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This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scaledependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advectiondispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed dispersion model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small ad large time scale behaivours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable eects associated with the usual Fickian operator (namely the innite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.

Introduction

In many circumstances, the classical Fickian operator fails to account correctly for the behaviour of solutes in heterogeneous porous media. The Advection-Dispersion (AD) model exhibits poor performance. Attempting to calibrate this model against eld or laboratory data has been seen to lead to contradictory conclusions. Field scale dispersion data have been reported to yield a growing trend for the dispersion coecient D with the scale of the experiment [START_REF] Gelhar | A critical review of data on eld scale dispersion in aquifers[END_REF]. A number of laboratory experiments, in contrast, indicate that no clear trend can be identied for the variations in D with experiment scale. For instance, [START_REF] Silliman | Laboratory evidence of the scale eect in dispersion of solutes in porous media[END_REF] report an increasing trend for the dispersion coecient. In [START_REF] Irwin | Experimental investigation of characteristic length scale in periodic heterogeneous porous media[END_REF], an increasing trend is found for D (x), but the authors notice that this conclusion may be biased by experimental noise. In [START_REF] Sternberg | Laboratory observation of nonlocal dispersion[END_REF], identifying a trend for the variations of D with distance is found very dicult if not impossible. In [START_REF] Danquigny | Laboratory tracer tests on threedimensional reconstructed heterogeneous porous media[END_REF], no scaling trend is identied for the dispersion coecient, even over short distances. More recently, laboratory experiments carried out on an articial, periodic porous medium [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] show that contradictory trends in D (x) can easily be inferred if the breakthrough curves are not sampled with sucient accuracy and the tracer experiments are not replicated a sucient number of times. Several models with scale-dependent dispersion have been proposed in the literature [START_REF] Aral | Analytical solutions for two-dimensional transport equation with time-dependent dispersion coecients[END_REF][START_REF] Jayawardena | Numerical solution of the dispersion equation using a variable dispersion coecient: method and applications[END_REF][START_REF] Pickens | Scale-dependent dispersion in a stratied granular aquifer[END_REF][START_REF] Pickens | Modeling of scale-dependent dispersion in hydrogeologic systems[END_REF][START_REF] Yates | An analytical solution for one-dimension transport in heterogeneous porous media[END_REF][START_REF] Yates | An analytical solution for one-dimensional transport in porous media with an exponential dispersion function[END_REF][START_REF] Zhang | Solute movement through homogeneous and heterogeneous soil columns[END_REF][START_REF] Zhou | A conceptual fractal model for describing time-dependent dispersivity[END_REF]. All these models have shown a good ability to reproduce eld-or laboratory-obtained experimental breakthrough curves via a proper parameter tuning. This makes a benchmarking of their respective predictive capabilities very dicult [START_REF] Gao | Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column[END_REF]. The following models have been used extensively for benchmarking against experimental data sets.

The Fractional Advection-Dispersion (FAD) model builds up on the Continuous Time Random Walk (CTRW) formalism [START_REF] Klafter | Stochastic pathway to anomalous diusion[END_REF][START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF][START_REF] Montroll | Random walk on lattices[END_REF]. FAD occurs when the motion of the solute molecules is non-Brownian. Dierent behaviours may be obtained depending on the assumptions made on the characteristic times and lengths of molecule jumps [START_REF] Klafter | Stochastic pathway to anomalous diusion[END_REF][START_REF] Kumar | Memory-induced anomalous dynamics: Emergence of diusion, subdiusion, and superdiusion from a single random walk model[END_REF][START_REF] Kavvas | Fractional Ensemble Average Governing Equations of Transport by Time-Space Nonstationary Stochastic Fractional Advective Velocity and Fractional Dispersion. I: Theory[END_REF][START_REF] Kavvas | Governing equations of transient soil water ow and soil water ux in multi-dimensional fractional anisotropic media and fractional time[END_REF]. In the presence of trapping eects, an inverse power law asymptotic behaviour may be observed for the probability density function of solute residence time in the porous media. This results in subdiusive dispersion processes, with a variance of molecule positions growing slower than time. Another type of non-Fickian behaviour is that of Levy motion, whereby the characteristic time for particle motion is nite, but the characteristic length of the jumps in molecule positions is innite [START_REF] Benson | The fractional-order governing equation of Lévy motion[END_REF][START_REF] Benson | Application of a fractional advectivedispersion equation[END_REF]. The resulting behaviour is called superdiusion, with a variance of molecule positions growing faster than time.

All these models share the common feature that the governing equations incorporate fractional derivatives with respect to time and/or space, hence the term "fractional". FAD models have been tested against experimental data sets obtained from laboratory experiments [START_REF] Berkowitz | Anomalous transport in laboratory-scale, heterogeneous porous media[END_REF][START_REF] Cortis | Anomalous transport in classical soil and sand columns[END_REF][START_REF] Huang | Evidence of one-dimensional scale-dependent fractional advectiondispersion[END_REF][START_REF] Lévy | Measurement and analysis of non-Fickian dispersion in heterogeneous porous media[END_REF].

In [START_REF] Huang | Evidence of one-dimensional scale-dependent fractional advectiondispersion[END_REF] the best t was obtained by making the dispersion parameters scale-dependent. In [START_REF] Sun | Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media[END_REF], a FAD model was tested against in situ data obtained from experiments at the scale of 1m to 1km.

Comparisons with data observed at the metric scale [START_REF] Berkowitz | Non-Fickian transport and multiplerate mass transfer in porous media[END_REF] showed that time-varying fractional orders of dierentiation were essential in reconstructing the heavy tailing in the observed breakthrough curves.

The Mobile-Immobile (MI) model [START_REF] Gaudet | Solute transfer, with exchange between mobile and stagnant water, through unsaturated sand[END_REF][START_REF] Van Genuchten | Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium (3H2O)[END_REF] is based on the assumption of a mobile region (where the solute obeys a standard AD model) exchanging with an immobile region. The MI formalism has been used to describe dierent physical settings. The simple structure of this model allows analytical solutions to be obtained for a number of congurations [START_REF] De Smedt | A generalized solution for solute ow in soils with mobile and immobile water[END_REF][START_REF] Goltz | Simulations of physical nonequilibrium solute transport models: Application to a large-scale eld experiment[END_REF][START_REF] Parker | Constraints on the validity of equilibrium and rst-order kinetic transport models in structured soils[END_REF][START_REF] Van Genuchten | Some exact solutions for solute transport through soils containing large cylindrical macropores[END_REF]. Several versions of the MI model with a scale-dependent dispersion coecient have been explored in [START_REF] Gao | A new mobile-immobile model for reactive solute transport with scale-dependent dispersion[END_REF]. The best t against the experimental laboratory results obtained in [START_REF] Huang | Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns[END_REF] was achieved for a dispersion coecient varying exponentially with the travelled distance.

The Multiple Rate (MR) model [START_REF] Haggerty | Multiple-rate mass transfer for modeling diusion and surface reactions in media with pore-scale heterogeneity[END_REF] is a generalization of the MI model. Several immobile regions exchange with the mobile region according to dierent exchange rates. Increasing the number of regions and varying the exchange kinetics allows for anomalous diusion processes to be reproduced via a proper distribution of the exchange rates between the mobile and immobile fractions [START_REF] Dentz | Transport behavior of a passive solute in continuous time random walks and multirate mass transfer[END_REF].

Multiple Region Advection-Dispersion (MRAD) models have been proposed to account for the dispersion of solutes in heterogeneous soils in the presence of macropores, high-or low-permeability inclusions or several spatial scales of hydraulic heterogeneity. Note that the term MRAD is not the name given to these models by their authors but a term proposed by the authors of the present paper for the sake of terminology convenience. In these models, several dierent mobile regions, each having its own velocity elds and dispersion coecient, exchange mass. Several closure models have been investigated for the exchange between the two regions. Although most applications include two mobile regions [START_REF] Ahmadi | Transport in chemically and mechanically heterogeneous porous media V. Two-equation model for solute transport with adsorption[END_REF][START_REF] Cherblanc | Two-medium description of dispersion in heterogeneous porous media: calculation of macroscopic properties[END_REF][START_REF] Cherblanc | Two-domain description of solute transport in heterogeneous porous media: Comparison between theoretical predictions and numerical experiments[END_REF][START_REF] Gerke | A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media[END_REF][START_REF] Gerke | Evaluation of a rst-order water transfer term for variably saturated dual-porosity ow models[END_REF][START_REF] Gerke | Macroscopic representation of structural geometry for simulating water and solute movement in dualporosity media[END_REF][START_REF] Gwo | Mass transfer in structured porous media: Embedding mesoscale structure and microscale hydrodynamics in a two-region model[END_REF][START_REF] Skopp | Solute movement in structured soils: Two-region model with small interaction[END_REF], applications with three mobile regions have been reported [START_REF] Gwo | Using a multiregion model to study the eects of advective and diusive mass transfer on local physical non-equilibrium and solute mobility in a structured soil[END_REF]. Two region models have been tested against numerical experiments [START_REF] Cherblanc | Two-medium description of dispersion in heterogeneous porous media: calculation of macroscopic properties[END_REF][START_REF] Cherblanc | Two-domain description of solute transport in heterogeneous porous media: Comparison between theoretical predictions and numerical experiments[END_REF][START_REF] Davit | Equivalence between volume averaging and moments matching techniques for mass transport models in porous media[END_REF] and laboratory experiments [START_REF] Goler | Comparison of theory and experiment for solute transport in highly heterogeneous porous medium[END_REF][START_REF] Goler | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF]. They are shown to become equivalent to a single region model with a Fickian behaviour (that is the AD model) in the limit of long times and travel distances [START_REF] Ahmadi | Transport in chemically and mechanically heterogeneous porous media V. Two-equation model for solute transport with adsorption[END_REF][START_REF] Davit | Equivalence between volume averaging and moments matching techniques for mass transport models in porous media[END_REF][START_REF] Goler | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF]. Conversely, they are deemed more accurate than the AD model for small times and highly contrasted hydraulic properties [START_REF] Goler | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF].

