
HAL Id: hal-01728184
https://hal.science/hal-01728184

Submitted on 10 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observations from Parallelising Three Maximum
Common (Connected) Subgraph Algorithms

Ruth Hoffmann, Ciaran Mccreesh, Samba Ndojh Ndiaye, Patrick Prosser,
Craig Reilly, Christine Solnon, James Trimble

To cite this version:
Ruth Hoffmann, Ciaran Mccreesh, Samba Ndojh Ndiaye, Patrick Prosser, Craig Reilly, et al.. Ob-
servations from Parallelising Three Maximum Common (Connected) Subgraph Algorithms. 15th
International Conference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR), 2018, Delft, Netherlands. pp.298-315. �hal-01728184�

https://hal.science/hal-01728184
https://hal.archives-ouvertes.fr


Observations from Parallelising Three Maximum
Common (Connected) Subgraph Algorithms

Ruth Hoffmann1, Ciaran McCreesh?2, Samba Ndojh Ndiaye??3, Patrick
Prosser?2, Craig Reilly?2, Christine Solnon??4, and James Trimble?2

1 University of St Andrews, St Andrews, United Kingdom
2 University of Glasgow, Glasgow, Scotland

3 Université Lyon 1, LIRIS, UMR5205, F-69621, France
4 INSA-Lyon, LIRIS, UMR5205, F-69621, France

Abstract. We discuss our experiences adapting three recent algorithms
for maximum common (connected) subgraph problems to exploit multi-
core parallelism. These algorithms do not easily lend themselves to par-
allel search, as the search trees are extremely irregular, making balanced
work distribution hard, and runtimes are very sensitive to value-ordering
heuristic behaviour. Nonetheless, our results show that each algorithm
can be parallelised successfully, with the threaded algorithms we create
being clearly better than the sequential ones. We then look in more de-
tail at the results, and discuss how speedups should be measured for this
kind of algorithm. Because of the difficulty in quantifying an average
speedup when so-called anomalous speedups (superlinear and sublinear)
are common, we propose a new measure called aggregate speedup.

1 Introduction

Finding a maximum common subgraph is the key step in measuring the sim-
ilarity or difference between two graphs [3, 12, 19]. Because of this, maximum
common subgraph problems frequently arise in biology and chemistry [33, 10,
14] where graphs represent molecules or reactions, and also in computer vision
[7, 5], computer-aided manufacturing [23], the analysis of programs and malware
[13, 31], crisis management [8], and social network analysis [11].

A subgraph isomorphism is an injective mapping from a pattern graph to a
target graph which preserves adjacency—that is, it maps adjacent vertices to ad-
jacent vertices. The isomorphism is induced if additionally it maps non-adjacent
vertices to non-adjacent vertices, preserving non-adjacency as well. When work-
ing with labelled graphs, a subgraph isomorphism must preserve labels, and on
directed graphs, it must preserve orientation. A common induced subgraph of
two graphs G and H is a pair of induced subgraph isomorphisms from a pattern
graph P , one to G and one to H. A maximum common induced subgraph is

? This work was supported by the Engineering and Physical Sciences Research Council
[grant numbers EP/K503058/1, EP/M508056, and EP/P026842/1]

?? This work was supported by the ANR project SoLStiCe (ANR-13-BS02-0002-01)



one with as many vertices as possible. (The maximum common partial subgraph
problem is non-induced, with as many edges as possible; this paper discusses
only induced problems.) A common variant of the problem requires a largest
connected subgraph [33, 36, 10, 23].

Although both the connected and non-connected variants are NP-hard, re-
cently progress has been made towards solving the problem in practice. This
paper looks at three branch and bound algorithms for maximum common (con-
nected) induced subgraph problems, each of which is the state of the art for
certain classes of instance. We discuss our experiences in adding parallel tree-
search to these three algorithms. In each case, our results show that the parallel
version of the algorithm is clearly better than the sequential version, although
a closer look at the results shows many nuances. Thus this paper focusses pri-
marily on presenting and interpreting the experimental data, rather than heavy
implementation details, in the hopes that the lessons we learned are helpful to
other practitioners—in particular, we introduce a new measure called aggregate
speedup which is suitable for determining speedups for decision problems or op-
timisation problems where anomalous speedups are common.

2 Sequential Algorithms

There are three competitive approaches for the maximum common subgraph
problem, each being the strongest on certain classes of instance. The first involves
a reduction to the maximum clique problem, whilst the other two approaches
are inspired by constraint programming.

2.1 Reduction to Maximum Clique

A clique in a graph is a subgraph where every vertex is adjacent to every other.
There is a well-known reduction from the maximum common subgraph problem
to the problem of finding a maximum clique in an association graph [21, 33, 25];
this reduction resembles the microstructure encoding [17] of the constraint pro-
gramming approach described below. When combined with a modern maximum
clique solver [35], this is the current best approach for solving the problem on
labelled graphs [25]. A modified clique-like algorithm can also be used to solve
the maximum common connected subgraph problem, by ensuring connectedness
during search [25]; again, this is the best known way of solving the problem on
labelled graphs. However, the association graph encoding is extremely memory-
intensive, limiting its practical use to pairs of graphs with no more than a few
hundred vertices.

