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We present a linear optimal perturbation analysis of streamwise invariant disturbances evolving in par-
allel round jets. The potential for transient energy growth of perturbations with azimuthal wavenumber
m � 1 is analyzed for different values of Reynolds number Re. Two families of steady (frozen) and 
unsteady (diffusing) base flow velocity profiles have been used, for different aspect ratios ↵ = R/✓,
where R is the jet radius and ✓ is the shear layer momentum thickness. Optimal initial conditions
correspond to infinitesimal streamwise vortices, which evolve transiently to produce axial velocity 
streaks, whose spatial structure and intensity depend on base flow and perturbation parameters. 
Their
dynamics can be characterized by a maximum optimal value of the energy gain Gopt , reached at an 
optimal time ⌧opt after which the perturbations eventually decay. Optimal energy gain and time are
shown to be, respectively, proportional to Re2 and Re, regardless of the frozen or diffusing nature of
the base flow. Besides, it is found that the optimal gain scales like Gopt / 1/m3 for all m except m = 1. 
This quantitative difference for azimuthal wavenumber m = 1 is shown to be based on the nature
of transient mechanisms. For m = 1 perturbations, the shift-up effect [J. I. Jiménez-González et al.,
“Modal and non-modal evolution of perturbations for parallel round jets,” Phys. Fluids 27, 044105-1–
044105-19 (2015)] is active: an initial streamwise vorticity dipole induces a nearly uniform velocity
flow in the jet core, which shifts the whole jet radially. By contrast, optimal perturbations with m � 2 
are concentrated along the shear layer, in a way that resembles the classical lift-up mechanism in
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perturbations may emerge very quickly in the flow when injected as initial conditions. When the base
flow diffuses, the large time scale for m = 1 disturbances allows the shear layer to spread and the
jet core velocity to decrease substantially, thus lowering the values of corresponding optimal gain
and time. For m � 2, results are less affected, since the shorter transient dynamics does not leave 
room for significant modifications of the base flow velocity profiles, and the scaling laws obtained
in the frozen case are recovered. Nevertheless, base flow diffusion hinders the transient growth, as a 
consequence of a weaker component-wise non-normality and a smoother, radially spread structure of
optimal disturbances. 

I. INTRODUCTION

The stability of round jets has been widely studied by
many authors in the past.1–7 These studies allowed for a precise
characterization of their unstable dynamics, which is domi-
nated by the presence of co-rotating vortices generated by the
Kelvin-Helmholtz instability of the shear layer between the jet
flow and the fluid at rest. The existence of these structures is
related, in an asymptotic or large-time framework, to the unsta-
ble nature of modal perturbations with particular azimuthal
and axial symmetries. It is well known that the selection of
the most unstable modes depends strongly on the aspect ratio
of the base flow velocity profile, i.e., ↵ = R/✓, where R is the
jet radius and ✓ stands for the shear layer momentum thick-
ness, and the Reynolds number. In general, profiles defined
by low values of ↵ are only unstable to helical perturbations

(azimuthal wavenumber m = 1), regardless of the value of
the Reynolds number,1 although viscosity plays a stabilizing
role that leads to smaller perturbation growth rates.8 On the
other hand, steeper base flow profiles, i.e., large values of ↵,
present a wider range of unstable azimuthal wavenumbers for
axially asymmetric perturbations,2,9 including axisymmetric
disturbances with m = 0, which become the most unstable for
vanishing shear layer thickness in the inviscid limit.7

This stability scenario for jets may be, however, modified
if other types of short time unstable dynamics are activated. In
that sense, shear flows are also known to sustain large algebraic
energy growth,10 where a particular disturbance, asymptoti-
cally stable or not in the long time limit, may be amplified
transiently by means of specific physical mechanisms. This
transient growth is related to inviscid instabilities whereby
shear flows can be unstable to disturbances in the cross-stream
velocity components, whose kinetic energy grows linearly in
time, even though the base flow does not contain any inflection
point.11,12 For the particular case of round jets, recent works



on non-modal instability13,14 have shown that transient growth
of helical perturbations (azimuthal wavenumber m = 1) is
favored by this algebraic instability, due mainly to the lift-up
effect,11,12,15 although the Orr mechanism,16 i.e., the progres-
sive vortex sheet alignment with shear, has been also proven
to occur in jets subjected to optimal harmonic forcing.17 In an
attempt to unravel the role of different transient mechanisms
in round jets, Jiménez-González et al.18 have recently identi-
fied two mechanisms, within the framework of a parametric
study aiming at analyzing the influence of the jet velocity pro-
file on the instability of axisymmetric (m = 0) and helical
(m = 1) perturbations. More precisely, it has been found that an
Orr-type mechanism is responsible for the energy gain of heli-
cal and axisymmetric disturbances of small axial wavelength,
whereas a specific mechanism, the so-called shift-up effect
which shifts the jet as a whole, is found to cause transient
growth for m = 1 helical disturbances with long axial wave-
length, in a way that resembles the classical lift-up effect. This
mechanism provides with the largest energy gain for vanish-
ing perturbations axial wavenumbers, by generating intense
streamwise velocity streaks induced by streamwise counter-
rotating vortices. Consequently, the shift-up effect is expected
to be particularly efficient in the limit of streamwise invari-
ant disturbances (axial wavenumber k = 0), when the vortex
structures are aligned with the axial direction.

If the transient amplification of kinetic energy for axially
invariant perturbations is sufficiently large, in view of previous
results on shear flows,15 it could be conjectured that a nonlinear
transition may be eventually triggered in the jet, when the per-
turbation is initially injected, which might be used to control
unstable asymptotic disturbances. For instance, the generation
of Kelvin-Helmholtz vortex rings and its subsequent subhar-
monic instability leading to the merging of vortices in pairs,
i.e., vortex pairing,19 is a source of aeroacoustic noise which
is important to control or even suppress in many industrial
applications because of noise nuisance or acoustic stealth.
In that sense, several studies have recently dealt with active
and passive strategies to control coherent structures in jets,
enhance mixing, and reduce noise, both in laminar and turbu-
lent regimes. For instance, New and Tay20 demonstrated, for a
laminar round jet (Reynolds number below 2500), that stream-
wise counterrotating vortex pairs, generated by means of radial
control jets, may contribute to noise suppression by enhanc-
ing the turbulent mixing and the breaking-down of shear layer
rolls, which become increasingly less coherent as the mass
ratio of control jets is increased. Besides, Alkislar et al.21 inves-
tigated the effect of chevrons and microjets on the acoustic field
of a jet with Mach number 0.9, showing that the emergence
of streamwise vortex pairs, lying on the high speed zone of
the initial shear layer, provides with a relatively uniform noise
reduction for a wide range of sound radiation angles. Simi-
larly, Zhang22 identified, for a turbulent round jet, an overall
low-frequency noise reduction when an active control based
on unsteady radial microjets was applied. Interestingly, these
initial jets may evolve into coherent azimuthally fixed stream-
wise vortices that enhanced turbulent boosting and mixing, as
shown by Yang et al.23

In view of previous results, one possible approach to
reduce noise and enhance mixing consists in actually canceling

