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Abstract9

This paper is devoted to theoretical and experimental investigations of solute dispersion in hetero-

geneous porous media. Dispersion in heterogenous porous media has been reported to be scale-

dependent, a likely indication that the proposed dispersion models are incompletely formulated. A

high quality experimental data set of breakthrough curves in periodic model heterogeneous porous

media is presented. In contrast with most previously published experiments, the present experi-

ments involve numerous replicates. This allows the statistical variability of experimental data to be

accounted for. Several models are benchmarked against the data set: the Fickian-based advection-

dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly

proposed dispersion model based on pure advection. A salient property of the latter model is that

its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour

for large time scales. Model performance is assessed using a novel objective function accounting for

the statistical variability of the experimental data set, while putting equal emphasis on both small

ad large time scale behaivours. Besides being as accurate as the other models, the new purely

advective model has the advantages that (i) it does not exhibit the undesirable e�ects associated

with the usual Fickian operator (namely the in�nite solute front propagation speed), and (ii) it

allows dispersive transport to be simulated on every heterogeneity scale using scale-independent

parameters.

Keywords: Solute transport, heterogeneous porous media, intermediate scale, Fickian behaviour,10

dispersion modelling.11

1. Introduction12

In many circumstances, the classical Fickian operator fails to account correctly for the behaviour13

of solutes in heterogeneous porous media. The Advection-Dispersion (AD) model exhibits poor14

performance. Attempting to calibrate this model against �eld or laboratory data has been seen to15

lead to contradictory conclusions. Field scale dispersion data have been reported to yield a growing16

trend for the dispersion coe�cient D with the scale of the experiment [25]. A number of laboratory17
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experiments, in contrast, indicate that no clear trend can be identi�ed for the variations in D with18

experiment scale. For instance, [58] report an increasing trend for the dispersion coe�cient. In [39],19

an increasing trend is found for D (x), but the authors notice that this conclusion may be biased20

by experimental noise. In [61], identifying a trend for the variations of D with distance is found21

very di�cult if not impossible. In [14], no scaling trend is identi�ed for the dispersion coe�cient,22

even over short distances. More recently, laboratory experiments carried out on an arti�cial,23

periodic porous medium [48] show that contradictory trends in D (x) can easily be inferred if24

the breakthrough curves are not sampled with su�cient accuracy and the tracer experiments are25

not replicated a su�cient number of times. Several models with scale-dependent dispersion have26

been proposed in the literature [2, 40, 54, 55, 67, 68, 69, 70]. All these models have shown a27

good ability to reproduce �eld- or laboratory-obtained experimental breakthrough curves via a28

proper parameter tuning. This makes a benchmarking of their respective predictive capabilities29

very di�cult [22]. The following models have been used extensively for benchmarking against30

experimental data sets.31

The Fractional Advection-Dispersion (FAD) model builds up on the Continuous Time Random32

Walk (CTRW) formalism [43, 49, 51]. FAD occurs when the motion of the solute molecules is33

non-Brownian. Di�erent behaviours may be obtained depending on the assumptions made on the34

characteristic times and lengths of molecule jumps [43, 44, 41, 42]. In the presence of trapping35

e�ects, an inverse power law asymptotic behaviour may be observed for the probability density36

function of solute residence time in the porous media. This results in subdi�usive dispersion37

processes, with a variance of molecule positions growing slower than time. Another type of non-38

Fickian behaviour is that of Levy motion, whereby the characteristic time for particle motion is39

�nite, but the characteristic length of the jumps in molecule positions is in�nite [6, 7]. The resulting40

behaviour is called superdi�usion, with a variance of molecule positions growing faster than time.41

All these models share the common feature that the governing equations incorporate fractional42

derivatives with respect to time and/or space, hence the term "fractional". FAD models have43

been tested against experimental data sets obtained from laboratory experiments [8, 13, 37, 45].44

In [37] the best �t was obtained by making the dispersion parameters scale-dependent. In [62], a45

FAD model was tested against in situ data obtained from experiments at the scale of 1m to 1km.46

Comparisons with data observed at the metric scale [9] showed that time-varying fractional orders47

of di�erentiation were essential in reconstructing the heavy tailing in the observed breakthrough48

curves.49

The Mobile-Immobile (MI) model [24, 64] is based on the assumption of a mobile region (where50

the solute obeys a standard AD model) exchanging with an immobile region. The MI formalism51

has been used to describe di�erent physical settings. The simple structure of this model allows52

analytical solutions to be obtained for a number of con�gurations [17, 31, 53, 65]. Several versions53

of the MI model with a scale-dependent dispersion coe�cient have been explored in [23]. The54
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best �t against the experimental laboratory results obtained in [38] was achieved for a dispersion55

coe�cient varying exponentially with the travelled distance.56

The Multiple Rate (MR) model [35] is a generalization of the MI model. Several immobile57

regions exchange with the mobile region according to di�erent exchange rates. Increasing the58

number of regions and varying the exchange kinetics allows for anomalous di�usion processes to59

be reproduced via a proper distribution of the exchange rates between the mobile and immobile60

fractions [18].61

Multiple Region Advection-Dispersion (MRAD) models have been proposed to account for the62

dispersion of solutes in heterogeneous soils in the presence of macropores, high- or low-permeability63

inclusions or several spatial scales of hydraulic heterogeneity. Note that the term MRAD is not64

the name given to these models by their authors but a term proposed by the authors of the65

present paper for the sake of terminology convenience. In these models, several di�erent mobile66

regions, each having its own velocity �elds and dispersion coe�cient, exchange mass. Several67

closure models have been investigated for the exchange between the two regions. Although most68

applications include two mobile regions [1, 11, 12, 26, 27, 28, 34, 59], applications with three mobile69

regions have been reported [33]. Two region models have been tested against numerical experiments70

[11, 12, 16] and laboratory experiments [29, 30]. They are shown to become equivalent to a single71

region model with a Fickian behaviour (that is the AD model) in the limit of long times and travel72

distances [1, 16, 30]. Conversely, they are deemed more accurate than the AD model for small73

times and highly contrasted hydraulic properties [30].74

All these models have shown a good ability to reproduce �eld- or laboratory-obtained experi-75

mental breakthrough curves via a proper parameter tuning. This makes a benchmarking of their76

respective predictive capabilities very di�cult. As shown in [30], tracer tests involving a strong77

heterogeneity allow for a better model discrimination than tests involving weakly variable porous78

media. Moreover, pulse tracer tests are also deemed more discriminatory in terms of model re-79

sponse than step injection tests, especially for long time and/or travel distances [30]. However,80

most experiments report either step tracer tests [38, 39, 46, 52, 58, 61] or very long pulses that81

may be interpreted as a succession of two steps [56, 58, 30]. A few exceptions are reported in82

[30, 32, 63].83

As shown in a previous publication [48], the AD, FAD and MI models with scale-independent84

parameters fail to account for the behaviour of experimental breakthrough curves at small space85

and time scales when the porous medium is strongly heterogeneous and periodic. Two main reasons86

were identi�ed for this. Firstly, the size of the Representative Elementary Volume (REV) [5] is at87

least one order of magnitude larger than the spatial period of the Model Heterogeneous Porous88

Medium (MHPM). Dispersion models are not valid at spatial scales smaller than the REV size.89

Secondly, a Laplace analysis of the theoretical AD, FAD and MI modelled breakthrough curves [48]90
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shows that these models yields in�nite signal propagation speeds. An in�nite concentration wave91

speed is clearly physically unrealistic. Besides, the �nite propagation speed of the concentration92

signal exerts a strong in�uence on the behaviour of the experimental breakthrough curves for small93

times and distances [48], which explains that the above three models are more inaccurate for small94

times and short distances than for long time and distances. That Fickian-based dispersion models95

only seem to become more accurate as the spatial scale increases is only due to the fact that96

the Peclet number increases with distance (therefore, dispersion, albeit modelled wrongly, has a97

decreasing importance in the modelled signal) [48]. These conclusions are to be extended to the98

FAD model with superdi�usive behaviour. Indeed, this model is obtained under the assumption of99

heavy-tailed PDFs for the particle jump length [49], thus allowing for in�nite particle velocities. A100

conclusion of the study [48] is therefore that models where advective processes play a predominant101

role should be expected to give better results than AD- and FAD-based models at small scales.102

The experimental results in [48] also indicate that previously identi�ed scale dependency of the103

dispersion coe�cient may easily be explained by the variability between the replicates of a same104

experiment.105

The objectives of the present paper are the following.106

(i) Build a high-quality experimental database for Intermediate Scale Experiments (ISE) of dis-107

persion of tracers in heterogeneous porous media. In [48] it was chosen to build a periodic108

heterogeneous porous medium made of a series of 15 cm long columns enclosing high permeab-109

ility conduits surrounded by single-sized glass beads. However, for a single period and two110

periods, the results were biased by the in�uence of the inlet and outlet boundary conditions.111

