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Introduction

The theory of value functions aims at assigning a number to each alternative in such a way that the decision maker's preference order on the alternatives is the same as the order on the numbers associated with the alternatives. The number or value associated to an alternative is a monotone function of its evaluations on the various relevant criteria. For preferences satisfying some additional properties (including preferential independence), the value of an alternative can be obtained as the sum of marginal value functions each depending only on a single criterion [START_REF] Keeney | Decisions with multiple objectives: Preferences and value tradeoffs[END_REF]Chapter 6].

These functions usually are monotone, i.e., marginal value functions either increase or decrease with the assessment of the alternative on the associated criterion. Many questioning protocols have been proposed aiming to elicit an ad-ditive value function [START_REF] Keeney | Decisions with multiple objectives: Preferences and value tradeoffs[END_REF][START_REF] Fishburn | Methods of estimating additive utilities[END_REF] through interactions with the decision maker (DM). These direct elicitation methods are time-consuming and require a substantial cognitive effort from the DM. Therefore, in certain cases, an indirect approach may prove fruitful. The latter consists in learning an additive value model (or a set of such models) from a set of declared or observed preferences. In case we know that the DM prefers alternative a i to b i for some pairs (a i , b i ), i = 1, 2, . . ., we may infer a model that is compatible with these preferences. Learning approaches have been proposed not only for inferring an additive value function that is used to rank all other alternatives. They have also been used for sorting alternatives in ordered categories [START_REF] Yu | Aide multicritère à la décision dans le cadre de la problématique du tri: méthodes et applications[END_REF][START_REF] Roy | Aide multicritère à la décision: méthodes et cas[END_REF][START_REF] Zopounidis | Multicriteria classification and sorting methods: A literature review[END_REF]. In this model, an alternative is assigned to a category (e.g. "Satisfactory", "Intermediate", "Not satisfactory") whenever its value passes some threshold and does not exceed some other, which are respectively the lower and upper values of the alternatives to be assigned to this category.

The UTA method [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF] was the original proposal for this purpose. It uses a linear programming formulation to determine piecewise linear marginal value functions that are compatible with the DM's known preferences. Several variants of this idea for learning a piecewise linear additive value function on the basis of examples of ordered pairs of alternatives are described in [START_REF] Jacquet-Lagrèze | Preference disaggregation: 20 years of MCDA experience[END_REF]. The variant used for inferring a rule to assign alternatives to ordered categories on the basis of assignment examples is called UTADIS in [START_REF] Zopounidis | Business failure prediction using the UTADIS multicriteria analysis method[END_REF] (see also [START_REF] Zopounidis | Multicriteria classification and sorting methods: A literature review[END_REF]).

A problem with these methods is that, often, the information available about the DM's preferences is far from determining a single additive value function. In general, the set of piecewise linear value functions compatible with the partial knowledge of the DM's preferences is a polytope in an appropriate space. Therefore the learning methods that have been proposed either select a "representative" value function or they work with all possible value functions and derive robust conclusions, i.e. information on the DM's preference that does not depend on the particular choice of a value function in the polytope. Among the latter, one may cite UTA-GMS [START_REF] Greco | Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions[END_REF][START_REF] Greco | Multiple criteria sorting with a set of additive value functions[END_REF] and GRIP [START_REF] Figueira | Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method[END_REF]. This research avenue is known under the name robust ordinal regression methods.

The original approach has to face the issue of defining what is a "representative" value function or a default value function. UTA-STAR [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF][START_REF] Siskos | UTASTAR -an ordinal regression method for building additive value functions[END_REF] solves the problem implicitly by returning an "average solution" computed as the mean of "extreme" solutions (this approach is sometimes referred to as "post-optimality analysis" [START_REF] Doumpos | Inferring robust decision models in multicriteria classification problems: An experimental analysis[END_REF]). Although, UTA-STAR does not give any formal definition of a representative solution, it returns a solution that tends to lie "in the middle" of the polytope determined by the constraints. The idea of centrality, as a definition of representativeness, has been illustrated with the ACUTA method [START_REF] Bous | ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements[END_REF], in which the selected value function corresponds to the analytic center of the polytope, and the other formulation, using the Chebyshev center [START_REF] Doumpos | Inferring robust decision models in multicriteria classification problems: An experimental analysis[END_REF]. On the other hand, [START_REF] Kadziński | Selection of a representative value function in robust multiple criteria ranking and choice[END_REF] propose a completely different approach to the idea of representativeness. They define five targets and select a representative value function taking into account a prioritization of the targets by the DM in the context of robust ordinal regression methods. The same authors also proposed a method for selecting a representative value function for robust sorting of alternatives in ordered categories [START_REF] Greco | Selection of a representative value function in robust multiple criteria sorting[END_REF].

In all the approaches aiming to return a "representative" value function, the marginal value functions are piecewise linear. The choice of such functions is historically motivated by the opportunity of using linear programming solvers (except for ACUTA [START_REF] Bous | ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements[END_REF]). Although piecewise linear functions are well-suited for approximating monotone continuous functions, their lack of smoothness (derivability) may make them seem "not natural" in some contexts, especially for economists. Brutal changes in slope at the breakpoints is difficult to explain and justify. Therefore, using smooth functions as marginals is advantageous from an interpretative point of view.

In [START_REF] Bugera | Credit cards scoring with quadratic utility functions[END_REF], the authors proposed an inference method based on a linear program that infers quadratic utility functions in the context of an application to the banking sector.

In this paper, we propose another approach to build the marginals, which is based on semidefinite programming. It allows for learning marginals which are composed of one or several polynomials of degree d, d being fixed a priori. Besides facilitating the interpretations of the returned marginals, using such functions increases the descriptive power of the model, which is of secondary importance for decision aiding but may be valuable in other applications. In particular, in machine learning, learning sets may involve thousands of pairs of ordered alternatives or assignment examples, which may provide an advantage to more flexible models. Beyond these advantages, the most striking aspect of this work is the fact that a single new optimization technique allows us to deal with polynomial of any degree and piecewise polynomial marginals instead of piecewise linear marginals. The semidefinite programming approach used in this paper for UTA might open new perspectives for the elicitation of other preference models based on additive or partly additive value structures, such as additive differences models (MACBETH [START_REF] Bana E Costa | An interactive path towards the construction of cardinal value functions[END_REF][START_REF] Bana E Costa | On the mathematical foundations of MACBETH[END_REF]), and GAI networks [START_REF] Gonzales | Decision making with multiple objectives using GAI networks[END_REF].

The paper is organized as follows. Section 2 recalls the principles of UTA methods. We then describe a new method called UTA-poly which computes each marginal as a degree d polynomial instead of a piecewise linear function. Section 4 introduces another approach called UTA-splines which is a generalization of UTA and UTA-poly. The shape of the marginals used by UTA-splines are piecewise polynomials or polynomial splines. These methods can be used either for ranking alternatives or for sorting them in ordered categories. The next section gives an illustrative example of the use of UTA-poly and UTA-splines. Finally, we present experimental results comparing the new methods with UTA both in terms of accuracy, model retrieval and computational effort.

UTA methods

In this section we briefly recall the basics of the additive value function model (see [START_REF] Keeney | Decisions with multiple objectives: Preferences and value tradeoffs[END_REF] for a classical exposition) and two inference methods that are based on this model.