2.2 Constraint Programming

The maximum common induced subgraph problem may be reformulated as a
constraint optimisation problem, as follows. Observe that an equivalent defini-
tion of a common subgraph of graphs G and H is an injective partial mapping



from G to H which preserves both adjacency and non-adjacency. Hence we pick
whichever input graph has fewer vertices, and call it the pattern; the other graph
is called the target. The model then follows from this new definition: for each
vertex in the pattern, we create a variable, whose domain ranges over each ver-
tex in the target graph, plus an additional value ⊥ representing an unmapped
vertex. We then have three sets of constraints. The first set says that for each
pair of adjacent vertices in the pattern (that is, for each edge in the pattern), if
neither of these vertices are mapped to ⊥ then these vertices must be mapped
to an adjacent pair of target vertices. The second set is similar, but looks at
non-adjacent pairs (or non-edges). Finally, the third set ensures injectivity, by
enforcing that the variables must be all different except when using ⊥. This final
set of constraints may either be implemented using binary constraints between
all pairs of variables, or a special global “all different except ⊥” propagator [32].
The objective is simply to find an assignment of values to variables, maximising
the number of variables not set to ⊥. The state of the art for this technique is a
dedicated (non-toolkit) implementation of a forward-checking branch and bound
search over this model [30, 25].

Two approaches exist for ensuring connectedness: either a conventional global
constraint and propagator can be used [25], or a special branching rule can en-
force connectedness during search [36]. The two techniques are broadly compa-
rable performance-wise [25], but the branching rule is simpler to implement.

2.3 Domain Splitting (McSplit and McSplit↓)

McCreesh et al. [28] observe that due to the special structure of the maximum
common subgraph problem, the following property holds throughout the search
process using the constraint programming model: any two variables either have
domains with no values in common (with the possible exception of ⊥), or have
identical domains. The McSplit algorithm exploits this property. It explores es-
sentially the same search tree as the basic forward-checking constraint program-
ming approach, but using different supporting algorithms and data structures.
Rather than storing a domain for each vertex in the pattern graph, equivalence
classes of vertices in both graphs are stored in a special data structure which
is modified in-place and restored upon backtracking. This enables fast propaga-
tion of the constraints and smaller memory requirements. In addition, this data
structure enables stronger branching heuristics to be calculated cheaply. The
McSplit algorithm effectively dominates conventional constraint programming
approaches, being consistently over an order of magnitude faster.

The McSplit↓ algorithm is a variant designed for instances where we expect
nearly all of the smaller graph to be found. It branches first on result size, from
largest possible result downwards.

2.4 k-less Subgraph Isomorphism

A different take on the constraint programming approach is presented by Hoff-
mann et al. [16]. They approach maximum common subgraph via the subgraph



isomorphism problem, asking the question “if a pattern graph cannot be found
in the target, how much of the pattern graph can be found?”. The k↓ algorithm
tries to solve the subgraph isomorphism problem first for k = 0 (asking whether
the whole pattern graph can be found in the target). Should that not be satisfi-
able, it tries to solve the problem for k = 1 (one vertex cannot be matched), and
should that also not be satisfiable, it iteratively increases k until the result is
satisfiable. This approach exploits strong invariants using paths and the degrees
of vertices to prune large portions of the search space.

This algorithm is aimed primarily at large instances, where the two graphs
are of different orders, and where it is expected that the solution will involve
most of the smaller graph (that is, k is expected to be low). The sequential
implementation we start with does not support labels or the connected variant.

3 Benchmark Instances

Most of the benchmark instances we will use come from a standard database for
maximum common subgraph problems [34, 6]. This benchmark set can be used
in a number of ways, for different variants of the problem. Following other recent
work [25, 16, 28], we use it to create five families of instances, as follows:

Unlabelled undirected instances, by selecting the first ten members of each
parameter class where the graphs have up to 50 vertices each—this gives us
a total of 4,110 instances.

Vertex labelled undirected instances, by selecting the first ten members of
each parameter class (and so graphs have up to 100 vertices each), using the
33% labelling scheme [34] for vertices only. This gives 8,140 instances.

Both labelled, directed instances, by selecting the first ten members of each
parameter class, and applying the 33% labelling scheme [34] to both vertices
and edges. Again, this gives 8,140 instances.

Unlabelled, connected instances, as per the unlabelled case.
Both labelled, connected instances, starting in the same way as the both

labelled, directed case. These are then converted to undirected graphs by
treating edges as undirected, picking the label of the lower-numbered edge.

Following Hoffmann et al. [16], we also work with the 5,725 Large instances
originally introduced for studying portfolios of subgraph isomorphism algorithms
[18]. These graphs are unlabelled and undirected, and can include up to 6,671
vertices. We do not use the clique encoding on these instances due to its memory
requirements.