Consequently, experiments were meaningful for a minimum of three successive periods. In112

the present work, the experimental setup was revised so that the experiments be meaningful113

even for a single period.114

(ii) Propose a model benchmarking methodology with an enhanced discriminatory power. Bear-115

ing in mind the conclusions in [30], the proposed methodology consists in realizing a step116

injection and using both the breakthrough curve and its time derivative to benchmark the117

various models. Moreover, for each model, a single parameter set is used to reproduce the118

experimental signal at all scales. This approach is retained because the ISE [48] shows that119

there exists a model with scale-independent coe�cients that allows the breakthrough curves120

to be reproduced at all scales (although this model is unknown).121

(iii) Benchmark the AD, MI, MR and MRAD models against the experimental breakthrough122

curves and their time derivatives.123

(iv) Determine whether a purely advective multiregion model can provide a viable alternative124

to models embedding a Fickian or fractional Laplacian description of dispersion, with the125
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advantage that a purely advective model involves �nite signal propagation speeds.126

A brief description of the AD, MI, MR and MRADmodels for the dispersion of tracers (that is, inert127

solutes not subjected to degradation, adsorption/desorption and the concentration of which does128

not in�uence te �ow �eld) is given in Section 2 as well as the proposed Purely Advective Multiregion129

(PAMR) model. The experimental setup is described in Section 3. The model benchmarking130

procedure and experimental results are described respectively in Sections 4. Sections 5 and 6 are131

devoted to discussion and conclusions.132

2. Models133

2.1. The AD model134

The simplest known model for passive solute transport in porous media is the Advection-135

Dispersion (AD) model. The governing equation is the following:136

∂tc+ u∂xc−D∂xxc = 0 (1)

where c is the concentration, u is the �ow velocity and D the dispersion coe�cient. In the case of137

a constant input concentration at the upstream boundary, this model yields an S-shaped solution138

for the concentration and a gaussian-shaped for its derivative with respect to time.139

2.2. The MI-MR model140

The mobile-immobile (MI) model was �rst proposed in [64]. In what follows, owing to the141

assumption of passive transport, the adsorption/desorption terms are cancelled in the governing142

equations. Using the assumptions of constant water contents for the mobile and immobile regions,143

the governing equations are simpli�ed into144

∂tcm + u∂xcm −D∂xxcm =
k

Θ
(cim − cm) (2a)

145

∂tcim =
k

(1−Θ)
(cm − cim) (2b)

146

Θ =
θm

θm + θim
(2c)

where cm and cim are respectively the concentrations in the mobile and immobile regions, θm and147

θim are respectively the water contents of the mobile and immobile regions, Θ is the normalized148

water content of the mobile fraction, and k is the exchange rate constant between the mobile and149

immobile regions.150

The MI model may be called a single rate model since it contains a single exchange rate constant151

k between mobile and immobile regions. A generalization of the MI model, called the Multiple152

Rate (MR) model, was later proposed by [35]. In this model the mobile region can exchange153
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with multiple immobile regions, each having its own exchange rate constant kj . Using again the154

assumption of passive scalar transport, normalizing the water contents of the mobile and immobile155

regions lead to:156

∂tcm + u∂xcm −D∂xxcm =

N∑
j=1

kj
Θ

((cim)j − cm) (3a)

157

∂t(cim)j =
kj
Θj

(cm − (cim)j) j = 1, . . . , N (3b)

Where N is the number of immobile regions with normalized water content Θj , and kj (j = 1, ...158

,N) are the multi-exchange rate constants between the mobile and the N immobile regions. For the159

sake of consistency, in this paper the MI and MR models designate the single-rate mobile-immobile160

model and the multi-rate mobile-immobile model respectively.161

2.3. The MRAD model162

The Multiple Region Advection-Dispersion (MRAD) model is based on the assumption of R163

regions �owing in parallel, exchanging mass according to linear kinetics [1, 11, 12, 26, 27, 28, 34, 59].164

In each of these regions, the AD model is assumed valid. The original model allows for di�erent165

heads in the various �ow regions, thus allowing for water exchange between the regions in addition166

to solute exchange. In the present experiments, however, the upstream and downstream sections of167

each model column are connected to a single in�ow and out�ow pipe, thus making the head in all168

regions identical on the scale of the heterogeneity. Consequently, the hydraulic source term between169

the various regions is set to zero. Bearing in mind the assumption of passive scalar transport, any170

degradation or adosrption/desorption terms are set to sero. Normalizing the water contents as in171

the previous subsection leads to the following governing equations:172

∂tci + ui∂xci −Di∂xxci =
∑
j 6=i

kij
Θi

(cj − ci) , i = 1, . . . , R (4a)

173

kij = kji ∀ (i, j) (4b)

174

Θi =
θi∑R
j=1 θj

,

R∑
i=1

Θi = 1 (4c)

and the total concentration in the porous medium is de�ned as175

c (x, t) ≡
R∑
i=1

Θici (x, t) (5)

As mentioned in the introduction, most applications involve R = 2 regions, with the exception of176

[33] where R = 3 and kij 6= 0 only for j = i± 1. As shown in AppendixA, the variance c(2) of the177

solute particle locations obeys the following equation178

dtc
(2) =

R∑
i=1

Θi

(
vic

(1)
i + 2Di

)
, vi ≡ ui −

R∑
j=1

Θjuj (6)
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where c
(1)
i is the average abscissa of the particle locations in the region i, obeying179

dtc
(1)
i = vi +

∑
j 6=i

kij
Θi

(
c
(1)
j − c

(1)
i

)
(7)

As shown in AppendixB (Result 3), all the c
(1)
i (t) tend to a limit value c

(1,∞)
i as t tends to in�nity180

provided that the vector v ≡ [v1, . . . , vR] belongs to the range of the matrix M de�ned as181

Mij =

 −
∑
p 6=i

kip
Θi

if i = j

kij
Θi

if i 6= j
(8)

If this is the case, dtc
(2) tends to a �nite, limit value for long times, which is a Fickian (or "normal")182

behaviour. The limit value of the dispersion coe�cient is shown to be (AppendixA)183

D∞ =

R∑
i=1

Θi

(
Di +

1

2
vic

(1,∞)
i

)
(9)

If the vector v does not belong to the range of M, the c
(1)
i do not converge and a superdi�usive184

(anomalous) behaviour is obtained.185

A direct consequence of the above property is the following (AppendixB, Result 4): if r regions186

exchange mass with each other but do not exchange mass with the R − r remaining regions, all187

regions can be renumbered in such a way that kij = 0 for (i, j) ∈ {1, . . . , r}×{r + 1, . . . , R}. Then,188

the matrix M is block-diagonal and a necessary condition for the asymptotic behaviour of the189

dispersion process to be Fickian is that the average speed of the �rst r regions be the same as that190

of the remaining R − r regions. If
∑r
i=1 Θiui 6=

∑R
i=1 Θiui, the c

(1)
i (t) are not all bounded and a191

superdi�usive asymptotic behaviour is obtained.192

2.4. Purely Advective Multiple Region (PAMR) model193

The PAMR model proposed in this paper is based on the consideration that dispersion is194

a purely advective process on the microscale. The Fickian model arises only as an asymptotic195

property of Brownian movement [19, 20, 21, 43, 49] that is valid for a large number of solute196

particle displacements (in other words, for large space and time scales compared to the typical197

duration and length of the Brownian motion jumps). Although the term "Brownian" was originally198

used to designate the movement of small particles suspended in �uids, its meaning has broadened199

with time. The adjective "Brownian" is widely used as an equivalent to "Wiener process", a200

continuous but non-di�erentiable [10] random process with zero mean and variance proportional201

to time. Generalizing the concept has led to that of fractional Brownian motion, a useful concept202

for anomalous di�usion modelling [49]. The application �elds may be totally disconnected from203

physics, as in e.g. �nancial mathematics. The �rst mathematical formalization of Brownian motion204

is attributed to Bachelier, with his thesis on the mechanisms of stock exchange [3]. Bearing this in205
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mind, the term "Brownian" is used in the present paper to designate a Markovian random particle206

displacement process. The Brownian character of solute movement in random, heterogeneous207

media is easily justi�ed by considering the individual trajectories of solute molecules, that are208

assumed to travel at the same velocity as the surrounding �uid molecules (Figure 1a). If the pores209

of the medium are assumed to have random and isotropic orientation, size and spacing, the velocity210

�eld can also be assumed random at the scale of the grains/pores. Consequently, the cumulated211

movement of the �uid molecules in a coordinate system moving at the average �uid velocity may212

be considered random at this scale (Figure 1). Given the random pore orientation, the direction of213

the movement of a particle is totally uncorrelated from one pore to the next. This corresponds to214

the mathematical de�nition of the standard Brownian motion, whereby the particle displacement215

is (i) an isotropic, random function of space (ii) a Markov process that assumes zero correlation216

between successive Brownian displacements. If the medium is not totally random, however, the217

Brownian assumption may not hold any more. A structured medium exhibits a certain degree of218

periodicity (Figure 1c). Such periodicity may be encountered at the scale of the pore. It may219

also arise at much larger scales, as in the case of e.g. low permeability lenses in an aquifer. In220

such a case, the �ow �eld cannot be considered totally random. Therefore, the cumulated particle221

displacements in the coordinate system moving at the average �ow velocity are also periodic to222

some extent (Figure 1d).223

(a) (b)

(c) (d)

Figure 1: Solute dispersion as the result of a Brownian process. Random heterogeneous medium: (a) solute particle
trajectories in the laboratory reference frame, (b) trajectories plotted in the coordinate system moving at the
average solute speed. Periodic medium: (c) trajectories in the laboratory coordinate system, (d) trajectories in the
coordinate system moving at the average solute speed.