Additive utility function models

Let denote the preference relation of a DM on a set of alternatives. We assume that each of these alternatives is fully described by a n-dimensional vector the components of which are the evaluations of the alternative w.r.t. n criteria or attributes. Under some conditions, among which preferential independence (see [START_REF] Keeney | Decisions with multiple objectives: Preferences and value tradeoffs[END_REF], p.110), such a preference can be represented by means of an additive value function. To be more precise, let a (resp. b) denote an alternative described by the vector (a 1 , . . . , a n ) (resp. (b 1 , . . . , b n )) of its evaluations on n criteria. The preference of the DM is representable by an additive value function if there is a function U which associates a value (or score) to each alternative in such a way that U (a) ≥ U (b) whenever the DM prefers a to b (a b) and

U (a) = n j=1 w j u j (a j ), (1) 
where u j is a marginal value function defined on the scale or range of criterion j and w j is a weight or tradeoff associated to criterion j. Weights can be normalized w.l.o.g., i.e. n j=1 w j = 1. In the sequel, we assume that the range of each criterion j is an interval [v 1,j , v 2,j ] of an ordered set, e.g. the real line. We assume w.l.o.g. that, along each criterion, the DM's preference increases with the evaluation (the larger the better). We also assume that the marginal value functions are normalized, i.e. u j (v 1,j ) = 0 and v 2,j = 1.

Model (1) can be rewritten by integrating the weights in the marginal value functions as follows: u * j (a j ) = w j • u j (a j ) for all j ∈ N = {1, . . . , n}. Equation (1) can then be reformulated as follows:

U (a) = n j=1 u * j (a j ). (2) 
The marginal value functions, or, more briefly, the marginals u * j take their values in the interval [0, w j ], for all j ∈ N . Note that a preference that can be represented by a value function is necessarily a weak order, i.e. a transitive and complete relation. Such a relation is also called a ranking (ties are allowed).

UTA methods for ranking and sorting problems

The UTA method was originally designed [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF] to learn the preference relation of the DM on the basis of partial knowledge of this preference. It is supposed that the DM is able to rank some pairs of alternatives a priori, without further analysis. Assuming that the DM's preference on the set of all alternatives is a ranking which is representable by an additive value function, UTA is a method for learning one such function which is compatible with the DM's a priori ranking of certain pairs of alternatives.

Let P denote the set of pairs of alternatives (a, b) such that the DM knows a priori that he/she strictly prefers a to b. More precisely, if (a, b) ∈ P, we have a b, which means a b and not [b a]. The DM may also know that he/she is indifferent between some pairs of alternatives. These constitute the set I. Whenever (a, b) ∈ I, we have a ∼ b, i.e. a b and b a. We denote by A * the set containing the learning alternatives, i.e. these used for the comparisons in sets P and I. These two sets and the vectors of performances of the alternatives contained in these two sets constitute the learning set which serves as input to the learning algorithm.

Linear programming is used to infer the parameters of the UTA model. Each pairwise comparison of the set P and I is translated into a constraint. For each pair of alternatives (a, b) ∈ P, we have U (a) -U (b) > 0 and for each pair of alternatives (a, b) ∈ I, we have U (a) -U (b) = 0. Note that these constraints may prove incompatible. In order to have a feasible linear program in all cases, two positive slack variable, σ + (a) and σ -(a), are introduced for each alternative in A * . The objective function of UTA is given by:

min u * j a∈A * σ + (a) + σ -(a) (3) 
and the constraints by:

                   U (a) -U (b) + σ + (a) -σ -(a) -σ + (b) + σ -(b) > 0 ∀(a, b) ∈ P, U (a) -U (b) + σ + (a) -σ -(a) -σ + (b) + σ -(b) = 0 ∀(a, b) ∈ I, n j=1 u * j (v 2,j ) = 1, u * j (v 1,j ) = 0 ∀j ∈ N, σ + (a) ≥ 0 ∀a ∈ A * , σ -(a) ≥ 0 ∀a ∈ A * , u * j monotonic ∀j ∈ N.
(4) If we assume that the unknown marginals u * j are piecewise linear, all the constraints above can be formulated in linear fashion and the corresponding optimization program can be handled by a LP solver. Note that the range [v 1,j , v 2,j ] of each criterion j has to be split in a number of segments that have to be fixed a priori (i.e. they are not variables in the program).

A variant of UTA for learning to sort alternatives in ordered categories is known as UTADIS. The idea was formulated in the initial paper [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF] and further used and developed in [START_REF] Doumpos | Multicriteria Decision Aid Classification Methods[END_REF][START_REF] Zopounidis | Business failure prediction using the UTADIS multicriteria analysis method[END_REF]. Let C 1 , . . . , C p denote the categories. They are numbered in increasing order of preference, i.e., an alternative assigned to C h is preferred to any alternative assigned to C h for 1 ≤ h < h ≤ p. It is assumed that the alternatives assignment is compatible with the dominance relation, i.e., an alternative which is at least as good as another on all criteria is not assigned to a lower category. The learning set consists of a subset of alternatives of which the assignment to one of the categories is known (or the DM is able to assign these alternatives a priori). The problem is to learn an additive value function U and p -1 thresholds U 1 , . . . , U p-1 such that alternative a is assigned to category C h if U h-1 ≤ U (a) < U h for h = 1 to p (setting U 0 to 0 and U p to infinity, i.e. a sufficiently large value). A mathematical programming formulation of this problem is easily obtained by substituting the first two lines of (4) by the following three sets of constraints:

   U (a) + σ + (a) ≥ U h-1 ∀a ∈ A * h , h = {2, ..., p}, U (a) -σ -(a) < U h ∀a ∈ A * h , h = {1, ..., p -1}, U h ≥ U h-1 h = {2, ..., p -1}, (5) 
where A * h denotes the alternatives in the learning set that are assigned to category C h . Assuming that marginals are piecewise linear, allows for a linear programming formulation as it is the case with UTA.

UTA-poly: additive value functions with polynomial marginals

In this section we present a new way to elicit marginal value functions using semidefinite programming. We first give the motivations for this new method. Then we describe it.

Motivation

UTA methods use piecewise linear functions to model the marginal value functions. Opting for such functions allows to use the linear programs presented in the previous section and linear programming solvers to infer an additive value ranking or sorting model. However by considering piecewise linear marginals with breakpoints at predefined places, original UTA methods have two important drawbacks: these options limit the interpretability and flexibility of the additive value model.

Interpretability. There is a longstanding tradition in Economics, especially in the classical theory of consumer behavior (see e.g. [START_REF] Silberberg | The structure of economics[END_REF]), which assumes that utility (or value) functions are differentiable and interpret their first and second (partial) derivatives in relation with the preferences and behavior of the customer. Multiple criteria decision analysis, based on value functions, stems from the same tradition. Tradeoffs or marginal rates of substitution are generally thought of as changing smoothly (see e.g. [START_REF] Keeney | Decisions with multiple objectives: Preferences and value tradeoffs[END_REF], p. 83 :"Throughout we assume that we are in a well-behaved world where all functions have smooth second derivatives"). Although piecewise linear marginals can provide good approximations for the value of any derivable function, they are not fully satisfactory as an explanatory model. This is especially the case when the breakpoints are fixed arbitrarily (e.g. equally spaced in the criterion domains). Such a choice may well fail to correctly reflect the DM's feelings about where the marginal rate of substitution starts to grow more quickly (resp. to diminish) or shows an inflexion. In other words, the qualitative behavior of the first and second derivatives of the "true" marginal value function might be poorly approximated by resorting to piecewise linear models, while this behavior might have an intuitive meaning for the DM. Therefore, considering piecewise linear marginals might lead to final models that fail to convince the DM even though they fit the learning set accurately.

Flexibility. Restricting the shape of the marginals to piecewise linear functions may hamper the expressivity of the additive value function model. This is especially detrimental when large learning sets are available as is the case in Machine Learning applications 1 .