the Kelvin-Helmholtz vortices that are directly involved in the 
pairing phenomenon and the noise generation, by means of 
streamwise vortices fostering. For this purpose, the former 
conjecture may be used to inject an optimal perturbation at 
the jet exit, with the aim at triggering transiently an insta-
bility which differs from the Kelvin-Helmholtz vortex rings. 
Thus, an eventual nonlinear saturation of this specific insta-
bility could lead to a new structure of the jet flow that could 
be robust with respect to the Kelvin-Helmholtz instability, by-
passing then the formation of vortex rings and their subsequent 
pairing and the generation of aeroacoustic noise, although such 
scenario might be strongly dependent on the initial amplitude 
of the injected optimal perturbation and corresponding energy 
gain, and the competition between time scales in which tran-
sient growth and modal instabilities develops (see, e.g., the 
work of Bakas and Ioannou24). In any case, although there is no 
guarantee that such strategy succeeds, the application of opti-
mal disturbances to the control of flows has been satisfactorily 
applied to different unstable shear flows. For instance, Cossu 
and Brandt25,26 have shown that optimal perturbations in 
the form of streamwise counter-rotating vortices, which tran-
siently evolves towards periodic streamwise streaks through 
the inviscid lift-up effect,12 leads to three-dimensional mod-
ulations of the Blasius boundary layer profile, which renders 
the flow more robust with respect to the Tollmien-Schlichting 
instability. A similar observation has been recently made for 
two-dimensional wakes by Del Guercio et al.,27–29 where the 
optimal transient amplification of linearly stable streamwise 
vortices leads to the global stabilization of the von Kármán 
vortex street. Similar results have been recently obtained for 
three-dimensional axisymmetric wakes,30 using steady opti-
mal disturbances. The common nature of optimal disturbances 
and the transient growth mechanism for different shear flows 
is also evidenced by the scaling laws governing the dynam-
ics. The optimal energy gain scales with the square of the 
Reynolds number, for two-dimensional wakes27 and boundary 
layers,25 in line with the analysis for the plane Poiseuille flow 
carried out by Gustavsson.31 In view of results of recent stud-
ies on non-modal stability of round jets,14,18 where transient 
dynamics leads to energetic amplification of the streamwise
velocity component, especially in the limit k/m �! 0, it is 
expected that the strategies implemented for the stabilization
of boundary layers and wakes could be used with a comparable 
efficiency for jet flows. Particularly relevant are results on the 
control of globally unstable wakes28,30 by means steady opti-
mal perturbations, since for these studies, the absolute modal 
instability, giving rise to the von Kármán street, was fully 
established before the injection of any optimal initial stream-
wise vortex. Thus, it is shown that if the initial amplitude of 
optimal disturbances exceeds a critical threshold, the nonlin-
ear flow saturation might induce the weakening of the absolute 
instability. That may suggest that efficient bypass solutions 
can be achieved when the transient energy gain of perturba-
tion overcomes the most unstable modal energy gain, even 
though slower time scales may characterize the optimal per-
turbation growth. Besides, the application of hydrodynamic 
and algebraic instability analyses to control jet break-up in 
engines32,33 has been also based on the experimental observa-
tions of streamwise ligaments and other streamwise patterns in



jet flows,34 which suggests that the use of the non-modal dis-
turbances may actually provide a satisfactory characterization
of jet control problems.

Prior to the application of any control strategy, a complete
analysis of the potential for the transient growth of stream-
wise invariant perturbations is required in parallel round jets
of different velocity profiles and different Reynolds numbers.
As mentioned earlier, three-dimensional optimal perturbations
are shown to be most efficient in the control of shear flows,
so the analysis will focus only on optimal disturbances with
azimuthal wavenumbers m � 1. In that context, the shift-
up mechanism, characterized by a radial displacement and
the subsequent emergence of streamwise velocity streaks in
the jet core, has been shown to take place for m = 1, but
it still remains to study whether disturbances with higher
azimuthal wavenumbers undergo also large transient energy
growth and to characterize the transient mechanism at play
and its link with the lift-up effect, which is expected to act
inside the shear layer. More precisely, the present study, which
may be considered as a initial step on the control method-
ology for Kelvin-Helmholtz instabilities, aims at unveiling
the transient mechanisms and characterizing the influence
of some flow parameters, such as the jet aspect ratio, the
Reynolds number, and the perturbation azimuthal symmetry,
on the optimal energy gain and time of streamwise invariant
disturbances.

The paper is organized as follows: the problem formu-
lation and technical aspects are presented in Sec. II. Opti-
mal perturbation results are presented in Sec. III, where the
effect of using steady or unsteady (diffusing) base flow veloc-
ity profiles is investigated in Secs. III A and III B, respec-
tively. The paper ends with the conclusions and perspectives
in Sec. IV.

II. PROBLEM FORMULATION
AND TECHNICAL BACKGROUND
A. Base flow

Two families of base flows, consisting in steady or
unsteady axisymmetric parallel jets, have been investigated.
The first family corresponds to steady base flows that stem
from the classical profile proposed by Michalke,35 whose
velocity distribution can be expressed in cylindrical coordi-
nates (r, �, z) as U = U(r) ez. Using as characteristic scales
the jet centerline velocity Uj and the jet radius R, at which the
axial velocity is U = Uj/2, the Reynolds number is defined

s Re = ⇢U jR/µ, where ⇢ and µ are, respectively, the fluid 
density and kinematic viscosity. The non-dimensional base 
flow velocity profile reads

U(r) =
1
2
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with ↵ = R/✓ the ratio between the jet radius R and the
shear layer momentum thickness ✓. The latter is defined, using
dimensional variables r̃ and Ũ, as

✓ =

⌅ 1

0

f
1 � Ũ(r̃)/Uj

g
Ũ(r̃)/Uj dr̃. (2)

A characteristic Michalke’s velocity profile with aspect ratio
↵ = 50 can be observed in Fig. 1(a) (dotted line). This type
of velocity profile will be considered in the first part of the
optimal perturbation analysis as steady (frozen) base flows.

However, the use of a frozen velocity profile may represent
a strong assumption for cases in which the transient dynamics
of perturbation is characterized by long optimal times. That
would give the base flow enough time to diffuse and modify
the transient growth scenario, therefore leading to inadequate
results in the frozen framework. In that context, the optimal
perturbation analysis has been extended to a second family
of base flows that correspond to diffusing jet velocity profiles
U(r, t), which will allow us to evaluate the validity and limi-
tations of the classical frozen analysis. This family of velocity
profiles is built on the analytical solution of the viscous diffu-
sion of the top-hat jet (i.e., initially uniform velocity jet profile).
The initial base flow profiles considered in this second part of
the study then correspond to the solution of the diffusing top-
hat jet at some given time, after non-dimensionalization to
have unit velocity on the axis and unit jet radius where the
velocity is half the maximum velocity, i.e., U(r = 1, t = 0) =
0.5. The derivation and computation of the diffusing base flow
are detailed in Appendix A. Velocity profiles at initial time are
characterized by the aspect ratio ↵, whose influence on U(r,
t = 0) is shown in Fig. 1(a). Interestingly, it is observed that
in the limit of high ↵, e.g., 50, the diffusing velocity profile
coincides with Michalke’s profile [see the dotted line in Fig.
1(a)], indicating that both families of base flows are equivalent
for large shear (top-hat) profiles. Similarly, in the limit of the
vanishing shear layer, at low values of ↵, e.g., 3.3, the velocity
profile corresponds to the classical Gaussian jet [dashed line in
Fig. 1(a)]. The latter can be analytically derived from Eq. (A7),
which gives the temporal evolution of diffusing base flows.

FIG. 1. (a) Initial diffusing base flow
velocity profiles for ↵ = 3.3, 5, 10, 15,
20, and 50. The profiles at ↵ = 50 and
↵ = 3.3 are, respectively, indistinguish-
able from Michalke tanh profile (dot-
ted line) and a Gaussian profile (dashed
line). (b) Time evolution of the base flow
velocity profile with initial ↵ = 20, for
t/Re from 0 to 0.05 in increments of
0.01 (gray lines) and from 0.1 to 1 in
increments of 0.1 (black lines).



As an instance, Fig. 1(b) displays the temporal diffusion of a
velocity profile with initial ↵ = 20, for different times, which
are scaled with Re.

The optimal perturbation analysis with this parametric dif-
fusing base flows will be limited to initial aspect ratios of
↵ � 5. However, results corresponding to lower values of ↵
are included in Appendix C, via the use of a diffusing Gaussian
velocity profile.

B. Optimal perturbation analysis

As mentioned earlier, energetic transient growth mech-
anisms of perturbations might lead to a nonlinear flow tran-
sition in jets. The potential risk for such a by-pass scenario
can be evaluated by the quantification of transient amplifi-
cation of kinetic energy of disturbances. For this purpose,
we perform an optimal perturbation analysis for specific
streamwise invariant perturbations, where we study the tem-
poral evolution of infinitesimal disturbances of the base flow,
q0 = (u0, p0), with velocity u0 = (u0r , u0� , u0z) and pressure p0.
Assuming a classical normal mode decomposition in the

azimuthal direction and considering the streamwise flow
invariance, it yields q0(r, ✓, t) = [u(r, t), p(r, t)] exp[i(m�)] +
c.c., where u = (ur , u� , uz) and p correspond, respectively,
to the velocity and pressure amplitudes, m (integer) is the
azimuthal wavenumber, and c.c. denotes the complex con-
jugate. Linearizing the Navier-Stokes equations around the
base flow (which are made non-dimensional using, respec-
tively, R, Uj, R/Uj, and ⇢U2

j , as characteristic length, velocity,
time, and pressure scales) and expressing p and u✓ as func-
tions of ur and uz, we obtain a compact system in terms
of v = (ur , uz)T ,

F(v) = L
@v
@t

+ Cv � 1
Re

Dv = 0, (3)

L, C, and D being linear operators, defined as follows:

L = r2 @2

@r2 + 3r @
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0 �1

!
,
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0 0
� @U

@r 0

!
,
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r2 @4

@r4 + 6r @3
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@r2 � 2m2+1
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@
@r + (m2�1)2

r2 0
0 � 1

r
@
@r

⇣
r @
@r

⌘
+ m2

r2

+
- , (4)

which include spatial derivatives of perturbations and base
flow, where U corresponds to the base flow profile considered
in the analysis, i.e., either frozen, U(r), or diffusing, U(r, t).
The problem formulation is closed with the appropriate bound-
ary conditions for the perturbations, namely, decay at infinity
and regularity at the origin, which is defined by the essential
pole conditions1 at the axis, which state that any perturbation
field is independent of the azimuthal coordinate, �, at r = 0.
The initial value problem defined by Eq. (3) can be solved
to obtain the temporal evolution of disturbances. Instead of
looking for unstable perturbations at asymptotic temporal hori-
zons, as done in a classical modal temporal analysis, we are
interested in the short time transient dynamics, with the aim
at evaluating the potential for nonlinear flow distortion as a
strategy to control shear instability.27 Therefore, we compute
optimal perturbations for finite time horizons, i.e., the initial
conditions that maximize the gain of energy during a finite
time interval [0, ⌧], where the gain defined as the ratio between
the perturbation kinetic energy density at the final time t = ⌧
and that at the initial time t = 0,

G(⌧) =
E(⌧)
E(0)

, (5)

with

E(t) =
1
2

⌅ 1

0

⇣
|ur(r, t)|2 + |u�(r, t)|2 + |uz(r, t)|2

⌘
r dr, (6)

which represents the energy per unit length in z and unit
angle in �. To solve the optimization problem, we adopt the
formalism introduced by Corbett and Bottaro,36 which con-
sists in maximizing the energy gain G(⌧), constrained by the

linearized system of Eq. (3) and the associated boundary con-
ditions, using the perturbation at initial time t = 0 as the
control variable. The problem can be tackled by introducing
the unconstrained Lagrangian functional

L(v, v0, a, c) = G(⌧) � h F(v), a i � (H(v, v0), c), (7)

where a(r, t) and c(r) are the adjoint (or co-state) variables that
work as Lagrange multipliers. The last term imposes the initial
condition, which must match the control condition, H(v, v0)
= v(0) v0 = 0. Besides, the inner products appearing at the
functional are, respectively,

(H(v, v0), c) =
⌅ 1

0
H(v, v0) · c rdr + c.c. (8)

and

h F(v), a i =
⌅ ⌧

0

⌅ 1

0
F(v) · a rdrdt, (9)

where overbars denote transconjugate. The problem reduces
to find the set of variables (v, v0, a, c) corresponding to a
stationary Lagrangian functional, L, by setting to zero the
directional derivative with respect to an arbitrary variation in
the set of variables (see the work of Corbett and Bottaro36

for further details). This step provides with transfer relations
between direct and adjoint variables at t = ⌧ and t = 0,
which is employed to obtained the optimal perturbation, v0 =
1
2 (E(0)2/E(⌧))a(0), and the adjoint system for the co-state vari-
able a that reads

F(a) = �L
@a
@t

+ C+a � 1
Re

Da = 0, (10)

where C+ is the adjoint operator of C, i.e., its transpose. The
strategy followed37,38 ensures a quick convergence after a few



iterations, starting from any initial condition. The algorithm
integrates the direct system first from t = 0 to t = ⌧, followed
by an integration of the adjoint system backwards in time, after
applying the transfer condition. When the diffusing base flow,
U(r, t), is considered, Eq. (A7) must be accordingly solved for
each instant t considered in the integration time span. Once
the iteration is completed, the initial condition v0 provides
a new guess to start again the loop. The process stops when
variations of G(⌧) are below 10 2, providing then with the
converged optimal perturbation v0.

C. Numerical aspects

We employ the same numerical method as in previous
studies,18 where technical and convergence issues are detailed.
In short, the derivatives are computed with a pseudospectral
method,39 which uses a Gauss-Lobatto grid that is adjusted
into a semi-infinite domain through an algebraic mapping.40

Grid and differentiation matrices are computed using MAT-
LAB and the DMSuite package,41 considering parity proper-
ties of functions in the expression of derivatives,42 to ensure
regularity and smoothness of solution near the axis. More
precisely, in order to avoid the geometric singularity at the
axis r = 0 and to force the regularity of the solution in its
neighbourhood, parity properties of functions with azimuthal
dependence of the form exp(im�) have been used, ensuring
the smoothness of the solution near the axis.42 These con-
ditions are based on the representation in cylindrical coor-
dinates and the fact that exp(im�) functions are therefore
radially even or uneven, being invariant under the transforma-
tion: F : (r, �, z) �! (�r, � ± ⇡, z). Hence, parity conditions
read as

p(�r, z) = (�1)mp(r, z), (11)

ur(�r, z) = �(�1)mur(r, z), (12)

u�(�r, z) = �(�1)mu�(r, z), (13)

uz(�r, z) = +(�1)muz(r, z). (14)

Thus, by imposing such radial parities, the correct axial
behaviour is implicitly established, without having to state
explicitly the mentioned pole conditions.1 Besides, the
computations can be reduced to half the domain, r > 0, as
commented in Appendix D, which also includes the numer-
ical convergence analysis performed to ensure validity and
robustness of results, focusing especially at largest values of
Re and ↵, to rule out possible unstable effects of inviscid flow
and steepest base flow profiles.

III. RESULTS AND DISCUSSION
A. Non-di�using base flow

We first present results concerning the optimal perturba-
tion analysis for the frozen base flow defined in Eq. (1). Figure
2(a) displays curves of transient optimal energy gain G(⌧)
as a function of the final time ⌧ for m = 1 perturbations, at
Re = 1000, and for different jet aspect ratios, ranging from
↵ = 4 to 40 (the arrow indicates growing ↵). For each curve,
a global optimal gain, Gopt(↵, m, Re) = sup⌧ G(⌧, ↵, m, Re),
is reached at a specific temporal horizon ⌧opt , after which
the transient amplification decays monotonically towards zero
at large times. Evolutions of Gopt and ⌧opt with the aspect
ratio ↵ are displayed, respectively, in Figs. 2(b) and 2(c),
where optimal perturbations at m = 2 are also included (larger
azimuthal wavenumbers do not undergo transient growth at
Re = 1000, and therefore they are not shown). For the range
of ↵ considered here, the maximum optimal gain slightly
grows as the jet velocity profile steepens (growing ↵), until it
reaches an asymptotic value which depends on the azimuthal
wavenumber m. Note that transient amplification of m = 1
perturbations provides optimal energy gains which are four
orders of magnitude larger than those of m = 2, suggesting
that the transient mechanism is much more efficient in the
first case. Optimal times ⌧opt slightly decrease with ↵, with a
shorter transient dynamics for optimal perturbations at m = 2
compared to m = 1.

The influence of the Reynolds number on the transient
growth process is illustrated in Figs. 3(a) and 3(b), where
results of the optimal perturbation analysis are presented for Re
= 10 000. First, we observe that a larger number of azimuthal
wavenumbers (m = 1, 2, . . . , 6) lead to transient growth, as a
consequence of the destabilizing effect of a larger Re. A sim-
ilar observation has been made for optimal energy growth in
the Hagen-Poiseuille flow,43 for which the critical Reynolds
number Recr , below which there is no growth, increases with
the azimuthal wavenumber m. Gopt(↵) and ⌧opt(↵) display
trends similar to those depicted in Fig. 2 at lower Re, but
larger global gains are reached at larger optimal times, simi-
larly to what occurs for other wall-bounded10 and unbounded
shear flows,27 For a given value of Re, asymptotic values of
Gopt are reached for larger values of ↵ as m increases [Fig.
3(a)], which might suggest that a thinner shear layer thick-
ness is required for the transient growth mechanism to adapt
to a shorter azimuthal disturbance wavelength and to opti-
mally transfer energy from the jet to the perturbation (the same
kind of behaviour is observed in multiphase jets14 where the

FIG. 2. Frozen base flow at Re = 1000:
(a) energy gain G(⌧) for m = 1 and
different values of ↵ 2 [4, 12, 40], (b)
global optimal gain Gopt(↵, m), (c) opti-
mal time ⌧opt(↵, m) for m = 1, 2. The
arrow indicates increasing values of ↵.



FIG. 3. Frozen base flow: dependence on ↵ of maximum optimal growth Gmax (a) and optimal time ⌧opt (b) at Re = 10 000 (arrows indicate growing values of
m, i.e., 1, 2, . . . , 6). Rescaled global optimal gain Gopt/Re2 (c) and optimal time ⌧opt/Re (d) for m = 1 disturbances at two different Reynolds numbers.

azimuthal wavelength of amplified disturbances is propor-
tional to the thickness of the vorticity layer of surrounding
air).

