached by the classifier

  

1

2

Fig. 12. Some interesting properties of the saliency model: Naturally salient
distractors (such as pen in sample 1) are classified not salient, and areas
containing salient elements (such as keyboard in sample 2) are highlighted.

when all samples of the training set are used. We denote in
this section our incremental saliency learning approach and
produced saliency maps as ISL.

We measure the saliency performance based on the ROC
curve evaluation. The ROC (receiver operating characteristic)
curve is among the most common techniques to evaluate
saliency [51]. The idea is to construct a curve representing the
true positive rate versus the false positive rate of the method.
Theoretically, a method having a higher area under the ROC
curve should be more efficient. To demonstrate the accuracy
of our saliency model, we compute the ROC curves on the
two presented datasets. The results were obtained by training
ISL on their associated training set, and evaluating on their
evaluation set.

For comparison, we selected three publicly available
saliency algorithms and computed the ROC curves for each
method on each of the three datasets. First, BMS [61] is
among the most accurate RGB saliency methods according
to the MIT saliency benchmark [9]. We use BMS with the
configuration that highlights salient objects rather than salient
fixations. Second, we use the new version of the VOCUS2
algorithm [20] along with the configuration file dedicated to
the task of object detection in cluttered scenes (top-down
saliency). Third, we compare our method with saliency maps
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produced with the CAM [63] model. This model is trained
to detect objects among the 1000 classes of ILSVRC. For
a fair comparison, we disabled classes that were not present
in the images of our datasets (i.e. their output score were
systematically set to 0), so that the produced saliency maps
were responsive to relevant objects only. In addition, the
maps produced by the CAM approach have the same low
resolution than our model. We therefore apply the superpixels
approach presented in Section IV-D to increase the resolution
of these maps. To evaluate our feature extractor versus the
one proposed in previous work [15], we generate saliency
maps from both the CNN-based feature extractor (denoted as
ISL here), and the former feature extractor (denoted as ISL-
Make3D) that was used in [15].

In figure 13, a visual comparison between the methods is
presented. Samples 1 and 2 are from the BioVision dataset
while the three other samples are from the RGB-D scenes
dataset. On the BioVision dataset, the background is composed
with a white table and walls that are not naturally salient,
but also with a highly textured background at the other end
of the room (in sample 2 for example). The three state-of-
the-art techniques tend to be very responsive to this highly
textured background, and consider these areas as being salient.
Conversely ISL and ISL-Make3D have learned that these
specific textures were part of the background, and are then
able to classify them correctly. The superpixel reconstruction
approach makes it possible to retrieve shapes of salient objects
(in spite of the low-resolution feature maps produced by the
output of the CNN). When applied to the CAM saliency
map, the superpixel reconstruction does not provide such good
results. This might be because the produced saliency is much
more diffuse (as a comparison, the CAM algorithm results
are displayed without superpixel reconstruction for samples 1,
2 and 3). In addition ISL-Make3D produces saliency maps
with finer details than ISL (see for example the case of
sample 4), but is constructed with features that have a weaker
generalization capacity than the deep features used in ISL (for
example, a shadowed portion of the wall in sample 1 is found
to be salient by ISL-Make3D).

The numerical results displayed in Figure 14 present the
ROC curves of the five evaluated techniques on both the Bio-
Vision and the RGB-D scenes datasets. These results suggest
that ISL outperforms all other techniques. The performance
of ISL-Make3D is drastically different on the two datasets,
because of the generalization capacity of the extracted features.
On the BioVision dataset, the information extracted from the
fovea only represent a very small fraction of the image,
whereas the depth-based segmentation process used on the
RGB-D scenes dataset provides an estimation of the saliency
on a much wider area of the image.

C. Intrinsically motivated exploration
To evaluate the benefits of IAC as a guide for exploration,

we conducted our experiments in semi-simulated environ-
ments, using the recorded sequences on the BioVision plat-
form. We called these experiments semi-simulated as saliency
was learned from real images taken from these sequences, but
actions taken by the robot were simulated.