The following ad hoc case aims to illustrate the loss in flexibility incurred due to the piecewise linear hypothesis. Consider a ranking problem in which alternatives are assessed on two criteria. The DM states that the top-ranked alternatives are a, b, which are tied (rank 1), followed by c (rank 2) while d is strictly less preferred than the others (rank 3). The evaluations and ranks of these alternatives are displayed in Table 1.

Assume that we plan to use a UTA model with marginals involving a single linear piece (i.e. a weighted sum). Such an UTA model cannot at the same time distinguish c and d and express that a and b are tied. The fact that a and b are tied indeed implies that the criteria weights are equal (we can set them to 0.5 w.l.o.g.). The value on each marginal varies from 0 to 0.5. The worst value (0) corresponds to the worst performance (0) and the best value (0.5) to the best performance (100) on each criterion (see the marginal value functions alternative criterion 1 criterion 2 rank

a 100 0 1 b 0 100 1 c 25 75 2 d 75 25 3 
Table 1: Example of an alternatives ranking that is not representable with a UTA model (one linear piece per marginal). represented by dashed lines in Figure 1). Using these marginals, the scores of the four alternatives are obtained through linear interpolation and displayed in Table 2. We observe that all alternatives receive the same value 0.5. It is therefore not possible to discriminate alternatives c and d.

In case polynomials are allowed for, instead of piecewise linear functions, to model the marginals, the DM's preferences can be accurately represented. Figure 1 shows the case of polynomials of degree 3 used as marginals (plain line). The scores of the alternatives computed with these marginals are displayed in Table 2. They comply with the DM's preferences.

Obviously it would have been possible to reproduce the DM's ranking using more than one linear piece marginals in an UTA model. However, when the breakpoints are fixed in advance, it is easy to construct an example, similar to 1 with the UTA and UTA-poly marginals represented in Figure 1.

the above one, in which the DM's ranking cannot be reproduced using a linear function between successive breakpoints while a polynomial spline will do.

The two methods introduced below, UTA-poly in the rest of this section and UTA-splines in Section 4, replace the piecewise linear marginals of UTA by polynomials and polyomial splines, respectively.

Basic facts about non-negative polynomials

In the last few years, significant improvements have been made in formulating and solving optimization problems in which constraints are expressed in the form of polynomial (in)equalities and with a polynomial objective function; see, e.g., [START_REF] Henrion | Gloptipoly: Global optimization over polynomials with matlab and sedumi[END_REF][START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF]. These new techniques are useful for various applications; see [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] and the references therein. A problem arising in many applications, including the present one, is to guarantee the non-negativity of functions of several variables. In our case, we have to make sure not only that marginals are non negative but also that they are nondecreasing, i.e. that their derivative is non-negative. Testing the non-negativity of a polynomial of several variables and of a degree equal to or greater than 4 is NP-hard [START_REF] Murty | Some NP-complete problems in quadratic and nonlinear programming[END_REF]. In [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF], an approach based on convex optimization techniques has been proposed in order to find an approximate solution to this problem.

The approach proposed in [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF] is based on the following theorem about nonnegative polynomials.

Theorem 1 (Hilbert). A polynomial F : R n → R is non-negative if it is possible to decompose it as a sum of squares (SOS):

F (z) = s f 2 s (z) with z ∈ R n . (6) 
The condition given above is sufficient but not necessary, there exist nonnegative polynomials that cannot be decomposed as a sum of squares [START_REF] Blekherman | There are significantly more nonegative polynomials than sums of squares[END_REF]. However, it has been proved by Hilbert that a non-negative polynomial of one variable is always a sum of squares [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF]. We give the proof here because it is remarkably simple and elegant.

Theorem 2 (Hilbert). A non-negative polynomial in one variable is always a SOS.

Proof. Consider a polynomial of degree D, p(x) = p 0 + p 1 x + p 2 x 2 + . . . + p D x D . Since p(x) is non-negative, D must be even. The value of p D should be greater than 0, otherwise lim x→∞ p(x) = -∞. As every polynomial of degree D admits D roots, one can write p(x) as follows:

p(x) = p D m i=1 (x -z i )(x -zi ) n j=1 (x -t j ) αj
in which z i and zi for i = {1, . . . , m} are pairs of conjugate complex numbers and t j for j = {1, . . . , n} are distinct real numbers where D = 2m + n j=1 α j . All the values of the exponents α j are even. Indeed, consider a subset of k indices, {∆ 1 , . . . , ∆ k }, such that α ∆1 , . . . , α ∆ k are odd. Let τ be a permutation of these indices such that t τ (∆1) < . . . < t τ (∆ k ) . For x ∈ t τ (∆ k-1 ) , t τ (∆ k ) , we would have n j=1 (xt j ) αj < 0, a contradiction. As all the value α j are even, we can rewrite p(x) as follows:

p(x) = √ p D l i=1 (x -z i ) √ p D l i=1 (x -zi )
in which some pairs (z i , zi ) have no imaginary part. Let

√ p D l i=1 (x -z i ) = q(x) + ir(x) and √ p D l i=1 (x -zi ) = q(x) -ir(x)
where i is the imaginary part of the complex number and q(x), r(x), two polynomials with real coefficients. Finally, the product of these two terms gives a sum of two squares:

p(x) = [q(x)] 2 + [r(x)] 2 .
Let us consider the problem of determining a non-negative polynomial p of one variable x and degree D. We use the following canonical form to represent this polynomial:

p(x) = p 0 + p 1 x + p 2 x 2 + . . . + p D x D (7) = D i=0 p i • x i .
To guarantee the non-negativity of this polynomial, we have to ensure that it can be represented as a sum of squares like in Equation ( 6). Note that a non-negative polynomial will always have an even degree since either the limit at positive or negative infinity of a polynomial of odd degree is negative. Let d = D 2 , the polynomial p(x) reads:

p(x) = s q 2 s (x) = s d i=0 b i s x i 2 . Defining b T s = b 0 s b 1 s .
. . b d s and x T = 1 x . . . x d (where T stands for the matrix transposition operation), we can express p(x) as follows:

p(x) = s b T s x 2 = s x T b s b T s x = x T s b s b T s x = x T Qx =      1 x . . . x d      T      q 0,0 q 0,1 • • • q 0,d q 1,0 q 1,1 • • • q 1,d . . . . . . . . . . . . q d,0 q d,1 • • • q d,d           1 x . . . x d      . Note that the matrix Q = s b s b T s is symmetric and positive semidefinite (PSD), which we denote Q 0, since x T Qx = s b T s x 2 ≥ 0 for all x ∈ R d+1 .
Therefore, to ensure that p(x) is non-negative, it is necessary to find a matrix Q of dimension (d + 1) × (d + 1) such that p(x) = x T Qx and Q 0. It turns out that this condition is also sufficient. This follows from the following lemma.

Lemma 3. Q 0 ⇐⇒ ∃H : Q = H • H T .
The above decomposition is called the Cholesky decomposition of matrix Q; see Appendix B. To summarize, a polynomial p(x) in one variable is nonnegative if and only if there exists Q 0 such that p(x) = x T Qx.