4 Parallel Search

The clique and k↓ algorithms already make use of fine-granularity bit-parallelism.
To introduce coarse-grained thread parallelism, we will parallelise search: viewing
backtracking search as forming a tree, we can explore different portions of the



tree using different threads. We use a shared incumbent, so better solutions
found by one thread can be used by others immediately. In this paper we use
C++11 native threads, and so only support shared memory systems.

Parallel tree-search has a long history [1]. Of particular interest to us are
so-called anomalies [20, 22, 2]: because we are not performing a fixed amount of
work, we should have no expectation of a linear speedup, and instead we could
see a sublinear speedup (much less than n from n processors, if speculative work
turns out to be wasted) or a superlinear speedup (much more than n from n
processors, if a strong incumbent is found more quickly). An absolute slowdown
(a speedup much less than 1) is also possible when using some parallelisation
techniques.

We stress that these anomalies are due to changes in the amount of work
done, and are not due to work balance problems (although work balance is also
unusually difficult for this problem). Anomalies can have a very strong effect on
these algorithms, and we will therefore try to mitigate them as far as possible.
In the evaluation of their “embarrassingly parallel search” technique, Malapert
et al. [24] “consider unsatisfiable, enumeration and optimization [problem] in-
stances”, and “ignore the problem of finding a first feasible solution because the
parallel speedup can be completely uncorrelated to the number of workers, mak-
ing the results hard to analyze”. They do “consider optimization problems for
which the same variability can be observed, but at a lesser extent because the
optimality proof is required”. Unfortunately, many of the instances we consider
behave more like decision problem instances than optimisation instances: due to
the combination of a low solution density, good value-ordering heuristics, and a
strong bound function in cases where the optimal solution is relatively large, it
is often the case that the runtime is determined almost entirely by how long it
takes to find an optimal solution, with the proof of optimality being nearly triv-
ial. Indeed, attempts to parallelise the basic constraint programming approach
by static decomposition have had limited success [29].

4.1 Parallel Maximum Clique

Thread-parallel versions of state-of-the-art maximum clique algorithms already
exist. McCreesh et al. [27] compare several of these approaches, and make an im-
portant observation: although work balance is a problem due to the irregularity
of the search tree, often the interaction between search order and parallel work
decomposition is the dominating factor in determining speedups. They explain
why anomalies are in fact common in practice: many clique problem instances
benefit immensely from having found a strong incumbent, but have solutions
which are either unique or rare, and are hard to find. They propose a work
splitting mechanism which offsets anomalies, guaranteeing reproducibility (two
runs with the same instance on the same hardware will give similar runtimes),
scalability (increasing the number of cores cannot make things worse), and no
absolute slowdowns. Additionally, this mechanism explicitly offsets the commit-
ment to early branching choices, where search ordering heuristics are most likely
to be inaccurate [15, 4], making superlinear speedups common.



We will use this mechanism for our experiments. The clique-based maxi-
mum common subgraph algorithm effectively differs only in the preprocessing
stage, and the clique-inspired connected algorithm described by McCreesh et al.
[25] is sufficiently similar that it may be parallelised in exactly the same way.
Based upon preliminary experiments, we set the mechanism’s splitting depth
limit parameter to be five rather than the original three, since maximum com-
mon subgraph instances appear to give even more irregular search trees than
normal clique problem instances.

4.2 Parallel Constraint-Based Search

A similar approach may be used for the k↓ algorithm. Although it is not quite
a conventional branch and bound algorithm, each individual k pass is a tree-
search, and may be parallelised. For each pass, we use the same work splitting
mechanism as in the clique algorithm, starting by splitting only at the top level
of search to explicitly introduce diversity, and then iteratively increasing the
splitting depth as additional work is needed (up to a limit of five levels deep).
Because the k↓ algorithm uses a conventional constraint programming domain
store, there is no need to use recomputation; the state is naturally copied at each
branching point.

In principle the McSplit algorithm may be parallelised in exactly the same
way. However, this algorithm makes heavy use of an in-place, backtrackable
data structure, which is not copied for recursive calls. In order to introduce the
potential for parallelism, we must make copies of the state data structure. Imple-
mented näıvely, this can give an order of magnitude slowdown to the sequential
algorithm, which can be hard to recover using parallelism. To lessen the effects,
rather than copying state for each recursive call, we copy once before the main
branching loop, and then copy that copy in each “helper” thread, replaying the
branching loop without making duplicate recursive calls. (We believe a better
approach using partial recomputation may be possible, and intend to investigate
this further in the future.)

5 Empirical Evaluation

We perform our experiments on systems with dual Intel Xeon E5-2697A v4 pro-
cessors and 512GBytes RAM, running Ubuntu 17.04, with GCC 6.3.0 as the
compiler. Each machine has a total of thirty-two cores. We run all our experi-
ments with a one thousand second timeout for each instance. All of our sequen-
tial runtimes are from optimised implementations by their original authors which
were not designed with parallelism in mind—that is, speedups from parallelism
are genuine improvements over the state of the art.

5.1 Parallel Search is Better Overall

In Fig. 1 we plot empirical cumulative distribution functions showing the number
of instances solved over time, for both sequential (solid lines) and parallel (dotted



4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rs

ol
ve
d

Runtime (ms)

Unlabelled

Clique
McSplit

k↓

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rs

ol
ve
d

Runtime (ms)

Vertex labelled

Clique
McSplit

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rs

ol
ve
d

Runtime (ms)

Both labelled, directed

Clique
McSplit

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rs

ol
ve
d

Runtime (ms)

Unlabelled, connected

Clique
McSplit

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rs

ol
ve
d

Runtime (ms)

Both labelled, connected

Clique
McSplit

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rs

ol
ve
d

Runtime (ms)

Large

k↓
McSplit↓

Fig. 1. The cumulative number of instances solved over time. Except in the bottom
left plot, the 32 threaded parallel versions (shown using dotted lines) are always better
in aggregate than the sequential versions (shown using solid lines).



lines) versions of each algorithm. To read these plots, make a choice of timeout
along the x-axis (which uses a log scale). The y value at that point shows the
number of instances whose runtime (individually) is at most x, for a particular
algorithm. In other words, at any given x value, the highest line shows which
algorithm is able to solve the largest number of instances using a per-instance
timeout of that x value, bearing in mind that the actual sets of instances solved
by each algorithm may be completely different.

With one exception, each plot gives the same conclusion: if we are working
with a solving time of at least 100 milliseconds, then for any problem family and
any sequential algorithm, if given the option of switching to the corresponding
parallel algorithm, then we should do so. For the McSplit algorithm on both
labelled, connected instances, the parallel algorithm does not quite catch up to
the sequential algorithm.

Although good at showing general trends, cumulative plots can hide interest-
ing details. We therefore now take a closer look at each of the three algorithms
in turn.

5.2 Clique Results In Depth

In the first column of Fig. 2, we see scatter plots comparing the sequential and
parallel runtimes of the clique algorithm on an instance by instance basis, using
a log-log plot. Each point represents one instance, with the x-axis being the
sequential runtime and the y-axis the parallel runtime. Instances which timed
out using one algorithm but not the other are shown as points along the outer
borders. Points below the x−y diagonal line represent speedups. The colour of
the points indicates the relative size of the solution—darker points represent
instances where the solution uses most of the vertices of the input graphs. (We
use these conventions for scatter plots throughout this paper.)

Broadly speaking, the results are similar on each of the five families. For
runtimes below 100 milliseconds, overheads and the preprocessing step dominate,
and we are usually only able to achieve a small speedup. At higher runtimes,
most speedups appear to be between ten and thirty, except on the final family of
both labelled connected instances, where they are mostly between five and ten.
For a few instances, the speedups are lower (but they are still clearly speedups),
whilst in the first four families, we also see evidence of superlinear speedups
being relatively common.

However, attempting to determine a speedup by staring at a scatter plot is
not particularly quantitative. We could attempt to find a best fit line through
these points, pretending that the superlinear speedups are outliners. We might
perhaps get away with this if outliers were rare enough, but in practice we are
not expecting linear speedups (and for the other two algorithms, we will see
that superlinear speedups are even more common). Alternatively, we could rig
our experiments to remove anomalies, by priming search with a known-optimal
solution; however, since the time to find an optimal solution (but not prove its
optimality) is so important, we do not consider this to be a fair measure of
algorithm performance [27].



fail

100
101
102
103
104
105

fail100 101 102 103 104 105
0
10
20
30
40
50
60
70
80
90
100

≥500 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1 10 32 100 103 104

All
Hard

PAR10

Seq
Par

U
n
la
b
e
ll
e
d

fail

100
101
102
103
104
105

fail100 101 102 103 104 105
0
20
40
60
80
100
120

≥500 10 20 30 40 0

0.2

0.4

0.6

0.8

1

1 10 32100 103 104 105

V
e
rt
e
x
la
b
e
ll
e
d

fail

100
101
102
103
104
105

fail100 101 102 103 104 105
0
10
20
30
40
50
60
70

≥500 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1 10 32 100 103 104

B
o
th

la
b
e
ll
e
d
,

d
ir
e
c
te
d

fail

100
101
102
103
104
105

fail100 101 102 103 104 105
0
10
20
30
40
50
60
70
80
90
100

≥500 10 20 30 40
0

0.2
0.4
0.6
0.8
1

1 10 32 100 103 104

U
n
la
b
e
ll
e
d
,

c
o
n
n
e
c
te
d

fail

100
101
102
103
104
105

fail100 101 102 103 104 105
0
50
100
150
200
250
300
350
400
450

≥500 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1 10 32 100

V
e
rt
e
x
la
b
e
ll
e
d
,

c
o
n
n
e
c
te
d

Fig. 2. In the left column, per-instance speedups, using the clique algorithm. The x-
axis is sequential performance and the y-axis is 32 threaded performance. In the centre,
histograms plotting the distribution of speedups for instances whose sequential runtime
was at least 500 milliseconds, and below the timeout. On the right, performance profiles.



1

32

10

20

30

40

50

100 101 102 103 104 105 106

Ag
gr
eg
at
e
sp
ee
du

p

Sequential runtime (ms)

Unlabelled

Vertex
Both, directed

Unlabelled, connected

Both, connected

Fig. 3. Aggregate speedups from 32 threads, shown as a function of sequential runtime,
for each family supported by the clique algorithm.

A more principled approach is given in the second column of Fig. 2. For in-
stances where the sequential run both succeeded and took at least 500 millisec-
onds, we plot the distribution of speedups obtained. These histograms confirm
our informal observations. However, these plots are still not especially satisfac-
tory: in order to calculate a speedup, we can only consider instances where the
sequential algorithm succeeded, and so these plots underestimate superlinear
speedups. The choice of a 500 millisecond minimum sequential runtime is also
rather arbitrary, and is acceptable only if we expect the parallel algorithms will
only be used on relatively hard instances.

In the third column we show performance profiles [9]. A performance profile
is a cumulative plot of how many times worse the performance of an algorithm is
relative to the virtual best algorithm. Each plot shows three options as different
lines. The ‘all’ lines include easy instances whose sequential runtime is below
500 milliseconds, whilst the other two lines exclude them. The ‘hard’ line treats
sequential timeouts as having been solved at the time limit, whilst the ‘PAR10’
line treats timeouts as taking ten times longer than the timeout (this convention
is common in portfolios [37]). The solid lines show the sequential algorithms,
whilst the dotted lines show the parallel algorithms. (There are no dotted lines
on the top four plots for the ‘hard’ and ‘PAR10’ cases, since the parallel algorithm
always beats the sequential algorithm in these cases.) We have normalised the
y-axis to the number of counted instances in a given class.

Unfortunately, these three lines can paint very different pictures. For exam-
ple, for unlabelled instances on the top row, if we include easy instances, it
appears that the parallel algorithm can be up to ten times worse, whereas if we
exclude them, it is never worse. If we do not use the PAR10 scheme, the perfor-
mance profile also suggests that there are around twenty-five percent of the hard
instances where the speedup is below 10, whilst using PAR10 correctly shows
that such instances are rare. However, PAR10 is only effective in this regard



because the “typical” speedup is in the region of 10 (and this is a particular
inconvenience because we seek a way of characterising speedups which does not
rely upon us already knowing that 10 is a reasonable choice of penalty).

A further problem is that to deal with the large superlinear speedups some-
times observed, a log scale must be used on the x-axis; this makes speedups of
10 and 30 look very similar, whilst in practice the difference is important.

To avoid these weaknesses, we propose a new way of characterising speedups.
Refer back to the cumulative plots in Fig. 1. The usual way of comparing two
algorithms on these plots is by measuring the vertical difference between lines,
which would tell us how many more instances the parallel algorithm can solve
than the sequential algorithm can with a particular choice of timeout. However,
measuring the horizontal distance between lines also conveys information. Sup-
pose the sequential algorithm can solve y instances with a selected timeout of s.
By moving to the left on a cumulative plot, we can find the timeout p required
for the parallel algorithm to solve the same number of instances, bearing in mind
that the two sets of instances could have completely different members. We define
the aggregate speedup to be s/p; this can be expressed as a function of time (i.e.
s) or of the number of instances solved (y).

We plot aggregate speedups as a function of time in Fig. 3. For a sequential
timeout of one thousand seconds, we get speedups of thirty to forty in the unla-
belled, vertex labelled, and both labelled, directed cases. In the unlabelled cases,
our aggregate speedup are over thirty-two, which is superlinear. With some de-
tailed knowledge of the underlying sequential algorithm, this should perhaps not
surprise us: for instances with a large solution, once we have found that solu-
tion, a proof of optimality is relatively easy. However, finding that solution can
be unusually hard, particularly since the branching strategy for the connected
constraint necessarily interferes with the tailored search order used by modern
clique algorithms. In contrast, for the both labelled connected case, our aggre-
gate speedup is barely larger than one. A closer inspection of the results shows
that the search tree is unusually narrow and deep for these instances, making
work balance harder and contention higher.

What about scalability and reproducibility? The first plot in Fig. 4 shows
the effects of going from sequential to threaded with two cores, and the next
four plots show the effects of doubling the number of threads each time. These
plots show that most of the superlinear effects occur with fairly small numbers
of threads, with nearly all of the benefits of increased diversity in search being
obtained once eight threads are used. As expected, in no case does increasing
the number of threads make things substantially worse. The final plot in Fig. 4
shows that runtimes are reproducible: running the same instance on the same
hardware twice takes almost exactly the same amount of time.