All these models have shown a good ability to reproduce eld-or laboratory-obtained experimental breakthrough curves via a proper parameter tuning. This makes a benchmarking of their respective predictive capabilities very dicult. As shown in [START_REF] Goler | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF], tracer tests involving a strong heterogeneity allow for a better model discrimination than tests involving weakly variable porous media. Moreover, pulse tracer tests are also deemed more discriminatory in terms of model response than step injection tests, especially for long time and/or travel distances [START_REF] Goler | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF]. However, most experiments report either step tracer tests [START_REF] Huang | Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns[END_REF][START_REF] Irwin | Experimental investigation of characteristic length scale in periodic heterogeneous porous media[END_REF][START_REF] Li | Mass transfer in soils with local stratication of hydraulic conductivity[END_REF][START_REF] Niehren | Articial colloid tracer tests: development of a compact online microsphere counter and application to soil column experiments[END_REF][START_REF] Silliman | Laboratory evidence of the scale eect in dispersion of solutes in porous media[END_REF][START_REF] Sternberg | Laboratory observation of nonlocal dispersion[END_REF] or very long pulses that may be interpreted as a succession of two steps [START_REF] Saiers | Colloidal silica transport through structured, heterogeneous porous media[END_REF][START_REF] Silliman | Laboratory evidence of the scale eect in dispersion of solutes in porous media[END_REF][START_REF] Goler | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF]. A few exceptions are reported in [START_REF] Goler | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF][START_REF] Greiner | Magnetic resonance imaging of paramagnetic tracers in porous media: quantication of ow and transport parameters[END_REF][START_REF] Ngoc | Two-scale modeling of solute dispersion in unsaturated double-porosity media: homogenization and experimental validation[END_REF].

As shown in a previous publication [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF], the AD, FAD and MI models with scale-independent parameters fail to account for the behaviour of experimental breakthrough curves at small space and time scales when the porous medium is strongly heterogeneous and periodic. Two main reasons were identied for this. Firstly, the size of the Representative Elementary Volume (REV) [START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF] is at least one order of magnitude larger than the spatial period of the Model Heterogeneous Porous Medium (MHPM). Dispersion models are not valid at spatial scales smaller than the REV size.

Secondly, a Laplace analysis of the theoretical AD, FAD and MI modelled breakthrough curves [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] shows that these models yields innite signal propagation speeds. An innite concentration wave speed is clearly physically unrealistic. Besides, the nite propagation speed of the concentration signal exerts a strong inuence on the behaviour of the experimental breakthrough curves for small times and distances [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF], which explains that the above three models are more inaccurate for small times and short distances than for long time and distances. That Fickian-based dispersion models only seem to become more accurate as the spatial scale increases is only due to the fact that the Peclet number increases with distance (therefore, dispersion, albeit modelled wrongly, has a decreasing importance in the modelled signal) [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF]. These conclusions are to be extended to the FAD model with superdiusive behaviour. Indeed, this model is obtained under the assumption of heavy-tailed PDFs for the particle jump length [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF], thus allowing for innite particle velocities. A conclusion of the study [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] is therefore that models where advective processes play a predominant role should be expected to give better results than AD-and FAD-based models at small scales.

The experimental results in [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] also indicate that previously identied scale dependency of the dispersion coecient may easily be explained by the variability between the replicates of a same experiment.

The objectives of the present paper are the following.

(i) Build a high-quality experimental database for Intermediate Scale Experiments (ISE) of dispersion of tracers in heterogeneous porous media. In [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] it was chosen to build a periodic heterogeneous porous medium made of a series of 15 cm long columns enclosing high permeability conduits surrounded by single-sized glass beads. However, for a single period and two periods, the results were biased by the inuence of the inlet and outlet boundary conditions.

Consequently, experiments were meaningful for a minimum of three successive periods. In the present work, the experimental setup was revised so that the experiments be meaningful even for a single period.

(ii) Propose a model benchmarking methodology with an enhanced discriminatory power. Bearing in mind the conclusions in [START_REF] Goler | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF], the proposed methodology consists in realizing a step injection and using both the breakthrough curve and its time derivative to benchmark the various models. Moreover, for each model, a single parameter set is used to reproduce the experimental signal at all scales. This approach is retained because the ISE [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] shows that there exists a model with scale-independent coecients that allows the breakthrough curves to be reproduced at all scales (although this model is unknown).

(iii) Benchmark the AD, MI, MR and MRAD models against the experimental breakthrough curves and their time derivatives.

(iv) Determine whether a purely advective multiregion model can provide a viable alternative to models embedding a Fickian or fractional Laplacian description of dispersion, with the advantage that a purely advective model involves nite signal propagation speeds.

A brief description of the AD, MI, MR and MRAD models for the dispersion of tracers (that is, inert solutes not subjected to degradation, adsorption/desorption and the concentration of which does not inuence te ow eld) is given in Section 2 as well as the proposed Purely Advective Multiregion (PAMR) model. The experimental setup is described in Section 3. The model benchmarking procedure and experimental results are described respectively in Sections 4. Sections 5 and 6 are devoted to discussion and conclusions.

Models

The AD model

The simplest known model for passive solute transport in porous media is the Advection-Dispersion (AD) model. The governing equation is the following:

∂ t c + u∂ x c -D∂ xx c = 0 ( 1 
)
where c is the concentration, u is the ow velocity and D the dispersion coecient. In the case of a constant input concentration at the upstream boundary, this model yields an S-shaped solution for the concentration and a gaussian-shaped for its derivative with respect to time.

The MI-MR model

The mobile-immobile (MI) model was rst proposed in [START_REF] Van Genuchten | Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium (3H2O)[END_REF]. In what follows, owing to the assumption of passive transport, the adsorption/desorption terms are cancelled in the governing equations. Using the assumptions of constant water contents for the mobile and immobile regions, the governing equations are simplied into

∂ t c m + u∂ x c m -D∂ xx c m = k Θ (c im -c m ) (2a) 
∂ t c im = k (1 -Θ) (c m -c im ) (2b) Θ = θ m θ m + θ im (2c)
where c m and c im are respectively the concentrations in the mobile and immobile regions, θ m and θ im are respectively the water contents of the mobile and immobile regions, Θ is the normalized water content of the mobile fraction, and k is the exchange rate constant between the mobile and immobile regions.

The MI model may be called a single rate model since it contains a single exchange rate constant k between mobile and immobile regions. A generalization of the MI model, called the Multiple Rate (MR) model, was later proposed by [START_REF] Haggerty | Multiple-rate mass transfer for modeling diusion and surface reactions in media with pore-scale heterogeneity[END_REF]. In this model the mobile region can exchange with multiple immobile regions, each having its own exchange rate constant k j . Using again the assumption of passive scalar transport, normalizing the water contents of the mobile and immobile regions lead to:

∂ t c m + u∂ x c m -D∂ xx c m = N j=1 k j Θ ((c im ) j -c m ) (3a) ∂ t (c im ) j = k j Θ j (c m -(c im ) j ) j = 1, . . . , N (3b) 
Where N is the number of immobile regions with normalized water content Θ j , and k j (j = 1, ... ,N ) are the multi-exchange rate constants between the mobile and the N immobile regions. For the sake of consistency, in this paper the MI and MR models designate the single-rate mobile-immobile model and the multi-rate mobile-immobile model respectively.