The coefficients of the polynomial expressed in its canonical form [START_REF] Doumpos | Inferring robust decision models in multicriteria classification problems: An experimental analysis[END_REF] are obtained by summing the off-diagonal entries of the matrix Q, as follows:

                     p 0 = q 0,0 , p 1 = q 1,0 + q 0,1 , p 2 = q 2,0 + q 1,1 + q 0,2 , . . . p 2d-1 = q d,d-1 + q d-1,d , p 2d = q d,d .
We can express the value of the coefficients of the polynomial as follows:

p i = i g=0 q g,i-g i = {0, . . . , d}, d g=i-d q g,i-g i = {d, . . . , 2d}. (8) 
The value of p d can be computed with both expressions. Finding a non-negative univariate polynomial consists in finding a semidefinite positive matrix Q. Summing the off-diagonal entries of this matrix allows to control the coefficients of the polynomial;

In some applications, it is not necessary to ensure the non-negativity of the polynomial on R but only in an interval [v 1 , v 2 ]. If the non-negativity constraint has to be guaranteed only in a given interval [v 1 , v 2 ] for a polynomial p(x), then the following theorem holds.

Theorem 4 (Hilbert). A polynomial p(x) in one variable

x is non-negative in the interval [v 1 , v 2 ], if and only if p(x) = (x -v 1 ) • q(x) + (v 2 -x) • r(x)
where q(x) and r(x) are SOS.

Given the above theorem, if we want to ensure the non-negativity of the polynomial p(x) of degree D on the interval [v 1 , v 2 ], we have to find two matrices Q and R of size d + 1, with d = D 2 , that are positive semidefinite. We denote these matrices and their indices as follows:

Q =      q 0,0 q 0,1 • • • q 0,d q 1,0 q 1,1 • • • q 1,d . . . . . . . . . . . . q d,0 q d,1 • • • q d,d      , R =      r 0,0 r 0,1 • • • r 0,d r 1,0 r 1,1 • • • r 1,d . . . . . . . . . . . . r d,0 r d,1 • • • r d,d      .
Since Q and R are positive semidefinite, the products a j T Qa j and a j T Ra j , with a j T = 1 a j . . . a d j , are always non-negative. To obtain a polynomial p(x) that is non-negative in the interval [v 1 , v 2 ], its coefficients have to be chosen such that:

                                   p 0 = v 2 • r 0,0 -v 1 • q 0,0 , p 1 = q 0,0 -r 0,0 + v 2 • (r 1,0 + r 0,1 ) -v 1 • (q 1,0 -q 0,1 ), p 2 = (q 1,0 + q 0,1 ) -(r 1,0 + r 0,1 ) + v 2 • (r 2,0 + r 1,1 + r 0,2 ) -v 1 • (q 2,0 + q 1,1 + q 0,2 ), . . . p 2d-1 = (q d,d-2 + q d-1,d-1 + q d-2,d ) -(r d,d-2 + r d-1,d-1 + r d-2,d ) +v 2 • (r d,d-1 + r d-1,d ) -v 1 • (q d,d-1 + q d-1,d ), p 2d = (q d,d-1 + q d-1,d ) -(r d,d-1 + r d-1,d ) + v 2 • r d,d -v 1 • q d,d , p 2d+1 = q d,d -r d,d .
If the degree D of the polynomial p(x) is even then the value of p 2d+1 is equal to 0. The values p i can be expressed in the following more compact form:

p i =                    v 2 • r 0,0 -v 1 • q 0,0 i = 0, i-1 g=0 (q g,i-1-g -r g,i-1-g ) + i g=0 (v 2 • r g,i-g -v 1 • q g,i-g ) i = {1, . . . , d}, d g=i-d-1 (q g,i-1-g -r g,i-1-g ) + d g=i-d (v 2 • r g,i-g -v 1 • q g,i-g ) i = {d + 1, . . . , 2d}, q d,d -r d,d i = 2d + 1.

Semidefinite programming applied to UTA methods

In the perspective of building more natural marginal value functions, we use semidefinite programming (SDP) to learn polynomial marginals instead of piecewise linear ones. SDP has become a standard tool in convex optimization, being a generalization of linear programming and second-order cone programming. It allows to optimize linear functions over an affine subspace of the set of positive semidefinite matrices; see, e.g., [START_REF] Vandenberghe | Semidefinite programming[END_REF] and the references therein.

There are two variants of the new UTA-poly method. Firstly, we describe the approach that consists in using polynomials that are overall monotone, i.e. monotone on the set of all real numbers. Then we describe the second approach considering polynomials that are monotone only on a given interval.

Enforcing monotonicity of the marginals on the set of real numbers

In the new proposed model, we define the value function on each criterion j as a polynomial of degree D j :

u * j (a j ) = Dj i=0 p j,i • a i j . (9) 
To be compliant with the requirements of the theory of additive value functions, the polynomials used as marginals should be non-negative and monotone over the criteria domains. To ensure monotonicity, the derivative of the marginal value function has to be non-negative, hence we impose that the derivative of each value function is a sum of squares. The degree of the derivative is therefore even which implies that D j is odd. This requirement reads:

u * j = p j,1 + 2p j,2 • a j + 3p j,3 • a 2 j + ... + D j p j,Dj • a Dj -1 j = a j T Q j a j ,
with Q j a PSD matrix of dimension (d j +1)×(d j +1), a j a vector of size (d j +1) with d j = Dj -1 2 :

Q j =      q j,0,0 q j,0,1 • • • q j,0,dj q j,1,0 q j,1,1 • • • q j,1,dj . . . . . . . . . . . . q j,dj ,0 q j,dj ,1 • • • q j,dj ,dj      , a j =      1 a j . . . a dj j     
.

By using SDP, we impose the matrix Q to be semidefinite positive and we set the following constraints on the p j,i values, for i ≥ 1:

                    
p j,1 = q j,0,0 , 2p j,2 = q j,1,0 + q j,0,1 , 3p j,3 = q j,2,0 + q j,1,1 + q j,0,2 , . . . (2d j )p j,2dj = q j,dj ,dj -1 + q j,dj -1,dj , (2d j + 1)p j,2dj +1 = q j,dj ,dj .

In UTA-poly, the marginal value functions and monotonicity conditions on marginals given in Equation ( 4) and ( 5) are replaced by the following constraints:

         U (a) = n j=0 Dj i=0 p j,i • a i j ∀a ∈ A, Q j PSD ∀j ∈ N, (i + 1)p j,i+1 = i g=0 q j,g,i-g i = {0, . . . , d j }, ∀j ∈ N, (i + 1)p j,i+1 = dj g=i-dj q j,g,i-g i = {d j + 1, . . . , 2d j }, ∀j ∈ N. (10) 
The optimization program composed of the objective given in Equation ( 3) and the set of constraints given in Equations ( 4) and ( 10) can be solved using convex programming, more precisely, semidefinite programming [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF]. We refer to this new mathematical program as to UTA-poly. An explicit UTA-poly formulation for a simple problem involving 2 criteria and 3 alternatives is provided in Appendix A for illustrative purposes.