In the extreme, totally periodic case of Figures 1c-d, the cumulated (relative) particle displace-224

ments are totally periodic, with a maximum vertical amplitude equal to one half of the vertical225

spatial period. Some particles travel to the left because they are slower than the mean �ow velocity226

on the average. Some other particles travel to the right because their average velocity is larger227

than the mean �ow velocity. However, despite their diverging character, the trajectories of the228

particles remain deterministic because the medium is strictly periodic. One may expect a certain229
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amount of randomness in these trajectories because of molecular di�usion, but a long time may230

be necessary for the random component of the movement to predominate over the deterministic231

component. Real-world situations, including the experiments reported in the present paper, lie232

somewhere between these two extreme con�gurations. In the light of the considerations above, a233

conceptually satisfactory scale-independent model for dispersion should be expected to satisfy the234

following two requirements.235

(R1) No Fickian �uxes should be included in the governing equations. This requirement stems from236

the reasoning that (i) the simplest possible scale-independent dispersion model is sought, (ii)237

the Fickian model has been shown in [48] to yield undesirable behaviours for small times and238

travel distances, (iii) consequently, Fickian �uxes must be ruled out. As far as point (ii) is239

concerned, the Fickian model yields in�nite wave propagation speeds for the modelled solute240

front, an unphysical behaviour yielding zero arrival times in solute breakthrough experiments.241

In contrast, the delay between the inlet and the outlet was pointed out as an essential feature242

of the experimental breakthrough curves reported in [48].243

(R2) The model should yield the Fickian behaviour as a limit, asymptotic case for large times244

and distances. Such a behaviour has indeed been con�rmed experimentally in the case of245

homogeneous media, as well as periodic heterogeneous media provided a su�cient number of246

periods is covered [48].247

The conceptual model proposed hereafter aims to ful�ll these two requirements, based on the248

following two assumptions.249

(A1) The �ow velocity within an averaging volume is partitioned into R regions over which the �ow250

velocity is homogeneous. The �ow region i has a normalized water content Θi,
∑R
i=1 Θi = 1.251

Under steady state �ow conditions, the normalized water contents Θi and the �ow velocities252

ui are constant and uniform.253

(A2) Two adjacent regions may exchange solute particles owing to the random velocity distribution254

within the porous medium (Figure 1b). Consequently, the concentrations within two adjacent255

regions tends to even out with time. The solute exchange rate between two regions is assumed256

proportional to the di�erence between the solute concentrations in the two regions.257

Assumptions (A1-2) lead to the following governing equation:258

∂t (Θici) + ∂x (Θiuici) =
∑
j 6=i

kij (cj − ci) , i = 1, . . . , R (10)

The advective part of the model (left-hand side of the equation) stems from assumption (A1).259

The source term (right-hand side of the equation) is the simplest possible formulation satisfying260

assumption (A2).261
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A �rst advantage of this model over those reported in the previous subsections is that it satis�es262

the two requirements (R1-R2). Indeed, the transport term in equation (10) is purely advective,263

thus satisfying (R1). Moreover, the Fickian model is obtained as a limit case for asymptotically264

long times and travel distances. This is easily shown by noticing that the model (10) is a particular265

case of the MRAD model (4a). Equation (10) is obtained by setting Di = 0 in equation (4a) and266

replacing
kij
Θi

with kijΘiΘj . As shown by equation (9), a �nite dispersion coe�cient D∞ may be267

obtained even though the coe�cients Di are all zero. A su�cient condition for this is that the268

vector v belong to the range of M (see Appendices A-B for the details of the derivation).269

Another interesting feature of the PAMR model is that it allows for (ballistic) anomalous270

dispersion for small times, which is compatible with the apparent increase in the Fickian-based271

dispersion coe�cient with observation scale reported in a number of studies.272

Therefore, the PAMR model is considered more satisfactory from a conceptual point of view273

than the MRAD model because it does not have the drawbacks of Fickian dispersion models274

for small times and/or distances, while retaining its advantages for large times and/or distances.275

Nevertheless, the increased accuracy of the model for small times/distances is achieved at the276

expense of model parsimony. As shown in AppendixA, at least two regions are needed to obtain an277

asymptotic Fickian behaviour for dispersion. Then, the model has three independent parameters:278

one of the normalized water contents Θ1, Θ2, one of the �ow velocities v1, v2 and the exchange279

parameter k12. In contrast, the AD model requires only two parameters (the �ow velocity v and the280

dispersion coe�cient D), for the same asymptotic behaviour. The increased number of parameters281

was to be expected in that the Fickian behaviour is only an asymptotic property of the model.282

The additional parameters control the characteristic time/distance above which Fickian behaviour283

bceomes a satisfactory approcimation of the dispersion process.284

3. Experimental setup and results285

3.1. Experimental setup286

The MHPM consists of a PVC column (10 cm in diameter, 15 cm in length) containing a287

cylindrical cavity (2.5 cm in diameter, 10 cm in length) placed in the centre of the column and288

surrounded by 1 mm glass spheres. For more details about the construction of the MHPM, please289

see [48]. The in�owing discharge is supplied using a peristaltic pump (Gilson MP3TM). Step290

tracing experiments are done by injecting salty water (deionised water + NaCl at C0 = 0.1Mol/L)291

into the columns initially containing deionised water. A �ow of 7.5 L/h salty water is induced into292

the study column until the outlet concentration c stabilizes to C0. The outlet concentration is293

measured using a conductimeter (WTW TetraCon 325TM) and saved on a data logger (Campbell294

CR1000TM) every 5 s. The cumulated outlet volume V is measured by weighing the e�uent every295

5 s and saved on the data logger. The study column consists of a series of N connected MHPM.296
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In this paper, six series were investigated with N = 1 to 6. We used the 12 MHPM columns297

described in [48]. For each series, four replicates of the step tracing experiment were conducted for298

four 90° rotations of the study column. The purpose was to eliminate biases arising from possible299

asymmetry in the column geometry and density e�ects. The various column combinations used for300

the various experiments are summarized in Table 1. A mean breakthrough curve is deduced from301

all the replicates.302

N V0 (L) L (m) Column groups Total replicates
1 0.461 0.15 A, B, C, D, E, F, G, H, I, J, K, L 48
2 0.922 0.30 AB, CD, EF, GH, IJ, KL 24
3 1.383 0.45 ABC, DEF, GHI, JKL 16
4 1.844 0.60 ABCD, EFGH, IJKL 12
5 2.305 0.75 ABCDE, FGHIJ 8
6 2.766 0.90 ABCDEF, GHIJKL 8

Table 1: Experiment replicates. N is the number of columns, L is the total length of the porous medium, V0 is the
pore volume.

The main di�erence between the present experimental setup and that in [48] is the MHPM303

connection pattern (Figure 2). In [48], the �rst and last MHPM in the study column could not be304

considered as periodical heterogeneities because they had di�erent �ow inlet and outlet connections305

(Figure 2, top): the �rst MHPM had a divergent �ow inlet and a parallel �ow outlet while the306

last MHPM had a parallel �ow inlet and a convergent �ow outlet. In the present experiment,307

each MHPM of the study column can be considered as a single periodical heterogeneity because308

all MHPM have identical inlet and outlet connections (Figure 2 bottom): a divergent �ow inlet309

and a convergent �ow outlet. The advantage of the present setup is that the breakthrough curve310

can be obtained directly for a single heterogeneity (N = 1).311

Figure 2: De�nition sketch for column connection. Top: experimental setup reported in [48]. Bottom: present
experimental setup.

3.2. Experimental breakthrough curves312

Figure 3 shows the experimental breakthrough curves for N = 1 to N = 6 MHPM. As expected313

from [48], the breakthrough concentration signal tends to the classical S-shaped solution of the AD314
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model as N increases. In the present experiments, this behaviour is achieved for fewer MHPMs315

than in [48] (N = 5 instead of 10). This is attributed to the di�erent injection geometry (compare316

Figure 2, top and Figure 2, bottom). Plotting the time derivative of the normalized concentration317

signal allows two main transport modes to be identi�ed. From the location of the peaks on Figure 3318

for N = 1, the faster mode travels at approximately 3× 10−3 ms−1, while the speed of the slower319

one is approximately 7 × 10−4 ms−1. As time (and distance) grows, the relative amplitude of320

the faster peak decreases and only one peak can be detected in the ∂c/∂t signal for N = 5, 6.321

Note that the time derivatives of the concentration signal for N= 1 to 3 is strikingly similar to322

experimental propagators obtained in heterogeneous porous media [50, 57] and replicated by pore-323

scale modelling [10]. In contrast, the c(t) signal makes these two modes more di�cult to detect,324

even at early times. For this reason, the time derivative ∂c/∂t of the concentration signal is used325

all throughout this manuscript for model benchmarking.326

The enhanced discriminatory power of the time derivative of the c(t) signal over the signal itself327

should not come as a surprise. Since the injection signal is a concentration step, using its time328

derivative ∂c/∂t is equivalent to performing a breakthrough experiment using a Dirac (pulse) input329

signal. From the point of view of the frequency domain analysis, the Laplace/Fourier transforms of330

the Dirac signal gives an equal weight to all frequencies, while the Laplace/Fourier transform of the331

step function is the inverse of the frequency, thus giving less importance to higher frequencies. Since332

our earlier experiments [48] showed that high frequencies are essential in discriminating between333

models, the Dirac injection should be preferred. Such an input signal, however, is extremely334

di�cult to generate with a good control on experimental conditions. Using the time derivative335

∂c/∂t with a step injection is an e�cient way of obviating this di�culty.336
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Figure 3: Experimental breakthrough curves and their time derivatives for N = 1, . . . , 6 MHPM.