More precisely, to make the robot reach a position in our
setup, we simply select one of the frames recorded in the
sequence. This process has in practice no physical cost and
do not take into account the time required to take this action
in real life. Once selected, we just consider that the robot has
reached this position and can start processing the associated
observation.

For BioVision, regions were defined before the experiment
by dividing the reachable pan-tilt positions into 4 pan intervals
and 4 tilt intervals (for a total of 16 regions). The size of each
region was defined so that regions were not equally interesting.
Some of them only contained white wall, without any salient
object, while other are mainly composed with them. Figure 15
illustrate a sample of foveal images reachable in each region.

For RGB-D scenes, we used the sequence table small 2 only.
The video sequences are provided without any localization
information. However, the trajectory of the acquisition sensor
is such that each point of view is seen only once in the
sequence. We then created 5 regions by dividing the video
into five sub-sequences of equal length.

1) IAC versus other exploration techniques: To demon-
strate the efficiency of IAC versus other exploration tech-
niques, we ran a set of experiments for three different types
of exploration. The first consists in following the order of
the recorded sequence to determine the next region to visit.
We call this exploration strategy chronological. The second
consists in selecting a position randomly among all possible
positions, without considering any progress measure. We call
it random exploration. Last, we evaluate the performance of
IAC. To get a better visualization of the performance, we also
display the score that the static bottom-up method called BMS
(see Section VI-B3) obtains on the evaluation set, as well as
an offline training with all the frames of the sequence at the
same time. Those results are reported in Figure 16.

Each exploration strategy was tested 10 times on each
dataset and results are reported based on the average and
variance over those experiments. The performance of the
system was evaluated using the evolution of the overall error
rate of the system: based on the reference frames on which a
ground truth is available, we compare the estimated saliency
map for all of these frames with the available ground truth. We
then use the formula provided by Equation 1 on each frame
and take the average error.

Given this measure, we can monitor the evolution of the
error rate all along the experiment and objectively compare the
different exploration approaches. Note that the overall error
rate has a different signification than the regional error rate
of Equation 1 used to compute learning progress. Indeed, the
regional error rate is an intrinsic metrics, whose evaluation is
based on segmentation rather than on an external ground truth.
Second, we use the F1 score, rather than the ROC curve for
evaluation to be consistent with our evaluation of the learning
progress.

As expected, the offline model is a lower bound of the
error rate, and the system tends to reach this limit after
a certain number of observations, whatever the exploration
strategy. Our method rapidly outperforms BMS when enough
observations are obtained. The chronological exploration is
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Fig. 13. Sample results of saliency maps compared with state-of-the-art bottom-up methods, obtained on both the BioVision and the RGB-D scenes datasets.
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Fig. 14. ROC curves comparing state-of-the-art approaches on two datasets

slower to converge than random exploration at the beginning.
Lastly, IAC seems to be the exploration strategy for which
learning is the fastest. Note that the difference between random
and IAC-based exploration is less significant on the BioVision
sequence, but the error variance of IAC is much lower than
the one for random exploration.

2) Adaptation to a change in the environment: We now
study the evolution of the exploration in the case where
the environment is changing. Suppose now that BioVision is
learning the saliency of the environment, when someone comes
and suddenly moves the positions of the objects on the table.
The learning curve in the regions containing objects should
be drastically modified, and the exploration strategy should
exhibit different patterns.

To produce such behavior, we consider three sequences of

the BioVision dataset: we make BioVision start learning with
a certain sequence, and we switch to a new one during the
experiment. We use for that a first sequence with a moderate
number of objects, and switch with two different sequences:
first, a sequence in which all objects were removed from
the table (called no objects in the explanations). Second, a
sequence where additional objects were put on the table(new
objects in the explanations). Figure 17 illustrates the switch
principle to simulate the change in the environment. To further
analyze the behavior of IAC in this configuration, we run
several experiments by changing the time at which the switch
operates: after 100 or 400 observations, or never.