Enforcing monotonicity of the marginals on the criteria domains

Ensuring the monotonicity of each marginal on the domain of each criterion (instead of the whole real line) is sufficient to satisfy the requirements of the additive value function model. To do so, we use Theorem 4 and only impose the non-negativity of the marginal derivative on the domain [v 1,j , v 2,j ] of each criterion. This results in the following condition on the derivative u * j of the polynomial u * j , for all j:

u * j = p j,1 + 2p j,2 • a j + 3p j,3 • a 2 j + ... + D j p j,Dj • a Dj -1 j = (a j -v 1,j )a j T Q j a j + (v 2,j -a j )a j T R j a j .
In the above equation, Q j and R j are two PSD matrices of size (d j +1)×(d j +1) and a j a vector of size d j + 1, where d j = Dj -1 2

:

Q j =     
q j,0,0 q j,0,1 • • • q j,0,dj q j,1,0 q j,1,1 • • • q j,1,dj . . . . . . . . . . . .

q j,dj ,0 q j,dj ,1 • • • q j,dj ,dj      , R j =      r j,0,0 r j,0,1 • • • r j,0,dj r j,1,0 r j,1,1 • • • r j,1,dj . . . . . . . . . . . . r j,dj ,0 r j,dj ,1 • • • r j,dj ,dj      .
The value p j,i for i ≥ 1 are obtained as follows:

                                             p j,1 = v 2,j • r j,0,0 -v 1,j
• q j,0,0 , 2p j,2 = q j,0,0 -r j,0,0 + v 2,j • (r j,1,0 + r j,0,1 ) -v 1,j • (q j,1,0 + q j,0,1 ), 3p j,3 = (q j,1,0 + q j,0,1 ) -(r j,1,0 + r j,0,1 ) + v 2,j • (r j,2,0 + r j,1,1 + r j,0,2 )

-v 1,j • (q j,2,0 + q j,1,1 + q j,0,2 ) . . . (2d j )p j,2dj = (q j,dj ,dj -2 + q j,dj -1,dj -1 + q j,dj -2,dj ) -(r j,dj ,dj -2 + r j,dj -1,dj -1 + r j,dj -2,dj ) +v 2,j • (r j,dj ,dj -1 + r dj -1,dj ) -v 1,j • (q j,dj ,dj -1 + q j,dj -1,dj ), (2d j + 1)p j,2dj +1 = (q j,dj ,dj -1 + q j,dj -1,dj ) -(r j,dj ,dj -1 + r j,dj -1,dj ) +v 2,j • r j,dj ,dj -v 1,j • q j,dj ,dj , (2d j + 2)p j,2dj +2 = q j,dj ,dj -r j,dj ,dj .

If the degree D j is odd, then we have p j,2dj +2 = 0 since 2d j + 2 > D j .

In convex programming, in order to have polynomial marginals that are monotone on an interval, the monotonicity constraints in UTA have to be replaced by the following ones:

                                   U (a) = n j=0 Dj i=0 p j,i • a i j ∀a ∈ A, Q j , R j PSD ∀j ∈ N, p j,1 = v 2,j • r j,0,0 -v 1,j • q j,0,0 , (i + 1)p j,i+1 = i-1 g=0 (q j,g,i-g -r j,g,i-g ) + i g=0 (v 2,j • r j,g,i-1-g -v 1,j • q j,g,i-1-g ) i = {0, . . . , d j }, ∀j ∈ N, (i + 1)p j,i+1 = dj g=i-dj -1 (q j,g,i-1-g -r j,g,i-1-g ) + dj g=i-dj (v 2,j • r j,g,i-g -v 1,j q j,g,i-g ) i = {d j + 1, . . . , 2d j }, ∀j ∈ N, (2d j + 2)p j,2dj +2 = q dj ,dj -r dj ,dj ∀j ∈ N. (11) 
The optimization program composed of the objective given in Equation ( 3) and the set of constraints given in Equation ( 4) and ( 10) can be solved using semidefinite programming.

UTA-splines: additive value functions with splines marginals

In this section we describe a variant of UTA-poly which consists in using several polynomials for each value function. We first recall some theory about splines. Then we describe the new method called UTA-splines.

Splines

We recall here the definition of a spline. We detail the ones that are the most commonly used.

Definition

A spline of degree D s is a function Sp that interpolates the set of points (x i , y i ) for i = 0, ..., q, with x 0 < x 1 < . . . < x q such that:

• Sp(x i ) = y i for i = 0, . . . , q;

• Sp is a set of polynomials of degree equal to or smaller than D s , on each interval [x i , x i+1 [ (at least one of the polynomials has a degree equal to D s );

• the derivative of Sp are continuous up to a given degree

D c on [x 0 , x q ].
The degree of a spline corresponds to its highest polynomial degree. If all the polynomials have the same degree, the spline is said to be uniform.

The continuity of the spline at the connection points is ensured up to a given derivative. Usually, the continuity of the spline is guaranteed up to the second derivative (D c = 2). It ensures the continuity of the slope and concavity at the connection points.

Cubic splines

The most common uniform splines are the ones of degree 3 (D s = 3), also called cubic splines. A cubic spline consists of a set of third degree polynomials which are continuous up to the second derivative at their connection points.

We denote by s i the i th polynomial of the spline going from connection point x i to connection point x i+1 . Formally, each polynomial s i of the spline has the following form:

s i (x) = s i,0 + s i,1 x + s i,2 x 2 + s i,3 x 3 .
The use of cubic splines requires the determination of four parameters: s i,0 , s i,1 , s i,2 and s i,3 . If the spline interpolates q points, there are overall 4 • (q -1) parameters to determine. Imposing the equality up to the second derivative at the connection points amounts to enforce the following constraints:

       s i (x i ) = y i i = {0, . . . , q -1}, s i (x i+1 ) = y i+1 i = {0, . . . , q -1}, s i (x i+1 ) = s i+1 (x i+1 ) i = {0, . . . , q -2}, s i (x i+1 ) = s i+1 (x i+1 ) i = {0, . . . , q -2}. ( 12 
)
Since there are 4q -2 constraints and 4q parameters, two degrees of freedom remain. They can be set in different ways. For instance, one can impose s 0 (x 0 ) = 0 and s q-1 (x q ) = 0. This corresponds to imposing zero curvature at both endpoints of the spline.

UTA-splines: using splines as marginals

We give some detail on how using splines to model marginal value functions of an additive value function model. We formulate a semidefinite program that learns the parameters of such a model.

Overview

Using splines continuous up to either the first or the second derivative instead of piecewise linear functions for the marginal value functions aims at obtaining more natural functions around the breakpoints.

With UTA-poly, the flexibility of the model is improved by using polynomials of higher degrees. In order to further improve the flexibility of the model, we propose now to hybridize the original UTA method which splits the criterion domain into k equal parts with the UTA-poly approach which uses polynomials to model the marginal value functions. We call this new disaggregation procedures UTA-splines. The UTA-splines method combines the use of piecewise functions for the marginals (as in UTA) and the use polynomials (as in UTA-poly) for each piece of the function.

Compared to UTA, in UTA-splines the continuity of the marginal can be ensured up to the any derivative at the connection points. It enables to obtain more natural marginals which have a continuous curvature.

Description of UTA-splines

In UTA-splines, we model marginals as uniform splines of degree D s . Formally the marginal of criterion j reads:

u * j (a j ) = Sp Ds,k j (a j )
where Sp Ds j denotes a uniform spline of degree D s composed of k pieces. Each piece of the spline Sp Ds,k j (a j ) is a polynomial of degree D s denoted by s j,l (a j ), l = {1, . . . , k}. Formally it reads: s j,l (a j ) = s j,l,0 + s j,l,1 a j + s j,l,2 a 2 j + . . . + s j,l,Ds a Ds j .