These results are comforting: they show that anomalies can be controlled,
and that switching to a parallel algorithm is not only better, but also safe from
a scientific reproducibility perspective.



fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Both labelled, 1 vs 2

2× fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Both labelled, 2 vs 4

2× fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Both labelled, 4 vs 8

2×

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Both labelled, 8 vs 16

2× fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Both labelled, 16 vs 32

2× fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Both labelled, 32 vs 32

1×

Fig. 4. Per-instance speedups from the clique algorithm on vertex- and edge-labelled,
directed instances, when going from sequential to two threads in the first plot, then
increasing the number of threads in subsequent plots. The final plot shows 32 threads
versus a repeated run also with 32 threads.

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Unlabelled

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Large

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Unlabelled, 4 vs 16

4×

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Unlabelled, 32 vs 32

1

32

5
10
15
20
25
30

100 101 102 103 104 105 106

Ag
gr
eg
at
e
sp
ee
du

p

Sequential runtime (ms)

Unlabelled

Large

Fig. 5. In the first two plots, per-instance speedups, using the k↓ algorithm. The x-axis
is sequential performance and the y-axis is 32 threaded performance. Next, scalability
and reproducibility, and finally, aggregate speedups for both families.



5.3 k↓ Results In Depth

In Fig. 5 we show per-instance and aggregate speedups for the k↓ algorithm.
On unlabelled instances, we see a range of speedups between 0.9 and ten, with
an aggregate speedup of seven. These results are not as good as with the clique
algorithm. Profiling suggests memory allocation problems: although the amount
of work done would suggest good parallelism, the time taken to perform each
domain copy operation increases as the number of threads increases. Unlike the
clique algorithm, which has very small, cache-friendly data structures which are
modified in-place, the state for the k↓ algorithm is large and much of the runtime
is spent copying data structures. (Our hardware is a dual multi-core processor
configuration, and each core has its own low-level cache, but memory bandwidth
is shared. Interestingly, on older Xeon E5 v2 systems, this problem is much more
pronounced.)

For the large instances, our aggregate speedup is higher, at around twenty.
This has two causes: for larger graphs, the computational effort per recursive
call increases by more than the amount the memory copying does, reducing the
memory problem slightly, and additionally a much larger number of superlinear
speedups occurred with this family of instances. We could perhaps anticipate
this latter effect: in many of these instances the maximum common subgraph
covers all or nearly all of the smaller of the two graphs, and so once it is found,
the proof of optimality is trivial. However, finding a witness can be difficult. We
should also expect value-ordering heuristics in these algorithms to be weak at
the top of search (they are based upon degree, and many graphs do not have a
large degree spread), and so the benefits of high-up diversity can be extremely
large [15, 4, 27]. Indeed, similar results were seen with a parallel version of the
subgraph isomorphism algorithm upon which k↓ is based [26].

The third and fourth plots in Fig. 5 show that as with the clique algorithm,
this parallelism is reproducible, and that runtimes do not get worse when the
number of threads is increased. (Although not shown, we also tried to parallelise
k↓ using randomised work-stealing from Intel Cilk Plus. Doing so gives generally
reasonable results on average, as it does for the clique algorithm [27], but now
repeat runtimes can differ by more than an order of magnitude.)

5.4 McSplit Results In Depth

Finally, we look at our attempts to parallelise the McSplit algorithm. Recall
that doing so required heavy modifications to the implementation, introducing
significant amounts of speculative copying of a data structure that is usually
backtrackable and modified in-place.

For unlabelled, unlabelled connected, and large instances, Fig. 6 shows a
particularly high proportion of strongly superlinear speedups. This is because
the McSplit algorithm is focussed upon exploring the search space very quickly,
and its branching heuristics do not have the advantage of the domain filtering
performed by k↓, or the rich inter-domain knowledge coming from the combi-
nation of the association graph encoding and the colour ordering used by clique



fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Unlabelled

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Vertex labelled

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Both labelled, directed

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Unlabelled, connected

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Both labelled, connected

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Large

1

32

5

10

15

20

25

30

100 101 102 103 104 105 106

Ag
gr
eg
at
e
sp
ee
du

p

Sequential runtime (ms)

Unlabelled

VertexBoth, dir.

Unlabelled, conn.

Both, conn.

Large

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Unlabelled, 4 vs 16

4×

fail

100
101
102
103
104
105

fail100 101 102 103 104 105

Unlabelled, 32 vs 32

Fig. 6. On the first two rows, per-instance speedups, using McSplit. Below, aggregate
speedups on the left, and on the right, scalability and reproducibility.



algorithms. Thus making a correct value-ordering choice at the top of search is
harder for McSplit than for other algorithms, and so increased diversity can be
particularly beneficial.