Gopt and ⌧opt are found to scale, respectively, with Re2

and Re for all values of ↵, as evidenced in Figs. 3(c) and 3(d),
where the rescaled global optimal gain Gopt/Re2 and optimal
time ⌧opt/Re are only displayed for m = 1 although the same
Re-dependence applies for larger azimuthal wavenumbers m,
with lower values. This influence of m is illustrated in Figs. 4(a)
and 4(b), which displays the rescaled optimal gain Gopt/Re2

and optimal time ⌧opt/Re, for different values of m at ↵ = 20.
The rescaled optimal gains and times for different Re collapse
for each value of m and decrease monotonously for larger m
(in agreement with previous results on optimal perturbation for
a circular pipe flow43). Note that for Re = 100 000, transient
growth is active for perturbations with azimuthal wavenumbers
up to m = 16, although Fig. 4 includes only results for m  7 for
the sake of clarity at low values of m. It is noteworthy that both
Gopt/Re2 and ⌧opt/Re decrease monotonously for m � 2 while
the case m = 1 is offset from this trend. This observation might
indicate that the mechanism governing the transient amplifica-
tion of m = 1 perturbations differs from the one at play for larger
values of m.

The specificity of the m = 1 optimal perturbation is con-
firmed in Fig. 4(c), which displays the azimuthal distribution
of the optimal perturbation radial velocity in the jet shear layer
(at r = 1) for different values of m. It is found that for a given
kinetic energy, the azimuthal wavenumber that leads to the
largest values of radial velocity in the jet shear layer is m = 1,
the values for higher m being more than one order of magni-
tude lower. Since the source term of kinetic energy production
is related to urdU/dr, it is then expected that the m = 1 opti-
mal perturbation will benefit, in a privileged way, from the

large levels of radial velocities ur where the shear dU/dr is
extremum, i.e., within the jet shear layer.

In order to gain further insight in the growth mechanism,
we present in Fig. 5 the transient dynamics of optimal m = 1 and
m = 2 perturbations at Re = 1000 for a base flow velocity profile
with ↵ = 20. In particular, contours of axial vorticity !z and
velocity vectors of the optimal initial conditions [Figs. 5(b) and
5(d)] and contours of axial velocity uz of the optimally ampli-
fied disturbances at t = ⌧opt [Figs. 5(c) and 5(e)] are displayed
in a cross-sectional plane perpendicular to the axial direction.
Optimal initial conditions correspond to streamwise counter-
rotating vortices that are associated with a velocity field that
is maximum between the structures. More precisely, for the
m = 1 optimal perturbation, the shift-up effect18 is observed,
whereby two axial vortices form a dipole that extends over
the whole jet section [see Fig. 5(b) and the white dashed lines
that mark the boundaries of the shear layer]. The velocity field
induced by this large scale dipole turns out to be a nearly
uniform flow in the jet core. This flow leads to a global, quasi-
solid-body translation of the jet radially, thus creating, at opti-
mal time t = ⌧opt , an increase (respectively, decrease) of axial
perturbation velocity on the side (respectively, opposite side)
where the induced cross-sectional flow points [see Fig. 5(c)].
It should be noted that only perturbations with azimuthal
wavenumber m = 1 induce non-zero radial velocity at the cen-
ter of the jet, while higher values of azimuthal wavenumber
barely perturb the jet core.

This is confirmed for the optimal m = 2 perturbation, as
Fig. 5(d) shows. Now the optimal initial streamwise vortices
are more concentrated along the shear layer and feature low
vorticity magnitude [see values of !z in Fig. 5(b) for com-
parison]. This vorticity distribution leads to a cross-sectional
velocity field which is negligible at the jet core. Therefore the

FIG. 4. Frozen base flow (↵ = 20):
dependence on m of (a) Gopt/Re2 and
(b) ⌧opt/Re and (c) azimuthal distribu-
tion of the optimal perturbation radial
velocity in the jet shear layer (at r = 1)
for Re = 10 000 and m = 1 (bold gray
curve), m = 2 (dotted line), m = 3 (dashed
line), m = 4 (solid line).



FIG. 5. Transient dynamics of perturbations for a frozen base flow with ↵ = 20 and Re = 1000: cross section of the optimal initial condition (t = 0) axial vorticity
!z and associated normalized vector field [(b) and (d)] and streamwise velocity uz of the corresponding optimally amplified (t = ⌧opt) streak [(c) and (e)], for
m = 1 [(b) and (c)] and m = 2 perturbations [(d) and (e)]. Dashed circles in (b)-(e) mark the limit of the shear layer, i.e., r = 1 ± 1/↵. Base flow velocity profile
U(r) is also depicted in (a).

response of the flow will be different from the global shift-
up effect observed in the m = 1 case. As already evidenced
in Fig. 4(c), the magnitude of the radial velocity perturbation
ur is lower than that induced by the m = 1 optimal distur-
bance, and consequently, a weaker energy gain is expected.
This is illustrated by Fig. 5(e), where the optimally amplified
streaks at t = ⌧opt are shown to feature velocities that are two
orders of magnitude lower than those displayed in Fig. 5(c). As
occurs in other shear flows44 where the classical lift-up effect
is involved, streaks are located close to regions of largest mean
shear dU(r)/dr, since for the inviscid limit, temporal growth
of perturbation axial velocity is known to follow the relation:
@uz/@t / urdU(r)/dr. Hence, the transient lift-up mechanism
will become, in principle, less efficient as the radial component
of the optimal initial condition ur is lower. In that context, the
shift-up mechanism can be therefore considered a particular
energetic version of the classical lift-up, for which the m = 1
symmetry of the optimal perturbation allows to maximize the
radial velocity in the jet shear layer at initial time, which
results in a nearly uniform flow in the jet core that affects
the entire flow, and not only the shear layer as for m � 2, by
shifting the jet as a whole. Besides the fact that the particu-
larly high levels of radial velocities in the jet shear layer for
m = 1 foster the energy growth, it should be noted that, in the
case of a free jet, the spatial extension of the m = 1 dipole
is not constrained and is of the same order as the jet radius
[see Fig. 5(b)]. Therefore the m = 1 optimal perturbation is
expected to diffuse on a Re time scale. By contrast the opti-
mal perturbations at higher m are azimuthally constrained and
thus of smaller length scale [see Fig. 5(d)]. These perturba-
tions are then expected to diffuse on a shorter time scale.

To sum up, the m = 1 optimal perturbation benefits from a
larger source of growth (high radial velocities in the jet shear
layer), and during a larger time scale, than higher m perturba-
tions. The optimal energy gain for m = 1 is therefore expected
to be much larger than for higher m (it is noteworthy that hints
of this behavior can be found in the non-modal global stabil-
ity analysis of Garnaud et al.,13 in which the authors notice
that the largest growths are observed for m = 1 perturbations).

As mentioned earlier, Fig. 4 suggests exponential decays
of Gopt/Re2 and ⌧opt/Re with m, for the range m � 2, with a
steeper ratio in the case of optimal gains. Besides, it has also
been shown (see Fig. 3) that there is an asymptotic behavior
of Gopt and ⌧opt with ↵, whose limit values are dependent on
the azimuthal wavenumber m, i.e., as m grows, a thinner shear
layer thickness (larger ↵) is required to obtain the largest Gopt
and shortest ⌧opt . After evaluation of results, it can be observed
that Gopt / 1/m3, as it is shown in Fig. 6, where we present
the dependence on ↵/m of the rescaled maximum optimal gain
and optimal time, i.e., Gopt ·m3 for Re = 10 000 [see Fig. 6(a)]
and Gopt · m3/Re2 for Re = 10 000 and 100 000 [Fig. 6(b)].
It seems clear that, regardless of the Re number, curves of
Gopt ·m3 collapse for m � 2, while m = 1 is out of trend, high-
lighting again differences on the nature of mechanisms for m =
1, i.e., transient shift-up mechanism, and m � 2, a more clas-
sical lift-up effect, where vortices are concentrated along the
shear layer. The collapse of curves is only achieved when the
aspect ratio ↵ is scaled with m, i.e., when the optimal perturba-
tion wavelength is normalized by the shear layer characteristic
length scale; proving that for a given jet profile, the largest
optimal gain is achieved when both scales sort of couple.
Regarding the optimal time, ⌧opt , no clear exponential decay

FIG. 6. Dependence on ↵/m of rescaled maximum opti-
mal growth for a frozen base flow: (a) Gopt · m3, for
Re = 10 000, and (b) Gopt ·m3/Re2, for Re = 10 000 (lines)
and 100 000 (markers). For the sake of clarity, only curves
corresponding m = 1, 2, . . . , 6 are included in (b) for
Re = 100 000.