4. Model benchmarking337

4.1. Calibration method338

Objective function. As discussed in the introduction, a sound benchmarking should allow for an339

e�cient discrimination of both the long-time and short-time behaviours of the various models340

against experimental datasets. In [48], the short-time behaviour was enhanced by using the Laplace341

transforms of the experimental breakthrough curves. The Laplace transform of the signal was used342

only because the unit transfer function of a single column was not accessible from the data. Since,343

in the present experiments, the c (t) signal is available for N = 1, the Laplace transform can be344

avoided. The governing equations were solved in the (x, t) domain. A second-order, conservative345

�nite volume method [60] was used. This method has proved less di�usive than the second-order-346

in-time MUSCL-Hancock method for small values of the Courant-Friedrichs-Lewy (CFL) number.347

In order to minimise numerical di�usion as much as possible, the computational time step was348

adapted in usch a way that the CFL in the fastest �ow region was equatl to unity. For CFL = 1,349
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numerical di�usion is known to be zero and the exact solutionof the advection part of the equation350

is obtained.Moreover, di�erent mesh sizes were tested. Varying the computational cell size from351

∆x = 1.5×10−5 m (i.e. 1000 cells per 15 cm long column) to ∆x = 1.5×10−4 m (i.e. 100 cells per352

column) showed no noticeable di�erence between the numerical solutions, showing that numerical353

convergence was achieved.354

Let e (t) be the model error, that is, a measure of the di�erence between the model output and355

the experimentally measured concentration (see next paragraph for e (t) de�nitions). The usual356

approach consists in computing the objective function as the Lp-norm of the modelling error over357

the time interval [0, T ] of interest. Dividing by the length of the time integration interval so as to358

remove the bias arising from the length of the time series yields the following objective function359

J1 =

(
1

T

� T

0

|e (t)|p dt

) 1
p

, p > 0 (11)

In practice, the model output is discretized using a time step ∆t over the interval [0, T ], with360

T = n∆t. In the case of a constant ∆t, the trapezium rule leads to the following estimate:361

J1 =

 1

T

n∑
j=1

(
ej + ej+1

2

)p
(tj+1 − tj)

1/p

=

 1

n

n∑
j=1

(
ej + ej+1

2

)p1/p

(12)

where ej is the error at time tj . When the simulation is carried out over a long time, however, the362

objective function J1 gives a small relative weight to the early times of the model response. In order363

to enhance the discriminatory power of early simulated times, it is proposed that the objective364

function be computed not by integrating with respect to time but with respect to frequency. The365

lower and upper bounds of the frequency are respectively ν0 ≡ 1
T and ν1 ≡ 1

∆t . The frequency-366

based objective function is de�ned as367

J2 =

(
1

ν1 − ν0

� ν1

ν0

|e (ν)|p dν

) 1
p

=

(
1

ν1 − ν0

� T

∆t

1

t2
|e (t)|p dt

) 1
p

(13)

The factor 1
t2 illustrates the stronger weight given to small times. The trapezium rule leads to the368

following formula for J2369

J2 =

 1

ν1 − ν0

n−1∑
j=1

(
ej + ej+1

2

)p(
1

tj
− 1

tj+1

)1/p

=

 n

n− 1

n−1∑
j=1

(
ej + ej+1

2

)p(
1

j
− 1

j + 1

)1/p

(14)

Since the objective is to achieve a correct description of both short- and long-time behaviours, the370

�nal objective function is de�ned as the product J1J2.371

Modelling error de�nition. The measure of the modelling error was de�ned on the basis of the372

following considerations: (i) the modelling error is zero whenever the modelled variable is equal373
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to the measured one, (ii) the error must be normalized with the amplitude of the experimental374

variability, assessed from several replicates of the experiment. These two conditions allow at least375

two possible de�nitions to be proposed for the modelling error.376

De�nition 1: the error is zero when the modelled signal is within the min-max interval of the377

experimental signal. When the modelled signal is outside the experimental min-max interval, the378

error is taken equal to the distance to the closer interval bound:379

e (t) =


∂tcmin(t)−∂tcmod(t)

∆∂tc
if ∂tcmod(t) < ∂tcmin(t)

0 if ∂tcmin(t) ≤ ∂tcmod(t) ≤ ∂tcmax(t)

∂tcmod(t)−∂tcmax(t)
∆∂tc

if ∂tcmod(t) > ∂tcmax(t)

(15a)

380

∂tcmin (t) ≡ min
r
∂tcexpe,r (t) , ∂tcmax (t) ≡ max

r
∂tcexpe,r (t) , ∆∂tc = ∂tcmax(t)− ∂tcmin(t) (15b)

where ∂tcexpe,r (t) is the derivative of the concentration measured at time t for the replicate number381

r of the experiment, cmod (t) is the modelled concentration at time t. In this de�nition, the error382

is zero whenever the modelled signal can be explained by the experimental variability between the383

various replicates. Numerical experiments carried out by reducing artici�ally the min-max range384

showed very little sensitivity of the respective performance of the various models considered in this385

paper.386

De�nition 2: the error is de�ned as the distance from the average measurement. In this387

de�nition the scaling factor is σ(t), the standard deviation of ∂tc(t) between the various replicates:388

e (t) =


∂tcav(t)−∂tcmod(t)

σ(t) if ∂tcmod(t) ≤ ∂tcav(t)

∂tcmod(t)−∂tcav
σ(t) if ∂tcmod(t) ≥ ∂tcav(t)

(16a)

389

∂tcav(t) ≡ 1

M

M∑
r=1

∂tcexpe,r(t), σ(t) ≡

[
1

M − 1

M∑
r=1

(∂tcexpe,r(t)− ∂tcav(t))
2

] 1
2

(16b)

Calibration algorithm. In the following, the calibration is performed on �ve experiments simultan-390

eously (N = 1 . . . 5) using the de�nition (16a) for the error. The �nal objective function is taken391

as the sum for each experiment of the product of the two functions J1 and J2:392

J =

5∑
p=1

J1(p)J2(p) (17)

A binary Genetic Algorithm (GA) [36] is used to calibrate the di�erent models. In this kind of393

algorithm, the set of parameters is represented by a "chromosome" in which each parameter is a394

"gene". The gene is described by a min/max interval and a binary encoding of a given length that395

determine the number of possible values taken by each of the Np parameters (e.g Nbits= 6 bits396

= 64 values). As proposed in [47], the initial population is composed of Npop = 8 chromosomes,397
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each of which is the concatenation of the various genes. The population is thus represented by a398

Npop × (NpNbits) matrix initially �lled with randomly generated one and zero bits. A simulation399

is run for each chromosome and the results are compared in term of objective function. Half of the400

chromosomes that yield to the poorest results are discarded through natural selection and replaced401

with new o�springs. The best chromosome is kept intact, and the others are subjected to mutation402

(see [47] for a detailed description).403

A �rst set of parameter bounds is de�ned, with physically permissible values according to the404

experiments. The genetic algorithm searches for the best parameter values within 64 possibilities.405

To ensure a wide coverage of the parameter space, the GA is run during 50,000 generations.406

Accuracy is improved by running the algorithm a second time over a narrower interval de�ned407

about the result of the �rst run, with a width about 15% that of the initial interval.408

The models are calibrated using the �ve experiments (N = 1 to 5) and validated using the409

sixth experiment (N = 6). For the sake of conciseness, the results are displayed for N = 1, 3 and410

5 only.411

4.2. AD model412

The best parameter values obtained for the AD model (Figure 4) are given in Table 2.413

Parameter Meaning Numerical value
D Fickian dispersion coe�cient 4.041× 10−5 m2s−1

u Advection velocity 7.193× 10−4 ms−1

J Objective function 7.76

Table 2: AD model. Calibration results.