We first present in Figure 18 the evolution of the learning
curve when operating a switch in the environment after 100
and 400 observations (curves 100 and 400 in the figure). We
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Fig. 15. BioVision’s 16 regions and associated sample foveal images.
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Fig. 16. Evolution of the error rate for several exploration strategies

also display the resulting error rate without any change (curve
inf). In the experiments, the error rate is evaluated based on
the ground truth of the sequences constituting each experiment.
As a result, the no objects and new objects experiments are
not evaluated on the same set of ground truth and do not
have the same error rate curves. As expected, the change in
the environment (indicated by arrows in the plots) strongly
modifies the learning curve quality: when the environment
switches to a table without any object, the scene is simplified,
and the robot cannot get additional samples to learn the visual
aspect of salient objects. As a result, the later the switch
occurs, the better the learning. This is verified by the first plot
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Fig. 17. Switch between datasets to simulate a change in the environment of
the robot
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Fig. 18. Error rate evolution when modifying the environment of the robot.
The red and yellow arrows point out the frame at which the change in the
environment occurs.

of the figure, where the switch after 100 observations produces
a very bad model. Conversely, when the new configuration
of the environment is a more complex one, the robot is able
to learn the aspect of additional objects, which is likely to
improve the learning quality. This time, the switch is supposed
to make the model better. This is verified by the second plot of
the figure, where the switch at 100 observations enables a fast
decrease of the error rate. However, when the switch never
occurs (represented by the inf curve), the error rate cannot
reach a descent performance. Lastly, the curve corresponding
to a switch at 400 observations seems to have the best final
performance (as compared to the switch at 100). This results
would need to be confirmed with additional experiments, but
this may be due to the greater number of samples from the
first configuration that produces a better balanced model.

For these same experiments, we represent the amount of
time spent in each region. To better analyze the results, we
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Fig. 19. The 16 regions are classified according to 4 groups (of a different
color). Recall that these regions were defined by dividing the pan-tilt space
into 16 equally-spaced squares. Their approximative positions are projected
on this image as an example.

group the 16 regions in four areas: first, regions containing
salient objects at the beginning of the experiment. Second, the
one containing a background easy to learn (white walls and ta-
ble). Third, the one containing a complex background. Lastly,
the one for which the more complex environment contains
salient objects and the initial one does not (See Figure 17 to
visualize the different environments, and Figure 20 to visualize
the groups of regions called areas in these explanations). We
now display in Figure 20 the evolution of the proportion of
time in each of these groups, for all of the experiments.

Regarding the curves obtained for both the no objects and
new objects environments, the following behaviors can be
observed.

• Between 0 and 200 observations, the exploration time
drops in each area, except the one containing salient
objects. This area is the most progressing one.

• After 900 observations, the area containing salient object
decreases as well for the ’inf’ curve. This is because the
model does not make much more progress in this area.

When looking in more details at the first row of the figure,
obtained when switching to the no objects environment:

• For the curve ’100’, after 200 observations, exploration
decreases in the salient objects area and increases every-
where else. This is because this area does not contain any
salient object anymore.

• After 200 observations, the complex background area
now seems to be the most observed one.

• The same behavior is observed for curve ’400’, after 600
observations.

Lastly, when examining the second row, obtained when
switching to the new objects environment, the following
comments can be made:

• For the curve ’100’, after 200 observations, exploration
decreases in the salient objects area and increases in the
new salient objects area. This is because this area now
contains much more salient objects and is now worth
exploring more.

• The same behavior is observed for curve ’400’, after 450
observations.

As a last general comment, we observe a certain delay
(between 50 and 200 observations) between the actual switch

of the environment, and the exploration behavior of the robot.
This may be explained by the time required by the system to
correctly assess the change in the learning progress. Therefore,
the system is reactive to changes in the environment, but with
a certain inertia.

D. Execution time

We now provide a table estimating the execution time for
each module of the system. Our implementation is written
in C++ and has been tested on Ubuntu 14.04 with an Intel
Core i3-3240, CPU at 3.4GHz quadcore processor and with an
Nvidia GTX Titan X graphic card. The online random forest
has a training time that increases linearly with the amount
of collected data. This part is therefore the bottleneck of the
system. However, we consider in our architecture a different
thread for training and for exploration, so that the robot can
keep exploring while training is being performed.