FIG. 7. Transient dynamics of optimal perturbations with m = 2 (top row) and m = 10 (bottom row) for frozen base flows at Re = 100 000: [(a) and (e)] normalized
axial components of enstrophy density |!z(r) |2/max( |!z(r) |2) at t = 0 and [(b) and (f)] energy density |uz(r) |2/max( |uz(r) |2) at optimal time t = ⌧opt(↵) for
different values of base flow aspect ratio ↵ (arrows indicate sense of growing values, i.e., ↵ = 6: · · · · , ↵ = 20: - - -, and ↵ = 40: —–). For a base flow profile
with ↵ = 20: [(c) and (g)] cross section of the optimal initial condition (t = 0) axial vorticity !z and associated normalized vector velocity field and [(d) and (h)]
streamwise velocity uz of the corresponding optimally amplified (t = ⌧opt) streaks. Dashed circles in (c), (d), (g), and (h) mark the limit of the shear layer, i.e.,
r = 1 ± 1/↵, while gray tags in (e) and (f) define the radial width, 4r , of initial conditions (IC) and amplified perturbations (AP), plotted in Fig. 8.

trend has been found for the range of azimuthal wavenumbers
investigated, although some approximations such as ⌧opt /
1/m2 and ⌧opt / 1/m2.5 have been tried (some results are
included in Appendix B).

To evaluate in depth the effect of ↵ and m on the struc-
ture of the optimal initial condition and most amplified streak,
we further study the transient dynamics of optimal perturba-
tions with m = 2 and m = 10 for Re = 100 000 with the help
of Fig. 7. Radial distributions of axial components of nor-
malized perturbation enstrophy density, |!z |2/max(|!z |2), at
initial time t = 0, and normalized perturbation kinetic energy,
|uz |2/max(|uz |2), at optimal time t = ⌧opt , are, respectively,
depicted in Figs. 7(a), 7(e), 7(b), and 7(f), for different val-
ues of ↵ = 6, 20, and 40. These distributions correspond,
respectively, to streamwise vortices at initial time, and axial
velocity streaks at optimal time, as the contours of axial vor-
ticity [Figs. 7(c) and 7(g)] and axial velocity [Figs. 7(d) and
7(h)] show for ↵ = 20. It is noteworthy the fact that, regardless

of the value of ↵, the enstrophy and energy density distri-
butions barely collapse in single curves, which peak in the
shear layer and extend radially approximately from r = 0.5
to r = 1.5 (a slight shift of structures appears to occur as the
shear layer thickness is larger). This independence of optimal
initial vortices and final streaks radial extension with respect
to ↵ is more clearly observed in Fig. 8, where we plot, for
↵ = 20 and 40, the evolution with m of the radial width
4r defined as the thickness of distributions corresponding to
medium values, i.e., 0.5, of normalized enstrophy and energy,
for optimal initial condition (streamwise vortices), 4r ,IC , and
most amplified perturbations (velocity streaks), 4r ,AP, whose
graphical definition is presented in Fig. 7. There it is shown
that for a given ↵, a larger perturbation azimuthal wavenum-
ber compresses the vortices and streaks radially, showing an
asymptotic behavior for largest values of m. As the optimal
initial vortices size decreases [see Figs. 7(c) and 7(g)], the
magnitude of the axial vorticity !z (and corresponding radial

FIG. 8. Dependence on m of the radial width, 4r , of optimal initial conditions (streamwise vortices), i.e., 4r ,IC , and most amplified perturbations (velocity
streaks), 4r ,AP , for Re = 100 000 and ↵ = 20, 40. Widths 4r ,IC and 4r ,AP are defined, respectively, as the radial extension of normalized enstrophy and energy
density distribution in Fig. 7, when |!z(r) |2/max( |!z(r) |2) = 0.5 and |uz(r) |2/max( |uz(r) |2) = 0.5. See Figs. 7(e) and 7(f) for graphic definition of variables.



velocity ur) at initial time is larger, although the maximum
axial velocity at optimal time features lower values than for
perturbation with small m [see Figs. 7(d) and 7(h)], lead-
ing to lower energy gain. Consequently, the higher poten-
tial for transient growth at initial time for perturbations
of large m seems to be hindered by the shorter pertur-
bation diffusion time, which decreases with the azimuthal
wavenumber, as shown in Fig. 4(b).

So far, the analysis has been done based on a jet velocity
profile [Eq. (1)] which is considered to be steady, i.e., frozen in
time. This assumption does not represent a major problem as
long as the characteristic time of the perturbation evolution is
much smaller that the diffusive time ⌧D ' O(Re). However, as
shown in Figs. 2 and 4(b), this is especially critical for low val-
ues of ↵ and m = 1, for which O(⌧opt) ' O(Re). Consequently,
if we want to force efficient optimal m = 1 perturbations in a
round jet, for instance, with the aim at controlling Kelvin-
Helmholtz instability, according to our previous results, we
would have to wait a long temporal horizon ⌧opt to obtain the
maximum optimal growth Gopt , which would give the base
flow enough time to diffuse, therefore rendering invalid the
former analysis. Hence, the use of a diffusive jet velocity pro-
file is required in the optimal perturbation analysis to draw real-
istic conclusions for m = 1 symmetries. However, the frozen
base flow assumption should not pose a problem for optimal
perturbations with m � 2, since O(⌧opt)  O(Re·10�1). There-
fore, similar results are expected in those cases for analyzes
based on frozen and diffusive base flows.

B. Di�using base flow

We next discuss results obtained for the time evolution
of optimal perturbations in a temporally diffusive base flow
velocity profile, as defined in Eq. (A7). Figures 9(a) and 9(b)
display, respectively, dependence with ↵ of maximum optimal
gain Gopt and optimal time ⌧opt , for optimal perturbations of
different azimuthal wavenumbers m at Reynolds number Re
= 10 000 (note that only perturbations with m  6 undergo
transient growth at that value of Re). No major differences are
found with respect to results included in Figs. 3(a) and 3(b) for
a frozen base flow, with nearly identical asymptotic trends as
↵ increases. However, the magnitudes of Gopt and ⌧opt for m
= 1 are clearly lower than those obtained for the frozen case.
This shorter, and less energetic, transient dynamics for m = 1

perturbations evolving in a diffusing base flow is clearly
observed in Figs. 9(c) and 9(d), where the dependence on m of
rescaled optimal energy gain and optimal time, Gopt/Re2 and 
⌧opt/Re, is presented for both frozen and diffusing base flows, 
with ↵ = 20 and Re = 10 000. On one hand, it is observed that 
diffusion of base flow hinders the transient growth for perturba-
tions with m = 1, whose energy gain is now virtually one third 
of that attained when the base flow is steady, while the optimal
time decreases by a factor of 5 approximately. On the other
hand, it seems evident that transient dynamics of optimal per-
turbations with m � 2 is less sensitive to base flow diffusion, 
which show values of Gopt and ⌧opt that are not very different.
For instance, for m = 2 when ↵ = 20 and Re = 10 000, the
frozen
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flow. These results were anticipated, since the characteristic
perturbation optimal times for m � 2 were, at least, one order 
of magnitude lower than the diffusing time scale for the base
flow, i.e., ⌧D ⇠ O(Re) [see Figs. 4(b) and 9(d)].47 Besides, 
as occurred for the steady frozen base flow, the exponential
decay with m showed by the optimal gain in Fig. 9(c) can
be also properly rescaled using the law Gopt / Re2/m3, as 
depicted in Fig. 10, where results for Re = 10 000, 100 000 and
m = 1, 2, . . . , 6, are included. As earlier, the scaling applies
satisfactorily for m � 2. Thus, present results render valid, 
in general lines, the optimal perturbation analysis included in
Sec. III A for perturbations with m � 2, although important 
quantitative differences are encountered for m = 1.

In order to understand how base flow diffusion affects
the transient mechanism and structure of optimal initial vor-
tices and most amplified streaks, we present in Fig. 11, for
m = 1 and m = 2 perturbations, contours of axial vorticity !z and 
the associated velocity field at initial time t = 0 [Figs. 11(c) and
11(g)] and contours of axial velocity at terminal time t = ⌧opt 
[Figs. 11(d) and 11(h)], for a diffusing base flow (↵ = 20 and 
Re = 1000), whose time evolution is included in Figs. 11(a)–
11(d), for both temporal horizons. In general, optimal initial 
vortices and optimal streaks are similar to those depicted in
Fig. 5, although base flow diffusion gives rise to a radial
spreading and smoothing of structures, both at initial and opti-
mal times. When the evolution of the base flow is analyzed, 
it is seen that for t = ⌧opt(m = 1), the jet core velocity is
halved and the shear layer has vanished. The outcome of such 
process is an amplified perturbation with weaker and smoother

FIG. 9. Diffusing base flow at Re = 10 000: dependence on ↵ of (a) maximum optimal growth Gmax and (b) optimal time ⌧opt , for different values of azimuthal
wavenumber, i.e., m = 1, 2, . . . , 6 (arrows indicate growing values of m). Comparative between frozen and diffusing base flows with ↵ = 20 and Re = 10 000:
dependence on m of (c) Gopt/Re2 and (d) ⌧opt/Re.