The pairs (g l-1 j , u l-1 j ) and (g l j , u l j ) denote respectively the coordinates of the initial and final points of the piece l of the spline. The points g l j for l = 1 to k -1 partition the criterion domain [v 1,j , v 2,j ] in subintervals. We set v 1,j = g 0 j and v 2,j = g k j . Hence the piece s j,l of the spline is defined on the interval [g l-1 j , g l j ]. The spline s j,l takes the value u l-1 j (resp. u l j ) on g l-1 j (resp. g l j ). The continuity of the spline at the connection points is ensured by imposing the two following constraints:

s j,l (g l-1 j ) = u l-1 j l = {1, . . . , k}, s j,l (g l j ) = u l j l = {1, . . . , k}.
Usually, the continuity of the marginals is ensured up to the second derivative so that slope and concavity at the connection points remain continuous. To ensure the continuity of the first derivative, the following constraints are added:

s j,l (g l j ) = s j,l+1 (g l j ) l = {1, . . . , k -1}.
Similarly, the following constraints are added to ensure the continuity of the second derivative:

s j,l (g l j ) = s j,l+1 (g l j ) l = {1, . . . , k -1}.
Of course, it is possible to ensure the continuity of the second derivative only if the marginal polynomials have a degree equal to or higher than 3. More generally, it is possible to ensure the continuity of the polynomials up to the i th derivative only if the polynomials have a degree equal to or higher than i + 1.

As in UTA-poly, the main difficulty in UTA-splines is to find polynomials which ensure the monotonicity of the marginals. To achieve this, we use the results set out in Section 3.2. Recall that the non-negativity of a univariate polynomial is ensured if it can be expressed as a sum of squares. The monotonicity of the marginals is therefore ensured by imposing the non-negativity of their derivatives on an interval. Formally, for the piece l of the spline associated to criterion j, it reads: s j,l (a j ) = s j,l,1 + 2s j,l,2 a j + . . . + D s s j,l,Ds a Ds-1 j ≥ 0.

We impose s j,l (a j ) to be a sum of two SOS as specified in Theorem 4. Formally it reads: s j,l (a j ) = (xg l-1 j ) • q j,l (a j ) + (g l j -x) • r j,l (a j ), with q j,l (a j ) and r j,l (a j ) two polynomials that can be expressed as sums of squares.

Using semidefinite programming, we impose two square matrices Q j,l and R j,l of size d = Ds-1 2 + 1 to be positive semidefinite. Hence, q j,l (a j ) = a j T Q j,l a j and r j,l (a j ) = a j T R j,l a j , with a j T = 1 a j . . . a d j , are two nonnegative polynomials.

The value of the polynomial coefficients s j,l,0 , . . . , s j,l,Ds are obtained by combining the off-diagonal terms of the matrices.

Link between UTA-splines, UTA-poly and UTA

We note that UTA-splines is a generalization of UTA. Indeed, UTA is a particular case of UTA-splines in which splines of the first degree are used.

A similar link exists between UTA-splines and UTA-poly. Indeed, if UTAsplines is used to learn marginals composed of exactly one piece then it is equivalent to the UTA-poly formulation.

Illustrative example

In this section, we illustrate UTA-poly and UTA-splines on an small instance of a ranking problem. In the first subsection we briefly present the context of the problem. Then we infer the parameters of UTA-poly models and compare the marginals obtained with UTA-poly to the original ones. Finally we perform the same experiment with UTA-splines. To formulate and solve the SDP we used CVX, a Matlab software for disciplined convex programming [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF]. The source code of UTA-poly and UTA-splines is available at the following address: http://olivier.sobrie.be.

Context of the problem

A family plans to spend a one week holiday in France. They use a search engine which returns a list of 1000 possible accommodations. To avoid reviewing the whole list and save time, the family calls a MCDA analyst. The first task of the analyst consists in determining which criteria matter to the family. They identify the following three criteria:

• Price: the price of the renting in euros which should be minimized;

• Distance: the distance from home in kilometers which should be minimized;

• Size: the size of the accommodation in square meters which should be maximized.

The family cannot evaluate the importance of the criteria and doesn't want to enter into a formal elicitation procedure. On the contrary, they are ready to make some overall statements that could be used by a model learning method.

Let us assume that the preferences of the family can be represented by an additive value function and that the marginals are displayed in Figure 2. These functions are polynomials of degree 2 (u 1 and u 3 ) and 15 (u 2 ). 

UTA-poly

In order to learn the marginals given in Figure 2, the family ranks a subset of 50 alternatives chosen randomly in the list according to the unveiled marginal functions displayed in Figure 2.

The 49 informative pairwise comparisons are used to learn, using UTA-poly, an additive value function model with polynomials of degree one to ten. The inferred value function yields a ranking of the 50 alternatives. Hence, we can observe the similarity of the initial and inferred rankings. The evolution of the Spearman distance and Kendall Tau of these rankings is given in Figure 3 . We observe that increasing the degree of the polynomial increases the accuracy of the model. Indeed, the values of the Spearman distance and Kendall Tau grow as a function of the degree of the marginals.

In a second step, the analyst asks to the family to include 50 other alternatives in the ranking. The analyst provides a set of 99 pairwise comparisons to UTA-poly. As in the first step, polynomials of degree one to ten are learned. We observe in Figure 3 that the accuracy of the model is improved with more pairwise comparisons when the marginals have a small degree (smaller than 8).

With more examples we see that the Spearman distance and Kendall Tau are slightly better when marginals degree is small and slightly worse when marginals degree is superior to 9.

For illustrative purpose we show in Figure 4 the marginals learned on basis of 100 examples with polynomials of degree 2, 6 and 10. We see that the marginals u 1 and u 3 are well approximated with polynomials of degree 2 to 10. The major difference is observed for u 2 . Using a polynomial of degree 2 approximates roughly the curve. The two steps of u 2 cannot be better approximated by a polynomial of the second degree since there is no inflexion point with such a polynomial. The real marginal has at least two inflexion where the steps are located. With a polynomial of degree 6 we see that the approximation of this curve is improved but it does not perfectly fit the real marginal. Indeed the slope is less steep between the inflexion points. With a polynomial of degree 10 the learned marginal almost perfectly fit the real marginal. The inflexion of the curve happens at the same places and the slopes are similar.

UTA-splines

As for UTA-poly, we perform some experimentations with UTA-splines on the application described above. We vary the number of pieces and the polynomial degrees of UTA-splines and observe the variation in accuracy. We also study the impact of the continuity degree on the splines.

Figure 5 shows the evolution of the average Spearman distance and Kendall Tau on the learning set. We note that increasing the number of pieces usually has a positive influence on the way UTA-splines succeeds in restoring the original ranking. UTA-splines is able to restore the original ranking with smaller polynomial degrees when the number of pieces increases. However it is not always the case. For instance, when using polynomials of degree 1, a UTA model composed of 4 pieces performs better than one using 5 pieces. With polynomials of degree greater than 1, UTA-splines always performs better when the number of pieces is larger.

For illustrative purpose, we show in Figure 6 the marginals obtained with splines of degree D = 1 to 3. The continuity of the splines at the breakpoints (D c ) is enforced up to D -1. With polynomials of degree 3, we observe that the learned marginals tightly fit the real marginals.

Experiments

So as to understand the behavior of UTA-poly and UTA-splines, we performed experiments on artificial datasets. These experiments aim at studying the ability of the methods to retrieve a ranking from a set of pairwise comparisons and the computing time. In the experiments, we vary different parameters of UTA-poly and UTA-splines: degree of the polynomials (D), number of pieces (k), the continuity at breakpoints (D c ) and the number of alternatives in the learning set (m * ). As in the previous Section, we formulate and solve the SDP we used CVX, a Matlab software for disciplined convex programming [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF].
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Experimental setup

Our experimental strategy is the following. We start from an hypothetical additive value model denoted M , and generate a set of alternatives (called learning set). Then we simulate the behavior of a DM ranking these alternatives, while having the model M in mind. Hence, we constitute a ranking on the learning set.

