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La conception d'observateurs par intervalles repose sur la coopérativité de la dynamique de l'erreur d'observation. La littérature propose un certain nombre de méthodes pour concevoir des observateurs par intervalles sur des systèmes non coopératifs. Ces méthodes sont basées sur des changements de variables, la dynamique de l'erreur devenant coopérative dans les nouvelles coordonnées. Dans cet article, une méthode est présentée qui permet la détermination numérique de cette transformation sans hypothèse préalable. Elle repose sur une reformulation en problème de synthèse de loi de commande sur une collection de modèles. Le problème équivalent est alors résolu en faisant appel à une technique d'optimisation non lisse conçue pour ce type de problème de synthèse. L'approche est testée sur deux exemples extraits de la littérature.

ABSTRACT. The theory of interval observers requires a cooperative observation error dynamics. In case a non-cooperative dynamics is obtained, the literature proposes methods to compute an adequate state-coordinate change. Then, in the new coordinates, the observation error dynamics is cooperative. In this paper, a new numerical method is proposed to compute this statecoordinate change. It is based on a reformulation into a multi-model structured control law synthesis problem. This problem is then solved using an existing nonsmooth technique. Computations and simulations are then performed on two examples available in the literature.

Introduction

Les systèmes coopératifs sont des systèmes dont la matrice Jacobienne est à coefficients hors-diagonaux positifs -aussi dite Metzler. Dans le cas de systèmes linéaires, cela correspond à la matrice d'état du système. Ces systèmes présentent la propriété intéressante de conserver l'ordre partiel entre leurs trajectoires [START_REF] Smith | Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[END_REF], [START_REF] Mailleret | Stabilisation globale des systèmes positifs mal connus -applications en biologie[END_REF]. Cette caractéristique est exploitée dans le cadre des observateurs par intervalles qui consistent à encadrer à tous instants et de manière déterministe l'état d'un système, ce dernier étant éventuellement soumis à des entrées de perturbation inconnues mais supposées bornées et à bornes connues. Par exemple, étant donnée une perturbation inconnue d(t) ≤ d(t) ≤ d(t), un observateur par intervalles fournit deux états x(t) et x(t) tels que ∀t, x(t) ≤ x(t) ≤ x(t). Dans cette théorie, c'est souvent la dynamique de l'erreur d'observation qui doit vérifier la propriété de coopérativité. Les observateurs par intervalles pour des systèmes coopératifs ont notamment été étudiés dans [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF]. Dans ce cas, une copie du système -qui est donc coopérative -suffit pour construire l'observateur. Cependant, peu de systèmes physiques réels sont coopératifs. Une solution est de rendre de tels systèmes coopératifs en choisissant un changement de coordonnées adapté. Suite aux travaux présentés dans [START_REF] Mazenc | Asymptotically stable interval observers for planar systems with complex poles[END_REF], un changement de variables dépendant du temps a été proposé dans [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF] pour des systèmes LTI non coopératifs. Malgré l'intérêt théorique et les garanties de convergence de l'observateur, ces travaux sont complexes à mettre en oeuvre au sein d'un algorithme dédié notamment à cause de la dépendance de la structure de Jordan au nombre de valeurs propres complexes. Il est donc encore difficile d'appliquer cette approche à des systèmes physiques réels.

Des travaux plus récents comme [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF], (Efimov, Raïssi, Zolghadri, 2013) ou [START_REF] Dinh | Interval observer composed of observers for nonlinear systems[END_REF] proposent un formalisme différent reposant sur un changement de coordonnées invariant avec le temps. Ces résultats reposent sur l'existence d'un couple de matrices (P, L) tel que la matrice M = P (A -LC)P -1 est Metzler. Dans certains cas cette existence est une hypothèse préalable à l'application de la méthode. Dans le cas de [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF], une approche basée sur la résolution d'une équation de Sylvester est proposée qui nécessite la définition préalable d'une matrice M désirée, ce qui peut réduire l'ensemble des solutions acceptables. Dans cet article, nous proposons une alternative à ces techniques de détermination d'une matrice Metzler semblable à la matrice A -LC. En utilisant des outils d'optimisation non lisse, nous procédons au calcul simultané des matrices P et L et obtenons ainsi la matrice Metzler M = P (A-LC)P -1 a posteriori. Des contraintes de contrôle (e.g. réjection de perturbation) peuvent également être formalisées dans cette approche.