The MRAD model

The Multiple Region Advection-Dispersion (MRAD) model is based on the assumption of R regions owing in parallel, exchanging mass according to linear kinetics [START_REF] Ahmadi | Transport in chemically and mechanically heterogeneous porous media V. Two-equation model for solute transport with adsorption[END_REF][START_REF] Cherblanc | Two-medium description of dispersion in heterogeneous porous media: calculation of macroscopic properties[END_REF][START_REF] Cherblanc | Two-domain description of solute transport in heterogeneous porous media: Comparison between theoretical predictions and numerical experiments[END_REF][START_REF] Gerke | A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media[END_REF][START_REF] Gerke | Evaluation of a rst-order water transfer term for variably saturated dual-porosity ow models[END_REF][START_REF] Gerke | Macroscopic representation of structural geometry for simulating water and solute movement in dualporosity media[END_REF][START_REF] Gwo | Mass transfer in structured porous media: Embedding mesoscale structure and microscale hydrodynamics in a two-region model[END_REF][START_REF] Skopp | Solute movement in structured soils: Two-region model with small interaction[END_REF].

In each of these regions, the AD model is assumed valid. The original model allows for dierent heads in the various ow regions, thus allowing for water exchange between the regions in addition to solute exchange. In the present experiments, however, the upstream and downstream sections of each model column are connected to a single inow and outow pipe, thus making the head in all regions identical on the scale of the heterogeneity. Consequently, the hydraulic source term between the various regions is set to zero. Bearing in mind the assumption of passive scalar transport, any degradation or adosrption/desorption terms are set to sero. Normalizing the water contents as in the previous subsection leads to the following governing equations:

∂ t c i + u i ∂ x c i -D i ∂ xx c i = j =i k ij Θ i (c j -c i ) , i = 1, . . . , R (4a) 
k ij = k ji ∀ (i, j) (4b) 
Θ i = θ i R j=1 θ j , R i=1 Θ i = 1 (4c)
and the total concentration in the porous medium is dened as

c (x, t) ≡ R i=1 Θ i c i (x, t) (5) 
As mentioned in the introduction, most applications involve R = 2 regions, with the exception of [START_REF] Gwo | Using a multiregion model to study the eects of advective and diusive mass transfer on local physical non-equilibrium and solute mobility in a structured soil[END_REF] where R = 3 and k ij = 0 only for j = i ± 1. As shown in AppendixA, the variance c (2) of the solute particle locations obeys the following equation

d t c (2) = R i=1 Θ i v i c (1) i + 2D i , v i ≡ u i - R j=1 Θ j u j (6) 
where c

(1) i

is the average abscissa of the particle locations in the region i, obeying

d t c (1) i = v i + j =i k ij Θ i c (1) j -c (1) i (7) 
As shown in AppendixB (Result 3), all the c

(1) i (t) tend to a limit value c

(1,∞) i as t tends to innity provided that the vector v ≡ [v 1 , . . . , v R ] belongs to the range of the matrix M dened as

M ij =      -p =i kip Θi if i = j kij Θi if i = j (8) 
If this is the case, d t c (2) tends to a nite, limit value for long times, which is a Fickian (or "normal")

behaviour. The limit value of the dispersion coecient is shown to be (AppendixA)

D ∞ = R i=1 Θ i D i + 1 2 v i c (1,∞) i (9) 
If the vector v does not belong to the range of M, the c

(1) i

do not converge and a superdiusive (anomalous) behaviour is obtained.

A direct consequence of the above property is the following (AppendixB, Result 4): if r regions exchange mass with each other but do not exchange mass with the R -r remaining regions, all regions can be renumbered in such a way that k ij = 0 for (i, j) ∈ {1, . . . , r} × {r + 1, . . . , R}. Then, the matrix M is block-diagonal and a necessary condition for the asymptotic behaviour of the dispersion process to be Fickian is that the average speed of the rst r regions be the same as that of the remaining R -r regions. If

r i=1 Θ i u i = R i=1 Θ i u i , the c (1) 
i (t) are not all bounded and a superdiusive asymptotic behaviour is obtained.

Purely Advective Multiple Region (PAMR) model

The PAMR model proposed in this paper is based on the consideration that dispersion is a purely advective process on the microscale. The Fickian model arises only as an asymptotic property of Brownian movement [START_REF] Einstein | On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat[END_REF][START_REF] Einstein | On the theory of the Brownian movement[END_REF][START_REF] Einstein | The elementary theory of the Brownian motion[END_REF][START_REF] Klafter | Stochastic pathway to anomalous diusion[END_REF][START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF] that is valid for a large number of solute particle displacements (in other words, for large space and time scales compared to the typical duration and length of the Brownian motion jumps). Although the term "Brownian" was originally used to designate the movement of small particles suspended in uids, its meaning has broadened with time. The adjective "Brownian" is widely used as an equivalent to "Wiener process", a continuous but non-dierentiable [START_REF] Blunt | Pore-scale imaging and modelling[END_REF] random process with zero mean and variance proportional to time. Generalizing the concept has led to that of fractional Brownian motion, a useful concept for anomalous diusion modelling [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF]. The application elds may be totally disconnected from physics, as in e.g. nancial mathematics. The rst mathematical formalization of Brownian motion is attributed to Bachelier, with his thesis on the mechanisms of stock exchange [START_REF] Bachelier | Theorie de la speculation[END_REF]. Bearing this in mind, the term "Brownian" is used in the present paper to designate a Markovian random particle displacement process. The Brownian character of solute movement in random, heterogeneous media is easily justied by considering the individual trajectories of solute molecules, that are assumed to travel at the same velocity as the surrounding uid molecules (Figure 1a). If the pores of the medium are assumed to have random and isotropic orientation, size and spacing, the velocity eld can also be assumed random at the scale of the grains/pores. Consequently, the cumulated movement of the uid molecules in a coordinate system moving at the average uid velocity may be considered random at this scale (Figure 1). Given the random pore orientation, the direction of the movement of a particle is totally uncorrelated from one pore to the next. This corresponds to the mathematical denition of the standard Brownian motion, whereby the particle displacement is (i) an isotropic, random function of space (ii) a Markov process that assumes zero correlation between successive Brownian displacements. If the medium is not totally random, however, the Brownian assumption may not hold any more. A structured medium exhibits a certain degree of periodicity (Figure 1c). Such periodicity may be encountered at the scale of the pore. It may also arise at much larger scales, as in the case of e.g. low permeability lenses in an aquifer. In such a case, the ow eld cannot be considered totally random. Therefore, the cumulated particle displacements in the coordinate system moving at the average ow velocity are also periodic to some extent (Figure 1d).

(a) (b) (c) (d)

Figure 1: Solute dispersion as the result of a Brownian process. Random heterogeneous medium: (a) solute particle trajectories in the laboratory reference frame, (b) trajectories plotted in the coordinate system moving at the average solute speed. Periodic medium: (c) trajectories in the laboratory coordinate system, (d) trajectories in the coordinate system moving at the average solute speed.

In the extreme, totally periodic case of Figures 1c-d, the cumulated (relative) particle displacements are totally periodic, with a maximum vertical amplitude equal to one half of the vertical spatial period. Some particles travel to the left because they are slower than the mean ow velocity on the average. Some other particles travel to the right because their average velocity is larger than the mean ow velocity. However, despite their diverging character, the trajectories of the particles remain deterministic because the medium is strictly periodic. One may expect a certain amount of randomness in these trajectories because of molecular diusion, but a long time may be necessary for the random component of the movement to predominate over the deterministic component. Real-world situations, including the experiments reported in the present paper, lie somewhere between these two extreme congurations. In the light of the considerations above, a conceptually satisfactory scale-independent model for dispersion should be expected to satisfy the following two requirements.

(R1) No Fickian uxes should be included in the governing equations. This requirement stems from the reasoning that (i) the simplest possible scale-independent dispersion model is sought, (ii)

the Fickian model has been shown in [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] to yield undesirable behaviours for small times and travel distances, (iii) consequently, Fickian uxes must be ruled out. As far as point (ii) is concerned, the Fickian model yields innite wave propagation speeds for the modelled solute front, an unphysical behaviour yielding zero arrival times in solute breakthrough experiments.

In contrast, the delay between the inlet and the outlet was pointed out as an essential feature of the experimental breakthrough curves reported in [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF].

(R2) The model should yield the Fickian behaviour as a limit, asymptotic case for large times and distances. Such a behaviour has indeed been conrmed experimentally in the case of homogeneous media, as well as periodic heterogeneous media provided a sucient number of periods is covered [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF].

The conceptual model proposed hereafter aims to fulll these two requirements, based on the following two assumptions.

(A1) The ow velocity within an averaging volume is partitioned into R regions over which the ow velocity is homogeneous. The ow region i has a normalized water content

Θ i , R i=1 Θ i = 1.
Under steady state ow conditions, the normalized water contents Θ i and the ow velocities u i are constant and uniform.

(A2) Two adjacent regions may exchange solute particles owing to the random velocity distribution within the porous medium (Figure 1b). Consequently, the concentrations within two adjacent regions tends to even out with time. The solute exchange rate between two regions is assumed proportional to the dierence between the solute concentrations in the two regions.

Assumptions (A1-2) lead to the following governing equation:

∂ t (Θ i c i ) + ∂ x (Θ i u i c i ) = j =i k ij (c j -c i ) , i = 1, . . . , R (10) 
The advective part of the model (left-hand side of the equation) stems from assumption (A1).