We compute an additive value model using UTA-poly and UTA-splines compatible with the ranking of the learning set. We then compare the inferred models to the model M . To do do, we randomly generate another set of alternatives (test set), and we compute the ranking of this test set obtained by the model M and by the inferred model. We then compute the Spearman distance [START_REF] Spearman | The proof and measurement of association between two things[END_REF] and the Kendall Tau [START_REF] Kendall | A new measure of rank correlation[END_REF] to evaluate how close the inferred rankings are to the original one.

We considered 8 different models M , chosen to represent a wide variety of value functions (structure and forms of the marginals). Four of these models are composed of 3 criteria (Figure 7), while the four others are composed of 5 criteria (Figure 8). As shown in Figure 7 and8, the marginals are of different type: piecewise linear functions, sigmoids, exponentials, and polynomials of degree 2, 3 and 15.

For a given model M and a seed s, the experimental procedure is the following:

1. The random generator is initialized with the seed s. (a * 1 , a * 2 , ..., a * n ) ∈ A * is generated by drawing n a random number uniformly in [0, 1]. 3. The score U (a * ) is computed for each vector of performances a * ∈ A * using the value model M . A pre-order on these alternatives is derived from their scores. Given a ranking π * of the alternatives in A * , we denote by π * i the alternative ranked at the i th position. We have π * The alternatives in A are ranked with models M and M . The obtained ranking π and π are then compared by computing the Spearman distance SD(π, π) (see [START_REF] Spearman | The proof and measurement of association between two things[END_REF]) and the Kendall Tau KT (π, π) (see [START_REF] Kendall | A new measure of rank correlation[END_REF]).

Model retrieval

We tested UTA-poly and UTA-splines with the models shown in Figures 7 and8. Results provided in this Section are mean values over the 8 different models tested. We varied the degree of the polynomials (D), the number of pieces (k), the continuity at the breakpoints (D c ). We varied the size of the learning set (m * ) between 10 and 100 alternatives. The test set was composed of 1000 alternatives. For each setting, we ran the test procedure described above with 10 random seeds.

This experiment shows how the number of comparisons impacts the ability to elicit the parameters of a model M composed of n criteria. The experiment also shows the impact of the number of pieces per marginal and of the degree of the polynomial.

UTA-poly

The first test consists in testing UTA-poly with only one piece per marginal (k = 1). We show in Figure 9 the average Spearman distance and Kendall Tau of the test set of the models composed of 3 criteria when the degree of the learned marginals (D) vary from 1 (which corresponds to a weighted sum) to 4. The values of the Spearman distance and Kendall Tau increase as a function of the number of alternatives in the learning set. For the same number of examples in the learning set, the quality of the ranking is improved as the degree of the polynomial increases. We observe the same behavior with models composed of 5 criteria (Figure 10). Detailed results per model are available in Appendix C.

UTA-splines

In the second test, we varied the number of pieces per marginals (k) from 1 to 5 and used polynomials of degree 3. The continuity at the breakpoints is ensured up to the second derivative. Figure 11 shows the average Spearman distance and Kendall Tau of the test set for the models composed of 3 criteria. We observe that increasing the number of pieces helps to increase the accuracy of the model. With models composed of 5 criteria (see Figure 12), we observe the same behavior. It depicts a general trend for the model presented in Figure 7 and 8. Nevertheless one has to be cautious to overfitting effects when the number of pieces increases and to the position of the breakpoints. Indeed increasing the number of pieces increases the number of parameters of the model and its flexibility which may lead to overfitting. In Appendix C we present the detailed results for each model of 

k = 1 k = 2 k = 3 k = 4 k = 5
= 1 k = 2 k = 3 k = 4 k = 5
Figure 12: Average Spearman distance and Kendall Tau of the test set with the models composed of 5 criteria learned by UTA-splines with marginals composed of polynomials of the third degree. The continuity at the breakpoints is ensured up to the second derivative.

Computing time

The computing time highly depends on the number of constraints and variables that are involved. The number of constraints and variables are expressed m n k D D c #const. #var. computing time (sec.) [START_REF] Gonzales | Decision making with multiple objectives using GAI networks[END_REF] by the following equations:

#constraints = m + n + 2nk + nkD + (1 + D c )n(k -1), #variables = nk(D + 1) + 2nk D 2 2 + 2m.
We give in Table 3 the number of constraints and variables for different problem sizes. We observe that the computing time evolves linearly with the number of examples that are given as input to the algorithm. For the inference of a UTApoly model, the higher the degree of the polynomials, the higher computing time; however the difference is not substantial. Compared to an UTA model, learning a UTA-poly model using polynomials of the 4th degree increases the computing time of a few dozen of milliseconds. The behavior is similar when passing from one to several pieces per marginal. When the number of criteria increases, we observe that the computing time increases too.

Lastly, it should be highlighted that computing times for all instances solved in this Section are reasonably short (less than 6 sec.), and compatible with an iterative and interactive use with a DM.

Conclusion

In this paper, we propose a new method to learn an additive value function model from a set of statements provided by the DM. Learning piecewise linear value functions from preference statements is standard in the literature (UTA methods, e.g. [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF], [START_REF] Jacquet-Lagrèze | Preference disaggregation: 20 years of MCDA experience[END_REF]). Instead of piecewise linear marginals, we generalize this standard representation by considering more general forms for marginals. UTA-poly considers marginal value functions which are monotone polynomials, while in UTA-splines marginals are composed of several pieces of monotone polynomials. UTA-splines generalizes the preference representation used in the standard UTA methods, while UTA-poly is a particular UTA-splines model where a single polynomial is used to represent each marginal.

The inference of such an additive value function with polynomial marginals is performed using a semidefinite programming formulation. From a computational point of view, the resolution of instances corresponding to real datasets is limited to several seconds, and thus compatible with an interactive use with DMs.

We provide an illustrative example showing that the inference program is able to restore value functions that are "close" to the original ones. A specific feature of the methods is that the inferred value function is composed of "smooth" marginals which avoids brutal changes in the slopes of these marginals, thus improving interpretability.

The computational experiments show the ability of the methods to better match the preference statements as the degree of the polynomials involved in the marginals increases.

It should be noted that the methods proposed in this paper, applies to ranking problems but can be directly extended to sorting problems, hence defining UTADIS-poly and UTADIS-splines (see [START_REF] Sobrie | Learning of sorting models[END_REF]).

An innovative aspect of this work is related to the new optimization technique allowing to deal with polynomial and piecewise polynomial marginals instead of piecewise linear marginals. The semidefinite programming approach used in this paper for UTA opens new perspectives for eliciting other preference models based on additive or partly additive value structures, such as additive differences models (MACBETH [START_REF] Bana E Costa | An interactive path towards the construction of cardinal value functions[END_REF][START_REF] Bana E Costa | On the mathematical foundations of MACBETH[END_REF]) and GAI networks [START_REF] Gonzales | Decision making with multiple objectives using GAI networks[END_REF].

Similarly as for UTA models (cf. the discussion in the Introduction), the solution of our new models might not be unique. It would be interesting to try to characterize these situations and pick a solution that is most suited for the DM. Note that, for this work, we used interior-point methods to solve the semidefinite programs. These methods return the so-called analytic center of the set of optimal solutions, that is, it returns a solution 'in the middle' of the set of optimal solutions, similarly as UTA-STAR and ACUTA would do for UTA models. The monotonicity of a polynomial marginal is ensured if its derivative is a sum of square. Formally, it reads:

du * 1 dx = x T Qx = 1 x
T q 0,0 q 0,1 q 1,0 q 1,1 1 x = q 0,0 + (q 0,1 + q 0,1 ) x + q 1,1 x 2 , du * 2 dy = y T Ry = r 0,0 + (r 0,1 + r 1,0 ) y + r 1,1 y 2 .