Les techniques d'optimisation non lisse utilisées dans cet article ont été conçues dans le cadre de la synthèse de commande structurée sous contraintes qui est un problème non lisse non convexe [START_REF] Burke | HIFOO -a MATLAB package for fixed-order controller design and H∞ optimization[END_REF], [START_REF] Apkarian | Nonsmooth H∞ synthesis[END_REF]. Des développements plus récents de ces approches [START_REF] Apkarian | Multi-model, multi-objective tuning of fixedstructure controllers[END_REF] permettent également la synthèse de contrôleur sous contraintes multiples faisant référence à des modèles distincts. Les contraintes à vérifier peuvent par exemple porter sur le lieu des pôles en boucle fermée ou sur le rejet d'une perturbation donnée. Dans notre approche, de telles contraintes seront utilisées pour assurer une qualité d'estimation minimale par l'intermédiaire du gain d'observation L. Nous allons également montrer que le problème de trouver (P, L) telles que P (A -LC)P -1 est Metzler peut se reformuler comme un problème de stabilisation d'un ensemble de systèmes autonomes. Par optimisation non lisse, nous proposons alors une solution numérique à ce problème.

L'organisation de cet article est la suivante. Après avoir détaillé les notations et définitions utilisées dans la Section 2, le formalisme des observateurs par intervalles est introduit dans la Section 3. Au vu des hypothèses faites dans cette section, nous formulons le problème complet de la détermination d'une matrice Metzler et du rejet de perturbation de l'étage d'estimation dans la Section 4. En utilisant une méthode d'optimisation non lisse permettant de résoudre le problème de synthèse équivalent, une solution numérique est proposée dans la Section 5. L'application de cette approche à deux exemples est présentée dans la Section 6 avant de conclure à la Section 7.

Définitions et notations

La variable de Laplace est notée s et T w→z (s) désigne la fonction de transfert entre l'entrée w et la sortie z. Étant donnés deux entiers (i, j), on définit le symbole δ ij par

∀(i, j), δ ij = 1 si i = j 0 sinon (1) 
Sauf mention contraire, i et j désignent des entiers vérifiant 1 ≤ i ≤ n et 1 ≤ j ≤ m où (n, m) sont les dimensions d'une matrice. On note la matrice identité

I n ∈ R n×n .
Soit le vecteur x(t) ∈ R n , on note x(t) et x(t) les vecteurs de R n tels que

∀t, x(t) ≤ x(t) ≤ x(t) (2) 
Soit la matrice A = (a ij ) ∈ R n×m , on note A + = max(A, 0) la matrice de R n×m ayant pour coefficients [max(a ij , 0)] ij . On définit alors A -= A + -A. On introduit la définition d'une matrice Metzler :

DÉFINITION 1. -Soit A = (a ij ) ∈ R n×n . On dit que A est une matrice Metzler si et seulement si ∀i = j, a ij ≥ 0 (3)
Dans la majorité des cas, les matrices que nous considérons ne sont pas Metzler. S'il est souhaitable de vérifier cette condition, un changement de base est considéré : DÉFINITION 2. -Étant données deux matrices A ∈ R n×n et C ∈ R m×n , on appelle matrices de transformation en matrice Metzler le couple de matrices (P, L) avec P ∈ R n×n et L ∈ R n×m tel que P (A -LC)P -1 est une matrice Metzler.

La matrice L est en fait le gain d'un observateur classique. Afin de pouvoir régler cet observateur, on doit s'assurer de la détectabilité du système : HYPOTHÈSE 3. -Soit un système (G) de représentation d'état (A, B, C, D). On suppose dans cet article que le couple (A, C) est détectable.

La conception d'observateurs par intervalles repose également sur le Lemme suivant, introduit dans [START_REF] Efimov | Interval state observer for nonlinear time-varying systems[END_REF] et dont l'utilité sera soulignée dans la Section 3 :

LEMME 4. -Soit x(t) ∈ R n tel que ∀t, x(t) ≤ x(t) ≤ x(t) et A ∈ R m×n telle que A = A + -A -.
Alors on a, ∀t :

A + x(t) -A -x(t) ≤ x(t) ≤ A + x(t) -A -x(t) (4) 
PREUVE 5. -Voir [START_REF] Efimov | Interval state observer for nonlinear time-varying systems[END_REF], Lemma 1) pour la preuve.

La théorie des observateurs par intervalles repose sur la notion de système coopératif qui a notamment été étudiée par [START_REF] Smith | Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[END_REF]. Nous rappelons maintenant cette définition ainsi qu'une propriété qui lui est associée. DÉFINITION 6. -Un système linéaire continu est dit coopératif si sa matrice d'état A est une matrice Metzler, B ∈ R

•×• + et C ∈ R •×• + .
Les systèmes coopératifs vérifient la propriété suivante qui sera utilisée dans le développement des observateurs par intervalles : PROPRIÉTÉ 7. -Soit (G) un système linéaire continu coopératif d'état x. Soient deux conditions initiales ordonnées x 0 ≤ x 0 et deux entrées de commande ordonnées u(t) ≤ u(t), ∀t. Soit x(t) (resp. x(t)) l'état du système (G) initialisé avec x 0 (resp. x 0 ) et commandé par u(t) (resp. u(t)). Alors

x(t) ≤ x(t), ∀t (5) 

Observateurs par intervalles

Dans cette partie, nous développons le formalisme des observateurs par intervalles qui permet d'encadrer de manière déterministe l'état d'un système à partir des mesures et d'un observateur classique. Ceci nous amènera à considérer les raisons qui motivent le développement d'une méthode de synthèse de matrices de transformation d'une matrice d'état en matrice Metzler. Nous nous inspirons des formalismes présentés dans [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF], [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF] et [START_REF] Dinh | Interval observer composed of observers for nonlinear systems[END_REF].

Système considéré

Dans cet article, nous considérons un système LTI connu dont la représentation d'état est donnée par 

(G) ẋ = Ax + B u u + B d d y = Cx + D u u + D d d (6) où x ∈ R n , y ∈ R m , u ∈ R nu est l'entrée de commande et d ∈ R n d est
x 0 ≤ x 0 ≤ x 0 (7) ∀t, d(t) ≤ d(t) ≤ d(t) (8) 
En vertu de l'Hyp. 8, il est intéressant d'utiliser un observateur par intervalles si nous souhaitons obtenir plus d'informations sur l'état de notre système, à chaque instant. Concevoir un tel type d'observateur consiste à construire deux systèmes de vecteurs d'états respectifs x(t) et x(t) tels que

x(t) ≤ x(t) ≤ x(t), ∀t (9) 
Nous allons voir que la possibilité de construire ces deux systèmes est conditionnée à la vérification d'une hypothèse de coopérativité de la dynamique de l'erreur d'observation. On commence donc par concevoir un observateur classique.

Observateur classique et erreur d'observation

Considérons l'observateur classique de Luenberger suivant : On note que la condition initiale de ce système est bornée par e 0 = x 0 -x 0 et e 0 = x 0 -x 0 . En utilisant notre connaissance des bornes de la perturbation d, nous allons définir un observateur par intervalles de l'erreur d'observation.

(G obs )        ˙ x = A x + B u u + L (y -C x) y = C x + D u u x(0) = x 0 ( 

Observateur par intervalles de l'erreur d'observation

Comme détaillé dans de nombreuses publications du domaine dont [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF], l'application des observateurs par intervalles repose sur une condition de coopérativité (voir Déf. 6) du système à encadrer -l'erreur d'observation dans notre cas. Dans la majorité des cas cependant, la matrice A -LC n'est pas Metzler et un choix adéquat du gain L ne suffit pas1 . Un changement de variable est alors envisagé afin d'obtenir une matrice M = P (A -LC)P -1 Metzler dans la nouvelle base. Deux approches ont été proposées :

1. changement de base à temps variant, voir [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF]; 2. Changement de base invariant, voir [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF].

Dans cet article, nous adoptons la deuxième approche. Dans un premier temps, nous faisons l'hypothèse suivante, qui est le véritable coeur du problème sur lequel nous reviendrons par la suite. HYPOTHÈSE 9. -On connaît deux matrices (P, L) telles que M = P (A-LC)P -1 est (Hurwitz) Metzler.

Dans la nouvelle base, la dynamique de l'erreur d'observation de l'Éq. (11) devient :

ėz = P (A -LC) P -1 e z + P (B d -LD d ) d e z (0) = P e 0 (12) 
où e z = P e. A noter que e z (0) est inconnue car fonction de x 0 . Comme M = P (A -LC) P -1 est Metzler, la dynamique de e z est coopérative et on peut donc appliquer les résultats habituels des observateurs par intervalles. Le système suivant, composé de la réunion de deux systèmes dynamiques, est un observateur par intervalles de l'erreur d'observation de l'Éq. ( 12) : où T = P -1 . On obtient alors l'encadrement suivant de l'erreur d'observation de l'Éq. ( 11) :

(G int )            ėz = M e z + B + d d -B - d d ėz = M e z + B + d d -B -
e(t) ≤ e(t) ≤ e(t), ∀t (15) 

Encadrement de l'état du système

Étant donné ce résultat, l'encadrement de l'état du système de l'Éq. (6) s'obtient de manière évidente en utilisant la définition de l'erreur d'observation e = xx :

x(t) = e(t) + x(t) ≤ x(t) ≤ e(t) + x(t) = x(t), ∀t (16) 

Remarques

Deux remarques peuvent être faites sur ce formalisme :

-l'hypothèse 9 peut être difficile à vérifier à la main dans le cas d'un système de dimension supérieure à 3. Se pose alors la question de la détermination aisée des matrices P et L; En utilisant les méthodes existantes, un résultat acceptable ne peut être obtenu que grâce à des méthodes itératives d'analyse et de synthèse. Nous proposons dans la section suivante de reformuler le Pb. 10 (a) en problème de synthèse. Celui-ci sera résolu en utilisant une méthode d'optimisation non lisse qui permet d'obtenir un résultat optimal minimisant les critères formulés.

Approche proposée

Nous détaillons dans cette section l'approche que nous proposons afin de résoudre le Pb. 10. Elle est basée sur une reformulation du problème de recherche de transformation en problème de synthèse de loi de commande. Au préalable, nous rappelons les deux approches déjà mentionnées et qui permettent d'obtenir une solution au sousproblème (a) du Pb. 10. A noter qu'en utilisant ces méthodes, la vérification des sousproblèmes (b) et (c) ne peut s'effectuer que par analyse et n'entre pas directement en compte dans la détermination de la solution.

Approches existantes

Les deux approches suivantes ont pour avantage leur simplicité de mise en oeuvre. En revanche, elles peuvent présenter un manque de précision numérique mais surtout, elles ne permettent pas de prendre en compte des contraintes supplémentaires telles que (b) ou (c).

Placement de pôles

Supposons que (A, C) soit observable. On choisit L par placement de pôles tel que les pôles de A -LC soient distincts, réels et stables. Soit P la matrice des vecteurs propres à droite de la matrice A -LC. Alors la matrice M = P -1 (A -LC)P est Hurwitz Metzler. PREUVE 11. -Par placement, les pôles de la matrice A -LC sont réels et distincts. La matrice A -LC est donc diagonalisable. De plus, les matrices diagonales satisfont à la Déf. 1 d'une matrice Metzler.

Il est cependant important de noter que cette solution peut conduire à des gains L inappropriés, en particulier qui ne satisfont pas le sous-problème (b). Il peut également être souhaitable de conserver des pôles complexes pour un observateur mis en oeuvre sur un système physique auquel cas cette solution triviale ne convient pas.

Équation de Sylvester

Comme suggéré dans [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF], la recherche des matrices P et L telles que M = P (A -LC)P -1 soit Metzler peut se formuler comme la résolution de l'équation de Sylvester suivante : Outre les méthodes conventionnelles de résolution des équations de Sylvestervoir [START_REF] Bartels | Solution of the matrix equation AX+XB=C[END_REF]) -une méthode de résolution a été proposée dans [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF] 

-M P + P A = P LC = QC (17) 
P = O -1 2 O 1 et Q = P L (18) satisfont l'Éq. (17) où O 1 =    e 1 . . . e 1 (A -LC) n-1    , O 2 =    e 2 . . . e 2 M n-1    (19) 
Cependant, l'application de ce lemme nécessite toujours de fournir la valeur numérique souhaitée de la matrice M .

Formulation comme problème de stabilisation

En considérant le Pb. 10, on constate qu'une solution localement optimale aux sous-problèmes (b) et (c) peut être obtenue en utilisant une méthode de synthèse de loi de commande par optimisation non lisse. On souhaite adapter le sous-problème (a) afin de mettre en oeuvre cette méthode et d'obtenir une solution au Pb. 10.

En considérant la matrice M = P (A -LC)P -1 ∈ R n×n ainsi que la Déf. 1, le sous-problème (a) revient à déterminer P et L telles que les n(n -1) inégalités suivantes soient satisfaites : 

∀i = j, M ij = P (A -LC) P -1 ij = d i P (A -LC) P -1 d j ≥ 0 ( 

Synthèse H ∞ par optimisation non lisse

Nous considérons le problème de synthèse de loi de commande structurée suivant : PROBLÈME 13. -Soit C(s, p) un ensemble de systèmes linéaires invariants dépendant de paramètres réglables p. Soient w et z les vecteurs d'entrées et sorties de synthèse décrivant les transferts à contraindre. Trouver p tel que :

min p max i=1,...,nfaibles || T wi→zi (C(s, p)) || 2/∞ (21) sous contraintes T wj →zj (C(s, p)) 2/∞ ≤ 1 où j = 1, ..., n fortes .
Le fait de structurer un contrôleur rend le problème de synthèse H ∞ non convexe. Pour résoudre ce type de problème où il faut également minimiser des fonctions non différentiables, nous avons recours à des techniques d'optimisation non lisse telles que présentées dans [START_REF] Apkarian | Multi-model, multi-objective tuning of fixedstructure controllers[END_REF]. Ces techniques ont été implémentées dans un solveur numérique présenté dans [START_REF] Gahinet | Frequency-domain tuning of fixed-structure control systems[END_REF]. Plus précisément, il est possible d'utiliser la routine systune de MATLAB c fournie avec la Robust Control Toolbox depuis sa version 2012b.

Une solution localement optimale à ce problème est obtenue quand l'algorithme parvient à vérifier les contraintes fortes tout en minimisant les contraintes faibles (aussi appelées contraintes objectifs).

Solution numérique au problème de synthèse

Pour déterminer (P, L) satisfaisant au problème 10, nous devons répondre au problème de base (a) auquel nous avons ajouté des contraintes de contrôle comme le sous-problème (b). Nous proposons d'utiliser une approche par optimisation non lisse telle que présentée dans [START_REF] Apkarian | Multi-model, multi-objective tuning of fixedstructure controllers[END_REF]. Cette technique a été conçue pour la synthèse multi-modèles de contrôleurs structurés.

Dans un premier temps, nous reformulons les inéquations (20) comme des contraintes de stabilité. Celles-ci s'appliquent aux n(n -1) systèmes fictifs suivants :

∀i = j, G ij M = -M ij (P, L) ∈ R 0 1×nsyn 0 msyn×1 0 msyn×nsyn (22) 
où n syn (resp. m syn ) est le nombre d'entrées (resp. sorties) des modèles de synthèse.

Ces nombres dépendent des contraintes formulées dans les sous-problèmes (b) et (c) du Pb. 10. Le fait d'assurer ∀i = j, M ij ≥ 0 est alors équivalent à assurer la stabilité du système fictif correspondant.

Pour résumer, la prise en compte des contraintes de synthèse se fait par l'intermédiaire des ensembles de modèles suivants : L'algorithme de synthèse H ∞ par optimisation non lisse est ensuite exécuté sur une sélection de ces modèles et contraintes.

Exemples

Nous considérons des exemples fournis dans la littérature. L'objectif est de synthétiser un observateur par intervalles selon le formalisme présenté dans la Section 3 et en utilisant l'approche de la Section 5 lors de la détermination du changement de coordonnées. Les synthèses sont effectuées en utilisant la fonction systune de la Robust Control Toolbox 2014b (MATLAB, 2014).

Système du 3 e ordre avec mode inobservable

Avec ce premier exemple, on va considérer la viabilité de notre approche pour synthétiser des matrices P et L telles que P (A -LC)P -1 soit Metzler. L'utilisation d'un observateur par intervalles est également illustrée. On considère le système proposé dans [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF] et donné par la représentation d'état suivante :

A =   2 0 0 1 -4 √ 3 -1 - √ 3 -4   , C = 1 0 0 (23) 
On remarque que le mode -4 ± j √ 3 est inobservable mais stable. Le système vérifie donc l'hypothèse de détectabilité. Le pôle réel est quant à lui instable. Pour les simulations, on utilisera donc le retour d'état u(t) = -Kx(t) où :

K = -0.339 0 0 (24) 
qui est obtenu par le placement des pôles à -4 -j √ 3 -4 + j √ 3 -2 . A noter qu'il a été choisi ici de ne pas inclure la synthèse du contrôleur dans l'approche proposée à la Section 5. Ceci serait tout à fait possible en spécifiant des modèles et contraintes supplémentaires dans la collection de modèles (C4).

Pour résoudre ce problème, on considère les ensembles de modèles (C1) et (C2) avec n = 3 et ∀(i, j), M max ij = 10. En utilisant un modèle additionnel (C4), on peut également s'assurer que la valeur propre réelle de la matrice A -LC soit contenue dans l'intervalle -10, -3 × 10 -3 . Une solution est obtenue en moins de 5 itérations après 3 tentatives. On obtient les résultats suivants : On constate que M est bien Hurwitz Metzler et que M = P (A -LC)P -1 . Un observateur par intervalles, tel que présenté à la Section 3, est alors utilisé. L'encadrement de l'état x du système est donné par l'Éq. ( 16). Pour les simulations, le système est initialisé à On constate que l'erreur initiale est assez importante. Elle est due à la mauvaise connaissance de l'état initial x 0 . En l'absence de perturbation, l'observateur classique et l'observateur par intervalles convergent vers l'état réel du système, comme le montre la Fig. 3.

M =   -2
x 0 = -2 1.5 -1 ( 

Système du 6 e ordre avec deux modes complexes

On s'inspire ici de l'exemple théorique présenté dans [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF]. Les équations du modèle sont données par : 

ẋ = Ax + B u u y = x 1 + d(t) (27 
A =         -1 1 0 0 -1 0 -1 -2 0 -1 0 1 -2 0 -3 -2 0 0 -1 0 -2 -3 0 1 -1 0 2 0 -4 0 -1 -1 0 1 0 -1         , B =         0 -18 0 -13 0 -5 0 -4 0 -10 0 22         , C = 
En utilisant ce modèle au sein de (C3), on assure 1 0.4 T d→e (s) 2 ≤ 1. En utilisant (C4), on peut également garantir le positionnement des valeurs propres de A-LC dans l'intervalle -10, -3 × 10 -3 . La solution de l'Éq. (30) est obtenue en 1152 itérations après 4 tentatives. On implémente alors un observateur par intervalles tel que présenté à la Section 3. Un encadrement de l'état x du système est donné par l'Éq. ( 16).

M =         -1
On effectue une simulation en initialisant le système à x 0 = 20 10 6 20 30 40 et l'observateur à x 0 = 0. La perturbation est simulée grâce à un générateur de nombres aléatoires (voir Fig. 4). 

Temps (s)

Conclusion et perspectives

Dans cet article, nous avons présenté une application de techniques d'optimisation non lisse à la détermination numérique d'une matrice de transformation combinée à un problème de contrôle. En reformulant les inégalités de l'Éq. (20) comme un problème de stabilisation de systèmes fictifs -cf. l'Éq. (22) -nous avons rendu possible l'utilisation de techniques habituellement réservées à la synthèse de lois de commande.

  10) tel que A -LC est Hurwitz. Compte tenu de la présence d'une perturbation inconnue, cette dynamique est inexacte et il en résulte une erreur d'observation e = xx qui vérifie ė = (A -LC) e + (B d -LD d ) d e 0 = x 0 -x 0 (11)

  d d e z (0) = P + e 0 -P -e 0 e z (0) = P + e 0 -P -e 0 (13) où B d = P (B d -LD d ). Le retour dans les coordonnées d'origine s'effectue en utilisant la transformation suivante : e = T + e z -T -e z e = T + e z -T -e z (14)

-

  Il est recommandé de chercher à garantir une bonne qualité d'estimation par l'intermédiaire du gain d'observation L afin d'obtenir un encadrement aussi précis que possible de l'état du système. Ces deux remarques motivent la conception d'une méthode d'optimisation des matrices P et L telles que M = P (A -LC)P -1 soit Metzler et que la dynamique de l'erreur d'observation ainsi obtenue réponde à des exigences de convergence. 4. Formulation du problème Suite à ces remarques, il convient donc de formuler le problème de "construction" d'un observateur par intervalles comme suit : PROBLÈME 10. -Soit le système (G) de l'Éq. (6) ayant pour état x ∈ R n et pour vecteur de mesures y ∈ R m . On suppose que ce système vérifie l'hypothèse 3. Trouver les matrices de transformation en matrice Metzler (P, L) telles que : (a) M = P (A -LC)P -1 soit Hurwitz Metzler; (b) La norme H 2 du transfert T d→x-x (s) vérifie 1 W T d→x-x (s) 2 ≤ 1 où W ∈ R permet de pondérer le transfert étudié; (c) Éventuellement, d'autres contraintes soient vérifiées comme par exemple le lieu d'évolution des racines de l'observateur.

  où A est connue, L a été obtenue au préalable par exemple en résolvant un problème de placement de pôles et (M, Q = P L) sont choisies arbitrairement telles que M et A -LC partagent les mêmes valeurs propres et M est Hurwitz Metzler. Bien qu'elle soit facile à mettre en oeuvre et propose une solution unique dans le cas où M et A ont des valeurs propres distinctes, cette méthode repose sur un choix a priori des matrices M et Q. Il n'est pas exclu que ce choix impacte sur les résultats de manière inadéquate. D'autre part, trouver une matrice M Metzler ayant des valeurs propres complexes souhaitées est difficile puisqu'il n'est alors plus possible de sélectionner M comme une simple matrice triangulaire.

  qui fait intervenir le Lemme suivant : LEMME 12. -(Raïssi et al., 2012, Lemme 1) Soit deux matrices A -LC et M telles qu'elles aient les mêmes valeurs propres pour une matrice L donnée. S'il existe deux vecteurs e 1 et e 2 tels que les paires (A -LC, e 1 ) et (M, e 2 ) soient observables alors

  20) où d i et d j sont des vecteurs colonnes définis par d i = (δ ik ) 1≤k≤k . Pour une paire d'entiers (i, j) tels que i = j, le fait d'assurer l'inégalité (20) peut être considéré comme un problème de "déstabilisation" en les variables P et L. En considérant -M ij plutôt que M ij lors de la synthèse, on se ramène à un problème de stabilisation d'un système autonome fictif ayant -M ij ∈ R pour matrice d'état et donc -M ij pour pôle réel.

(

  C1) n(n -1) modèles fictifs unidimensionnels G ij M i,j sur lesquels on formule une contrainte sur la position du pôle ; (C2) (optionnel) n(n -1) modèles fictifs unidimensionnels G ij M i,j avec matrice d'état égale à M ij (P, L) -M max ij et contrainte sur le pôle. Pour 0 < M max ij < +∞, la considération de ces contraintes permet de réduire l'ensemble des solutions et améliore la convergence de l'algorithme ; (C3) modèle d'origine G = (A, B u , B d , C, D u , D d ) augmenté d'un observateur classique avec contrainte sur la qualité d'estimation permettant de vérifier (b) ; (C4) (optionnel) tout autre modèle permettant la formulation de contraintes de synthèse additionnelles, cf. (c).
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 1 Figure 1. Signal de commande u(t) = -Kx(t)

Figure 2 .

 2 Figure 2. Observateur classique (en magenta) des états du système de l'Éq. (23)

Figure 3 .

 3 Figure 3. Observateur par intervalles (bornes en rouge et vert) des états du système de l'Éq. (23)
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 456 Figure 4. Exemple de perturbation Φ(t) de la mesure On a représenté les états et leurs estimées sur la Fig. 5. Sur la Fig. 6, on a représenté les bornes fournies par l'observateur par intervalles ainsi que les états obtenus
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Considérer notamment le cas où C présente une colonne nulle.
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