The source term (right-hand side of the equation) is the simplest possible formulation satisfying assumption (A2).

A rst advantage of this model over those reported in the previous subsections is that it satises the two requirements (R1-R2). Indeed, the transport term in equation ( 10) is purely advective, thus satisfying (R1). Moreover, the Fickian model is obtained as a limit case for asymptotically long times and travel distances. This is easily shown by noticing that the model ( 10) is a particular case of the MRAD model (4a). Equation ( 10) is obtained by setting D i = 0 in equation (4a) and

replacing kij Θi with k ij Θ i Θ j .
As shown by equation ( 9), a nite dispersion coecient D ∞ may be obtained even though the coecients D i are all zero. A sucient condition for this is that the vector v belong to the range of M (see Appendices A-B for the details of the derivation).

Another interesting feature of the PAMR model is that it allows for (ballistic) anomalous dispersion for small times, which is compatible with the apparent increase in the Fickian-based dispersion coecient with observation scale reported in a number of studies.

Therefore, the PAMR model is considered more satisfactory from a conceptual point of view than the MRAD model because it does not have the drawbacks of Fickian dispersion models for small times and/or distances, while retaining its advantages for large times and/or distances.

Nevertheless, the increased accuracy of the model for small times/distances is achieved at the expense of model parsimony. As shown in AppendixA, at least two regions are needed to obtain an asymptotic Fickian behaviour for dispersion. Then, the model has three independent parameters: one of the normalized water contents Θ 1 , Θ 2 , one of the ow velocities v 1 , v 2 and the exchange parameter k 12 . In contrast, the AD model requires only two parameters (the ow velocity v and the dispersion coecient D), for the same asymptotic behaviour. The increased number of parameters was to be expected in that the Fickian behaviour is only an asymptotic property of the model.

The additional parameters control the characteristic time/distance above which Fickian behaviour bceomes a satisfactory approcimation of the dispersion process.

3. Experimental setup and results

Experimental setup

The MHPM consists of a PVC column (10 cm in diameter, 15 cm in length) containing a cylindrical cavity (2.5 cm in diameter, 10 cm in length) placed in the centre of the column and surrounded by 1 mm glass spheres. For more details about the construction of the MHPM, please see [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF]. The inowing discharge is supplied using a peristaltic pump (Gilson MP3 TM ).

Step In this paper, six series were investigated with N = 1 to 6. We used the 12 MHPM columns described in [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF]. For each series, four replicates of the step tracing experiment were conducted for four 90°rotations of the study column. The main dierence between the present experimental setup and that in [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] is the MHPM connection pattern (Figure 2). In [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF], the rst and last MHPM in the study column could not be considered as periodical heterogeneities because they had dierent ow inlet and outlet connections [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF]. Bottom: present experimental setup.

Experimental breakthrough curves

Figure 3 shows the experimental breakthrough curves for N = 1 to N = 6 MHPM. As expected from [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF], the breakthrough concentration signal tends to the classical S-shaped solution of the AD model as N increases. In the present experiments, this behaviour is achieved for fewer MHPMs than in [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] (N = 5 instead of 10). This is attributed to the dierent injection geometry (compare Figure 2, top and Figure 2, bottom). Plotting the time derivative of the normalized concentration signal allows two main transport modes to be identied. From the location of the peaks on Figure 3 for N = 1, the faster mode travels at approximately 3 × 10 -3 ms -1 , while the speed of the slower one is approximately 7 × 10 -4 ms -1 . As time (and distance) grows, the relative amplitude of the faster peak decreases and only one peak can be detected in the ∂c/∂t signal for N = 5, 6.

Note that the time derivatives of the concentration signal for N = 1 to 3 is strikingly similar to experimental propagators obtained in heterogeneous porous media [START_REF] Mitchell | Determining NMR ow propagator moments in porous rocks without the inuence of relaxation[END_REF][START_REF] Scheven | Quantitative nuclear magnetic resonance measurements of preasymptotic dispersion in ow through porous media[END_REF] and replicated by porescale modelling [START_REF] Blunt | Pore-scale imaging and modelling[END_REF]. In contrast, the c(t) signal makes these two modes more dicult to detect, even at early times. For this reason, the time derivative ∂c/∂t of the concentration signal is used all throughout this manuscript for model benchmarking.

The enhanced discriminatory power of the time derivative of the c(t) signal over the signal itself should not come as a surprise. Since the injection signal is a concentration step, using its time derivative ∂c/∂t is equivalent to performing a breakthrough experiment using a Dirac (pulse) input signal. From the point of view of the frequency domain analysis, the Laplace/Fourier transforms of the Dirac signal gives an equal weight to all frequencies, while the Laplace/Fourier transform of the step function is the inverse of the frequency, thus giving less importance to higher frequencies. Since our earlier experiments [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF] showed that high frequencies are essential in discriminating between models, the Dirac injection should be preferred. Such an input signal, however, is extremely dicult to generate with a good control on experimental conditions. Using the time derivative ∂c/∂t with a step injection is an ecient way of obviating this diculty. against experimental datasets. In [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF], the short-time behaviour was enhanced by using the Laplace transforms of the experimental breakthrough curves. The Laplace transform of the signal was used only because the unit transfer function of a single column was not accessible from the data. Since, in the present experiments, the c (t) signal is available for N = 1, the Laplace transform can be avoided. The governing equations were solved in the (x, t) domain. A second-order, conservative nite volume method [START_REF] Soares-Frazao | A second-order semi-implicit hybrid scheme for onedimensional Boussinesq-type waves in rectangular channels[END_REF] was used. This method has proved less diusive than the second-orderin-time MUSCL-Hancock method for small values of the Courant-Friedrichs-Lewy (CFL) number.

In order to minimise numerical diusion as much as possible, the computational time step was adapted in usch a way that the CFL in the fastest ow region was equatl to unity. For CFL = 1, numerical diusion is known to be zero and the exact solutionof the advection part of the equation is obtained.Moreover, dierent mesh sizes were tested. Varying the computational cell size from ∆x = 1.5 × 10 -5 m (i.e. 1000 cells per 15 cm long column) to ∆x = 1.5 × 10 -4 m (i.e. 100 cells per column) showed no noticeable dierence between the numerical solutions, showing that numerical convergence was achieved.

Let e (t) be the model error, that is, a measure of the dierence between the model output and the experimentally measured concentration (see next paragraph for e (t) denitions). The usual approach consists in computing the objective function as the Lp-norm of the modelling error over the time interval [0, T ] of interest. Dividing by the length of the time integration interval so as to remove the bias arising from the length of the time series yields the following objective function

J 1 = 1 T ¢ T 0 |e (t)| p dt 1 p , p > 0 (11) 
In practice, the model output is discretized using a time step ∆t over the interval [0, T ], with T = n∆t. In the case of a constant ∆t, the trapezium rule leads to the following estimate:

J 1 =   1 T n j=1 e j + e j+1 2 p (t j+1 -t j )   1/p =   1 n n j=1 e j + e j+1 2 p   1/p (12) 
where e j is the error at time t j . When the simulation is carried out over a long time, however, the objective function J 1 gives a small relative weight to the early times of the model response. In order to enhance the discriminatory power of early simulated times, it is proposed that the objective function be computed not by integrating with respect to time but with respect to frequency. The lower and upper bounds of the frequency are respectively ν 0 ≡ 1 T and ν 1 ≡ 1 ∆t . The frequencybased objective function is dened as

J 2 = 1 ν 1 -ν 0 ¢ ν1 ν0 |e (ν)| p dν 1 p = 1 ν 1 -ν 0 ¢ T ∆t 1 t 2 |e (t)| p dt 1 p (13) 
The factor 1 t 2 illustrates the stronger weight given to small times. The trapezium rule leads to the following formula for J 2

J 2 =   1 ν 1 -ν 0 n-1 j=1 e j + e j+1 2 p 1 t j - 1 t j+1   1/p =   n n -1 n-1 j=1 e j + e j+1 2 p 1 j - 1 j + 1   1/p (14)
Since the objective is to achieve a correct description of both short-and long-time behaviours, the nal objective function is dened as the product J 1 J 2 .