As expected, the AD model is not able to reproduce the experimental results for N < 5. The414

modelling results improve as N increases. Owing to the single advection velocity, the model fails to415

represent the main two transport models at small times and distances. This is particularly visible in416

the frequency domain (Figure 4, bottom), where the higher frequencies are inaccurately accounted417

for. While the model seems to perform correctly for N = 5, the plot in the frequency domain shows418

that high frequencies remain underestimated by the model, since the model signal is not within the419

min/max con�dence interval of the experimental curve. As N increases, however, the discrepancy420

between the modelled and experimental signals becomes smaller. This was expected from the421

analysis presented in the Appendices, because the Fickian dispersion model is more appropriate422

for large travel times and distances than for short ones.423
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(a) Calibration (b) Validation

Figure 4: a) Calibration of the AD model. Top: time derivative of the concentration with respect to time. Bottom:
time derivative of the concentration as a function of frequency. From left to right: best result for each experiment,
obtained with the same set of parameters. b) Model validation against the 6-MHPM experiment.

4.3. MI model424

The four parameters to be calibrated for the MI model (2a, 2b) are Θm, k, u and D. The425

remaining parameter is determined automatically, Θim = 1 − Θm. The simulation results after426

calibration (Figure 5), are obtained with the parameter set in Table 3.427

Parameter Meaning Numerical value
D Fickian dispersion coe�cient 3.720× 10−7 m2s−1

k Exchange coe�cient 7.751× 10−2 s−1

u Advection velocity 4.471× 10−3 ms−1

Θim Normalised immobile fraction 0.8333
Θm Normalised mobile fraction 0.1667
J Objective function 3.505

Table 3: MI model. Calibration results.

In contrast with the AD model, the MI model produces too early a peak time. The in�ection428

points in the time signal for N = 1 and in the frequency signal for N = 3 are missed. For429

N = 5, the MI model results are within the bounds of the min/max con�dence interval, which430

is an improvement over the AD model (compare Figs. 4, 5, second column from the right).431

The validation simulation (Figure 5, rightmost column) also shows a better agreement with the432

experimental curve than that of the AD model.433
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(a) Calibration (b) Validation

Figure 5: a) Calibration of the MI model. Top: time derivative of the concentration with respect to time. Bottom:
time derivative of the concentration as a function of frequency. From left to right: best result for each experiment,
obtained with the same set of parameters. b) Model validation against the 6-MHPM experiment.

4.4. MR model434

Calibrating the MR model (3a, 3b) with three immobile regions gives the values in Table 4.435

Figure 6 shows the corresponding breakthrough curves.436

Parameter Meaning Numerical value
D Fickian dispersion coe�cient 6.200× 10−7m2s−1

k1 Exchange coe�cient with region 1 9.303× 10−1 s−1

k2 Exchange coe�cient with region 2 6.820× 10−2 s−1

k3 Exchange coe�cient with region 2 6.519× 10−2 s−1

u Advection velocity 4.471× 10−3 ms−1

Θ1 Normalised immobile fraction 1 0.1017
Θ2 Normalised immobile fraction 2 0.1155
Θ3 Normalised immobile fraction 3 0.5775
Θm Normalised mobile water content 0.1658
J Objective function 1.975

Table 4: RI model. Calibration results.

While the model does not allow the in�ection points in the time- and frequency-domain signals437

to be reconstructed for N = 1, 3, the modelled signal lies within the min/max con�dence interval438

for all calibration runs N = 1, . . . , 5. The validation run (N = 6) produces slightly too early a439

signal, just as the MI model.440
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(a) Calibration (b) Validation

Figure 6: a) Calibration of the MR model with three immobile regions. Top: time derivative of the concentration
with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right:
best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM
experiment.

4.5. Two region MRAD Model441

The simplest possible version of the MRAD model, with two mobile regions, is used. This442

model has eight parameters in total, but only six of them are independent and must be calibrated:443

Θ1, k12, u1, u2, D1 and D2. The best parameter set (Figure 7) is given in Table 5.444

Parameter Meaning Numerical value
D1 Fickian dispersion coe�cient in region 1 1.034× 10−5 m2 s−1

D2 Fickian dispersion coe�cient in region 2 1.897× 10−5 m2s−1

k12 Exchange coe�cient 1.570× 10−2 s−1

u1 Flow velocity in region 1 2.406× 10−3 ms−1

u2 Flow velocity in region 2 5.28× 10−4 ms−1

Θ1 Normalised water content 1 0.124
Θ2 Normalised water content 2 0.876
J Objective function 1.61

Table 5: MRAD model. Calibration results.

Unlike the AD, MI and MR models, the MRAD model allows the in�ection points in the445

experimental signals to be reproduced. Although the slower peak is too early for N = 1 (Figure 7,446

leftmost column), its location is correct for N = 3. In contrast, the faster peak is overestimated for447

N = 3. The small time/high frequency behaviour of the MRAD validation run (N = 6, rightmost448

column on Figure 7) is slightly less accurate than that of the MR model.449
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(a) Calibration (b) Validation

Figure 7: a) Calibration of the MRAD model with two mobile regions. Top: time derivative of the concentration
with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right:
best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM
experiment.

4.6. Three region PAMR model450

As far as the PAMR model is concerned, three regions represent the minimal level of complexity451

for which the model can be expected to bring an improvement over the previously tested models.452

This is because a two region PAMR model would be only a particular case of the two region MRAD453

model. In the previous paragraph, the optimal MRAD model is shown to have non-zero dispersion454

coe�cients D1 and D2. Consequently, a two region PAMR model (with null dispersion) can only455

perform worse than the two region MRAD. Proposing a PAMR model is thus meaningful only for456

R > 2.457

The three region PAMR model requires the calibration of 6 independent parameters: Θ1, Θ2,458

k12, k13, k23, u1, u2 and u3. The best parameter set (Fig 8) is given in Table 6.459

As far as the calibration phase is concerned, the three region PAMR model is the only one to �t460

within the min/max experimental con�dence intervals (albeit passing very near the upper limit for461

N = 1). For N = 3, the modelled signal is improved signi�cantly over that of the MRAD model462

in both the time and frequency domains. As with he previous models, the modelled validation463

signal is slightly too early compared to the experimental one. The large frequency behaviour of the464

PAMR model is better than that of the MRAD model (compare Figs. 7, 8, rightmost columns).465

Parameter Meaning Numerical value
k12 Exchange coe�cient between regions 1 and 2 1.518× 10−2 s−1

k13 Exchange coe�cient between regions 1 and 3 1.252× 10−3 s−1

k23 Exchange coe�cient between regions 2 and 3 5.803× 10−3 s−1

u1 Flow velocity in region 1 3.942× 10−3 ms−1

u2 Flow velocity in region 2 8.668× 10−4 ms−1

u3 Flow velocity in region 3 1.079× 10−4 ms−1

Θ1 Normalised water content 1 0.1389
Θ2 Normalised water content 2 0.1430
Θ3 Normalised water content 3 0.7271
J Objective function 1.592

Table 6: Three region PAMR model. Calibration results.
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(a) Calibration (b) Validation

Figure 8: a) Calibration of the PAMR model with three mobile regions. Top: time derivative of the concentration
with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right:
best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM
experiment.

4.7. Four region PAMR model466

A four region PAMR model is also tested, with the following two objectives: (i) determine467

whether adding extra degrees of freedom allow for better calibration/validation results, (ii) in-468

vestigate whether each of the two dispersion coe�cients in the two region MRAD model could469

not be represented more e�ciently using two regions exchanging mass. The rationale for this is470

presented in Subsection AppendixA.2.4. In this subsection, an asymptotic Fickian behaviour is471

shown to be obtained from two regions with identical fractions Θp(p = 1, 2) exchanging mass. The472

consequence is that each of the two regions in the MRAD model might be subdivided into two473

regions of equal size, resulting in a four region PAMR model. In this version, eight independent474

parameters must be calibrated: Θ1, k12, k13, k34, u1, u2, u3 and u4. The remaining coe�cients475

are inferred automatically because Θ2 = Θ1, Θ3 = Θ4 = 1−Θ1

2 , and kij = kji∀(i, j).476

The best result (Fig. 9) is obtained for the parameter set in Table 7.477

Parameter Meaning Numerical value
k12 Exchange coe�cient between regions 1 and 2 2.180 s−2

k13 Exchange coe�cient between regions 1 and 3 1.561× 10−3 s−1

k34 Exchange coe�cient between regions 3 and 4 2.190× 10−1 s−1

u1 Flow velocity in region 1 4.474× 10−3 ms−1

u2 Flow velocity in region 2 7.624× 10−4 ms−1

u3 Flow velocity in region 3 2.228× 10−5 ms−1

u4 Flow velocity in region 4 1.448× 10−5 ms−1

Θ1 = Θ2 Normalised water contents 1 and 2 0.1277
Θ3 = Θ4 Normalised water contents 3 and 4 0.3723

J Objective function 1.608

Table 7: Four region PAMR model. Calibration results.

Comparing Figures 8-9 shows that the three and four region PAMR models give almost indis-478

cernible results. The objective functions are also extremely similar.479
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(a) Calibration (b) Validation

Figure 9: a) Calibration of the PAMR model with four mobile regions. Top: time derivative of the concentration
with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right:
best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM
experiment.