FIG. 10. Dependence on ↵/m of rescaled maximum optimal growth for a
diffusing base flow, Gopt ·m3/Re2, for Re = 10 000 (lines) and 100 000 (mark-
ers). For the sake of clarity, only curves corresponding m = 1, 2, . . . , 6 are
included for Re = 100 000.

streaks of velocity [see Figs. 11(d) and 5(c) for comparison],
although the magnitude of the initial axial vorticity is slightly
bigger for the case at hand. Similarly, at t = ⌧opt(m = 2), the
shear layer has diffused in the jet profile, although the core
velocity is almost unaffected. Consequently, the level of energy
extracted now from the base flow is only slightly smaller than
that transferred by the mechanism on a frozen flow, even if the
magnitude of axial velocity [Fig. 11(h)] is clearly lower.

To analyze in depth differences in the energy transfer
process, we display in Fig. 12 energy density distributions
of optimal perturbations with m = 1 and m = 2, for frozen

and diffusing base flows with ↵ = 20 at Re = 1000. More
precisely, radial distributions of energy density components,
|ui(r)|2 (i = r, ✓, z), are plotted at initial and optimal times,
along with cross section contours of total energy density,
|ur(r, ✓)|2 + |u✓ (r, ✓)|2 + |uz(r, ✓)|2, at t = ⌧opt for most ampli-
fied perturbations. First, plots of radial distributions at initial
and final times evidence the strong component-wise non-
normality45 that characterizes the lift-up (and shift-up) pro-
cess, whereby the optimal initial forcing concentrates on radial
and azimuthal components, while for the optimal response
the axial component dominates. Interestingly, this component-
wise non-normality is weakened by the base flow diffusion,
especially for the optimal m = 1 perturbation, which renders the
transient mechanism less efficient. Besides, the effect of van-
ishing shear is also observed at optimal time for both azimuthal
wavenumbers. In fact, distributions of energy density attain
sharper maxima at the shear layer (r = 1) when a frozen base
flow is used [see Figs. 12(e), 12(f), 12(k), and 12(l)], since, as
mentioned earlier, the location of streaks is mainly governed
by the magnitude urdU/dr, in the inviscid limit. However,
when the base flow diffuses, the value of axial energy den-
sity varies smoothly around r = 1 [Figs. 12(b), 12(c), 12(h),
and 12(i)], and optimal streaks spread over a larger radial
extension. Consequently, the lower magnitudes of total energy
density obtained for diffusing base flows [Figs. 12(c) and 12(i)]
are partially compensated by the integration over a wider struc-
ture, providing with energy gains which are not very far from
values achieved using a frozen profile, especially in the case
of m � 2 (note that even for m = 1, gains in diffusing flows
are always of the same order of magnitude that their frozen
counterparts).

FIG. 11. Transient dynamics of perturbations for a diffusing base flow with ↵ = 20 and Re = 1000: cross section of the optimal initial condition (t = 0) axial
vorticity !z and associated normalized vector field [(c) and (g)] and streamwise velocity uz of the corresponding optimally amplified (⌧ = ⌧opt) streak [(d) and
(h)], for m = 1 [(a)-(d)] and m = 2 perturbations [(e)-(h)]. Dashed circles stand for the limit of the shear layer, i.e., r = 1 ± 1/↵. Diffusion of base flow velocity
profile U(r) is also depicted at initial time [(a) and (e)] and optimal times [(b) and (f)].



FIG. 12. Energy density distributions for optimal perturbations with m = 1 [(a)-(f)] and m = 2 [(g)-(l)] for diffusive (top row) and frozen (bottom row) base flows
with ↵ = 20 at Re = 1000: radial energy densities |ui(r)|2 at (a), (d), (g), and (j) initial t = 0 and (b), (e), (h), and (k) optimal t = ⌧ times (|uz(r)|2: thick solid lines,
|ur (r)|2: dashed lines, and |u✓ (r)|2: dotted lines), and cross-sectional energy distribution |ur (r,✓)|2 + |u✓ (r,✓)|2 + |uz(r,✓)|2 of the most amplified perturbations at
optimal time t = ⌧ [(c), (f), (i), and (l)].

IV. CONCLUSIONS

The potential for transient growth of streamwise invariant
perturbations (axial wavenumber k = 0) in parallel round jets
has been evaluated by means of an optimal perturbation anal-
ysis. In particular, the present study focuses on the transient
evolution of three-dimensional disturbances with azimuthal
wavenumbers m � 1, for different Reynolds numbers Re. Two
types of analyses have been performed, concerning steady
(frozen) and unsteady base flow velocity profiles of vary-
ing aspect ratio, ↵ = R/✓, with the aim at evaluating the
effect of base flow diffusion on the energy gain and dynam-
ics of perturbations. Transient growth mechanisms have been
characterized and discussed.

The first part of the study focused on steady base flow pro-
files, showing that for given values of Re and m, the transient
dynamics is more energetic and shorter as the velocity profile
steepens, i.e., increasing ↵. The dynamics can be characterized
by a maximum optimal value of the energy gain, Gopt , attained
at an optimal time, ⌧opt , from which perturbation amplification
decays. Therefore, steeper profiles provide with larger magni-
tudes of Gopt and shorter times ⌧opt , both reaching asymptotic
values in the limit of large ↵. As expected, when the Re is
increased, the number of perturbations azimuthal wavenum-
bers, m, undergoing transient growth increases. In particular,
m = 1 perturbations always display larger values of Gopt (four
orders of magnitude) than m � 2; but they also require larger
times ⌧opt (at least one order of magnitude) to reach such
energy gains. As observed in other unbounded shear flows,27

Gopt and ⌧opt grow with Re, retrieving the classical scaling
laws: Gopt / Re2 and ⌧opt / Re. Besides, the aforementioned
asymptotic limits of optimal gains and times are attained at
larger aspect ratios for growing m, which suggests that thinner
shear layers are needed for shorter azimuthal wavelengths to
transfer energy optimally from the jet to the perturbation in
the transient. Interestingly, rescaled gains and times, Gopt/Re2

and ⌧opt/Re, decrease exponentially with m in the range m � 2

(Fig. 4), with m = 1 perturbations out of trends, suggesting
qualitative differences between transient mechanisms for m = 1
and m � 2. After observation of results, we proposed the scal-
ing law Gopt / Re2/m3, which makes curves of Gopt ·m3/Re2

collapse for m � 2 (Fig. 6). This collapse is only achieved if
the characteristic perturbation wavelength is rescaled by the
shear layer length scale, i.e., ↵/m, inferring that there is a cou-
pling between scales in optimal transient dynamics. Again,
m = 1 perturbations do not follow such trend, which may be
based on differences on the nature of transient mechanisms.

An analysis of perturbations structure unveiled that
optimal initial conditions correspond to streamwise coun-
terrotating vortices, whereas the optimally amplified dis-
turbances are axial velocity streaks, for all m investigated,
although their radial extension and magnitude depend on the
azimuthal wavenumber (Figs. 5 and 7). More precisely, for
m = 1 perturbations, the shift-up effect18 is observed: the dipole
formed by the initial vortices induces a nearly uniform veloc-
ity flow in the jet core, which shifts the whole jet radially,
giving rise to optimal axial velocity streaks at t = ⌧opt which
spread from the shear layer towards the jet core. Differently,
optimal perturbations with higher values of m, i.e., m � 2,
are more concentrated along the shear layer, in a way that
resembles the classical lift-up mechanism, and feature lower
values of vorticity. The latter induces a weaker cross-sectional
radial flow, which hinders the value of Gopt and, therefore, the
magnitude of axial streaks at t = ⌧opt , which are now located
in the shear layer. Radial extension of optimal initial condi-
tions and amplified responses is further investigated by means
of radial distributions of axial enstrophy and kinetic energy,
respectively (Figs. 7 and 8). It is observed that structures peak
at the shear layer and extends radially a distance that is virtu-
ally the same regardless of the value of the jet aspect ratio, ↵.
Besides, larger perturbation azimuthal wavenumbers compress
the initial vortices and response streaks radially.