Modelling error denition. The measure of the modelling error was dened on the basis of the following considerations: (i) the modelling error is zero whenever the modelled variable is equal to the measured one, (ii) the error must be normalized with the amplitude of the experimental variability, assessed from several replicates of the experiment. These two conditions allow at least two possible denitions to be proposed for the modelling error. Denition 1: the error is zero when the modelled signal is within the min-max interval of the experimental signal. When the modelled signal is outside the experimental min-max interval, the error is taken equal to the distance to the closer interval bound:

e (t) =            ∂tcmin(t)-∂tc mod (t) ∆∂tc if ∂ t c mod (t) < ∂ t c min (t) 0 if ∂ t c min (t) ≤ ∂ t c mod (t) ≤ ∂ t c max (t) ∂tc mod (t)-∂tcmax(t) ∆∂tc if ∂ t c mod (t) > ∂ t c max (t) (15a) 
∂ t c min (t) ≡ min r ∂ t c expe,r (t) , ∂ t c max (t) ≡ max r ∂ t c expe,r (t) , ∆∂ t c = ∂ t c max (t) -∂ t c min (t) (15b)
where ∂ t c expe,r (t) is the derivative of the concentration measured at time t for the replicate number r of the experiment, c mod (t) is the modelled concentration at time t. In this denition, the error is zero whenever the modelled signal can be explained by the experimental variability between the various replicates. Numerical experiments carried out by reducing articially the min-max range showed very little sensitivity of the respective performance of the various models considered in this paper.

Denition 2: the error is dened as the distance from the average measurement. In this denition the scaling factor is σ(t), the standard deviation of ∂ t c(t) between the various replicates:

e (t) =      ∂tcav(t)-∂tc mod (t) σ(t) if ∂ t c mod (t) ≤ ∂ t c av (t) ∂tc mod (t)-∂tcav σ(t) if ∂ t c mod (t) ≥ ∂ t c av (t) (16a) 
∂ t c av (t) ≡ 1 M M r=1 ∂ t c expe,r (t), σ(t) ≡ 1 M -1 M r=1 (∂ t c expe,r (t) -∂ t c av (t)) 2 1 2 (16b)
Calibration algorithm. In the following, the calibration is performed on ve experiments simultaneously (N = 1 . . . 5) using the denition (16a) for the error. The nal objective function is taken as the sum for each experiment of the product of the two functions J 1 and J 2 :

J = 5 p=1 J 1 (p)J 2 (p) (17) 
A binary Genetic Algorithm (GA) [START_REF] Haupt | {Practical Genetic Algorithms[END_REF] is used to calibrate the dierent models. In this kind of algorithm, the set of parameters is represented by a "chromosome" in which each parameter is a "gene". The gene is described by a min/max interval and a binary encoding of a given length that determine the number of possible values taken by each of the N p parameters (e.g N bits = 6 bits = 64 values). As proposed in [START_REF] Majdalani | Estimating preferential water ow parameters using a binary genetic algorithm inverse method[END_REF], the initial population is composed of N pop = 8 chromosomes, each of which is the concatenation of the various genes. The population is thus represented by a N pop × (N p N bits ) matrix initially lled with randomly generated one and zero bits. A simulation is run for each chromosome and the results are compared in term of objective function. Half of the chromosomes that yield to the poorest results are discarded through natural selection and replaced with new osprings. The best chromosome is kept intact, and the others are subjected to mutation (see [START_REF] Majdalani | Estimating preferential water ow parameters using a binary genetic algorithm inverse method[END_REF] for a detailed description).

A rst set of parameter bounds is dened, with physically permissible values according to the experiments. The genetic algorithm searches for the best parameter values within 64 possibilities.

To ensure a wide coverage of the parameter space, the GA is run during 50,000 generations.

Accuracy is improved by running the algorithm a second time over a narrower interval dened about the result of the rst run, with a width about 15% that of the initial interval.

The models are calibrated using the ve experiments (N = 1 to 5) and validated using the sixth experiment (N = 6). For the sake of conciseness, the results are displayed for N = 1, 3 and 5 only.

AD model

The best parameter values obtained for the AD model (Figure 4) are given in Table 2. As expected, the AD model is not able to reproduce the experimental results for N < 5. The modelling results improve as N increases. Owing to the single advection velocity, the model fails to represent the main two transport models at small times and distances. This is particularly visible in the frequency domain (Figure 4, bottom), where the higher frequencies are inaccurately accounted for. While the model seems to perform correctly for N = 5, the plot in the frequency domain shows that high frequencies remain underestimated by the model, since the model signal is not within the min/max condence interval of the experimental curve. As N increases, however, the discrepancy between the modelled and experimental signals becomes smaller. This was expected from the analysis presented in the Appendices, because the Fickian dispersion model is more appropriate for large travel times and distances than for short ones. 

Parameter

MI model

The four parameters to be calibrated for the MI model (2a, 2b) are Θ m , k, u and D. The remaining parameter is determined automatically, Θ im = 1 -Θ m . The simulation results after calibration (Figure 5), are obtained with the parameter set in Table 3. The validation simulation (Figure 5, rightmost column) also shows a better agreement with the experimental curve than that of the AD model. 

Parameter

MR model

Calibrating the MR model (3a, 3b) with three immobile regions gives the values in Table 4.

Figure 6 shows the corresponding breakthrough curves. 

Parameter

Two region MRAD Model

The simplest possible version of the MRAD model, with two mobile regions, is used. This model has eight parameters in total, but only six of them are independent and must be calibrated:

Θ 1 , k 12 , u 1 , u 2 , D 1 and D 2 .
The best parameter set (Figure 7) is given in Table 5.

Parameter Meaning Numerical value D 1 Fickian dispersion coecient in region 1 1.034 × 10 -5 m 2 s -1 D 2 Fickian dispersion coecient in region 2 1.897 × 10 -5 m 2 s -1 k 12 Exchange coecient 1.570 × 10 -2 s -1 u 1
Flow velocity in region 1 2.406 × 10 Unlike the AD, MI and MR models, the MRAD model allows the inection points in the experimental signals to be reproduced. Although the slower peak is too early for N = 1 (Figure 7, leftmost column), its location is correct for N = 3. In contrast, the faster peak is overestimated for N = 3. The small time/high frequency behaviour of the MRAD validation run (N = 6, rightmost column on Figure 7) is slightly less accurate than that of the MR model. The three region PAMR model requires the calibration of 6 independent parameters: Θ 1 , Θ 2 , k 12 , k 13 , k 23 , u 1 , u 2 and u 3 . The best parameter set (Fig 8) is given in Table 6.

As far as the calibration phase is concerned, the three region PAMR model is the only one to t within the min/max experimental condence intervals (albeit passing very near the upper limit for N = 1). For N = 3, the modelled signal is improved signicantly over that of the MRAD model in both the time and frequency domains. As with he previous models, the modelled validation signal is slightly too early compared to the experimental one. 

Four region PAMR model

A four region PAMR model is also tested, with the following two objectives: (i) determine whether adding extra degrees of freedom allow for better calibration/validation results, (ii) investigate whether each of the two dispersion coecients in the two region MRAD model could not be represented more eciently using two regions exchanging mass. The rationale for this is presented in Subsection AppendixA.2.4. In this subsection, an asymptotic Fickian behaviour is shown to be obtained from two regions with identical fractions Θ p (p = 1, 2) exchanging mass. The consequence is that each of the two regions in the MRAD model might be subdivided into two regions of equal size, resulting in a four region PAMR model. In this version, eight independent parameters must be calibrated: Θ 1 , k 12 , k 13 , k 34 , u 1 , u 2 , u 3 and u 4 . The remaining coecients are inferred automatically because

Θ 2 = Θ 1 , Θ 3 = Θ 4 = 1-Θ1 2 , and k ij = k ji ∀(i, j).
The best result (Fig. 9) is obtained for the parameter set in Table 7.

Parameter Meaning Numerical value k 12

Exchange coecient between regions 1 and 2 2.180 s -2 k 13

Exchange coecient between regions 1 and 3 The following conclusions may be drawn.

Firstly, comparing the third and fth columns in the table allows the respective predictive power of the various models at large scales to be assessed. Indeed, these two columns in the Table use the same denition (16a) for the objective function. While the AD and MI models perform poorly compared to the MR, MRAD and PAMR models in the calibration phase, their validation performance is similar in the validation phase. This may be explained by the fact that the Fickian model (towards which all models are asymptotically equivalent) becomes more valid as N increases. The MRAD model is the only one exhibiting a signicantly decreasing performance in the validation phase compared to the calibration phase.

Secondly, the respective performance of the various models is the same for both model error formulae (15a, 16a). The MR and AD models, that have the smaller validation error (15a), also have the smaller validation error (16a). The MI, PAMR3 and PAMR4 models, that have intermediate validation error values with formula (15a), also have intermediate validation error values with formula (16a). Lastly, the MRAD model consistently has the larger validation error values, be it with the error denition (15a) or (16a).

Thirdly, the error formula (15a) gives objective function values consistently 50 times as small as those obtained with the error denition (16a). These two modelling error denitions serve dierent purposes. The modelling error denition (15a) may be seen as a measure of the "plausibility" of a model. With this denition, two dierent models giving output signals within the min/max experimental error range will yield identically J = 0, even if they depart signicantly from the mean experimental signal. With this denition, J = 0 means that the dierence between the mean experimental measurement and the model output can be fully explained by experimental imprecision. These two models may be deemed equally plausible. In contrast, the error formula (16a) is a measure of the "accuracy" of a model. With this modelling error denition, the smaller J, the better the model output ts the average experimental response.