5. Discussion480

Table 8 summarizes the results obtained after model calibration and validation. The two error481

de�nitions (15a, 16a) presented in this paper are used for the validation.482

Model No. parameters J calibration eq.(16a) J validation eq.(15a) J validation eq.(16a)
AD 2 7.750 2.63× 10−2 1.660
MI 4 3.505 3.45× 10−2 1.948
MR 8 1.975 2.63× 10−2 1.476

MRAD 6 1.610 6.35× 10−2 2.391
PAMR 3 8 1.592 3.40× 10−2 1.753
PAMR 4 8 1.608 3.43× 10−2 1.747

Table 8: Summary of the calibration and validation results for the 6 models. PAMR 3 and PAMR 4 correspond
respectively to the three and four region PAMR models.

The following conclusions may be drawn.483

Firstly, comparing the third and �fth columns in the table allows the respective predictive484

power of the various models at large scales to be assessed. Indeed, these two columns in the485

Table use the same de�nition (16a) for the objective function. While the AD and MI models486

perform poorly compared to the MR, MRAD and PAMR models in the calibration phase, their487

validation performance is similar in the validation phase. This may be explained by the fact that488

the Fickian model (towards which all models are asymptotically equivalent) becomes more valid as489

N increases. The MRAD model is the only one exhibiting a signi�cantly decreasing performance490

in the validation phase compared to the calibration phase.491

Secondly, the respective performance of the various models is the same for both model error492

formulae (15a, 16a). The MR and AD models, that have the smaller validation error (15a),493

also have the smaller validation error (16a). The MI, PAMR3 and PAMR4 models, that have494

intermediate validation error values with formula (15a), also have intermediate validation error495

values with formula (16a). Lastly, the MRAD model consistently has the larger validation error496
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values, be it with the error de�nition (15a) or (16a).497

Thirdly, the error formula (15a) gives objective function values consistently 50 times as small498

as those obtained with the error de�nition (16a). These two modelling error de�nitions serve499

di�erent purposes. The modelling error de�nition (15a) may be seen as a measure of the "plaus-500

ibility" of a model. With this de�nition, two di�erent models giving output signals within the501

min/max experimental error range will yield identically J = 0, even if they depart signi�c-502

antly from the mean experimental signal. With this de�nition, J = 0 means that the di�er-503

ence between the mean experimental measurement and the model output can be fully explained504

by experimental imprecision. These two models may be deemed equally plausible. In contrast,505

the error formula (16a) is a measure of the "accuracy" of a model. With this modelling error506

de�nition, the smaller J , the better the model output �ts the average experimental response.507

In comparison with other studies, the present work features a large number of replicates. Even508

though a model porous media is dealt with, the replicates show signi�cant statistical variations509

in the experimental breakthrough curves, be it for a given MHPM or for the ensemble of the 12510

MHPM used in this study. These statistical variations are illustrated by the min-max interval on511

Figure 3. The interval is the widest for N = 1 MHPM (single period study column) and becomes512

narrower as N increases. Clearly, the statistical variations are stronger at the heterogeneity scale513

(N = 1) and are damped as the porous media tends to homogeneity (N = 6). This shows the514

importance of replicating experiments when heterogeneous porous media are involved. Most pre-515

viously reported transport experiments use a limited number of replicates (a single experiment516

in many cases). This does not allow the experimental variability of the data set to be assessed.517

Given the width of the min-max cloud on Figure 3, many candidate models might �t within the518

experimental con�dence interval, and if they do, they can all be considered as good candidate519

models.520

In order to compare several modelling approaches, using high quality experimental data proves521

essential. A large number of replicates allows the statistical variations of the experimental data522

to be accounted for in the benchmarking process. Another issue in the calibration and validation523

process is the de�nition of the objective function. As shown in [48], many models provide an524

accurate description of the long-time behaviour of the breakthrough curves. In contrast, examining525

the short time behaviour of the experimental data sets leads to rule out a number of models [48].526

Consequently, de�ning an objective function that gives equal weights to small and large time527

behaviours, as done in the present study, is deemed essential to an e�cient model assessment. To528

our best knowledge, this approach has been little used in transport model benchmarking. Using529

the time derivative of the experimental signals in the calibration and validation processes for a530

more e�cient discrimination between models has also been little reported in the literature.531

In this study, we compare �ve modelling approaches: four existing models (AD, MI, MR,532

MRAD) and a new model (PAMR). The originality of the PAMR model is that transport is533
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modelled on a purely advection basis, without the need for dispersion terms. The four existing,534

dispersion-based models use a scale-independent dispersion coe�cient. We insist on this choice535

because as shown in [48], (i) there is no experimental evidence that dispersion varies with time536

and distance, (ii) there exists a model with scale-independent coe�cients that allows the MHPM537

experiments to be reproduced. Moreover, as mentioned in [38], while some studies suggest that dis-538

persion may increases with time and distance, other studies suggest that dispersion may eventually539

tend to a constant asymptotic value.540

If the response of the heterogeneous medium departs from the classical Fickian behaviour, we541

consider proposing a non-Fickian transport more appropriate than making the Fickian transport542

model scale-dependent (as in e.g. [23, 55]). Note that fractional advection-dispersion models were543

developed to eliminate the scale-dependent dispersion [6], albeit with limited success [22]. In the544

authors' view, the challenge tackled by the proposed PAMR model is not only to reproduce the545

non-Fickian transport process on the heterogeneity scale, but also to tend asymptotically towards546

a Fickian transport process (classical AD model) on an observation scale that is much larger than547

the heterogeneity scale.548

Moreover, the PAMR model does not have the undesirable e�ects of the Fickian operator.549

As shown by Einstein [19, 20, 21], the Fickian model is valid only above a given time and space550

scale, under the assumption that a su�cient number of realizations of the Brownian motion have551

been realized and that the movement obeys a Markovian process (that is, no memory of the552

previous displacements is kept after a change in particle position and velocity). If the scale under553

consideration is such that a time or space correlation exists between the successive displacements554

of the solute particles (as is the case when a single MHPM is concerned), the Fickian model should555

be expected to be invalid. Along the same line, Benson et al. [6] insist on the fact that AD model is556

based on the divergence of a vector �eld which is evaluated by the limit of the �ux of this vector on557

the surface of an enclosed volume when the volume shrinks towards zero. To quote these authors:558

"This is valid only if the �ux is indeed a point vector quantity relative to the scale of observation,559

for example, heat �ow in homogeneous material. Then the limit exists. Solute dispersion is a560

counterexample since it is primarily due to velocity �uctuations that arise only as an observation561

space grows larger, invalidating the limit".562

This explains why the AD model fails to reproduce the experimental results at small scales563

(Figure 4a and Table 8). As the size of the domain increases (N = 6 in Figure 4b), the AD model564

becomes better adapted to reproduce the experimental behaviour because the scale of observation565

becomes larger than the scale of one heterogeneity. The objective function for the AD model is566

J = 7.76. The MI model (one mobile region and one immobile region) gives better results than567

the AD model especially for N ≥ 3 (Figure 5) but it still fails to reproduce the experimental568

behaviour for N = 1 (scale of one heterogeneity). The objective function becomes J = 3.505 with569

an improvement of 55% in comparison to AD model. The MR model, which is a generalization570
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of the MI model, gives better results than the MI model with an objective function J = 1.975571

and an improvement of 44% over the MI model (Figure 6). The MR used in this study has one572

mobile region and three immobile regions and it starts to reproduce the experimental behaviour573

at the scale of one heterogeneity (Figure 6a). The MRAD model gives better results than the MR574

model (Figure 7), with an objective function of J = 1.61 (an improvement of 18% in comparison575

to MR). Concerning the PAMR model proposed in this study, we �rst used a simple version with576

three mobile regions. The simulations reproduce fairly well the experimental behaviour especially577

at the scale of one heterogeneity (Figure 8). With an objective function J = 1.592, the accuracy578

of the PAMR model is nearly identical to that of the MRAD model. A four region version of579

the PAMR gave similar simulation results (Figure 9), with J = 1.608. Adding a fourth region580

thus brings no improvement over the three region PAMR. This means that the porous media of581

this study (MHPM) can be well reproduced with a three region PAMR, and that a more complex582

multiple region PAMR will not lead to a better simulation. We consider the PAMR simulations583

very satisfactory in that (i) the PAMR model performs as satisfactorily as other existing models,584

(ii) it describes quite well the experimental behaviour at the scale of both a single and several585

heterogeneities, (iii) this is achieved using scale-independent parameters. Although the PAMR586

model is calibrated on a small observation scale (one to �ve heterogeneities), it asymptotically587

tends to a Fickian behaviour on a large observation scale (6 heterogeneities) with a fairly good588

simulation (Table 8). This asymptotic Fickian behaviour of the PAMR model was to be expected589

because the model is known to lead to the Fickian model for large scales under conditions that are590

met here (see AppendixA and the stability analysis in AppendixB).591

As far as the reported, experimental scale dependence of the dispersion coe�cient is concerned,592

the PAMR model allows such dependence to be explained, as shown in Subsection AppendixA.2.4.593