VII. CONCLUSIONS

In this article, we have presented a full architecture for
learning a model of visual saliency on a foveated platform
called BioVision. The model of saliency is learned directly
during the robot’s exploration based on an object recognizer
trained on the fovea. The signal provided by the recognizer
is then transfered to the contextual view to produce saliency
maps. Moreover, we investigated how the robot could me-
thodically explore its environment to learn the saliency model
faster and better. We proposed an original approach based on
the IAC algorithm to guide exploration in that regard. We
have carried out several experimentation to demonstrate the
accuracy of our saliency maps as compared with other state-
of-the-art approaches, and the efficiency of our exploration
technique.

In a future work, we would like to investigate the possibility
of using an end-to-end deep learning framework to build
the model of saliency. We so far separate feature extraction
and feature combination, but deep learning offers a way to
integrate both at the same time. Additionally, neural networks
are by essence online classifiers, which may be better-suited
that the proposed method based on random forests that have
been shown to be the current bottlenec in terms of speed
computation. Second, we would like to carry out experiments
in a non simulated setup to have a fully operational system.
Lastly, we would like to integrate more biologically plausible
saccadic models to pilot the gaze exploration of the robot.
Indeed, saccades are biased by many factors that do not
make the distribution of saccades homogeneous (for example
horizontal and vertical saccades are much more common than
oblique ones [59]).
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Fig. 20. Time spent in each group of regions for each experiment. Top: no objects. Bottom: new objects experiments. The red and yellow arrows point out
the frame at which the change in the environment occurs.

Step Min time Max time Comment
Feature extraction 26 ms 3 300 ms Depends whether feature extraction is calculated on GPU or CPU

Foveal segmentation 12 ms 240 ms Depends whether object recognition is calculated on GPU or CPU
Classifier update 23 ms 13 500 ms Depends on the number of samples to re-train (between 1 and 100 000)

Saliency estimation 14 ms 82 ms Depends on the features and if superpixel refinement is used(GPU only)

TABLE I
PROCESSING TIME OF THE MAIN STEPS OF THE SALIENCY LEARNING ALGORITHM
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[38] Matthias Kümmerer, Lucas Theis, and Matthias Bethge. Deep gaze i:
Boosting saliency prediction with feature maps trained on imagenet.
arXiv preprint arXiv:1411.1045, 2014.

[39] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale
hierarchical multi-view rgb-d object dataset. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 1817–1824.
IEEE, 2011.

[40] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mon-
drian forests: Efficient online random forests. In Advances in Neural
Information Processing Systems, pages 3140–3148, 2014.

[41] Mikko Lauri and Risto Ritala. Stochastic control for maximizing mutual
information in active sensing. In IEEE Int. Conf. on Robotics and
Automation (ICRA) Workshop on Robots in Homes and Industry, 2014.

[42] Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer.
Exploration in model-based reinforcement learning by empirically esti-
mating learning progress. In Advances in Neural Information Processing
Systems, pages 206–214, 2012.

[43] Nikolaos A Massios, Robert B Fisher, et al. A best next view selection
algorithm incorporating a quality criterion. Department of Artificial
Intelligence, University of Edinburgh, 1998.

[44] Silviu Minut and Sridhar Mahadevan. A reinforcement learning model
of selective visual attention. In Proceedings of the fifth international
conference on Autonomous agents, pages 457–464. ACM, 2001.

[45] Sara Mitri, Simone Frintrop, Kai Pervolz, Hartmut Surmann, and
Andreas Nuchter. Robust object detection at regions of interest with
an application in ball recognition. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, pages 125–130.
IEEE, 2005.

[46] Sao Mai Nguyen, Serena Ivaldi, Natalia Lyubova, Alain Droniou,
Damien Gerardeaux-Viret, David Filliat, Vincent Padois, Olivier Sigaud,
and Pierre-Yves Oudeyer. Learning to recognize objects through
curiosity-driven manipulation with the icub humanoid robot. In De-
velopment and Learning and Epigenetic Robotics (ICDL), 2013 IEEE
Third Joint International Conference on, pages 1–8. IEEE, 2013.
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Celine Craye Céline Craye received the diplome
dIngénieur in telecommunications from the Ecole
Nationale Supérieure des Télécommunications de
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