For the large instances, we see evidence of work balance problems. McSplit’s
use of a “smallest domain first” variable-ordering heuristic, combined with the
presence of ⊥ in domains, tends to produce narrow (nearly binary) and deep
search trees. These balance problems are even more evident in the labelled cases
(where following a guessed assignment, many domains are left with only two
values), and often lead to little to no speedup being obtained. Indeed, for the
labelled, connected case, we see a slight aggregate slowdown.

The scatter plots also show occasional large absolute slowdowns, sometimes
by over an order of magnitude. These are due to the changes which had to be
made to the sequential algorithm (and because we are benchmarking against
the sequential algorithm, not a parallel algorithm with one thread), rather than
search order effects. In cases where parallelism cannot be exploited, the cost of
speculatively copying domains at each level of search can dominate the runtimes.
Because of this, fixing work balance problems by increasing the splitting depth
typically makes matters much worse, not better.

What about scalability and reproducibility? Fig. 6 presents a less ideal pic-
ture than for the previous two algorithms—again, this is due to speculative
overheads that fail to pay off, rather than being anomalies in the classical sense.

6 Conclusion

We have parallelised three state-of-the-art maximum common (connected) sub-
graph algorithms with a reasonable degree of success by using dynamic work-
splitting. Despite having a branch and bound flavour, all three sequential algo-
rithms had their own difficulties and performance characteristics which prevented
them from cleanly fitting into common abstraction frameworks. Nonetheless, our
results show that the parallel algorithms are not just better in aggregate, but
also preserve the desirable reproducibility properties of sequential algorithms. A
large part of our success was down to using parallelism to explicitly introduce
diversity into the search process, offsetting weak early value-ordering branching
choices.

There is room for improvement, particularly with respect to work balance.
However, improvements to work balance must not come at the expense of the
search order properties, nor at the cost of increased overheads.

More generally, we introduced the idea of aggregate speedups, to deal with
measuring a speedup in the presence of anomalies. This measure gives sensible
answers even when working with instances which behave like decision problems.
Aggregate speedups informed part of our analysis, but our results highlight
the importance of viewing results in multiple ways, and in using large fami-
lies of instances with different characteristics when evaluating parallel search
algorithms—had we looked only at unlabelled instances, or only at labelled con-
nected instances, our conclusion would be very different.



References

1. Bader, D.A., Hart, W.E., Phillips, C.A.: Parallel algorithm design for branch and
bound. In: G, H. (ed.) Tutorials on Emerging Methodologies and Applications in
Operations Research, International Series in Operations Research & Management
Science, vol. 76, chap. 5, pp. 1–44. Springer New York, New York, NY, USA (2005)

2. de Bruin, A., Kindervater, G.A.P., Trienekens, H.W.J.M.: Asynchronous parallel
branch and bound and anomalies. In: Ferreira, A., Rolim, J.D.P. (eds.) Parallel
Algorithms for Irregularly Structured Problems, Second International Workshop,
IRREGULAR ’95, Lyon, France, September 4-6, 1995, Proceedings. Lecture Notes
in Computer Science, vol. 980, pp. 363–377. Springer (1995)

3. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

4. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel con-
straint programming. In: Gent, I.P. (ed.) Principles and Practice of Constraint
Programming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portu-
gal, September 20-24, 2009, Proceedings. Lecture Notes in Computer Science, vol.
5732, pp. 226–241. Springer (2009)

5. Combier, C., Damiand, G., Solnon, C.: Map edit distance vs. graph edit distance
for matching images. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang,
X. (eds.) Graph-Based Representations in Pattern Recognition - 9th IAPR-TC-15
International Workshop, GbRPR 2013, Vienna, Austria, May 15-17, 2013. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7877, pp. 152–161. Springer
(2013)

6. Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common
subgraph detection algorithms: A performance analysis of three algorithms on a
wide database of graphs. J. Graph Algorithms Appl. 11(1), 99–143 (2007)

7. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length
and background knowledge. J. Artif. Intell. Res. 1, 231–255 (1994)

8. Delavallade, T., Fossier, S., Laudy, C., Lortal, G.: On the Challenges of Using So-
cial Media for Crisis Management, pp. 137–175. Springer International Publishing,
Cham (2016)

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

10. Ehrlich, H.C., Rarey, M.: Maximum common subgraph isomorphism algorithms
and their applications in molecular science: a review. Wiley Interdisciplinary Re-
views: Computational Molecular Science 1(1), 68–79 (2011)

11. Fang, M., Yin, J., Zhu, X., Zhang, C.: Trgraph: Cross-network transfer learning
via common signature subgraphs. IEEE Trans. Knowl. Data Eng. 27(9), 2536–2549
(2015)

12. Fernández, M., Valiente, G.: A graph distance metric combining maximum common
subgraph and minimum common supergraph. Pattern Recognition Letters 22(6/7),
753–758 (2001)

13. Gao, D., Reiter, M.K., Song, D.X.: Binhunt: Automatically finding semantic dif-
ferences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) Informa-
tion and Communications Security, 10th International Conference, ICICS 2008,
Birmingham, UK, October 20-22, 2008, Proceedings. Lecture Notes in Computer
Science, vol. 5308, pp. 238–255. Springer (2008)