The first analysis, presented in Sec. III A, involved steady
base flows, which do not represent a major drawback as long



as the diffusion time, ⌧D ⇠ O(Re), is larger than the perturba-
tion characteristic time scale. In view of results, for m � 2 this
assumption is not unreasonable, since O(⌧opt)  O(Re · 10�1),
but it turns out to be too strong in the case of m = 1 pertur-
bations, for which O(⌧opt) ' O(Re). Consequently, the use
of a diffusing velocity profile was required to obtain realistic
transient dynamics for m = 1 perturbations. In that sense, it
has been shown that for a given Re, similar asymptotic trends
are found, for steady and unsteady base flows, with respect
to Gopt and ⌧opt as ↵ grows (Fig. 9). However, magnitudes of
optimal gain and time are clearly lower for m = 1 when the base
flow diffuses: Gopt decreases by a factor of 3, whereas ⌧opt is
divided by five approximately. Also, as expected, the transient
dynamics of perturbations with m � 2 remains virtually unal-
tered quantitatively, rendering acceptable the former frozen
assumption. As earlier, previous scaling laws Gopt / Re2/m3

and ⌧opt / Re apply satisfactorily, although perturbations with
m = 1 are again out of trend.

Transient evolution of base flow and perturbations has
been analyzed (Fig. 11) to identify the origin of differences of
dynamics for m = 1 perturbations and similarities encountered
for m � 2 in both types of base flows. In general, the large
optimal times shed by m = 1 perturbations lead to a strong
diffusion of the base flow velocity profile, whereby the jet
core velocity is halved and the shear layer vanishes. Conse-
quently, the final streaks are now less concentrated around the
shear layer, and feature weaker magnitudes. Conversely, the
shorter time scale given by transient growth of m � 2 pertur-
bations gives the base flow less time to diffuse, and now the jet
core is barely unaffected. Thus, the level of energy extracted
from the jet is only slightly smaller than in the case of frozen
velocity profiles. Finally, a comparison between optimal per-
turbations evolving in frozen and diffusing base flows has been
established (Fig. 12), by means of kinetic energy densities dis-
tributions. A strong component-wise non-normality has been
identified, as a feature of the lift-up process, since the ini-
tial conditions mostly concentrated on radial and azimuthal
components, while the optimal response is dominated by axial
component. The base flow diffusion has been proven to under-
mine such non-normality and, therefore, the optimal response.
Now, initial and amplified structures do not peak strongly in the
shear layer but spread smoothly in the radial coordinate over
a larger region. Integration of such wider area compensates
slightly the weaker maximum energy magnitude of streaks,
modulating the potential loss of energy gain with diffusion of
base flow.

In general, the frozen analysis seems to provide accept-
able results for perturbations with m � 2, although the use
of diffusing base flows needs to be considered in the transient
analysis of m = 1 disturbances. Altogether, the latter type of
perturbations has a much higher potential for transient energy
growth, guided by the shift-up mechanism, with leads to values
of Gopt several order of magnitudes larger than those achieved
by means of more three-dimensional perturbations, i.e., m � 2,
whose transient dynamics is characterized by a more classical
version of the lift-up effect. However, when time scale is com-
pared, optimal times ⌧opt are considerably shorter for m � 2
disturbances, which is interesting from the point of view of
control, since it implies that optimal amplified perturbations

can emerge very quickly in the flow, with a non-negligible 
energy gain even for initial conditions with large to moder-
ate azimuthal wavenumbers m. This transient evolution could 
distort the flow, via nonlinear interactions, giving rise to a by-
pass scenario that hinders other unstable flow perturbations, 
such as those arising from the Kelvin-Helmholtz instability. 
Evaluation of real control potential using streamwise invariant 
optimal perturbations needs to be done employing nonlin-
ear formulation or direct numerical simulations, which are 
considered a natural continuation of the present paper.
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APPENDIX A: DIFFUSING BASE FLOW

The diffusing base flow considered in the present study is 
an axisymmetric parallel jet flow whose velocity profile is of 
the form U = U(r,t) ez in cylindrical coordinates (r,�,z). The 
velocity profile U is built from the solution of the diffusion 
problem of an initial top-hat jet of radius R0 and velocity U0,

V (r, t) =
U0

2⌫t
exp � r2

4⌫t

! ⌅ R0

s=0
s exp

 
� s2

4⌫t

!
I0

✓ sr
2⌫t

◆
ds,

(A1)

where ⌫ is the fluid kinematic viscosity and I0 is the modified
Bessel function of the first kind of order zero. The derivation
of this solution can be found in the work of Osizik46 (see
Examples 3-6, pp. 122–124 in Sec. III C), where the equivalent
heat conduction problem is solved by the method of separation
of variables in the cylindrical coordinate system, via the use
of integrals of Bessel functions.

We use this solution at a given time ti to get the initial
base flow profile

U(r, t = 0) = V (r, ti) =
U0

2⌫ti
exp � r2

4⌫ti

!

⇥
⌅ R0

s=0
s exp � s2

4⌫ti

!
I0

sr
2⌫ti

!
ds.

(A2)

Velocity profiles for different times ti are displayed in
Fig. 13(a). The time evolution of this initial base flow profile
is then given by

U(r, t � 0) =
U0

2⌫(ti + t)
exp � r2

4⌫(ti + t)

!

⇥
⌅ R0

s=0
s exp � s2

4⌫(ti + t)

!
I0

sr
2⌫(ti + t)

!
ds.

(A3)

This velocity profile can be nondimensionalized by choos-
ing a characteristic velocity scale Uj and a characteristic length



FIG. 13. (a) Time evolution of the velocity profile of an initial top-hat jet, for ⌫ti/R2
0 from 0.002 to 0.02 in increments of 0.002 (gray lines) and from 0.05 to

0.5 in increments of 0.05 (black lines). The time evolution of the aspect ratio ↵(ti) is displayed in the inset (solid line). The dashed line indicates the diffusion
scaling law in 1/

p
ti, and the dotted line marks the theoretical asymptotic value for a Gaussian profile in the limit of large times. (b) Relationship between the

initial base flow parameter a and the aspect ratio of the jet ↵ = Rj/✓. The gray solid line corresponds to the numerical computation of the aspect ratio ↵ for
values of a between 0.5 and 1.2. The black dotted line corresponds to the approximation a = 2.5/↵, which is a good fit for ↵ > 4.36 (or a < 0.585, equivalently)
with a relative error smaller than 2% (see the inset).

scale R: U = U? Uj, r = r? R, s = s? R, and then t = t? R/Uj.
Dropping the star ?, the base flow profile reads

U(r, t) =
2 U0/Uj

a2 + 4t/Re
exp � r2

a2 + 4t/Re

!

⇥
⌅ R0/R

s=0
s exp � s2

a2 + 4t/Re

!
I0

2sr
a2 + 4t/Re

!
ds,

(A4)

where Re = UjR/⌫ is the Reynolds number and a =
p

4⌫ti/R is
of the same order of magnitude as the nondimensional momen-
tum thickness of the base flow profile shear layer at initial
time.

Let Uj be defined as the jet velocity on the axis r = 0 at
initial time. This implies that U(r = 0, t = 0) = 1 and since
I0(0) = 1, Eq. (A4) reduces to

1 =
2 U0/Uj

a2

⌅ R0/R

s=0
s exp � s2

a2

!
ds (A5)

or, equivalently,

U0/Uj =
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-
377775
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Then the nondimensional base flow profile is given by

U(r, t) =
2 exp � r2

a2 + 4t/Re
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Finally let R be defined as the radius at which the initial
velocity profile corresponds to half the (maximum) velocity on
the axis. This implies that U(r = 1, t = 0) = 1/2 and Eq. (A7)
writes

1
2
=

2 exp � 1
a2

!

a2
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R2
0

R2a2
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-
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2s
a2
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(A8)
and the unknown X = R0/R is solution of the following integral
equation:

⌅ X

s=0
s exp � s2
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!
I0

2s
a2
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ds

=
a2

4
exp

1
a2

! "
1� exp �X2

a2

!#
. (A9)

Once Eq. (A9) is solved, the diffusing base flow pro-
file given by Eq. (A7) depends only on two non-dimensional
parameters, namely, the Reynolds number Re and the shape
factor a which can be related to the momentum thickness of
the velocity profile and therefore to the aspect ratio ↵ = R/✓
of the jet. Figure 13(b) displays the relationship between a
and ↵ that can be computed from the velocity profile given in
Eq. (A7). An approximate analytical relationship ↵ = 2.5/a
can be deduced from these numerical results, with a relative
error of less than 2%.

APPENDIX B: DEPENDENCE ON m OF �

opt

/Re

As shown in Sec. III, the optimal time ⌧opt apparently
decays exponentially as the perturbation azimuthal wavenum-
ber m increases. Unlike the maximum optimal gain Gopt , for
which the scaling law Gopt / Re2/m3 applies satisfactorily,
for both frozen and diffusing base flow (see Figs. 6 and 10),
⌧opt does not seem to follow a unique scaling law in the whole
range of m investigated. For instance, Fig. 14 shows different
rescaled functions of optimal time, ⌧opt ·m2 and ⌧opt ·m2.5 for
Re = 10 000 and ⌧opt ·m2 for Re = 100 000, where it is seen that
there is no collapse of all curves for any law used nor number
of Re. In fact, it is seen that for Re = 10 000, ⌧opt / 1/m2.5

make curves overlap only for m � 3, while for Re = 100 000, a
fair collapsing is achieved for m � 6 employing ⌧opt / 1/m2.



FIG. 14. Dependence on ↵/m of opti-
mal time for a frozen base flow: (a)
⌧opt ·m2 (Re = 10 000), (b) ⌧opt ·m2.5 (Re
= 10 000), and (c) ⌧opt ·m2 (Re = 100
000).

FIG. 15. Diffusing Gaussian base flow: evolution of energy gain G(⌧) with the optimal terminal time ⌧, for (a) Re = 100, (b) Re = 1000, (c) Re = 10 000, and
(d) Re = 100 000. Arrows indicate sense of growing values of m.

In view of such results, no exponential law has been proposed
in the manuscript.

APPENDIX C: DIFFUSING GAUSSIAN BASE FLOW

To complete the study on canonical round jets profiles, we
have performed a complementary optimal perturbation analy-
sis of streamwise invariant disturbances evolving in a classical
Gaussian velocity profile. This study aims at evaluating the
potential for transient growth of streamwise vortices in the
absence of strong flow shear. The optimal perturbation analysis
has been performed for four selected Reynolds numbers, i.e.,
Re = 100, 1000, 10 000, and 100 000, employing the following
unsteady jet velocity profile:

U(r, t) =
1

1 + 4t/Re
exp[�r2/(1 + 4t/Re)]. (C1)

Results obtained from such study are presented in Fig. 15,
which displays the curves of energy gain G(⌧) versus the
temporal horizon ⌧, for optimal perturbations of different

azimuthal wavenumber m, and selected values of Reynolds
number. Evaluation of figures evidences the stabilizing effect
of a fully developed profile in terms of m, when compared to
the base flow defined in Eq. (A7), since, for a given Re, there
are fewer values of perturbation azimuthal wavenumber m that
undergo transient growth [see Fig. 9(a) for comparison]. Note
that at Re = 1000 only energy of optimal m = 1 perturbations
grows transiently, while at Re = 10 000 this transient ampli-
fication is limited to optimal perturbations with m  4. This
effect of vanishing shear layer was also especially remarkable
at low values of jet profile aspect ratio ↵ in Fig. 9(a). Besides,
for every Re and m investigated, curves of G(⌧) present a
quick growth at low values of ⌧, until reaching the maximum
optimal gain Gopt = sup⌧(G(⌧)) at an optimal time ⌧opt , from
where the gain decays monotonically. This decay rate becomes
faster as the perturbation azimuthal wavenumber increases, in
such a way that for largest values of m transient growth is
limited, as expected, to very short times. As seen in Fig. 16,
where dependence on m of rescaled Gopt/Re2 and ⌧opt/Re is
displayed, trends resemble those obtained in Sec. III B for
low values of ↵. Again, optimal m = 1 perturbations attain

FIG. 16. Diffusing Gaussian base flow: (a) Gopt/Re2 and
(b)⌧opt/Re dependence on the azimuthal wavenumber m.



values of Gopt which are three orders of magnitude larger than
the corresponding gain for m = 2, but in general, the tran-
sient dynamics of perturbations in a Gaussian jet, i.e., a fully
developed profile, is less efficient, being it characterized by a
weaker optimal gain Gopt and a longer optimal times ⌧opt than
that existing in top-hat profiles (large ↵). Finally, it must be
highlighted that the scaling law Gopt / 1/m3 that was used in
Sec. III B does not apply here (similarly, it can be observed
in Fig. 10 that the scaling law is better suited for intermediate
and large values of ↵/m).

APPENDIX D: NUMERICAL CONVERGENCE

The optimization problem was solved using a pseudospec-
tral Chebyshev technique,18 where the infinite radial coordi-
nate is first mapped onto a Chebyshev space, s 2 [�1, +1],
using a Gauss-Lobatto grid of N points. This grid is adjusted so
that r 2 ]�1, +1 [ , taking afterwards only the positive semi-
infinite grid, r > 0. The algebraic mapping used reads r(s) =
�s/
p

1 � s2, where � is the stretching factor that controls the
points spreading after imposing the radius of the penultimate

point, rmax, and that is defined as � = rmax

q⇣
1 � s2

2N+1

⌘ �
s2N+1,

being s2N +1 the penultimate point of the Gauss-Lobatto grid.
Thus, the critical parameter to ensure accuracy of results and
convergence corresponds to the number of points within the
shear layer, whose value will depend on the total number of
points, N, and on the maximum radius for the mapping, rmax.
Besides, to avoid problems of spectral instability and large
computational times, a moderate value of N is advisable, which
must be combined with a sufficiently large rmax, to map prop-
erly the slow algebraic decay of perturbations with r (see Fig.
12 in Ref. 18).

Table I presents results of optimal gain G(⌧) at given opti-
mal times ⌧, for the steepest base flow profile investigated, i.e.,
↵ = 40, and therefore the largest shear, at Re = 100 000. Tests
of optimal perturbations with m = 1 using frozen and diffusing
base flows are listed, along with corresponding computational
times (using processors IntelrCore i7-5600U 2.60 GHz). In
view of the results, the energy gain G(⌧) may vary substan-
tially depending on the set of parameters (rmax, N) selected.
Therefore, we consider that convergence is achieved when
G(⌧) yields the same value with six significant digits. In that

TABLE I. Convergence study of optimal m = 1 perturbations for frozen (Fr)
and diffusive (Di) base flows with ↵ = 40, at Re = 100 000.

Type ⌧ rmax N G(⌧) Time (s)

Fr 80 000 50 50 1.067 09⇥108 3.8829
Fr 80 000 50 100 1.039 10⇥108 4.7121

Fr 80 000 100 50 6.990 71⇥107 4.1671

Fr 80 000 100 100 1.038 05⇥108 4.6253

Fr 80 000 150 100 1.037 84⇥108 4.6416

Fr 80 000 150 150 1.038 03⇥108 8.2792

Fr 80 000 150 300 1.038 03⇥108 36.7455

Fr 80 000 300 200 1.038 03⇥108 16.9419

Di 32 000 150 100 2.840 89⇥107 1 012.1619
Di 32 000 150 150 2.840 91⇥107 3 921.1145

Di 32 000 300 200 2.840 91⇥107 12 740.2497

sense, in order to obtain a converged value of G(⌧), the analysis
requires to employ a minimum mapping radius, e.g., rmax �
100, in combination with enough points N to describe the
shear layer. This can be also noticed in Fig. 17, where the
base flow profile, U(r), and the axial component of enstro-
phy density for the optimal initial condition, |!z(r)|2, are
plotted for four different pairs of values (rmax, N), namely,
(50, 50), (150, 100), (150, 150), and (300, 200). It seems
evident that for (rmax, N) = (50, 50), the shear layer is not
adequately mapped, which, combined with the fair radial
extension covered, gives rise to an optimal initial condition
which is not well defined. As rmax and N increase accord-
ingly, the shear layer is better resolved and the optimal ini-
tial condition evolves towards a converged shape. Note that
for (rmax, N) = (150, 150) and (rmax, N) = (300, 200), base
flow profiles and enstrophy densities nearly overlap. This
convergence behavior is also found when a diffusing base
flow is used. Therefore, taking into account these results and
evaluating the computational time requirements (especially
demanding when diffusing base flows are considered), we
choose N = 150 and rmax = 150 as the best compromise
solution between accuracy and feasibility. Hence, all results
presented in this work have been obtained using this set of
parameter.

FIG. 17. Convergence study for optimal m = 1 pertur-
bations using a frozen base flow with ↵ = 40 and Re =
100 000: (a) details of the shear layer in the base flow pro-
file U(r) and (b) axial component of enstrophy density
for the optimal initial condition, |!z(r) |2. Four differ-
ent sets of (rmax, N) are plotted for comparison, i.e.,
(50, 50) : · · · ·, (150,100): - · -, (150, 150) : � � �,
and (300, 200): ——.
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