To ensure the non-negativity of the derivative, we impose the matrices Q and R to be semi-definite positive in conjunction with these constraints:

     p x,1
= q 0,0 , 2p x,2 = q 0,1 + q 1,0 , 3p x,3 = q 1,1 , and

     p y,1
= r 0,0 , 2p y,2 = r 0,1 + r 1,0 , 3p y,3 = r 1,1 .

Appendix B. Cholesky factorization

The factorization of Cholesky consists in decomposing a positive semi-definite matrix M into the product of a lower triangular matrix L and its transpose L The value of the variables l i,i and l i,j are then given by l i,i = m i,i - 
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 1 Figure 1: Example of UTA and UTA-poly value functions. The dashed lines correspond to the UTA piecewise linear function and the plain lines correspond to polynomials of degree 3.
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 22 Figure 2: True marginal value functions modeling the family's preferences.
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 3 Figure 3: Evolution of the Spearman distance and Kendall Tau of the learning set as a function of the degree of the marginal polynomials for learning sets composed of 50 and 100 examples.
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 4 Figure 4: Value functions learned by UTA-poly on basis of a learning set composed of 100 examples with polynomials of degree D = 2, 6 and 10.
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 5 Figure 5: Evolution of the Spearman distance and Kendall Tau of the learning set as a function of the degree of the marginal polynomials for learning sets composed of 100 examples with 1 to 5 polynomials per marginal.
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 20 2. A set of m * performances vectors (alternatives) is generated. It constitutes the learning set A * . Each component a * j of a performances vector a * =

Figure 6 :

 6 Figure 6: Value functions learned by on basis of a learning set composed of 100 examples with polynomials of degree D = 1 to 3 and marginals composed of 5 polynomials (k = 5). The continuity of the spline (Dc) is enforced up to D -1.

  list of m * -1 pairwise comparisons is induced from the complete ranking π * . It is done by comparing each pair of consecutive alternatives in the ranking. In a ranking π * , it consists in comparing π * i to π * i+1 , either by an indifference (π * i ∼ π * i+1 ) or a preference (π * i π * i+1 ). We denote by P * the set containing the pairs of alternatives (a, b) such that a b, I * denotes the set containing the pairs (a, b) such that a ∼ b. 5. The sets A * , P * and I * are given as input to UTA-splines/UTA-poly. The algorithm learns an additive utility model M in which the marginals are composed k polynomials of degree D. The breakpoints of the polynomials are equally spaced on the criterion domain. The continuity is guaranteed up to the D th c derivative at the breakpoints. 6. A test set of m alternatives A is generated similarly as for the learning set.
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 9 Figure 9: Average Spearman distance and Kendall Tau of the test set with the models composed of 3 criteria learned by UTA-poly when the degree of the marginals vary between 1 and 4.

Figure 10 :

 10 Figure 10: Average Spearman distance and Kendall Tau of the test set with the models composed of 5 criteria learned by UTA-poly when the degree of the marginals vary between 1 and 4.
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 11 Figure 11: Average Spearman distance and Kendall Tau of the test set with the models composed of 3 criteria learned by UTA-splines with marginals composed of polynomials of the third degree. The continuity at the breakpoints is ensured up to the second derivative.

1 dx = p x, 1 + 2 dy = p y, 1 +

 1121 2p x,2 • x + 3p x,3 • x 2 and du * 2p y,2 • y + 3p y,3 • y 2 .

l 3 ,1 l 1 ,1 l 3 ,1 l 2 , 1 + l 3 ,2 l 2 l 1 , 1 .

 313213211 T . Formally it reads:M = LL T . (B.1)The decomposition works as follows. For a matrix a of size d × d, Equation (B.1) reads:1 m 1,2 m 1,3 • • • m 1,d m 2,1 m 2,2 m 2,3 • • • m 2,d m 3,1 m 3,2 m 3,3 • • • m 3,d m d,1 m d,2 m d,3 • • • m d,d • 0 l 2,1 l 2,2 0 • • • 0 l 3,1 l 3,2 l 3,3 • • • 0 1 l 2,1 l 3,1 • • • l d,1 0 l 2,2 l 3,2 • • • l d,2 0 0 l 3,3 • • • l d,3 l d,1 l 2,1 l d,1 + l 2,2 l d,2 l 3,1 l d,1 + l 3,2 l d,2 + l 3,3 l d,3The value m i,i and m i,j can be expressed as follows:

  Figure C.13 and C.14 show the average Spearman distance and Kendall Tau of the test set after running the experiment described in Section 6 with UTApoly. Figure C.15 shows the average Spearman distance and Kendall Tau obtained with UTA-splines for the four model composed of 3 criteria presented at Figure 7. The learned models are composed of polynomials of the third degree which are continuous up to the second derivative at the connection points. The number of piece per value function varies between 1 and 5. Similarly, Figure C.16 shows the average Spearman distance and Kendall Tau obtained with the four model composed of 5 criteria.

4 Figure C. 13 :

 413 Figure C.13: Average Spearman distance and Kendall Tau of the test set of models 1 to 4 learned by UTA-poly when the degree of the marginals vary between 1 and 4.
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 414 Figure C.14: Average Spearman distance and Kendall Tau of the test set of models 5 to 8 learned by UTA-poly when the degree of the marginals vary between 1 and 4.
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 2 UTA and UTA-poly scores of the alternatives described in Table

Table 3 :

 3 Number of constraints and variables for different problem sizes and average computing time and standard deviation.

It is seldom so in MCDA applications where the size of the learning set rarely exceeds a few dozens records.

Appendix A. Example of a semi-definite program

We consider a ranking problem involving 2 criteria x and y and three alternatives, a 1 , a 2 and a 3 . The performances of these alternatives are given in Table A. [START_REF] Bous | ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements[END_REF]. The criterion values vary between 0 and 10.

x y a 1 10 7 a 2 6 8 a 3 7 5

Table A.4: Performances of alternative a 1 , a 2 and a 3 on criteria x and y.

A decision maker states that the following ranking holds: a 1 a 2 a 3 . We use the objective and the set of constraints given in Equation ( 5) in order to find a model restoring this ranking. We use semi-definite programming to learn polynomial marginal utility functions. We denote by u * 1 and u * 2 the polynomial functions associated respectively to criteria 1 and 2. The degree of the polynomials of the marginal utility functions is fixed to 3.

To ensure the monotonicity of functions u * 1 and u * 2 , we impose the nonnegativity of their derivative. Formally, we define u * 1 and u * 2 as follows:

The derivative of u * 1 (x) and u * 2 (y) are equal to:

The utility values of a 1 , a 2 and a 3 read:

U (a 1 ) = p x,0 + 10p x,1 + 100p x,2 + 1000p x,3 + p y,0 + 7p y,1 + 49p y,2 + 343p y,3 , U (a 2 ) = p x,0 + 6p x,1 + 36p x,2 + 324p x,3 + p y,0 + 8p y,1 + 64p y,2 + 512p y,3 , U (a 3 ) = p x,0 + 7p x,1 + 49p x,2 + 343p x,3 + p y,0 + 5p y,1 + 25p y,2 + 125p y,3 .

To find a model reflecting the ranking given as input, i.e. a 1 a 2 a 3 , we have to fulfil two conditions: a 1 a 2 and a 2 a 3 . It is done by adding the following constraints:

After substituting U (a 1 ), U (a 2 ) and U (a 3 ) by their value we obtain the two following constraints:

Given that criteria domains are comprised between 0 and 10, the following constraints hold:

Finally, by assembling the objective function and the constraints, we obtain the following semi-definite program: