
HAL Id: hal-01727392
https://hal.science/hal-01727392v1

Submitted on 9 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UTA-poly and UTA-splines: Additive value functions
with polynomial marginals

Olivier Sobrie, Nicolas Gillis, Vincent Mousseau, Marc Pirlot

To cite this version:
Olivier Sobrie, Nicolas Gillis, Vincent Mousseau, Marc Pirlot. UTA-poly and UTA-splines: Additive
value functions with polynomial marginals. European Journal of Operational Research, 2018, 264 (2),
pp.405 - 418. �10.1016/j.ejor.2017.03.021�. �hal-01727392�

https://hal.science/hal-01727392v1
https://hal.archives-ouvertes.fr

UTA-poly and UTA-splines: additive value functions
with polynomial marginals

Olivier Sobriea,b, Nicolas Gillisa, Vincent Mousseaub, Marc Pirlota

aUniversité de Mons, Faculté Polytechnique, 9 rue de Houdain, 7000 Mons, Belgium
bCentraleSupélec, Laboratoire Génie Industriel, Grande Voie des Vignes, 92295

Châtenay-Malabry, France

Abstract

Additive utility function models are widely used in multiple criteria decision
analysis. In such models, a numerical value is associated to each alternative
involved in the decision problem. It is computed by aggregating the scores of
the alternative on the different criteria of the decision problem. The score of
an alternative is determined by a marginal value function that evolves mono-
tonically as a function of the performance of the alternative on this criterion.
Determining the shape of the marginals is not easy for a decision maker. It is
easier for him/her to make statements such as “alternative a is preferred to b”.
In order to help the decision maker, UTA disaggregation procedures use linear
programming to approximate the marginals by piecewise linear functions based
only on such statements. In this paper, we propose to infer polynomials and
splines instead of piecewise linear functions for the marginals. In this aim, we
use semidefinite programming instead of linear programming. We illustrate this
new elicitation method and present some experimental results.

Keywords: Multiple criteria decision analysis, UTA method, Additive value
function model, Preference learning, Disaggregation, Ordinal regression,
Semidefinite programming

1. Introduction

The theory of value functions aims at assigning a number to each alterna-
tive in such a way that the decision maker’s preference order on the alternatives
is the same as the order on the numbers associated with the alternatives. The
number or value associated to an alternative is a monotone function of its evalu-
ations on the various relevant criteria. For preferences satisfying some additional
properties (including preferential independence), the value of an alternative can
be obtained as the sum of marginal value functions each depending only on a
single criterion [20, Chapter 6].

These functions usually are monotone, i.e., marginal value functions either
increase or decrease with the assessment of the alternative on the associated cri-
terion. Many questioning protocols have been proposed aiming to elicit an ad-

Email addresses: olivier.sobrie@gmail.com (Olivier Sobrie),
nicolas.gillis@umons.ac.be (Nicolas Gillis), vincent.mousseau@centralesupelec.fr
(Vincent Mousseau), marc.pirlot@umons.ac.be (Marc Pirlot)

Preprint submitted to Elsevier August 5, 2016

ditive value function [20, 9] through interactions with the decision maker (DM).
These direct elicitation methods are time-consuming and require a substantial
cognitive effort from the DM. Therefore, in certain cases, an indirect approach
may prove fruitful. The latter consists in learning an additive value model (or
a set of such models) from a set of declared or observed preferences. In case we
know that the DM prefers alternative ai to bi for some pairs (ai, bi), i = 1, 2, . . .,
we may infer a model that is compatible with these preferences. Learning ap-
proaches have been proposed not only for inferring an additive value function
that is used to rank all other alternatives. They have also been used for sort-
ing alternatives in ordered categories [31, 25, 33]. In this model, an alternative
is assigned to a category (e.g. “Satisfactory”, “Intermediate”, “Not satisfactory”)
whenever its value passes some threshold and does not exceed some other, which
are respectively the lower and upper values of the alternatives to be assigned to
this category.

The UTA method [17] was the original proposal for this purpose. It uses
a linear programming formulation to determine piecewise linear marginal value
functions that are compatible with the DM’s known preferences. Several vari-
ants of this idea for learning a piecewise linear additive value function on the
basis of examples of ordered pairs of alternatives are described in [18]. The
variant used for inferring a rule to assign alternatives to ordered categories on
the basis of assignment examples is called UTADIS in [32] (see also [33]).

A problem with these methods is that, often, the information available about
the DM’s preferences is far from determining a single additive value function.
In general, the set of piecewise linear value functions compatible with the par-
tial knowledge of the DM’s preferences is a polytope in an appropriate space.
Therefore the learning methods that have been proposed either select a “rep-
resentative” value function or they work with all possible value functions and
derive robust conclusions, i.e. information on the DM’s preference that does not
depend on the particular choice of a value function in the polytope. Among the
latter, one may cite UTA-GMS [13, 14] and GRIP [8]. This research avenue is
known under the name robust ordinal regression methods.

The original approach has to face the issue of defining what is a “representa-
tive” value function or a default value function. UTA-STAR [17, 27] solves the
problem implicitly by returning an “average solution” computed as the mean of
“extreme” solutions (this approach is sometimes referred to as “post-optimality
analysis” [7]). Although, UTA-STAR does not give any formal definition of a
representative solution, it returns a solution that tends to lie “in the middle” of
the polytope determined by the constraints. The idea of centrality, as a defi-
nition of representativeness, has been illustrated with the ACUTA method [4],
in which the selected value function corresponds to the analytic center of the
polytope, and the other formulation, using the Chebyshev center [7]. On the
other hand, [19] propose a completely different approach to the idea of represen-
tativeness. They define five targets and select a representative value function
taking into account a prioritization of the targets by the DM in the context of
robust ordinal regression methods. The same authors also proposed a method
for selecting a representative value function for robust sorting of alternatives in
ordered categories [12].

In all the approaches aiming to return a “representative” value function, the
marginal value functions are piecewise linear. The choice of such functions is
historically motivated by the opportunity of using linear programming solvers

2

(except for ACUTA [4]). Although piecewise linear functions are well-suited for
approximating monotone continuous functions, their lack of smoothness (deriv-
ability) may make them seem “not natural” in some contexts, especially for
economists. Brutal changes in slope at the breakpoints is difficult to explain
and justify. Therefore, using smooth functions as marginals is advantageous
from an interpretative point of view.

In [5], the authors proposed an inference method based on a linear program
that infers quadratic utility functions in the context of an application to the
banking sector.

In this paper, we propose another approach to build the marginals, which
is based on semidefinite programming. It allows for learning marginals which
are composed of one or several polynomials of degree d, d being fixed a priori.
Besides facilitating the interpretations of the returned marginals, using such
functions increases the descriptive power of the model, which is of secondary
importance for decision aiding but may be valuable in other applications. In
particular, in machine learning, learning sets may involve thousands of pairs of
ordered alternatives or assignment examples, which may provide an advantage
to more flexible models. Beyond these advantages, the most striking aspect
of this work is the fact that a single new optimization technique allows us to
deal with polynomial of any degree and piecewise polynomial marginals instead
of piecewise linear marginals. The semidefinite programming approach used in
this paper for UTA might open new perspectives for the elicitation of other
preference models based on additive or partly additive value structures, such as
additive differences models (MACBETH [2, 1]), and GAI networks [10].

The paper is organized as follows. Section 2 recalls the principles of UTA
methods. We then describe a new method called UTA-poly which computes each
marginal as a degree d polynomial instead of a piecewise linear function. Section
4 introduces another approach called UTA-splines which is a generalization of
UTA and UTA-poly. The shape of the marginals used by UTA-splines are
piecewise polynomials or polynomial splines. These methods can be used either
for ranking alternatives or for sorting them in ordered categories. The next
section gives an illustrative example of the use of UTA-poly and UTA-splines.
Finally, we present experimental results comparing the new methods with UTA
both in terms of accuracy, model retrieval and computational effort.

2. UTA methods

In this section we briefly recall the basics of the additive value function model
(see [20] for a classical exposition) and two inference methods that are based on
this model.

2.1. Additive utility function models
Let % denote the preference relation of a DM on a set of alternatives. We as-

sume that each of these alternatives is fully described by a n-dimensional vector
the components of which are the evaluations of the alternative w.r.t. n criteria
or attributes. Under some conditions, among which preferential independence
(see [20], p.110), such a preference can be represented by means of an addi-
tive value function. To be more precise, let a (resp. b) denote an alternative
described by the vector (a1, . . . , an) (resp. (b1, . . . , bn)) of its evaluations on n

3

criteria. The preference of the DM is representable by an additive value function
if there is a function U which associates a value (or score) to each alternative
in such a way that U(a) ≥ U(b) whenever the DM prefers a to b (a % b) and

U(a) =

n∑
j=1

wjuj(aj), (1)

where uj is a marginal value function defined on the scale or range of criterion
j and wj is a weight or tradeoff associated to criterion j. Weights can be
normalized w.l.o.g., i.e.

∑n
j=1 wj = 1.

In the sequel, we assume that the range of each criterion j is an interval
[v1,j , v2,j] of an ordered set, e.g. the real line. We assume w.l.o.g. that, along
each criterion, the DM’s preference increases with the evaluation (the larger the
better). We also assume that the marginal value functions are normalized, i.e.
uj(v1,j) = 0 and v2,j = 1.

Model (1) can be rewritten by integrating the weights in the marginal value
functions as follows: u∗j (aj) = wj · uj(aj) for all j ∈ N = {1, . . . , n}.

Equation (1) can then be reformulated as follows:

U(a) =

n∑
j=1

u∗j (aj). (2)

The marginal value functions, or, more briefly, the marginals u∗j take their
values in the interval [0, wj], for all j ∈ N . Note that a preference % that can be
represented by a value function is necessarily a weak order, i.e. a transitive and
complete relation. Such a relation is also called a ranking (ties are allowed).

2.2. UTA methods for ranking and sorting problems
The UTA method was originally designed [17] to learn the preference relation

of the DM on the basis of partial knowledge of this preference. It is supposed
that the DM is able to rank some pairs of alternatives a priori, without further
analysis. Assuming that the DM’s preference on the set of all alternatives is a
ranking which is representable by an additive value function, UTA is a method
for learning one such function which is compatible with the DM’s a priori ranking
of certain pairs of alternatives.

Let P denote the set of pairs of alternatives (a, b) such that the DM knows
a priori that he/she strictly prefers a to b. More precisely, if (a, b) ∈ P, we have
a � b, which means a % b and not [b % a]. The DM may also know that he/she
is indifferent between some pairs of alternatives. These constitute the set I.
Whenever (a, b) ∈ I, we have a ∼ b, i.e. a % b and b % a. We denote by A∗ the
set containing the learning alternatives, i.e. these used for the comparisons in
sets P and I. These two sets and the vectors of performances of the alternatives
contained in these two sets constitute the learning set which serves as input to
the learning algorithm.

Linear programming is used to infer the parameters of the UTA model. Each
pairwise comparison of the set P and I is translated into a constraint. For each
pair of alternatives (a, b) ∈ P, we have U(a) − U(b) > 0 and for each pair of
alternatives (a, b) ∈ I, we have U(a) − U(b) = 0. Note that these constraints
may prove incompatible. In order to have a feasible linear program in all cases,

4

two positive slack variable, σ+(a) and σ−(a), are introduced for each alternative
in A∗. The objective function of UTA is given by:

min
u∗j

∑
a∈A∗

(
σ+(a) + σ−(a)

)
(3)

and the constraints by:

U(a)− U(b) + σ+(a)− σ−(a)− σ+(b) + σ−(b) > 0 ∀(a, b) ∈ P,
U(a)− U(b) + σ+(a)− σ−(a)− σ+(b) + σ−(b) = 0 ∀(a, b) ∈ I,∑n

j=1 u
∗
j (v2,j) = 1,

u∗j (v1,j) = 0 ∀j ∈ N,
σ+(a) ≥ 0 ∀a ∈ A∗,
σ−(a) ≥ 0 ∀a ∈ A∗,

u∗j monotonic ∀j ∈ N.
(4)

If we assume that the unknown marginals u∗j are piecewise linear, all the
constraints above can be formulated in linear fashion and the corresponding
optimization program can be handled by a LP solver. Note that the range
[v1,j , v2,j] of each criterion j has to be split in a number of segments that have
to be fixed a priori (i.e. they are not variables in the program).

A variant of UTA for learning to sort alternatives in ordered categories is
known as UTADIS. The idea was formulated in the initial paper [17] and further
used and developed in [6, 32]. Let C1, . . . , Cp denote the categories. They are
numbered in increasing order of preference, i.e., an alternative assigned to Ch
is preferred to any alternative assigned to Ch′ for 1 ≤ h′ < h ≤ p. It is assumed
that the alternatives assignment is compatible with the dominance relation, i.e.,
an alternative which is at least as good as another on all criteria is not assigned
to a lower category. The learning set consists of a subset of alternatives of which
the assignment to one of the categories is known (or the DM is able to assign
these alternatives a priori). The problem is to learn an additive value function U
and p−1 thresholds U1, . . . , Up−1 such that alternative a is assigned to category
Ch if Uh−1 ≤ U(a) < Uh for h = 1 to p (setting U0 to 0 and Up to infinity,
i.e. a sufficiently large value). A mathematical programming formulation of
this problem is easily obtained by substituting the first two lines of (4) by the
following three sets of constraints: U(a) + σ+(a) ≥ Uh−1 ∀a ∈ A∗h, h = {2, ..., p},

U(a)− σ−(a) < Uh ∀a ∈ A∗h, h = {1, ..., p− 1},
Uh ≥ Uh−1 h = {2, ..., p− 1},

(5)

where A∗h denotes the alternatives in the learning set that are assigned to
category Ch. Assuming that marginals are piecewise linear, allows for a linear
programming formulation as it is the case with UTA.

3. UTA-poly: additive value functions with polynomial marginals

In this section we present a new way to elicit marginal value functions using
semidefinite programming. We first give the motivations for this new method.
Then we describe it.

5

3.1. Motivation
UTA methods use piecewise linear functions to model the marginal value

functions. Opting for such functions allows to use the linear programs presented
in the previous section and linear programming solvers to infer an additive value
ranking or sorting model. However by considering piecewise linear marginals
with breakpoints at predefined places, original UTA methods have two impor-
tant drawbacks: these options limit the interpretability and flexibility of the
additive value model.
Interpretability. There is a longstanding tradition in Economics, especially in
the classical theory of consumer behavior (see e.g. [26]), which assumes that
utility (or value) functions are differentiable and interpret their first and second
(partial) derivatives in relation with the preferences and behavior of the cus-
tomer. Multiple criteria decision analysis, based on value functions, stems from
the same tradition. Tradeoffs or marginal rates of substitution are generally
thought of as changing smoothly (see e.g. [20], p. 83 :“Throughout we assume
that we are in a well-behaved world where all functions have smooth second
derivatives”). Although piecewise linear marginals can provide good approxi-
mations for the value of any derivable function, they are not fully satisfactory
as an explanatory model. This is especially the case when the breakpoints are
fixed arbitrarily (e.g. equally spaced in the criterion domains). Such a choice
may well fail to correctly reflect the DM’s feelings about where the marginal
rate of substitution starts to grow more quickly (resp. to diminish) or shows
an inflexion. In other words, the qualitative behavior of the first and second
derivatives of the “true” marginal value function might be poorly approximated
by resorting to piecewise linear models, while this behavior might have an in-
tuitive meaning for the DM. Therefore, considering piecewise linear marginals
might lead to final models that fail to convince the DM even though they fit
the learning set accurately.
Flexibility. Restricting the shape of the marginals to piecewise linear functions
may hamper the expressivity of the additive value function model. This is
especially detrimental when large learning sets are available as is the case in
Machine Learning applications1.

The following ad hoc case aims to illustrate the loss in flexibility incurred
due to the piecewise linear hypothesis. Consider a ranking problem in which
alternatives are assessed on two criteria. The DM states that the top-ranked
alternatives are a, b, which are tied (rank 1), followed by c (rank 2) while d is
strictly less preferred than the others (rank 3). The evaluations and ranks of
these alternatives are displayed in Table 1.

Assume that we plan to use a UTA model with marginals involving a single
linear piece (i.e. a weighted sum). Such an UTA model cannot at the same time
distinguish c and d and express that a and b are tied. The fact that a and
b are tied indeed implies that the criteria weights are equal (we can set them
to 0.5 w.l.o.g.). The value on each marginal varies from 0 to 0.5. The worst
value (0) corresponds to the worst performance (0) and the best value (0.5) to
the best performance (100) on each criterion (see the marginal value functions

1It is seldom so in MCDA applications where the size of the learning set rarely exceeds a
few dozens records.

6

alternative criterion 1 criterion 2 rank

a 100 0 1
b 0 100 1
c 25 75 2
d 75 25 3

Table 1: Example of an alternatives ranking that is not representable with a UTA model (one
linear piece per marginal).

u1

0

0.50

0 10025 50 75

0.10

0.26

u2

0

0.50

0 10025 50 75

0.07

0.36

Figure 1: Example of UTA and UTA-poly value functions. The dashed lines correspond to
the UTA piecewise linear function and the plain lines correspond to polynomials of degree 3.

represented by dashed lines in Figure 1). Using these marginals, the scores of
the four alternatives are obtained through linear interpolation and displayed
in Table 2. We observe that all alternatives receive the same value 0.5. It is
therefore not possible to discriminate alternatives c and d.

In case polynomials are allowed for, instead of piecewise linear functions,
to model the marginals, the DM’s preferences can be accurately represented.
Figure 1 shows the case of polynomials of degree 3 used as marginals (plain line).
The scores of the alternatives computed with these marginals are displayed in
Table 2. They comply with the DM’s preferences.

Obviously it would have been possible to reproduce the DM’s ranking using
more than one linear piece marginals in an UTA model. However, when the
breakpoints are fixed in advance, it is easy to construct an example, similar to

a b c d

UTA score 0.5 0.5 0.5 0.5
UTA-poly score 0.5 0.5 0.46 0.33

Table 2: UTA and UTA-poly scores of the alternatives described in Table 1 with the UTA
and UTA-poly marginals represented in Figure 1.

7

the above one, in which the DM’s ranking cannot be reproduced using a linear
function between successive breakpoints while a polynomial spline will do.

The two methods introduced below, UTA-poly in the rest of this section
and UTA-splines in Section 4, replace the piecewise linear marginals of UTA by
polynomials and polyomial splines, respectively.

3.2. Basic facts about non-negative polynomials
In the last few years, significant improvements have been made in formu-

lating and solving optimization problems in which constraints are expressed in
the form of polynomial (in)equalities and with a polynomial objective function;
see, e.g., [15, 16]. These new techniques are useful for various applications;
see [22] and the references therein. A problem arising in many applications,
including the present one, is to guarantee the non-negativity of functions of
several variables. In our case, we have to make sure not only that marginals
are non negative but also that they are nondecreasing, i.e. that their derivative
is non-negative. Testing the non-negativity of a polynomial of several variables
and of a degree equal to or greater than 4 is NP-hard [23]. In [24], an approach
based on convex optimization techniques has been proposed in order to find an
approximate solution to this problem.

The approach proposed in [24] is based on the following theorem about non-
negative polynomials.

Theorem 1 (Hilbert). A polynomial F : Rn → R is non-negative if it is possible
to decompose it as a sum of squares (SOS):

F (z) =
∑
s

f2
s (z) with z ∈ Rn. (6)

The condition given above is sufficient but not necessary, there exist non-
negative polynomials that cannot be decomposed as a sum of squares [3]. How-
ever, it has been proved by Hilbert that a non-negative polynomial of one vari-
able is always a sum of squares [24]. We give the proof here because it is
remarkably simple and elegant.

Theorem 2 (Hilbert). A non-negative polynomial in one variable is always a
SOS.

Proof. Consider a polynomial of degree D, p(x) = p0 +p1x+p2x
2 + . . .+pDx

D.
Since p(x) is non-negative, D must be even. The value of pD should be greater
than 0, otherwise limx→∞ p(x) = −∞. As every polynomial of degree D admits
D roots, one can write p(x) as follows:

p(x) = pD

m∏
i=1

(x− zi)(x− z̄i)
n∏
j=1

(x− tj)αj

in which zi and z̄i for i = {1, . . . ,m} are pairs of conjugate complex numbers
and tj for j = {1, . . . , n} are distinct real numbers where D = 2m +

∑n
j=1 αj .

All the values of the exponents αj are even. Indeed, consider a subset of k
indices, {∆1, . . . ,∆k}, such that α∆1

, . . . , α∆k
are odd. Let τ be a permutation

of these indices such that tτ(∆1) < . . . < tτ(∆k). For x ∈
]
tτ(∆k−1), tτ(∆k)

[
, we

8

would have
∏n
j=1(x − tj)αj < 0, a contradiction. As all the value αj are even,

we can rewrite p(x) as follows:

p(x) =

(
√
pD

l∏
i=1

(x− zi)

)(
√
pD

l∏
i=1

(x− z̄i)

)

in which some pairs (zi, z̄i) have no imaginary part. Let
(√

pD
∏l
i=1(x− zi)

)
=

q(x) + ir(x) and
(√

pD
∏l
i=1(x− z̄i)

)
= q(x) − ir(x) where i is the imaginary

part of the complex number and q(x), r(x), two polynomials with real coeffi-
cients. Finally, the product of these two terms gives a sum of two squares:
p(x) = [q(x)]

2
+ [r(x)]

2.

Let us consider the problem of determining a non-negative polynomial p of
one variable x and degree D. We use the following canonical form to represent
this polynomial:

p(x) = p0 + p1x+ p2x
2 + . . .+ pDx

D (7)

=

D∑
i=0

pi · xi.

To guarantee the non-negativity of this polynomial, we have to ensure that
it can be represented as a sum of squares like in Equation (6). Note that a
non-negative polynomial will always have an even degree since either the limit
at positive or negative infinity of a polynomial of odd degree is negative. Let
d = D

2 , the polynomial p(x) reads:

p(x) =
∑
s

q2
s(x) =

∑
s

[
d∑
i=0

bisx
i

]2

.

Defining bTs =
(
b0s b1s . . . bds

)
and xT =

(
1 x . . . xd

)
(where T stands

for the matrix transposition operation), we can express p(x) as follows:

p(x) =
∑
s

(
bTs x
)2

=
∑
s

xTbsb
T
s x = xT

[∑
s

bsb
T
s

]
x = xTQx

=

1
x
...
xd

T

q0,0 q0,1 · · · q0,d

q1,0 q1,1 · · · q1,d

...
...

. . .
...

qd,0 qd,1 · · · qd,d

1
x
...
xd

 .

Note that the matrixQ =
∑
s bsb

T
s is symmetric and positive semidefinite (PSD),

which we denote Q � 0, since xTQx =
∑
s

(
bTs x
)2 ≥ 0 for all x ∈ Rd+1.

Therefore, to ensure that p(x) is non-negative, it is necessary to find a matrix
Q of dimension (d + 1) × (d + 1) such that p(x) = xTQx and Q � 0. It turns
out that this condition is also sufficient. This follows from the following lemma.

Lemma 3. Q � 0 ⇐⇒ ∃H : Q = H ·HT.

9

The above decomposition is called the Cholesky decomposition of matrix
Q; see Appendix B. To summarize, a polynomial p(x) in one variable is non-
negative if and only if there exists Q � 0 such that p(x) = xTQx.

The coefficients of the polynomial expressed in its canonical form (7) are
obtained by summing the off-diagonal entries of the matrix Q, as follows:

p0 = q0,0,

p1 = q1,0 + q0,1,

p2 = q2,0 + q1,1 + q0,2,
...
p2d−1 = qd,d−1 + qd−1,d,

p2d = qd,d.

We can express the value of the coefficients of the polynomial as follows:

pi =

{∑i
g=0 qg,i−g i = {0, . . . , d},∑d
g=i−d qg,i−g i = {d, . . . , 2d}.

(8)

The value of pd can be computed with both expressions. Finding a non-negative
univariate polynomial consists in finding a semidefinite positive matrix Q. Sum-
ming the off-diagonal entries of this matrix allows to control the coefficients of
the polynomial;

In some applications, it is not necessary to ensure the non-negativity of the
polynomial on R but only in an interval [v1, v2]. If the non-negativity constraint
has to be guaranteed only in a given interval [v1, v2] for a polynomial p(x), then
the following theorem holds.

Theorem 4 (Hilbert). A polynomial p(x) in one variable x is non-negative in
the interval [v1, v2], if and only if p(x) = (x− v1) · q(x) + (v2 − x) · r(x) where
q(x) and r(x) are SOS.

Given the above theorem, if we want to ensure the non-negativity of the
polynomial p(x) of degree D on the interval [v1, v2], we have to find two matrices
Q and R of size d+ 1, with d =

⌊
D
2

⌋
, that are positive semidefinite. We denote

these matrices and their indices as follows:

Q =

q0,0 q0,1 · · · q0,d

q1,0 q1,1 · · · q1,d

...
...

. . .
...

qd,0 qd,1 · · · qd,d

 , R =

r0,0 r0,1 · · · r0,d

r1,0 r1,1 · · · r1,d

...
...

. . .
...

rd,0 rd,1 · · · rd,d

 .

Since Q and R are positive semidefinite, the products ajTQaj and ajTRaj , with
aj

T =
(
1 aj . . . adj

)
, are always non-negative.

To obtain a polynomial p(x) that is non-negative in the interval [v1, v2], its

10

coefficients have to be chosen such that:

p0 = v2 · r0,0 − v1 · q0,0,

p1 = q0,0 − r0,0 + v2 · (r1,0 + r0,1)− v1 · (q1,0 − q0,1),

p2 = (q1,0 + q0,1)− (r1,0 + r0,1) + v2 · (r2,0 + r1,1 + r0,2)

−v1 · (q2,0 + q1,1 + q0,2),
...
p2d−1 = (qd,d−2 + qd−1,d−1 + qd−2,d)− (rd,d−2 + rd−1,d−1 + rd−2,d)

+v2 · (rd,d−1 + rd−1,d)− v1 · (qd,d−1 + qd−1,d),

p2d = (qd,d−1 + qd−1,d)− (rd,d−1 + rd−1,d) + v2 · rd,d − v1 · qd,d,
p2d+1 = qd,d − rd,d.

If the degree D of the polynomial p(x) is even then the value of p2d+1 is equal
to 0. The values pi can be expressed in the following more compact form:

pi =

v2 · r0,0 − v1 · q0,0 i = 0,∑i−1
g=0(qg,i−1−g − rg,i−1−g)

+
∑i
g=0(v2 · rg,i−g − v1 · qg,i−g) i = {1, . . . , d},∑d

g=i−d−1(qg,i−1−g − rg,i−1−g)

+
∑d
g=i−d(v2 · rg,i−g − v1 · qg,i−g) i = {d+ 1, . . . , 2d},

qd,d − rd,d i = 2d+ 1.

3.3. Semidefinite programming applied to UTA methods
In the perspective of building more natural marginal value functions, we

use semidefinite programming (SDP) to learn polynomial marginals instead of
piecewise linear ones. SDP has become a standard tool in convex optimization,
being a generalization of linear programming and second-order cone program-
ming. It allows to optimize linear functions over an affine subspace of the set of
positive semidefinite matrices; see, e.g., [30] and the references therein.

There are two variants of the new UTA-poly method. Firstly, we describe
the approach that consists in using polynomials that are overall monotone, i.e.
monotone on the set of all real numbers. Then we describe the second approach
considering polynomials that are monotone only on a given interval.

3.3.1. Enforcing monotonicity of the marginals on the set of real numbers
In the new proposed model, we define the value function on each criterion j

as a polynomial of degree Dj :

u∗j (aj) =

Dj∑
i=0

pj,i · aij . (9)

To be compliant with the requirements of the theory of additive value functions,
the polynomials used as marginals should be non-negative and monotone over
the criteria domains. To ensure monotonicity, the derivative of the marginal
value function has to be non-negative, hence we impose that the derivative of

11

each value function is a sum of squares. The degree of the derivative is therefore
even which implies that Dj is odd. This requirement reads:

u∗j
′ = pj,1 + 2pj,2 · aj + 3pj,3 · a2

j + ...+Djpj,Dj · a
Dj−1
j

= aj
TQjaj ,

with Qj a PSD matrix of dimension (dj+1)×(dj+1), aj a vector of size (dj+1)

with dj =
Dj−1

2 :

Qj =

qj,0,0 qj,0,1 · · · qj,0,dj
qj,1,0 qj,1,1 · · · qj,1,dj
...

...
. . .

...
qj,dj ,0 qj,dj ,1 · · · qj,dj ,dj

 , aj =

1
aj
...
a
dj
j

 .

By using SDP, we impose the matrix Q to be semidefinite positive and we
set the following constraints on the pj,i values, for i ≥ 1:

pj,1 = qj,0,0,

2pj,2 = qj,1,0 + qj,0,1,

3pj,3 = qj,2,0 + qj,1,1 + qj,0,2,
...
(2dj)pj,2dj = qj,dj ,dj−1 + qj,dj−1,dj ,

(2dj + 1)pj,2dj+1 = qj,dj ,dj .

In UTA-poly, the marginal value functions and monotonicity conditions on
marginals given in Equation (4) and (5) are replaced by the following constraints:

U(a) =

∑n
j=0

∑Dj

i=0 pj,i · aij ∀a ∈ A,
Qj PSD ∀j ∈ N,

(i+ 1)pj,i+1 =
∑i
g=0 qj,g,i−g i = {0, . . . , dj},∀j ∈ N,

(i+ 1)pj,i+1 =
∑dj
g=i−dj qj,g,i−g i = {dj + 1, . . . , 2dj},∀j ∈ N.

(10)
The optimization program composed of the objective given in Equation (3)

and the set of constraints given in Equations (4) and (10) can be solved using
convex programming, more precisely, semidefinite programming [24]. We refer
to this new mathematical program as to UTA-poly. An explicit UTA-poly for-
mulation for a simple problem involving 2 criteria and 3 alternatives is provided
in Appendix A for illustrative purposes.

3.3.2. Enforcing monotonicity of the marginals on the criteria domains
Ensuring the monotonicity of each marginal on the domain of each criterion

(instead of the whole real line) is sufficient to satisfy the requirements of the
additive value function model. To do so, we use Theorem 4 and only impose
the non-negativity of the marginal derivative on the domain [v1,j , v2,j] of each
criterion. This results in the following condition on the derivative u∗j ′ of the
polynomial u∗j , for all j:

u∗j
′ = pj,1 + 2pj,2 · aj + 3pj,3 · a2

j + ...+Djpj,Dj · a
Dj−1
j

= (aj − v1,j)aj
TQjaj + (v2,j − aj)ajTRjaj .

12

In the above equation, Qj and Rj are two PSD matrices of size (dj+1)×(dj+1)

and aj a vector of size dj + 1, where dj =
⌊
Dj−1

2

⌋
:

Qj =

qj,0,0 qj,0,1 · · · qj,0,dj
qj,1,0 qj,1,1 · · · qj,1,dj
...

...
. . .

...
qj,dj ,0 qj,dj ,1 · · · qj,dj ,dj

 , Rj =

rj,0,0 rj,0,1 · · · rj,0,dj
rj,1,0 rj,1,1 · · · rj,1,dj
...

...
. . .

...
rj,dj ,0 rj,dj ,1 · · · rj,dj ,dj

 .

The value pj,i for i ≥ 1 are obtained as follows:

pj,1 = v2,j · rj,0,0 − v1,j · qj,0,0,
2pj,2 = qj,0,0 − rj,0,0 + v2,j · (rj,1,0 + rj,0,1)− v1,j · (qj,1,0 + qj,0,1),

3pj,3 = (qj,1,0 + qj,0,1)− (rj,1,0 + rj,0,1) + v2,j · (rj,2,0 + rj,1,1 + rj,0,2)

−v1,j · (qj,2,0 + qj,1,1 + qj,0,2)
...
(2dj)pj,2dj = (qj,dj ,dj−2 + qj,dj−1,dj−1 + qj,dj−2,dj)

−(rj,dj ,dj−2 + rj,dj−1,dj−1 + rj,dj−2,dj)

+v2,j · (rj,dj ,dj−1 + rdj−1,dj)− v1,j · (qj,dj ,dj−1 + qj,dj−1,dj),

(2dj + 1)pj,2dj+1 = (qj,dj ,dj−1 + qj,dj−1,dj)− (rj,dj ,dj−1 + rj,dj−1,dj)

+v2,j · rj,dj ,dj − v1,j · qj,dj ,dj ,
(2dj + 2)pj,2dj+2 = qj,dj ,dj − rj,dj ,dj .

If the degree Dj is odd, then we have pj,2dj+2 = 0 since 2dj + 2 > Dj .
In convex programming, in order to have polynomial marginals that are

monotone on an interval, the monotonicity constraints in UTA have to be re-
placed by the following ones:

U(a) =
∑n
j=0

∑Dj

i=0 pj,i · aij ∀a ∈ A,
Qj , Rj PSD ∀j ∈ N,

pj,1 = v2,j · rj,0,0 − v1,j · qj,0,0,
(i+ 1)pj,i+1 =

∑i−1
g=0(qj,g,i−g − rj,g,i−g)
+
∑i
g=0(v2,j · rj,g,i−1−g − v1,j · qj,g,i−1−g)

i = {0, . . . , dj},∀j ∈ N,
(i+ 1)pj,i+1 =

∑dj
g=i−dj−1(qj,g,i−1−g − rj,g,i−1−g)

+
∑dj
g=i−dj (v2,j · rj,g,i−g − v1,jqj,g,i−g)

i = {dj + 1, . . . , 2dj},∀j ∈ N,
(2dj + 2)pj,2dj+2 = qdj ,dj − rdj ,dj ∀j ∈ N.

(11)
The optimization program composed of the objective given in Equation (3)

and the set of constraints given in Equation (4) and (10) can be solved using
semidefinite programming.

4. UTA-splines: additive value functions with splines marginals

In this section we describe a variant of UTA-poly which consists in using
several polynomials for each value function. We first recall some theory about
splines. Then we describe the new method called UTA-splines.

13

4.1. Splines
We recall here the definition of a spline. We detail the ones that are the

most commonly used.

4.1.1. Definition
A spline of degree Ds is a function Sp that interpolates the set of points

(xi, yi) for i = 0, ..., q, with x0 < x1 < . . . < xq such that:

• Sp(xi) = yi for i = 0, . . . , q;

• Sp is a set of polynomials of degree equal to or smaller than Ds, on each
interval [xi, xi+1[(at least one of the polynomials has a degree equal to
Ds);

• the derivative of Sp are continuous up to a given degree Dc on [x0, xq].

The degree of a spline corresponds to its highest polynomial degree. If all
the polynomials have the same degree, the spline is said to be uniform.

The continuity of the spline at the connection points is ensured up to a given
derivative. Usually, the continuity of the spline is guaranteed up to the second
derivative (Dc = 2). It ensures the continuity of the slope and concavity at the
connection points.

4.1.2. Cubic splines
The most common uniform splines are the ones of degree 3 (Ds = 3), also

called cubic splines. A cubic spline consists of a set of third degree polynomials
which are continuous up to the second derivative at their connection points.

We denote by si the ith polynomial of the spline going from connection point
xi to connection point xi+1. Formally, each polynomial si of the spline has the
following form:

si(x) = si,0 + si,1x+ si,2x
2 + si,3x

3.

The use of cubic splines requires the determination of four parameters: si,0,
si,1, si,2 and si,3. If the spline interpolates q points, there are overall 4 · (q − 1)
parameters to determine.

Imposing the equality up to the second derivative at the connection points
amounts to enforce the following constraints:

si(xi) = yi i = {0, . . . , q − 1},
si(xi+1) = yi+1 i = {0, . . . , q − 1},
s′i(xi+1) = s′i+1(xi+1) i = {0, . . . , q − 2},
s′′i (xi+1) = s′′i+1(xi+1) i = {0, . . . , q − 2}.

(12)

Since there are 4q−2 constraints and 4q parameters, two degrees of freedom re-
main. They can be set in different ways. For instance, one can impose s′′0(x0) = 0
and s′′q−1(xq) = 0. This corresponds to imposing zero curvature at both end-
points of the spline.

4.2. UTA-splines: using splines as marginals
We give some detail on how using splines to model marginal value functions

of an additive value function model. We formulate a semidefinite program that
learns the parameters of such a model.

14

4.2.1. Overview
Using splines continuous up to either the first or the second derivative instead

of piecewise linear functions for the marginal value functions aims at obtaining
more natural functions around the breakpoints.

With UTA-poly, the flexibility of the model is improved by using polynomi-
als of higher degrees. In order to further improve the flexibility of the model, we
propose now to hybridize the original UTA method which splits the criterion do-
main into k equal parts with the UTA-poly approach which uses polynomials to
model the marginal value functions. We call this new disaggregation procedures
UTA-splines. The UTA-splines method combines the use of piecewise functions
for the marginals (as in UTA) and the use polynomials (as in UTA-poly) for
each piece of the function.

Compared to UTA, in UTA-splines the continuity of the marginal can be
ensured up to the any derivative at the connection points. It enables to obtain
more natural marginals which have a continuous curvature.

4.2.2. Description of UTA-splines
In UTA-splines, we model marginals as uniform splines of degree Ds. For-

mally the marginal of criterion j reads:

u∗j (aj) = SpDs,k
j (aj)

where SpDs
j denotes a uniform spline of degree Ds composed of k pieces. Each

piece of the spline SpDs,k
j (aj) is a polynomial of degree Ds denoted by sj,l(aj),

l = {1, . . . , k}. Formally it reads:

sj,l(aj) = sj,l,0 + sj,l,1aj + sj,l,2a
2
j + . . .+ sj,l,Dsa

Ds
j .

The pairs (gl−1
j , ul−1

j) and (glj , u
l
j) denote respectively the coordinates of the

initial and final points of the piece l of the spline. The points glj for l = 1 to k−1

partition the criterion domain [v1,j , v2,j] in subintervals. We set v1,j = g0
j and

v2,j = gkj . Hence the piece sj,l of the spline is defined on the interval [gl−1
j , glj].

The spline sj,l takes the value ul−1
j (resp. ulj) on g

l−1
j (resp. glj). The continuity

of the spline at the connection points is ensured by imposing the two following
constraints: {

sj,l(g
l−1
j) = ul−1

j l = {1, . . . , k},
sj,l(g

l
j) = ulj l = {1, . . . , k}.

Usually, the continuity of the marginals is ensured up to the second derivative
so that slope and concavity at the connection points remain continuous. To
ensure the continuity of the first derivative, the following constraints are added:

s′j,l(g
l
j) = s′j,l+1(glj) l = {1, . . . , k − 1}.

Similarly, the following constraints are added to ensure the continuity of the
second derivative:

s′′j,l(g
l
j) = s′′j,l+1(glj) l = {1, . . . , k − 1}.

Of course, it is possible to ensure the continuity of the second derivative only
if the marginal polynomials have a degree equal to or higher than 3. More

15

generally, it is possible to ensure the continuity of the polynomials up to the ith
derivative only if the polynomials have a degree equal to or higher than i+ 1.

As in UTA-poly, the main difficulty in UTA-splines is to find polynomials
which ensure the monotonicity of the marginals. To achieve this, we use the
results set out in Section 3.2. Recall that the non-negativity of a univariate
polynomial is ensured if it can be expressed as a sum of squares. The mono-
tonicity of the marginals is therefore ensured by imposing the non-negativity of
their derivatives on an interval. Formally, for the piece l of the spline associated
to criterion j, it reads:

s′j,l(aj) = sj,l,1 + 2sj,l,2aj + . . .+Dssj,l,Ds
aDs−1
j ≥ 0.

We impose s′j,l(aj) to be a sum of two SOS as specified in Theorem 4. Formally
it reads:

s′j,l(aj) = (x− gl−1
j) · qj,l(aj) + (glj − x) · rj,l(aj),

with qj,l(aj) and rj,l(aj) two polynomials that can be expressed as sums of
squares.

Using semidefinite programming, we impose two square matrices Qj,l and
Rj,l of size d =

⌈
Ds−1

2

⌉
+ 1 to be positive semidefinite. Hence, qj,l(aj) =

aj
TQj,laj and rj,l(aj) = aj

TRj,laj , with ajT =
(
1 aj . . . adj

)
, are two non-

negative polynomials.
The value of the polynomial coefficients sj,l,0, . . . , sj,l,Ds

are obtained by
combining the off-diagonal terms of the matrices.

4.2.3. Link between UTA-splines, UTA-poly and UTA
We note that UTA-splines is a generalization of UTA. Indeed, UTA is a

particular case of UTA-splines in which splines of the first degree are used.
A similar link exists between UTA-splines and UTA-poly. Indeed, if UTA-

splines is used to learn marginals composed of exactly one piece then it is equiv-
alent to the UTA-poly formulation.

5. Illustrative example

In this section, we illustrate UTA-poly and UTA-splines on an small instance
of a ranking problem. In the first subsection we briefly present the context of
the problem. Then we infer the parameters of UTA-poly models and compare
the marginals obtained with UTA-poly to the original ones. Finally we perform
the same experiment with UTA-splines. To formulate and solve the SDP we
used CVX, a Matlab software for disciplined convex programming [11]. The
source code of UTA-poly and UTA-splines is available at the following address:
http://olivier.sobrie.be.

5.1. Context of the problem
A family plans to spend a one week holiday in France. They use a search

engine which returns a list of 1000 possible accommodations. To avoid reviewing
the whole list and save time, the family calls a MCDA analyst. The first task
of the analyst consists in determining which criteria matter to the family. They
identify the following three criteria:

• Price: the price of the renting in euros which should be minimized;

16

http://olivier.sobrie.be

• Distance: the distance from home in kilometers which should be mini-
mized;

• Size: the size of the accommodation in square meters which should be
maximized.

The family cannot evaluate the importance of the criteria and doesn’t want to
enter into a formal elicitation procedure. On the contrary, they are ready to
make some overall statements that could be used by a model learning method.

Let us assume that the preferences of the family can be represented by an
additive value function and that the marginals are displayed in Figure 2. These
functions are polynomials of degree 2 (u1 and u3) and 15 (u2).

300 400 500 600

0.0

0.2

0.4

euro

u
j
(x

j
)

price

500 1,000 1,500

0.0

0.2

0.4

km

distance

50 100 150

0.0

0.1

0.2

m2

size

Figure 2: True marginal value functions modeling the family’s preferences.

5.2. UTA-poly
In order to learn the marginals given in Figure 2, the family ranks a subset

of 50 alternatives chosen randomly in the list according to the unveiled marginal
functions displayed in Figure 2.

The 49 informative pairwise comparisons are used to learn, using UTA-poly,
an additive value function model with polynomials of degree one to ten. The
inferred value function yields a ranking of the 50 alternatives. Hence, we can
observe the similarity of the initial and inferred rankings. The evolution of the
Spearman distance and Kendall Tau of these rankings is given in Figure 3 . We
observe that increasing the degree of the polynomial increases the accuracy of
the model. Indeed, the values of the Spearman distance and Kendall Tau grow
as a function of the degree of the marginals.

In a second step, the analyst asks to the family to include 50 other alterna-
tives in the ranking. The analyst provides a set of 99 pairwise comparisons to
UTA-poly. As in the first step, polynomials of degree one to ten are learned.
We observe in Figure 3 that the accuracy of the model is improved with more
pairwise comparisons when the marginals have a small degree (smaller than 8).
With more examples we see that the Spearman distance and Kendall Tau are
slightly better when marginals degree is small and slightly worse when marginals
degree is superior to 9.

For illustrative purpose we show in Figure 4 the marginals learned on basis of
100 examples with polynomials of degree 2, 6 and 10. We see that the marginals
u1 and u3 are well approximated with polynomials of degree 2 to 10. The major
difference is observed for u2. Using a polynomial of degree 2 approximates

17

2 4 6 8 10
0.96

0.97

0.98

0.99

1.00

degree of the polynomials

S
p
ea
rm

a
n
d
is
ta
n
ce

2 4 6 8 10

0.85

0.90

0.95

1.00

degree of the polynomials

K
en

d
a
ll
T
a
u

50 alternatives 100 alternatives

Figure 3: Evolution of the Spearman distance and Kendall Tau of the learning set as a function
of the degree of the marginal polynomials for learning sets composed of 50 and 100 examples.

roughly the curve. The two steps of u2 cannot be better approximated by a
polynomial of the second degree since there is no inflexion point with such a
polynomial. The real marginal has at least two inflexion where the steps are
located. With a polynomial of degree 6 we see that the approximation of this
curve is improved but it does not perfectly fit the real marginal. Indeed the
slope is less steep between the inflexion points. With a polynomial of degree 10
the learned marginal almost perfectly fit the real marginal. The inflexion of the
curve happens at the same places and the slopes are similar.

5.3. UTA-splines
As for UTA-poly, we perform some experimentations with UTA-splines on

the application described above. We vary the number of pieces and the poly-
nomial degrees of UTA-splines and observe the variation in accuracy. We also
study the impact of the continuity degree on the splines.

Figure 5 shows the evolution of the average Spearman distance and Kendall
Tau on the learning set. We note that increasing the number of pieces usually
has a positive influence on the way UTA-splines succeeds in restoring the orig-
inal ranking. UTA-splines is able to restore the original ranking with smaller
polynomial degrees when the number of pieces increases. However it is not al-
ways the case. For instance, when using polynomials of degree 1, a UTA model
composed of 4 pieces performs better than one using 5 pieces. With polynomials
of degree greater than 1, UTA-splines always performs better when the number
of pieces is larger.

For illustrative purpose, we show in Figure 6 the marginals obtained with
splines of degree D = 1 to 3. The continuity of the splines at the breakpoints
(Dc) is enforced up to D − 1. With polynomials of degree 3, we observe that
the learned marginals tightly fit the real marginals.

6. Experiments

So as to understand the behavior of UTA-poly and UTA-splines, we per-
formed experiments on artificial datasets. These experiments aim at studying

18

300 400 500 600

0.0

0.2

0.4

euro

u
1

D = 2

300 400 500 600

0.0

0.2

0.4

euro

D = 6

300 400 500 600

0.0

0.2

0.4

euro

D = 10

500 1,000 1,500

0.0

0.2

0.4

km

u
2

500 1,000 1,500

0.0

0.2

0.4

km

500 1,000 1,500

0.0

0.2

0.4

km

50 100 150

0.0

0.1

0.2

m2

u
3

50 100 150

0.0

0.1

0.2

m2

50 100 150

0.0

0.1

0.2

m2

real utility learned utility

Figure 4: Value functions learned by UTA-poly on basis of a learning set composed of 100
examples with polynomials of degree D = 2, 6 and 10.

19

2 4 6 8 10

0.98

0.99

1

degree of the polynomials

S
p
ea
rm

a
n
d
is
ta
n
ce

2 4 6 8 10

0.9

0.95

1

degree of the polynomials

K
en

d
a
ll
T
a
u

k = 1 k = 2 k = 3 k = 4 k = 5

Figure 5: Evolution of the Spearman distance and Kendall Tau of the learning set as a function
of the degree of the marginal polynomials for learning sets composed of 100 examples with 1
to 5 polynomials per marginal.

the ability of the methods to retrieve a ranking from a set of pairwise compar-
isons and the computing time. In the experiments, we vary different parameters
of UTA-poly and UTA-splines: degree of the polynomials (D), number of pieces
(k), the continuity at breakpoints (Dc) and the number of alternatives in the
learning set (m∗). As in the previous Section, we formulate and solve the SDP
we used CVX, a Matlab software for disciplined convex programming [11].

6.1. Experimental setup
Our experimental strategy is the following. We start from an hypotheti-

cal additive value model denoted M , and generate a set of alternatives (called
learning set). Then we simulate the behavior of a DM ranking these alterna-
tives, while having the model M in mind. Hence, we constitute a ranking on
the learning set.

We compute an additive value model using UTA-poly and UTA-splines com-
patible with the ranking of the learning set. We then compare the inferred mod-
els to the model M . To do do, we randomly generate another set of alternatives
(test set), and we compute the ranking of this test set obtained by the model
M and by the inferred model. We then compute the Spearman distance [29]
and the Kendall Tau [21] to evaluate how close the inferred rankings are to the
original one.

We considered 8 different models M , chosen to represent a wide variety of
value functions (structure and forms of the marginals). Four of these models
are composed of 3 criteria (Figure 7), while the four others are composed of 5
criteria (Figure 8). As shown in Figure 7 and 8, the marginals are of different
type: piecewise linear functions, sigmoids, exponentials, and polynomials of
degree 2, 3 and 15.

For a given model M and a seed s, the experimental procedure is the fol-
lowing:

1. The random generator is initialized with the seed s.
2. A set ofm∗ performances vectors (alternatives) is generated. It constitutes

the learning set A∗. Each component a∗j of a performances vector a∗ =

20

300 400 500 600

0.0

0.2

0.4

euro

u
1

D = 1, Dc = 0

300 400 500 600

0.0

0.2

0.4

euro

D = 2, Dc = 1

300 400 500 600

0.0

0.2

0.4

euro

D = 3, Dc = 2

500 1,000 1,500

0.0

0.2

0.4

km

u
2

500 1,000 1,500

0.0

0.2

0.4

km

500 1,000 1,500

0.0

0.2

0.4

km

50 100 150

0.0

0.1

0.2

m2

u
3

50 100 150

0.0

0.1

0.2

m2

50 100 150

0.0

0.1

0.2

m2

real utility learned utility

Figure 6: Value functions learned by UTA-splines on basis of a learning set composed of 100
examples with polynomials of degree D = 1 to 3 and marginals composed of 5 polynomials
(k = 5). The continuity of the spline (Dc) is enforced up to D − 1.

21

0.0 0.5 1.0
0.0

0.2

M
o
d
el

1

u1

0.0 0.5 1.0
0.0

0.2

u2

0.0 0.5 1.0
0.0

0.2

u3

0.0 0.5 1.0
0.0

0.2

M
o
d
el

2

0.0 0.5 1.0
0.0

0.2

0.0 0.5 1.0
0.0

0.2

0.0 0.5 1.0
0.0

0.2

M
o
d
el

3

0.0 0.5 1.0
0.0

0.2

0.0 0.5 1.0
0.0

0.2

0.0 0.5 1.0
0.0

0.2

M
o
d
el

4

0.0 0.5 1.0
0.0

0.2

0.0 0.5 1.0
0.0

0.2

Figure 7: Four additive value function models composed of 3 criteria.

0.0 0.5 1.0
0.0

0.1

0.2

M
o
d
el

5

u1

0.0 0.5 1.0
0.0

0.1

0.2

u2

0.0 0.5 1.0
0.0

0.1

0.2

u3

0.0 0.5 1.0
0.0

0.1

0.2

u4

0.0 0.5 1.0
0.0

0.1

0.2

u5

0.0 0.5 1.0
0.0

0.1

0.2

M
o
d
el

6

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

M
o
d
el

7

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

M
o
d
el

8

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

Figure 8: Four additive value function models composed of 5 criteria.

22

(a∗1, a
∗
2, ..., a

∗
n) ∈ A∗ is generated by drawing n a random number uniformly

in [0, 1].
3. The score U(a∗) is computed for each vector of performances a∗ ∈ A∗ using

the value modelM . A pre-order on these alternatives is derived from their
scores. Given a ranking π∗ of the alternatives in A∗, we denote by π∗i the
alternative ranked at the ith position. We have π∗1 < π∗2 < . . . < π∗m−1.

4. A list ofm∗−1 pairwise comparisons is induced from the complete ranking
π∗. It is done by comparing each pair of consecutive alternatives in the
ranking. In a ranking π∗, it consists in comparing π∗i to π∗i+1, either by
an indifference (π∗i ∼ π∗i+1) or a preference (π∗i � π∗i+1). We denote by
P∗ the set containing the pairs of alternatives (a, b) such that a � b, I∗
denotes the set containing the pairs (a, b) such that a ∼ b.

5. The sets A∗, P∗ and I∗ are given as input to UTA-splines/UTA-poly. The
algorithm learns an additive utility model M ′ in which the marginals are
composed k polynomials of degree D. The breakpoints of the polynomials
are equally spaced on the criterion domain. The continuity is guaranteed
up to the Dth

c derivative at the breakpoints.
6. A test set of m alternatives A is generated similarly as for the learning set.

The alternatives in A are ranked with models M and M ′. The obtained
ranking π and π̂ are then compared by computing the Spearman distance
SD(π, π̂) (see [29]) and the Kendall Tau KT (π, π̂) (see [21]).

6.2. Model retrieval
We tested UTA-poly and UTA-splines with the models shown in Figures 7

and 8. Results provided in this Section are mean values over the 8 different
models tested. We varied the degree of the polynomials (D), the number of
pieces (k), the continuity at the breakpoints (Dc). We varied the size of the
learning set (m∗) between 10 and 100 alternatives. The test set was composed
of 1000 alternatives. For each setting, we ran the test procedure described above
with 10 random seeds.

This experiment shows how the number of comparisons impacts the ability
to elicit the parameters of a model M composed of n criteria. The experiment
also shows the impact of the number of pieces per marginal and of the degree
of the polynomial.

6.2.1. UTA-poly
The first test consists in testing UTA-poly with only one piece per marginal

(k = 1). We show in Figure 9 the average Spearman distance and Kendall
Tau of the test set of the models composed of 3 criteria when the degree of the
learned marginals (D) vary from 1 (which corresponds to a weighted sum) to 4.
The values of the Spearman distance and Kendall Tau increase as a function of
the number of alternatives in the learning set. For the same number of examples
in the learning set, the quality of the ranking is improved as the degree of the
polynomial increases. We observe the same behavior with models composed of
5 criteria (Figure 10). Detailed results per model are available in Appendix C.

6.2.2. UTA-splines
In the second test, we varied the number of pieces per marginals (k) from

1 to 5 and used polynomials of degree 3. The continuity at the breakpoints is

23

20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

S
p
ea
rm

an
d
is
ta
n
ce

20 40 60 80 100

0.75

0.8

0.85

0.9

K
en
d
al
l
T
au

D = 1 D = 2 D = 3 D = 4

Figure 9: Average Spearman distance and Kendall Tau of the test set with the models com-
posed of 3 criteria learned by UTA-poly when the degree of the marginals vary between 1 and
4.

20 40 60 80 100

0.85

0.9

0.95

S
p
ea
rm

an
d
is
ta
n
ce

20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

K
en
d
al
l
T
au

D = 1 D = 2 D = 3 D = 4

Figure 10: Average Spearman distance and Kendall Tau of the test set with the models
composed of 5 criteria learned by UTA-poly when the degree of the marginals vary between
1 and 4.

24

ensured up to the second derivative. Figure 11 shows the average Spearman
distance and Kendall Tau of the test set for the models composed of 3 criteria.
We observe that increasing the number of pieces helps to increase the accuracy
of the model. With models composed of 5 criteria (see Figure 12), we observe the
same behavior. It depicts a general trend for the model presented in Figure 7 and
8. Nevertheless one has to be cautious to overfitting effects when the number
of pieces increases and to the position of the breakpoints. Indeed increasing
the number of pieces increases the number of parameters of the model and its
flexibility which may lead to overfitting. In Appendix C we present the detailed
results for each model of Figure 7 and 8.

20 40 60 80 100

0.94

0.96

0.98

1

S
p
ea
rm

an
d
is
ta
n
ce

20 40 60 80 100

0.8

0.85

0.9

0.95

K
en
d
al
l
T
au

k = 1 k = 2 k = 3 k = 4 k = 5

Figure 11: Average Spearman distance and Kendall Tau of the test set with the models
composed of 3 criteria learned by UTA-splines with marginals composed of polynomials of the
third degree. The continuity at the breakpoints is ensured up to the second derivative.

20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

1

S
p
ea
rm

an
d
is
ta
n
ce

20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

K
en
d
al
l
T
au

k = 1 k = 2 k = 3 k = 4 k = 5

Figure 12: Average Spearman distance and Kendall Tau of the test set with the models
composed of 5 criteria learned by UTA-splines with marginals composed of polynomials of the
third degree. The continuity at the breakpoints is ensured up to the second derivative.

6.3. Computing time
The computing time highly depends on the number of constraints and vari-

ables that are involved. The number of constraints and variables are expressed

25

m n k D Dc #const. #var. computing time (sec.)

10 3 1 1 0 22 32 0.48± 0.15
10 3 5 1 0 70 80 1.02± 0.34
10 3 1 4 0 31 59 0.86± 0.19
10 3 5 4 2 139 215 1.96± 0.29
10 5 5 4 2 225 345 2.99± 0.36
100 3 1 1 0 112 212 1.96± 0.14
100 3 5 1 0 160 260 2.58± 0.14
100 3 1 4 0 121 239 2.96± 0.14
100 3 5 4 2 229 395 3.92± 0.20
100 5 5 4 2 315 525 5.90± 0.35

Table 3: Number of constraints and variables for different problem sizes and average computing
time and standard deviation.

by the following equations:

#constraints = m+ n+ 2nk + nkD + (1 +Dc)n(k − 1),

#variables = nk(D + 1) + 2nk

⌈
D

2

⌉2

+ 2m.

We give in Table 3 the number of constraints and variables for different problem
sizes.

We observe that the computing time evolves linearly with the number of
examples that are given as input to the algorithm. For the inference of a UTA-
poly model, the higher the degree of the polynomials, the higher computing
time; however the difference is not substantial. Compared to an UTA model,
learning a UTA-poly model using polynomials of the 4th degree increases the
computing time of a few dozen of milliseconds. The behavior is similar when
passing from one to several pieces per marginal. When the number of criteria
increases, we observe that the computing time increases too.

Lastly, it should be highlighted that computing times for all instances solved
in this Section are reasonably short (less than 6 sec.), and compatible with an
iterative and interactive use with a DM.

7. Conclusion

In this paper, we propose a new method to learn an additive value function
model from a set of statements provided by the DM. Learning piecewise linear
value functions from preference statements is standard in the literature (UTA
methods, e.g. [17], [18]). Instead of piecewise linear marginals, we generalize
this standard representation by considering more general forms for marginals.
UTA-poly considers marginal value functions which are monotone polynomials,
while in UTA-splines marginals are composed of several pieces of monotone
polynomials. UTA-splines generalizes the preference representation used in the
standard UTA methods, while UTA-poly is a particular UTA-splines model
where a single polynomial is used to represent each marginal.

The inference of such an additive value function with polynomial marginals
is performed using a semidefinite programming formulation. From a computa-
tional point of view, the resolution of instances corresponding to real datasets

26

is limited to several seconds, and thus compatible with an interactive use with
DMs.

We provide an illustrative example showing that the inference program is
able to restore value functions that are “close” to the original ones. A spe-
cific feature of the methods is that the inferred value function is composed of
“smooth” marginals which avoids brutal changes in the slopes of these marginals,
thus improving interpretability.

The computational experiments show the ability of the methods to better
match the preference statements as the degree of the polynomials involved in
the marginals increases.

It should be noted that the methods proposed in this paper, applies to rank-
ing problems but can be directly extended to sorting problems, hence defining
UTADIS-poly and UTADIS-splines (see [28]).

An innovative aspect of this work is related to the new optimization tech-
nique allowing to deal with polynomial and piecewise polynomial marginals
instead of piecewise linear marginals. The semidefinite programming approach
used in this paper for UTA opens new perspectives for eliciting other preference
models based on additive or partly additive value structures, such as additive
differences models (MACBETH [2, 1]) and GAI networks [10].

Similarly as for UTA models (cf. the discussion in the Introduction), the
solution of our new models might not be unique. It would be interesting to
try to characterize these situations and pick a solution that is most suited for
the DM. Note that, for this work, we used interior-point methods to solve the
semidefinite programs. These methods return the so-called analytic center of
the set of optimal solutions, that is, it returns a solution ‘in the middle’ of the
set of optimal solutions, similarly as UTA-STAR and ACUTA would do for UTA
models.

References

[1] C. A. Bana e Costa, J.-M. De Corte, and J.-C. Vansnick. On the mathemat-
ical foundations of MACBETH. In Salvatore Greco, Matthias Ehrgott, and
José Rui Figueira, editors, Multiple Criteria Decision Analysis: state of the
art surveys, International Series in Operations Research and Management
Science, pages 409–437. Springer, New York, 2005.

[2] C. A. Bana e Costa and J.-C. Vansnick. MACBETH, An interactive path
towards the construction of cardinal value functions. International Trans-
actions in Operational Research, 1(4):489–500, 1994.

[3] G. Blekherman. There are significantly more nonegative polynomials than
sums of squares. Israel Journal of Mathematics, 153(1):355–380, 2006.

[4] G. Bous, P. Fortemps, F. Glineur, and M. Pirlot. ACUTA: A novel method
for eliciting additive value functions on the basis of holistic preference state-
ments. European Journal of Operational Research, 206(2):435 – 444, 2010.

[5] V. Bugera, H. Konno, and S. Uryasev. Credit cards scoring with quadratic
utility functions. Journal of Multi-Criteria Decision Analysis, 11(4-5):197–
211, 2002.

27

[6] M. Doumpos and C. Zopounidis. Multicriteria Decision Aid Classification
Methods. Kluwer Academic Publishers, 2002.

[7] M. Doumpos, C. Zopounidis, and E. Galariotis. Inferring robust decision
models in multicriteria classification problems: An experimental analysis.
European Journal of Operational Research, 236(2):601 – 611, 2014.

[8] J. R. Figueira, S. Greco, and R. Słowiński. Building a set of additive value
functions representing a reference preorder and intensities of preference:
GRIP method. European Journal of Operational Research, 195(2):460 –
486, 2009.

[9] P. C. Fishburn. Methods of estimating additive utilities. Management
Science, 13:435 – 453, 1967.

[10] C. Gonzales, P. Perny, and J.Ph. Dubus. Decision making with multiple
objectives using GAI networks. Artificial Intelligence, 175(7-8):1153 – 1179,
2011.

[11] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex pro-
gramming, version 2.1. http://cvxr.com/cvx, march 2014.

[12] S. Greco, M. Kadziński, and R. Słowiński. Selection of a representative
value function in robust multiple criteria sorting. Computers & Operations
Research, 38(11):1620 – 1637, 2011.

[13] S. Greco, V. Mousseau, and R. Słowiński. Ordinal regression revisited:
Multiple criteria ranking using a set of additive value functions. European
Journal of Operational Research, 191(2):416 – 436, 2008.

[14] S. Greco, V. Mousseau, and R. Słowiński. Multiple criteria sorting with a
set of additive value functions. European Journal of Operational Research,
207(3):1455–1470, December 2010.

[15] D. Henrion and J.B. Lasserre. Gloptipoly: Global optimization over poly-
nomials with matlab and sedumi. ACM Transactions on Mathematical
Software, 29(2):165–194, 2003.

[16] D. Henrion, J.B. Lasserre, and J. Löfberg. Gloptipoly 3: moments, opti-
mization and semidefinite programming. Optimization Methods & Software,
24(4-5):761–779, 2009.

[17] E. Jacquet-Lagrèze and Y. Siskos. Assessing a set of additive utility func-
tions for multicriteria decision making: the UTA method. European Journal
of Operational Research, 10:151–164, 1982.

[18] E. Jacquet-Lagrèze and Y. Siskos. Preference disaggregation: 20 years of
MCDA experience. European Journal of Operational Research, 130(2):233
– 245, 2001.

[19] M. Kadziński, S. Greco, and S. Słowiński. Selection of a representative
value function in robust multiple criteria ranking and choice. European
Journal of Operational Research, 217(3):541 – 553, 2012.

28

http://cvxr.com/cvx

[20] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences
and value tradeoffs. John Wiley & Sons, 1976.

[21] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–
93, 1938.

[22] J.B. Lasserre. Moments, positive polynomials and their applications, vol-
ume 1. World Scientific, 2009.

[23] K.G. Murty and S.N. Kabadi. Some NP-complete problems in quadratic
and nonlinear programming. Mathematical Programming, 39(2):117–129,
1987.

[24] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic prob-
lems. Mathematical Programming, 96(2):293–320, 2003.

[25] B. Roy and D. Bouyssou. Aide multicritère à la décision: méthodes et cas.
Economica Paris, 1993.

[26] E. Silberberg and W. C. Suen. The structure of economics. McGraw-Hill,
Boston, Mass., 3rd edition, 2001.

[27] Y. Siskos and D. Yanacopoulos. UTASTAR - an ordinal regression method
for building additive value functions. Investigação Operacional, 5:39–53,
1985.

[28] O. Sobrie. Learning of sorting models. PhD thesis, University of Mons,
Belgium and CentraleSupélec, Paris, France, 2016. in preparation.

[29] C. Spearman. The proof and measurement of association between two
things. The American Journal of Psychology, 15(1):72–101, 1904.

[30] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996.

[31] W. Yu. Aide multicritère à la décision dans le cadre de la problématique
du tri: méthodes et applications. PhD thesis, LAMSADE, Université Paris
Dauphine, Paris, 1992.

[32] C. Zopounidis and M. Doumpos. Business failure prediction using the
UTADIS multicriteria analysis method. Journal of the Operational research
Society, 50(11):1138, 1999.

[33] C. Zopounidis and M. Doumpos. Multicriteria classification and sorting
methods: A literature review. European Journal of Operational Research,
138(2):229 – 246, 2002.

29

Appendix A. Example of a semi-definite program

We consider a ranking problem involving 2 criteria x and y and three al-
ternatives, a1, a2 and a3. The performances of these alternatives are given in
Table A.4. The criterion values vary between 0 and 10.

x y

a1 10 7
a2 6 8
a3 7 5

Table A.4: Performances of alternative a1, a2 and a3 on criteria x and y.

A decision maker states that the following ranking holds: a1 � a2 � a3.
We use the objective and the set of constraints given in Equation (5) in order
to find a model restoring this ranking. We use semi-definite programming to
learn polynomial marginal utility functions. We denote by u∗1 and u∗2 the poly-
nomial functions associated respectively to criteria 1 and 2. The degree of the
polynomials of the marginal utility functions is fixed to 3.

To ensure the monotonicity of functions u∗1 and u∗2, we impose the non-
negativity of their derivative. Formally, we define u∗1 and u∗2 as follows:

u∗1(x) = px,0 + px,1 · x+ px,2 · x2 + px,3 · x3,

u∗2(y) = py,0 + py,1 · y + py,2 · y2 + py,3 · y3.

The derivative of u∗1(x) and u∗2(y) are equal to:

du∗1
dx

= px,1 + 2px,2 · x+ 3px,3 · x2 and
du∗2
dy

= py,1 + 2py,2 · y+ 3py,3 · y2.

The monotonicity of a polynomial marginal is ensured if its derivative is a sum
of square. Formally, it reads:

du∗1
dx

= xTQx

=

(
1
x

)T(
q0,0 q0,1

q1,0 q1,1

)(
1
x

)
= q0,0 + (q0,1 + q0,1)x+ q1,1x

2,

du∗2
dy

= yTRy

= r0,0 + (r0,1 + r1,0) y + r1,1y
2.

To ensure the non-negativity of the derivative, we impose the matrices Q and
R to be semi-definite positive in conjunction with these constraints:

px,1 = q0,0,

2px,2 = q0,1 + q1,0,

3px,3 = q1,1,

and

py,1 = r0,0,

2py,2 = r0,1 + r1,0,

3py,3 = r1,1.

30

The utility values of a1, a2 and a3 read:

U(a1) = px,0 + 10px,1 + 100px,2 + 1000px,3 + py,0 + 7py,1 + 49py,2 + 343py,3,

U(a2) = px,0 + 6px,1 + 36px,2 + 324px,3 + py,0 + 8py,1 + 64py,2 + 512py,3,

U(a3) = px,0 + 7px,1 + 49px,2 + 343px,3 + py,0 + 5py,1 + 25py,2 + 125py,3.

To find a model reflecting the ranking given as input, i.e. a1 � a2 � a3, we have
to fulfil two conditions: a1 � a2 and a2 � a3. It is done by adding the following
constraints:{

U(a1)− U(a2) + σ+(a1)− σ−(a1)− σ+(a2) + σ−(a2) > 0,
U(a2)− U(a3) + σ+(a2)− σ−(a2)− σ+(a1) + σ−(a1) > 0.

After substituting U(a1), U(a2) and U(a3) by their value we obtain the two
following constraints:

4px,1 + 64px,2 − py,1 − 15py,2 + σ+(a1)− σ−(a1)
−σ+(a2) + σ−(a2) > 0,

−px,1 − 13px,2 + 3py,1 + 39py,2 + σ+(a2)− σ−(a2)
−σ+(a3) + σ−(a3) > 0.

Given that criteria domains are comprised between 0 and 10, the following
constraints hold: px,0 = 0,

py,0 = 0,
10px,1 + 100px,2 + 1000px,3 + 10py,1 + 100py,2 + 1000py,3 = 1.

Finally, by assembling the objective function and the constraints, we obtain the
following semi-definite program:

minσ+(a1) + σ−(a1) + σ+(a2) + σ−(a2) + σ+(a3)− σ−(a3)

such that:

4px,1 + 64px,2 + 776px,3 − py,1 − 15py,2 − 231py,3
+σ+(a1)− σ−(a1)− σ+(a2) + σ−(a2) > 0,

−px,1 − 13px,2 − 19px,3 + 3py,1 + 39py,2 + 387py,3
+σ+(a2)− σ−(a2)− σ+(a3) + σ−(a3) > 0,

px,0 = 0,
py,0 = 0,

10px,1 + 100px,2 + 1000px,3 + 10py,1 + 100py,2 + 1000py,3 = 1,
px,1 = q0,0,

2px,2 = q0,1 + q1,0,
3px,3 = q1,1,
py,1 = r0,0,

2py,2 = r0,1 + r1,0,
3py,3 = r1,1,

with: {
Q,R PSD,

σ+(a1), σ−(a1), σ+(a2), σ−(a2), σ+(a3), σ−(a3), ≥ 0.

31

Appendix B. Cholesky factorization

The factorization of Cholesky consists in decomposing a positive semi-definite
matrix M into the product of a lower triangular matrix L and its transpose LT.
Formally it reads:

M = LLT. (B.1)

The decomposition works as follows. For a matrix a of size d× d, Equation
(B.1) reads:

M =

m1,1 m1,2 m1,3 · · · m1,d

m2,1 m2,2 m2,3 · · · m2,d

m3,1 m3,2 m3,3 · · · m3,d

...
...

...
. . .

...
md,1 md,2 md,3 · · · md,d

=

l1,1 0 0 · · · 0
l2,1 l2,2 0 · · · 0
l3,1 l3,2 l3,3 · · · 0
...

...
...

. . .
...

ld,1 ld,2 ld,3
... ld,d

 ·

l1,1 l2,1 l3,1 · · · ld,1
0 l2,2 l3,2 · · · ld,2
0 0 l3,3 · · · ld,3
...

...
...

. . .
...

0 0 0 · · · ld,d

=

l21,1 (symmetric)

l2,1l1,1 l22,1 + l22,2
l3,1l1,1 l3,1l2,1 + l3,2l2,2 l23,1 + l23,2 + l23,3

...
...

...
. . .

l1,1ld,1 l2,1ld,1 + l2,2ld,2 l3,1ld,1 + l3,2ld,2 + l3,3ld,3 · · ·
∑d
i=1 l

2
d,i

 .

The value mi,i and mi,j can be expressed as follows:

mi,i =

i∑
k=1

l2i,k and mi,j =

j∑
k=1

li,klj,k

The value of the variables li,i and li,j are then given by

li,i =

√√√√mi,i −
i−1∑
k=1

l2i,k and li,j =
1

mi,i

(
mi,j −

j−1∑
k=1

li,klj,k

)

Appendix C. Detailed results of the experiments

Figure C.13 and C.14 show the average Spearman distance and Kendall Tau
of the test set after running the experiment described in Section 6 with UTA-
poly.

Figure C.15 shows the average Spearman distance and Kendall Tau obtained
with UTA-splines for the four model composed of 3 criteria presented at Figure
7. The learned models are composed of polynomials of the third degree which
are continuous up to the second derivative at the connection points. The number
of piece per value function varies between 1 and 5. Similarly, Figure C.16 shows
the average Spearman distance and Kendall Tau obtained with the four model
composed of 5 criteria.

32

20 40 60 80 100
0.88

0.9

0.92

0.94

0.96

0.98

M
o
d
el

1
Spearman distance

20 40 60 80 100

0.75

0.8

0.85

0.9

Kendall Tau

20 40 60 80 100
0.85

0.9

0.95

M
o
d
el

2

20 40 60 80 100

0.7

0.75

0.8

0.85

0.9

20 40 60 80 100

0.97

0.98

0.99

M
o
d
el

3

20 40 60 80 100

0.86

0.88

0.9

0.92

0.94

20 40 60 80 100

0.9

0.92

0.94

0.96

0.98

1

number of alternatives

M
o
d
el

4

20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

number of alternatives

D = 1 D = 2 D = 3 D = 4

Figure C.13: Average Spearman distance and Kendall Tau of the test set of models 1 to 4
learned by UTA-poly when the degree of the marginals vary between 1 and 4.

33

20 40 60 80 100

0.88

0.9

0.92

0.94

0.96

0.98

M
o
d
el

5
Spearman distance

20 40 60 80 100

0.7

0.75

0.8

0.85

Kendall Tau

20 40 60 80 100

0.9

0.92

0.94

0.96

0.98

M
o
d
el

6

20 40 60 80 100

0.75

0.8

0.85

0.9

20 40 60 80 100
0.75

0.8

0.85

0.9

0.95

1

M
o
d
el

7

20 40 60 80 100

0.6

0.7

0.8

0.9

20 40 60 80 100

0.85

0.9

0.95

1

number of alternatives

M
o
d
el

8

20 40 60 80 100

0.7

0.8

0.9

number of alternatives

D = 1 D = 2 D = 3 D = 4

Figure C.14: Average Spearman distance and Kendall Tau of the test set of models 5 to 8
learned by UTA-poly when the degree of the marginals vary between 1 and 4.

34

20 40 60 80 100

0.92

0.94

0.96

0.98

1

M
o
d
el

1
Spearman distance

20 40 60 80 100
0.75

0.8

0.85

0.9

0.95

Kendall Tau

20 40 60 80 100

0.92

0.94

0.96

0.98

1

M
o
d
el

2

20 40 60 80 100
0.75

0.8

0.85

0.9

0.95

1

20 40 60 80 100
0.97

0.98

0.99

1

M
o
d
el

3

20 40 60 80 100
0.85

0.9

0.95

20 40 60 80 100
0.95

0.96

0.97

0.98

0.99

1

number of alternatives

M
o
d
el

4

20 40 60 80 100

0.85

0.9

0.95

1

number of alternatives

k = 1 k = 2 k = 3 k = 4 k = 5

Figure C.15: Average Spearman distance and Kendall Tau of the test set of models 1 to 4
learned by UTA-splines with marginals composed of polynomials of the third degree. The
continuity at the breakpoints is ensured up to the second derivative.

35

20 40 60 80 100

0.9

0.92

0.94

0.96

0.98

1

M
o
d
el

5
Spearman distance

20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

Kendall Tau

20 40 60 80 100

0.94

0.96

0.98

1

M
o
d
el

6

20 40 60 80 100

0.8

0.85

0.9

0.95

20 40 60 80 100

0.9

0.95

1

M
o
d
el

7

20 40 60 80 100

0.7

0.8

0.9

1

20 40 60 80 100

0.92

0.94

0.96

0.98

1

number of alternatives

M
o
d
el

8

20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

number of alternatives

k = 1 k = 2 k = 3 k = 4 k = 5

Figure C.16: Average Spearman distance and Kendall Tau of the test set of models 5 to 8
learned by UTA-splines with marginals composed of polynomials of the third degree. The
continuity at the breakpoints is ensured up to the second derivative.

36

	1 Introduction
	2 UTA methods
	2.1 Additive utility function models
	2.2 UTA methods for ranking and sorting problems

	3 UTA-poly: additive value functions with polynomial marginals
	3.1 Motivation
	3.2 Basic facts about non-negative polynomials
	3.3 Semidefinite programming applied to UTA methods
	3.3.1 Enforcing monotonicity of the marginals on the set of real numbers
	3.3.2 Enforcing monotonicity of the marginals on the criteria domains

	4 UTA-splines: additive value functions with splines marginals
	4.1 Splines
	4.1.1 Definition
	4.1.2 Cubic splines

	4.2 UTA-splines: using splines as marginals
	4.2.1 Overview
	4.2.2 Description of UTA-splines
	4.2.3 Link between UTA-splines, UTA-poly and UTA

	5 Illustrative example
	5.1 Context of the problem
	5.2 UTA-poly
	5.3 UTA-splines

	6 Experiments
	6.1 Experimental setup
	6.2 Model retrieval
	6.2.1 UTA-poly
	6.2.2 UTA-splines

	6.3 Computing time

	7 Conclusion
	Appendix A Example of a semi-definite program
	Appendix B Cholesky factorization
	Appendix C Detailed results of the experiments