14. Gay, S., Fages, F., Martinez, T., Soliman, S., Solnon, C.: On the subgraph epimor-
phism problem. Discrete Applied Mathematics 162, 214–228 (2014)



15. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95,
Montréal Québec, Canada, August 20-25 1995, 2 Volumes. pp. 607–615. Morgan
Kaufmann (1995)

16. Hoffmann, R., McCreesh, C., Reilly, C.: Between subgraph isomorphism and max-
imum common subgraph. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA. pp. 3907–3914. AAAI Press (2017)

17. Jégou, P.: Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In: Fikes, R., Lehnert, W.G. (eds.) Proceedings
of the 11th National Conference on Artificial Intelligence. Washington, DC, USA,
July 11-15, 1993. pp. 731–736. AAAI Press / The MIT Press (1993)

18. Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algo-
rithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) Learning and Intelligent
Optimization - 10th International Conference, LION 10, Ischia, Italy, May 29 -
June 1, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10079, pp. 107–122. Springer (2016)

19. Kriege, N.: Comparing graphs. Ph.D. thesis, Technische Universität Dortmund
(2015)

20. Lai, T., Sahni, S.: Anomalies in parallel branch-and-bound algorithms. Commun.
ACM 27(6), 594–602 (1984)

21. Levi, G.: A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. CALCOLO 9(4), 341–352 (1973)

22. Li, G., Wah, B.W.: Coping with anomalies in parallel branch-and-bound algo-
rithms. IEEE Trans. Computers 35(6), 568–573 (1986)

23. Luo, C., Wang, X., Su, C., Ni, Z.: A fixture design retrieving method based on con-
strained maximum common subgraph. IEEE Transactions on Automation Science
and Engineering PP(99), 1–13 (2017)

24. Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search in constraint
programming. J. Artif. Intell. Res. 57, 421–464 (2016)

25. McCreesh, C., Ndiaye, S.N., Prosser, P., Solnon, C.: Clique and constraint models
for maximum common (connected) subgraph problems. In: Rueher, M. (ed.) Prin-
ciples and Practice of Constraint Programming - 22nd International Conference,
CP 2016, Toulouse, France, September 5-9, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9892, pp. 350–368. Springer (2016)

26. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algo-
rithm using supplemental graphs. In: Pesant, G. (ed.) Principles and Practice of
Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland,
August 31 - September 4, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9255, pp. 295–312. Springer (2015)

27. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound. TOPC 2(1), 8:1–8:27
(2015)

28. McCreesh, C., Prosser, P., Trimble, J.: A partitioning algorithm for maximum
common subgraph problems. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19-
25 August 2017 (2017), to appear

29. Minot, M., Ndiaye, S.N., Solnon, C.: A comparison of decomposition methods for
the maximum common subgraph problem. In: 27th IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, November
9-11, 2015. pp. 461–468. IEEE Computer Society (2015)



30. Ndiaye, S.N., Solnon, C.: CP models for maximum common subgraph problems.
In: Lee, J.H. (ed.) Principles and Practice of Constraint Programming - CP 2011
- 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6876, pp. 637–644. Springer
(2011)

31. Park, Y.H., Reeves, D.S., Stamp, M.: Deriving common malware behavior through
graph clustering. Computers & Security 39, 419–430 (2013)

32. Petit, T., Régin, J., Bessière, C.: Specific filtering algorithms for over-constrained
problems. In: Walsh, T. (ed.) Principles and Practice of Constraint Programming
- CP 2001, 7th International Conference, CP 2001, Paphos, Cyprus, November 26
- December 1, 2001, Proceedings. Lecture Notes in Computer Science, vol. 2239,
pp. 451–463. Springer (2001)

33. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. Journal of Computer-Aided Molecular
Design 16(7), 521–533 (2002)

34. Santo, M.D., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its
use for benchmarking graph isomorphism algorithms. Pattern Recognition Letters
24(8), 1067–1079 (2003)

35. Segundo, P.S., Mat́ıa, F., Rodŕıguez-Losada, D., Hernando, M.: An improved
bit parallel exact maximum clique algorithm. Optimization Letters 7(3), 467–479
(2013)

36. Vismara, P., Valery, B.: Finding maximum common connected subgraphs using
clique detection or constraint satisfaction algorithms. In: An, L.T.H., Bouvry, P.,
Tao, P.D. (eds.) Modelling, Computation and Optimization in Information Sys-
tems and Management Sciences, Second International Conference, MCO 2008,
Metz, France - Luxembourg, September 8-10, 2008. Proceedings. Communications
in Computer and Information Science, vol. 14, pp. 358–368. Springer (2008)

37. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms
for portfolio-based selection. In: Fox, M., Poole, D. (eds.) Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, July 11-15, 2010. AAAI Press (2010)