In comparison with other studies, the present work features a large number of replicates. Even though a model porous media is dealt with, the replicates show signicant statistical variations in the experimental breakthrough curves, be it for a given MHPM or for the ensemble of the 12 MHPM used in this study. These statistical variations are illustrated by the min-max interval on Figure 3. The interval is the widest for N = 1 MHPM (single period study column) and becomes narrower as N increases. Clearly, the statistical variations are stronger at the heterogeneity scale (N = 1) and are damped as the porous media tends to homogeneity (N = 6). This shows the importance of replicating experiments when heterogeneous porous media are involved. Most previously reported transport experiments use a limited number of replicates (a single experiment in many cases). This does not allow the experimental variability of the data set to be assessed.

Given the width of the min-max cloud on Figure 3, many candidate models might t within the experimental condence interval, and if they do, they can all be considered as good candidate models.

In order to compare several modelling approaches, using high quality experimental data proves essential. A large number of replicates allows the statistical variations of the experimental data to be accounted for in the benchmarking process. Another issue in the calibration and validation process is the denition of the objective function. As shown in [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF], many models provide an accurate description of the long-time behaviour of the breakthrough curves. In contrast, examining the short time behaviour of the experimental data sets leads to rule out a number of models [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF].

Consequently, dening an objective function that gives equal weights to small and large time behaviours, as done in the present study, is deemed essential to an ecient model assessment. To our best knowledge, this approach has been little used in transport model benchmarking. Using the time derivative of the experimental signals in the calibration and validation processes for a more ecient discrimination between models has also been little reported in the literature.

In this study, we compare ve modelling approaches: four existing models (AD, MI, MR, MRAD) and a new model (PAMR). The originality of the PAMR model is that transport is modelled on a purely advection basis, without the need for dispersion terms. The four existing, dispersion-based models use a scale-independent dispersion coecient. We insist on this choice because as shown in [START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF], (i) there is no experimental evidence that dispersion varies with time and distance, (ii) there exists a model with scale-independent coecients that allows the MHPM experiments to be reproduced. Moreover, as mentioned in [START_REF] Huang | Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns[END_REF], while some studies suggest that dispersion may increases with time and distance, other studies suggest that dispersion may eventually tend to a constant asymptotic value.

If the response of the heterogeneous medium departs from the classical Fickian behaviour, we consider proposing a non-Fickian transport more appropriate than making the Fickian transport model scale-dependent (as in e.g. [START_REF] Gao | A new mobile-immobile model for reactive solute transport with scale-dependent dispersion[END_REF][START_REF] Pickens | Modeling of scale-dependent dispersion in hydrogeologic systems[END_REF]). Note that fractional advection-dispersion models were developed to eliminate the scale-dependent dispersion [START_REF] Benson | The fractional-order governing equation of Lévy motion[END_REF], albeit with limited success [START_REF] Gao | Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column[END_REF]. In the authors' view, the challenge tackled by the proposed PAMR model is not only to reproduce the non-Fickian transport process on the heterogeneity scale, but also to tend asymptotically towards a Fickian transport process (classical AD model) on an observation scale that is much larger than the heterogeneity scale.

Moreover, the PAMR model does not have the undesirable eects of the Fickian operator.

As shown by Einstein [START_REF] Einstein | On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat[END_REF][START_REF] Einstein | On the theory of the Brownian movement[END_REF][START_REF] Einstein | The elementary theory of the Brownian motion[END_REF], the Fickian model is valid only above a given time and space scale, under the assumption that a sucient number of realizations of the Brownian motion have been realized and that the movement obeys a Markovian process (that is, no memory of the previous displacements is kept after a change in particle position and velocity). If the scale under consideration is such that a time or space correlation exists between the successive displacements of the solute particles (as is the case when a single MHPM is concerned), the Fickian model should be expected to be invalid. Along the same line, Benson et al. [START_REF] Benson | The fractional-order governing equation of Lévy motion[END_REF] insist on the fact that AD model is based on the divergence of a vector eld which is evaluated by the limit of the ux of this vector on the surface of an enclosed volume when the volume shrinks towards zero. To quote these authors:

"This is valid only if the ux is indeed a point vector quantity relative to the scale of observation, for example, heat ow in homogeneous material. Then the limit exists. Solute dispersion is a counterexample since it is primarily due to velocity uctuations that arise only as an observation space grows larger, invalidating the limit".

This explains why the AD model fails to reproduce the experimental results at small scales (Figure 4a and Table 8). As the size of the domain increases (N = 6 in Figure 4b), the AD model and an improvement of 44% over the MI model (Figure 6). The MR used in this study has one mobile region and three immobile regions and it starts to reproduce the experimental behaviour at the scale of one heterogeneity (Figure 6a). The MRAD model gives better results than the MR model (Figure 7), with an objective function of J = 1.61 (an improvement of 18% in comparison to MR). Concerning the PAMR model proposed in this study, we rst used a simple version with three mobile regions. The simulations reproduce fairly well the experimental behaviour especially at the scale of one heterogeneity (Figure 8). With an objective function J = 1.592, the accuracy of the PAMR model is nearly identical to that of the MRAD model. A four region version of the PAMR gave similar simulation results (Figure 9), with J = 1.608. Adding a fourth region thus brings no improvement over the three region PAMR. This means that the porous media of this study (MHPM) can be well reproduced with a three region PAMR, and that a more complex multiple region PAMR will not lead to a better simulation. We consider the PAMR simulations very satisfactory in that (i) the PAMR model performs as satisfactorily as other existing models, (ii) it describes quite well the experimental behaviour at the scale of both a single and several heterogeneities, (iii) this is achieved using scale-independent parameters. Although the PAMR model is calibrated on a small observation scale (one to ve heterogeneities), it asymptotically tends to a Fickian behaviour on a large observation scale (6 heterogeneities) with a fairly good simulation (Table 8). This asymptotic Fickian behaviour of the PAMR model was to be expected because the model is known to lead to the Fickian model for large scales under conditions that are met here (see AppendixA and the stability analysis in AppendixB).

As far as the reported, experimental scale dependence of the dispersion coecient is concerned, the PAMR model allows such dependence to be explained, as shown in Subsection AppendixA.2.4.

Solving the two region PAMR equations for a Dirac initial condition shows that the apparent dispersion coecient obeys an exponential function of time. This is precisely the behaviour inferred in [START_REF] Gao | A new mobile-immobile model for reactive solute transport with scale-dependent dispersion[END_REF], where the best t to the experimental data set was obtained by tting an exponential function D(x). The developments in Subsection AppendixA. Lastly, it is worth pointing out that all multi-region models (including the PAMR model proposed in this paper) exhibit a certain degree of non-local behaviour, in contrast with the AD model that is purely local. Indeed, specifying te initial and boundary conditions for any of the MI, MR, MRAD and PAMR models requires that the initial and boundary conditions be specied for each of the ow regions. In practical applications, however, this is not possible. Only the average concentration c = R i=1 θ i c i within he bulk porous medium is known, and the space-time distribution c i (x, t) in every region i is unknown. A straightforward solution would be to set the concentrations in all regions to the same average concentration value. However, in real-world applications, such an initial state is likely to be most inaccurate. This is because, by denition of intermediate time and space scales, the concentrations in all ow regions have not reached equilibrium and can therefore not be assumed to be identical. Consequently, the distributions c i (x, t 0 ) to be used for an initial condition at a given time t 0 are functions of the past behaviours of the elds c i (x, t), t < t 0 and the way the various ow regions have been exchanging solute. This is typically a non-local behaviour, a common feature shared by all widely admitted anomalous transport models.

Conclusions

In this paper, solute dispersion in model periodical heterogeneous media is studied from both an experimental and modelling perspective. The following, main results are found.

A large number of solute transport experiments through periodic heterogeneous porous media is presented. The signicant number of experiment replicates yield high quality breakthrough curves, while allowing the experimental uncertainty to be characterized accurately. The authors are willing to make the data sets available to the scientic community.

A calibration procedure putting the emphasis on both small time and large time behaviours is A.2), D av incorporates the inuence of early times when the behaviour is non-Fickian and can be expected to take a longer time to converge to the asymptotic value than the local coecient D loc .