Solving the two region PAMR equations for a Dirac initial condition shows that the apparent594

dispersion coe�cient obeys an exponential function of time. This is precisely the behaviour inferred595

in [23], where the best �t to the experimental data set was obtained by �tting an exponential596

function D(x). The developments in Subsection AppendixA.2.4 also indicate that there exist two597

di�erent ways of �tting the dispersion coe�cient from �eld measurements. The �rst consists in598

adjusting D so as to �t the average spreading rate of the contaminant plume over time, yielding599

a �rst coe�cient Dav. The second consists in adjusting D so as to �t the time derivative of the600

plume variance, yielding a local estimate Dloc. The variation analysis in AppendixA.2.4 shows that601

Dloc converges faster to the asymptotic value than does Dav. Indeed, the di�erence D∞ − Dloc602

is a decreasing exponential function of time, while D∞ − Dav is proportional to the inverse of603

time. This was to be expected in that Dav incorporates the e�ect of all times on the dispersion604

behaviour, including the times for which the dispersion behaviour is strongly non-Fickian. Dloc605

therefore provides a more accurate estimate of D∞ than Dav. However, in practice, deriving Dav is606

easier than Dloc because the determination of Dloc requires many more sampling times and points607
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than that of Dav .608

Lastly, it is worth pointing out that all multi-region models (including the PAMR model pro-609

posed in this paper) exhibit a certain degree of non-local behaviour, in contrast with the AD model610

that is purely local. Indeed, specifying te initial and boundary conditions for any of the MI, MR,611

MRAD and PAMR models requires that the initial and boundary conditions be speci�ed for each612

of the �ow regions. In practical applications, however, this is not possible. Only the average con-613

centration c =
∑R
i=1 θici within he bulk porous medium is known, and the space-time distribution614

ci(x, t) in every region i is unknown. A straightforward solution would be to set the concentrations615

in all regions to the same average concentration value. However, in real-world applications, such an616

initial state is likely to be most inaccurate. This is because, by de�nition of intermediate time and617

space scales, the concentrations in all �ow regions have not reached equilibrium and can therefore618

not be assumed to be identical. Consequently, the distributions ci(x, t0) to be used for an initial619

condition at a given time t0 are functions of the past behaviours of the �elds ci(x, t), t < t0 and the620

way the various �ow regions have been exchanging solute. This is typically a non-local behaviour,621

a common feature shared by all widely admitted anomalous transport models.622

6. Conclusions623

In this paper, solute dispersion in model periodical heterogeneous media is studied from both624

an experimental and modelling perspective. The following, main results are found.625

A large number of solute transport experiments through periodic heterogeneous porous media626

is presented. The signi�cant number of experiment replicates yield high quality breakthrough627

curves, while allowing the experimental uncertainty to be characterized accurately. The authors628

are willing to make the data sets available to the scienti�c community.629

A calibration procedure putting the emphasis on both small time and large time behaviours is630

set up. It allows for the benchmarking of several transport and dispersion models: the Advection-631

Dispersion (AD), Mobile-Immobile (MI), Multi-Rate (MR), Multi-Region Advection-Dispersion632

(MRAD) and Purely Advective Multi Region (PAMR) models.633

Applying the AD model shows that, at the scale of a single heterogeneity, the dispersion pro-634

cess is non-Fickian. It tends asymptotically to a Fickian behaviour for an increasing number of635

heterogeneity periods. Even without a Fickian dispersion term, the PAMR model is seen to per-636

form as well as the AD, MI, MR and MRAD models. The PAMR is able to simulate transport on637

every heterogeneity scale: on the single heterogeneity scale, PAMR can reproduce a non-Fickian638

behaviour while it tends to the observed, classical Fickian behaviour on the scale of several het-639

erogeneities. Another advantage of the PAMR model is the absence of the undesirable e�ects of640

the Fickian term, such as the physically unsound in�nite propagation speed of the solutions of the641

di�usion equation.642
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AppendixA. Equations of moments643

AppendixA.1. Spatial moments for the AD model644

The present subsection is devoted to the development of the equations for the spatial moments645

of the propagator in the AD model. The propagator is the solution c (x, t) of the AD equation (1)646

for the initial condition c (x, 0) = δ (x). The governing equation is �rst rewritten in the coordinate647

system moving at speed u:648

∂tc−D∂xxc = 0 (A.1)

Denoting by c(p) the pth-order spatial moment of the concentration649

c(p) ≡
� +∞

−∞
xpc (x, t) dx (A.2)

the governing equations for the moments are obtained by multiplying equation (A.1) by xp and650

integrating over the real axis:651

� +∞

−∞
xp (∂tc−D∂xxc) dx = 0 (A.3)

Using integration by parts to eliminate the higher-order derivatives, using the property lim
x→±∞

c (x, t) =652

0, the following equations are obtained653

dtc
(0) = 0⇒ c(0) (t) = 1 (A.4a)

654

dtc
(1) = u⇒ c(1) (t) = 0 (A.4b)

dtc
(2) − 2D = 0⇒ c(2) (t) = 2Dt (A.4c)

The well-known property of a variance of particle locations proportional to time is retrieved.655

Note however that equation (A.4c) leads to two expressions for the dispersion coe�cient, a local656

dispersion (Dloc) and an average dispersion (Dav):657

Dloc =
1

2
dtc

(2) (A.5a)

658

Dav =
1

2t
c(2) (A.5b)

The �rst is obtained from the di�erential equation (A.4c), the second is obtained from its solution659

under the assumption of a constant D. Eq. (A.5a) re�ects a local behaviour at time t while Eq.660

(A.5b) re�ects an average behaviour over the time interval [0, t]. Both expressions are equivalent661

when D is constant. When D is not constant (as e.g. in the MRAD model considered in Section662
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A.2), Dav incorporates the in�uence of early times when the behaviour is non-Fickian and can be663

expected to take a longer time to converge to the asymptotic value than the local coe�cient Dloc.664

AppendixA.2. Spatial moments for the MRAD model665

AppendixA.2.1. Governing equations666

For the sake of simplicity, the behaviour is analyzed in the coordinate system that moves at667

the average speed u =
∑R

i=1 Θiui∑R
i=1 Θi

. In this coordinate system, the governing equations are668

Θi∂tci + Θivi∂xci −ΘiDi∂xxci =
∑
j 6=i

kij (cj − ci) (A.6a)

669

kij = kji,

R∑
i=1

Θivi = 0 (A.6b)

where the vi are de�ned as in (6). Integrating (A.6a) with respect to x over (−∞,+∞), using the670

property lim
x→±∞

c (x, t) = lim
x→±∞

∂xc (x, t) = 0 yields671

dtc
(0)
i =

R∑
j 6=i

kij
Θi

(
c
(0)
j − c

(0)
i

)
(A.7)

Since c
(0)
i (t = 0) = 1 ∀i, dtc

(0)
i remains identically zero at all times, which results in672

c
(0)
i (t) = 1∀ t ≥ 0 (A.8)

Multiplying equation (A.6a) by x, integrating with respect to x over (−∞,+∞), using integration673

by parts and the property lim
x→±∞

c (x, t) = lim
x→±∞

∂xc (x, t) = 0 yields674

dtc
(1)
i = vic

(0)
i +

R∑
j 6=i

kij
Θi

(
c
(1)
j − c

(1)
i

)
= vi +

R∑
j 6=i

kij
Θi

(
c
(1)
j − c

(1)
i

)
(A.9)

Multiplying equation (A.6a) by x2, integrating with respect to x over (−∞,+∞), using integration675

by parts and the property lim
x→±∞

c (x, t) = lim
x→±∞

∂xc (x, t) = lim
x→±∞

∂xxc (x, t) = 0 yields676

dtc
(2)
i = vic

(1)
i + 2Dic

(0)
i +

R∑
j 6=i

kij
Θi

(
c
(2)
j − c

(2)
i

)
= vic

(1)
i + 2Di +

R∑
j 6=i

kij
Θi

(
c
(2)
j − c

(2)
i

)
(A.10)

Multiplying by Θi and summing over i = 1, . . . , R , using the property
∑R
i=1 Θivi = 0 yields677

equation (6).678
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AppendixA.2.2. Small time behaviour679

At t = 0, c
(1)
i = 0∀i and the governing equation (A.9) simpli�es to680

(
dtc

(1)
i

)
t=0

= vi (A.11)

Consequently the following equivalence holds681

c
(1)
i (t) ∼

0
vit (A.12)

Moreover, c
(2)
i (t = 0) = 0 ∀ i and equation (6) becomes682

dtc
(2) =

R∑
i=1

Θi

(
v2
i + 2Di

)
(A.13)

with an equivalent dispersion coe�cient obtained from (A.5a, A.5b):683

Dloc =

R∑
i=1

Θi

(
v2
i t+Di

)
(A.14a)

684

Dav =

R∑
i=1

Θi

(
1

2
v2
i t+Di

)
(A.14b)

For small times, the equivalent dispersion coe�cient is observed to increase linearly with distance.685

However the growth rate of the average dispersion coe�cient is smaller than that of the local one.686

AppendixA.2.3. Long time behaviour687

The solution is asymptotically stable (see AppendixB), consequently there exists a set of �nite688

asymptotic values c
(1,∞)
i such that689

c
(1)
i −→

t→+∞
c
(1,∞)
i ∀i (A.15)