AppendixA.2. Spatial moments for the MRAD model

AppendixA.2.1. Governing equations

For the sake of simplicity, the behaviour is analyzed in the coordinate system that moves at the average speed u = R i=1 Θiui R i=1 Θi . In this coordinate system, the governing equations are

Θ i ∂ t c i + Θ i v i ∂ x c i -Θ i D i ∂ xx c i = j =i k ij (c j -c i ) (A.6a) k ij = k ji , R i=1 Θ i v i = 0 (A.6b)
where the v i are dened as in [START_REF] Benson | The fractional-order governing equation of Lévy motion[END_REF]. Integrating (A.6a) with respect to x over (-∞, +∞), using the property lim (1) i

= v i c (0) i + R j =i k ij Θ i c (1) j -c (1) i 
= v i + R j =i k ij Θ i c (1) 
j -c

(1) i (A.9)

Multiplying equation (A.6a) by x 2 , integrating with respect to x over (-∞, +∞), using integration by parts and the property lim (2) i = v i c

(1)

i + 2D i c (0) i + R j =i k ij Θ i c (2) j -c (2) i = v i c (1) 
i

+ 2D i + R j =i k ij Θ i c (2) 
j -c The purpose of this Appendix is to study the stability properties of the system (A.9). Note rst that this system can be written in vector form as

d t x = v + Mx (B.1a)
x ≡ c where the elements M ij are dened as in [START_REF] Berkowitz | Anomalous transport in laboratory-scale, heterogeneous porous media[END_REF]. As shown in AppendixA, if the solutions of (B.1a) are stable, a Fickian behaviour leading to normal diusion is obtained in the limit of long times.

It is rst noticed that the matrix M can be written in the form M = -SD, with

D = diag [Θ i ] , S ij = - M ij Θ j =      p =i kip ΘiΘj if i = j - kij ΘiΘj if i = j (B.2)
Consequently, the matrix S is symmetric.

Result 1. The matrix S is positive semidenite.

Proof. For any vector x = [x 1 , . . . , x R ] T , rearranging and noting that k ij ≥ 0 ∀ (i, j) gives Proof. Let λ be an eigenvalue of S and x a corresponding eigenvector. Then Proof. There exists an orthogonal matrix C such that S = Cdiag [λ i ] C T . Dening S 1/2 ≡ Cdiag √ λ i C T , it is noted that the matrices S 1/2 DS 1/2 and SD are similar because SD = S 1/2 S 1/2 DS 1/2 S -1/2 (note that S -1/2 exists because the √ λ i are all nonzero). Therefore the eigenvalues of SD are the same as the eigenvalues of S 1/2 DS 1/2 . Moreover, the matrix S 1/2 DS 1/2 is symmetric and positive denite because D is symmetric, positive denite and S 1/2 is symmetric.

x T Sx = R i=1 j>i k ij x i Θ i - x j Θ j
Consequently, the eigenvalues of SD are all striclty positive. 0

Corollary 2. The eigenvalues of -SD are all strictly negative. 

d t Q = R i=1 1 Θ i x i d t x i = D -1 x T d t x = D -1 x T M T x = x T D -1 M T x = -x T Sx (B.5)
From Result 1, the matrix -S is negative, semidenite. Consequently, d t Q ≤ 0 and 0 ≤ Q (t) ≤ Q (0) for t > 0. Consequently, the solution x (t) is bounded. Since the eigenvalues of M T are real and negative (from Corollary 3), it follows from the theory of linear dierential equations that there exists a vector x ∞ such that x -→ 

  tracing experiments are done by injecting salty water (deionised water + NaCl at C 0 = 0.1Mol/L) into the columns initially containing deionised water. A ow of 7.5 L/h salty water is induced into the study column until the outlet concentration c stabilizes to C 0 . The outlet concentration is measured using a conductimeter (WTW TetraCon 325 TM ) and saved on a data logger (Campbell CR1000 TM ) every 5 s. The cumulated outlet volume V is measured by weighing the euent every 5 s and saved on the data logger. The study column consists of a series of N connected MHPM.

(Figure 2 ,

 2 top): the rst MHPM had a divergent ow inlet and a parallel ow outlet while the last MHPM had a parallel ow inlet and a convergent ow outlet. In the present experiment, each MHPM of the study column can be considered as a single periodical heterogeneity because all MHPM have identical inlet and outlet connections (Figure2bottom): a divergent ow inlet and a convergent ow outlet. The advantage of the present setup is that the breakthrough curve can be obtained directly for a single heterogeneity (N = 1).

Figure 2 :

 2 Figure 2: Denition sketch for column connection. Top: experimental setup reported in[START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling[END_REF]. Bottom: present experimental setup.

Figure 3 :

 3 Figure 3: Experimental breakthrough curves and their time derivatives for N = 1, . . . , 6 MHPM.

Figure 4 :

 4 Figure 4: a) Calibration of the AD model. Top: time derivative of the concentration with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right: best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM experiment.

Table 3 :

 3 MI model. Calibration results. In contrast with the AD model, the MI model produces too early a peak time. The inection points in the time signal for N = 1 and in the frequency signal for N = 3 are missed. For N = 5, the MI model results are within the bounds of the min/max condence interval, which is an improvement over the AD model (compare Figs. 4, 5, second column from the right).

Figure 5 :

 5 Figure 5: a) Calibration of the MI model. Top: time derivative of the concentration with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right: best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM experiment.

  While the model does not allow the inection points in the time-and frequency-domain signals to be reconstructed for N = 1, 3, the modelled signal lies within the min/max condence interval for all calibration runs N = 1, . . . , 5. The validation run (N = 6) produces slightly too early a signal, just as the MI model.

Figure 6 :

 6 Figure 6: a) Calibration of the MR model with three immobile regions. Top: time derivative of the concentration with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right: best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM experiment.

Figure 7 :

 7 Figure 7: a) Calibration of the MRAD model with two mobile regions. Top: time derivative of the concentration with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right: best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM experiment.

Figure 8 :

 8 Figure 8: a) Calibration of the PAMR model with three mobile regions. Top: time derivative of the concentration with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right: best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM experiment.

Figure 9 :

 9 Figure 9: a) Calibration of the PAMR model with four mobile regions. Top: time derivative of the concentration with respect to time. Bottom: time derivative of the concentration as a function of frequency. From left to right: best result for each experiment, obtained with the same set of parameters. b) Model validation against the 6-MHPM experiment.

  becomes better adapted to reproduce the experimental behaviour because the scale of observation becomes larger than the scale of one heterogeneity. The objective function for the AD model is J = 7.76. The MI model (one mobile region and one immobile region) gives better results than the AD model especially for N ≥ 3 (Figure 5) but it still fails to reproduce the experimental behaviour for N = 1 (scale of one heterogeneity). The objective function becomes J = 3.505 with an improvement of 55% in comparison to AD model. The MR model, which is a generalization of the MI model, gives better results than the MI model with an objective function J = 1.975

2 . 4

 24 also indicate that there exist two dierent ways of tting the dispersion coecient from eld measurements. The rst consists in adjusting D so as to t the average spreading rate of the contaminant plume over time, yielding a rst coecient D av . The second consists in adjusting D so as to t the time derivative of the plume variance, yielding a local estimate D loc . The variation analysis in AppendixA.2.4 shows that D loc converges faster to the asymptotic value than does D av . Indeed, the dierence D ∞ -D loc is a decreasing exponential function of time, while D ∞ -D av is proportional to the inverse of time. This was to be expected in that D av incorporates the eect of all times on the dispersion behaviour, including the times for which the dispersion behaviour is strongly non-Fickian. D loc therefore provides a more accurate estimate of D ∞ than D av . However, in practice, deriving D av is easier than D loc because the determination of D loc requires many more sampling times and points than that of D av .

  set up. It allows for the benchmarking of several transport and dispersion models: the Advection-Dispersion (AD), Mobile-Immobile (MI), Multi-Rate (MR), Multi-Region Advection-Dispersion (MRAD) and Purely Advective Multi Region (PAMR) models.Applying the AD model shows that, at the scale of a single heterogeneity, the dispersion process is non-Fickian. It tends asymptotically to a Fickian behaviour for an increasing number of heterogeneity periods. Even without a Fickian dispersion term, the PAMR model is seen to perform as well as the AD, MI, MR and MRAD models. The PAMR is able to simulate transport on every heterogeneity scale: on the single heterogeneity scale, PAMR can reproduce a non-Fickian behaviour while it tends to the observed, classical Fickian behaviour on the scale of several heterogeneities. Another advantage of the PAMR model is the absence of the undesirable eects of the Fickian term, such as the physically unsound innite propagation speed of the solutions of the diusion equation.

8 )

 8 x→±∞ c (x, t) = lim x→±∞ ∂ x c (x, t) = 0 yields d t cMultiplying equation (A.6a) by x, integrating with respect to x over (-∞, +∞), using integration by parts and the property lim x→±∞ c (x, t) = lim x→±∞ ∂ x c (x, t) = 0 yields d t c

x→±∞c

  (x, t) = lim x→±∞ ∂ x c (x, t) = lim x→±∞ ∂ xx c (x, t) = 0 yields d t c

10 )

 10 Multiplying by Θ i and summing over i = 1, . . . , R , using the propertyR i=1 Θ i v i = 0 yields equation (6).D ∞ -D loc = A exp(-Kt) equations (A.22a, A.22b) shows that the local estimate D loc of the dispersion coecient tends faster to the asymptotic value D ∞ than does the average estimate D av . AppendixB. Stability of the solution

,

  v ≡ [v 1 , . . . , v R ] T , M = [M ij ] (B.1b)

Corollary 1 .