Substituting the property (A.15) into equation (A.10) gives the following long time, asymptotic690

behaviour691

dtc
(2) =

R∑
i=1

Θi

(
vic

(1,∞)
i + 2Di

)
(A.16)

The time derivative of the variance of particle locations becomes constant and a classical Fickian692

behaviour is achieved, with (A.5a) simplifying into Equation (9).693

AppendixA.2.4. A particular case: the two region model694

The simplest possible model consists of two regions :695

R = 2, Θ2 = 1−Θ1, v2 = −Θ1

Θ2
v1 (A.17)
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Solving equations (A.9, 6) under assumptions (A.17) yields the following solution696

c
(1)
i =

Θ1Θ2

k12

(
1− exp

(
− k12

Θ1Θ2
t

))
vi, i = 1, 2 (A.18a)

697

c(2) =
Θ1Θ2

k12

(
Θ1v

2
1 + Θ2v

2
2

)(
t+

Θ1Θ2

k12

[
exp

(
− k12

Θ1Θ2
t

)
− 1

])
+ 2 (Θ1D1 + Θ2D2) t (A.18b)

which yields698

Dloc =
1

2

Θ1Θ2

k12

(
Θ1v

2
1 + Θ2v

2
2

)(
1− exp

(
− k12

Θ1Θ2
t

))
+ Θ1D1 + Θ2D2 (A.19a)

699

Dav =
1

2

Θ1Θ2

k12

(
Θ1v

2
1 + Θ2v

2
2

)1 + Θ1Θ2

exp
(
− k12

Θ1Θ2
t
)
− 1

kt

+ Θ1D1 + Θ2D2 (A.19b)

with the following limit behaviours700

Dloc ∼
0

Θ1D1 + Θ2D2 +
1

2
Θ1Θ2

(
Θ1v

2
1 + Θ2v

2
2

)
t (A.20a)

701

Dav ∼
0

Θ1D1 + Θ2D2 +
1

4
Θ1Θ2

(
Θ1v

2
1 + Θ2v

2
2

)
t (A.20b)

702

Dloc ∼∞ Dav ∼∞ D∞ = Θ1D1 + Θ2D2 +
1

2

Θ1Θ2

k12

(
Θ1v

2
1 + Θ2v

2
2

)
(A.20c)

Long time and small time behaviours. A further restriction of the model (A.17) is obtained under703

the particular assumption D1 = D2 = 0,Θ1 = Θ2 = 1
2 , v1 = −v2 = −a. This leads to a particular704

case of the telegraph equation [4]. Its �rst mention as a model for turbulent dispersion is attributed705

to Davydov [15]. It gives a formula similar to the well-known formula established by Einstein in706

its publications on Brownian movement [19, 20, 21]:707

D∞ =
a2

8k12
(A.21)

with k12 = 1
4τ , τ being the time scale of the Brownian movement. For small times, the advective708

process is predominant, with a so-called ballistic behaviour (a variance growing proportionally709

to the square of time). For large times, an asymptotic Fickian regime is reached. The Fickian710

behaviour is reached after a few times k−1
12 . This shows that a Fickian behaviour can be obtained711

from a purely advective model beyond a certain time scale. At smaller times, the dispersion712

process is anomalous. The advantage of the purely advective model over the Fickian model is that713

it implicitly rules out in�nite signal propagation speeds.714

Convergence rate to the asymptotic value D∞. Equations (A.19a, A.19b) can be rewritten as715

D∞ −Dav = A
exp(−Kt)

Kt
∼

t→∞

A

Kt
(A.22a)
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D∞ −Dloc = A exp(−Kt) (A.22b)

716

A =
K

2
(Θ1v

2
1 + Θ2v

2
2),K =

k12

Θ1Θ2
(A.22c)

Comparing equations (A.22a, A.22b) shows that the local estimate Dloc of the dispersion coe�cient717

tends faster to the asymptotic value D∞ than does the average estimate Dav.718

AppendixB. Stability of the solution719

The purpose of this Appendix is to study the stability properties of the system (A.9). Note720

�rst that this system can be written in vector form as721

dtx = v + Mx (B.1a)

722

x ≡
[
c

(1)
1 , . . . , c

(1)
R

]T
, v ≡ [v1, . . . ,vR]

T
, M = [Mij ] (B.1b)

where the elements Mij are de�ned as in (8). As shown in AppendixA, if the solutions of (B.1a)723

are stable, a Fickian behaviour leading to normal di�usion is obtained in the limit of long times.724

It is �rst noticed that the matrix M can be written in the form M = −SD, with725

D = diag [Θi] , Sij = −Mij

Θj
=


∑
p 6=i

kip
ΘiΘj

if i = j

− kij
ΘiΘj

if i 6= j
(B.2)

Consequently, the matrix S is symmetric.726

Result 1. The matrix S is positive semide�nite.727

Proof. For any vector x = [x1, . . . , xR]
T
, rearranging and noting that kij ≥ 0∀ (i, j) gives728

xTSx =

R∑
i=1

∑
j>i

kij

(
xi
Θi
− xj

Θj

)2

≥ 0 ∀x (B.3)

0729

Corollary 1. The eigenvalues of S are all positive.730

Proof. Let λ be an eigenvalue of S and x a corresponding eigenvector. Then731

xTSx = xTλx = λxTx = λ ‖x‖2 ≥ 0 (B.4)

0732

Theorem1. Let S and D be symmetric and positive de�nite matrices. Then the eigenvalues of SD733

are all strictly positive.734
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Proof. There exists an orthogonal matrix C such that S = Cdiag [λi]C
T . De�ning S1/2 ≡735

Cdiag
[√
λi
]
CT , it is noted that the matrices S1/2DS1/2 and SD are similar because SD =736

S1/2S1/2DS1/2S−1/2 (note that S−1/2 exists because the
√
λi are all nonzero). Therefore the ei-737

genvalues of SD are the same as the eigenvalues of S1/2DS1/2. Moreover, the matrix S1/2DS1/2 is738

symmetric and positive de�nite because D is symmetric, positive de�nite and S1/2 is symmetric.739

Consequently, the eigenvalues of SD are all striclty positive. 0740

Corollary 2. The eigenvalues of −SD are all strictly negative.741

Theorem 2. Let S and D be symmetric and positive semide�nite matrices. Then the eigenvalues742

of SD are all positive.743

Proof. Let λ1, . . . , λR be the (positive) eigenvalues of S. There exists an orthogonal matrix C744

such that S = Cdiag [λi]C
T . De�ning Sε = Cdiag [λi + ε]CT , ε > 0. Following the reasoning of745

Theorem1, S
−1/2
ε exists and the eigenvalues of SεD are the same as the eigenvalues of S

1/2
ε DS

1/2
ε .746

Consequently, they are all positive. Since SεD → SD as ε → 0, it follows from the continuity of747

the spectrum of a matrix that the eigenvalues of SD are all positive.748

Corollary 3. The eigenvalues of M = −SD are all negative.749

Result 2. The solutions of the di�erential system dtx = Mx converge to an equilibrium solution.750

Proof. Since M and MT have the same spectrum, their eigenvalues are all negative. Therefore,751

the solutions of dtx = Mx and dtx = MTx have the same asymptotic behaviour. Let x be the752

solution of dtx = MTx. De�ning Q ≡ 1
2

∑R
i=1

1
Θi
x2
i , one has753

dtQ =

R∑
i=1

1

Θi
xidtxi =

(
D−1x

)T
dtx =

(
D−1x

)T
MTx = xTD−1MTx = −xTSx (B.5)

From Result 1, the matrix −S is negative, semide�nite. Consequently, dtQ ≤ 0 and 0 ≤ Q (t) ≤754

Q (0) for t > 0. Consequently, the solution x (t) is bounded. Since the eigenvalues of MT are755

real and negative (from Corollary 3), it follows from the theory of linear di�erential equations that756

there exists a vector x∞ such that x −→
t→∞

x∞.0757

Result 3. If v ∈ rgeM, the solution of the non-homogeneous system dtx = v +Mx converge to an758

equilibrium solution.759

Proof. By assumption, there exists a such that Ma = v. Then dtx = v + Mx ⇐⇒ dt (a + x) =760

v + Mx = M (a + x). Consequently, a + x satis�es the homogeneous system dtx = Mx and761

converges to an equilibrium solution, hence the result.762
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Result 4. If M is block-diagonal, M =




M11 · · · M1r

...
...

Mr1 · · · Mrr

 0

0 A


, a necessary condition for763

v = [v1, . . . , vR]
T
to belong to rgeM is764

r∑
i=1

Θivi = 0 (B.6)

Proof. If v belongs to the range of M, there exists a vector a such that v = Ma. Then, using the765

symmetry property kij = kji ∀ (i, j), one has766

r∑
i=1

Θivi =

r∑
i=1

Θi

r∑
j=1

Mijaj =

r∑
i=1

Θi

r∑
j = 1

j 6= i

kij
Θi

(aj − ai) =

r∑
i=1

r∑
j = 1

j 6= i

kij (aj − ai) = 0 (B.7)

0767

Corollary 4. The same result holds for the R− r remaining elements of v,
∑R
i=r+1 Θivi = 0.768
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