 1 The eigenvalues of S are all positive.

xTheorem 1 .

 1 T Sx = x T λx = λx T x = λ x Let S and D be symmetric and positive denite matrices. Then the eigenvalues of SD are all strictly positive.

Theorem 2 .

 2 Let S and D be symmetric and positive semidenite matrices. Then the eigenvalues of SD are all positive.Proof. Let λ 1 , . . . , λ R be the (positive) eigenvalues of S. There exists an orthogonal matrix Csuch that S = Cdiag [λ i ] C T . Dening S ε = Cdiag [λ i + ] C T , > 0.Following the reasoning of Theorem 1, S -1/2 exists and the eigenvalues of S D are the same as the eigenvalues of S 1/2 DS 1/2 . Consequently, they are all positive. Since S D → SD as → 0, it follows from the continuity of the spectrum of a matrix that the eigenvalues of SD are all positive. Corollary 3. The eigenvalues of M = -SD are all negative.Result 2. The solutions of the dierential system d t x = Mx converge to an equilibrium solution.Proof. Since M and M T have the same spectrum, their eigenvalues are all negative. Therefore, the solutions of d t x = Mx and d t x = M T x have the same asymptotic behaviour. Let x be the solution of d t x = M T x. Dening Q ≡

t→∞ x ∞ . 0 Result 3 .

 03 If v ∈ rgeM, the solution of the non-homogeneous system d t x = v + Mx converge to an equilibrium solution.Proof. By assumption, there exists a such that Ma = v. Thend t x = v + Mx ⇐⇒ d t (a + x) = v + Mx = M (a + x).Consequently, a + x satises the homogeneous system d t x = Mx and converges to an equilibrium solution, hence the result.

Result 4 .Corollary 4 .

 44 If M is block-diagonal, M = condition for v = [v 1 , . . . , v R ]T to belong to rgeM isr i=1 Θ i v i = 0 (B.6)Proof. If v belongs to the range of M, there exists a vector a such that v = Ma. Then, using thesymmetry property k ij = k ji ∀ (i, j), one has ij (a j -a i ) = 0 (B.7)0 The same result holds for the R -r remaining elements of v, R

Table 1 :

 1 The purpose was to eliminate biases arising from possible asymmetry in the column geometry and density eects. The various column combinations used for the various experiments are summarized in Table1. A mean breakthrough curve is deduced from all the replicates. Experiment replicates. N is the number of columns, L is the total length of the porous medium, V 0 is the pore volume.

	N V 0 (L) L (m)	Column groups	Total replicates
	1	0.461	0.15	A, B, C, D, E, F, G, H, I, J, K, L	48
	2	0.922	0.30	AB, CD, EF, GH, IJ, KL	24
	3	1.383	0.45	ABC, DEF, GHI, JKL	16
	4	1.844	0.60	ABCD, EFGH, IJKL	12
	5	2.305	0.75	ABCDE, FGHIJ	8
	6	2.766	0.90	ABCDEF, GHIJKL	8

Table 2 :

 2 AD model. Calibration results.

		Meaning	Numerical value
	D	Fickian dispersion coecient 4.041 × 10 -5 m 2 s -1
	u	Advection velocity	7.193 × 10 -4 ms -1
	J	Objective function	7.76

Table 4 :

 4 RI model. Calibration results.

		Meaning	Numerical value
	D	Fickian dispersion coecient	6.200 × 10 -7 m 2 s -1
	k 1	Exchange coecient with region 1	9.303 × 10 -1 s -1
	k 2	Exchange coecient with region 2	6.820 × 10 -2 s -1
	k 3	Exchange coecient with region 2	6.519 × 10 -2 s -1
	u	Advection velocity	4.471 × 10 -3 ms -1
	Θ 1	Normalised immobile fraction 1	0.1017
	Θ 2	Normalised immobile fraction 2	0.1155
	Θ 3	Normalised immobile fraction 3	0.5775
	Θ m	Normalised mobile water content	0.1658
	J	Objective function	1.975

Table 5 :

 5 MRAD model. Calibration results.

	-3 ms -1

Table 6 :

 6 The large frequency behaviour of the PAMR model is better than that of the MRAD model (compare Figs.7, 8, rightmost columns). Three region PAMR model. Calibration results.

	Parameter	Meaning	Numerical value
	k 12	Exchange coecient between regions 1 and 2	1.518 × 10 -2 s -1
	k 13	Exchange coecient between regions 1 and 3	1.252 × 10 -3 s -1
	k 23	Exchange coecient between regions 2 and 3	5.803 × 10 -3 s -1
	u 1	Flow velocity in region 1	3.942 × 10 -3 ms -1
	u 2	Flow velocity in region 2	8.668 × 10 -4 ms -1
	u 3	Flow velocity in region 3	1.079 × 10 -4 ms -1
	Θ 1	Normalised water content 1	0.1389
	Θ 2	Normalised water content 2	0.1430
	Θ 3	Normalised water content 3	0.7271
	J	Objective function	1.592

Table 7 :

 7 Four region PAMR model. Calibration results.

	1.561 × 10 -3 s -1

Comparing Figures

8-9

shows that the three and four region PAMR models give almost indiscernible results. The objective functions are also extremely similar.

Table 8

 8 summarizes the results obtained after model calibration and validation. The two error denitions (15a, 16a) presented in this paper are used for the validation.

	16a)

Model

No. parameters J calibration eq.(16a) J validation eq.(15a) J validation eq.(

Table 8 :

 8 Summary of the calibration and validation results for the 6 models. PAMR 3 and PAMR 4 correspond respectively to the three and four region PAMR models.
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AppendixA.1. Spatial moments for the AD model

The present subsection is devoted to the development of the equations for the spatial moments of the propagator in the AD model. The propagator is the solution c (x, t) of the AD equation [START_REF] Ahmadi | Transport in chemically and mechanically heterogeneous porous media V. Two-equation model for solute transport with adsorption[END_REF] for the initial condition c (x, 0) = δ (x). The governing equation is rst rewritten in the coordinate system moving at speed u:

Denoting by c (p) the pth-order spatial moment of the concentration

the governing equations for the moments are obtained by multiplying equation (A.1) by x p and integrating over the real axis:

Using integration by parts to eliminate the higher-order derivatives, using the property lim x→±∞ c (x, t) = 0, the following equations are obtained

The well-known property of a variance of particle locations proportional to time is retrieved.

Note however that equation (A.4c) leads to two expressions for the dispersion coecient, a local dispersion (D loc ) and an average dispersion (D av ):

The rst is obtained from the dierential equation (A.4c), the second is obtained from its solution under the assumption of a constant D. Eq. (A.5a) reects a local behaviour at time t while Eq. 

= 0 ∀i and the governing equation (A.9) simplies to

Consequently the following equivalence holds c

(1)

i (t = 0) = 0 ∀ i and equation ( 6) becomes

with an equivalent dispersion coecient obtained from (A.5a, A.5b):

For small times, the equivalent dispersion coecient is observed to increase linearly with distance.

However the growth rate of the average dispersion coecient is smaller than that of the local one.

AppendixA.2.3. Long time behaviour

The solution is asymptotically stable (see AppendixB), consequently there exists a set of nite asymptotic values c

Substituting the property (A.15) into equation (A.10) gives the following long time, asymptotic behaviour

The time derivative of the variance of particle locations becomes constant and a classical Fickian behaviour is achieved, with (A.5a) simplifying into Equation (9).

AppendixA.2.4. A particular case: the two region model

The simplest possible model consists of two regions :

Solving equations (A.9, 6) under assumptions (A.17) yields the following solution

which yields

with the following limit behaviours

Long time and small time behaviours. A further restriction of the model (A.17) is obtained under the particular assumption

This leads to a particular case of the telegraph equation [START_REF] Bakunin | Turbulence and diusion. Scaling versus equations[END_REF]. Its rst mention as a model for turbulent dispersion is attributed to Davydov [START_REF] Davydov | Diusion equation with the inclusion of molecular velocity[END_REF]. It gives a formula similar to the well-known formula established by Einstein in its publications on Brownian movement [START_REF] Einstein | On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat[END_REF][START_REF] Einstein | On the theory of the Brownian movement[END_REF][START_REF] Einstein | The elementary theory of the Brownian motion[END_REF]:

with k 12 = 1 4τ , τ being the time scale of the Brownian movement. For small times, the advective process is predominant, with a so-called ballistic behaviour (a variance growing proportionally to the square of time). For large times, an asymptotic Fickian regime is reached. The Fickian behaviour is reached after a few times k -1 12 . This shows that a Fickian behaviour can be obtained from a purely advective model beyond a certain time scale. At smaller times, the dispersion process is anomalous. The advantage of the purely advective model over the Fickian model is that it implicitly rules out innite signal propagation speeds.

Convergence rate to the asymptotic value D ∞ . Equations (A.19a, A.19b) can be rewritten as