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Low-complexity Approximate
Convolutional Neural Networks

Renato J. CintraSenior Member, IEEEStefan Duffner, Christophe Garcia and André Leite

Abstract—In this paper, we present an approach for mini- from raw data (e.g., pixels in computer vision). To do soythe
mizing the computational complexity of trained Convolutional integrate a pipeline of convolution and pooling layers gene
Neural Networks (ConvNet). The idea is to approximate all ally followed by a multi-layer perceptron, jointly perfomy

elements of a given ConvNet and replace the original convo- | | feat tracti d classificati .
lutional filters and parameters (pooling and bias coefficiets; 0¢@! feature extraction and classification (or regressiora

and activation function) with efficient approximations capable of ~Single architecture where all parameters are learnt usieg t
extreme reductions in computational complexity. Low-compexity — classical error back-propagation algoritim![14]. Trautitlly,
convolution filters are obtained through a binary (zero-ong linear ConvNets are used for image processing tasks and, to thjs end
programming scheme based on the Frobenius norm over sets of they are often applied on small regions of a bigger image in

dyadic rationals. The resulting matrices allow for multiplication- lidi indow f K for inst to detect bi
free computations requiring only addition and bit-shiftin g opera- a sliding-window framewaork, Tor instance 1o detect an objec

tions. Such low-complexity structures pave the way for lowpower, Because of weight sharing, each layer essentially performs
efficient hardware designs. We applied our approach on threese  convolution or pooling operations using small kernelsdesa
cases of differept complexity: (i) a “light” but efficient"ConvNet “retina”, and when applied to a large image, the replicatibn
for face detection (with around 1000 parameters); (i) andter o conyNet operation over all positions in the image can be

one for hand-written digit classification (with more than 180000 . ificant| timized b f . h Ut
parameters); and (iii) a significantly larger ConvNet: AlexNet significantly optimized Dy performing €ach convolution pve

with ~1.2 million matrices. We evaluated the overall performance the full image at_ once, efficiently implementing a full image
on the respective tasks for different levels of approximatns. In transformation pipeline.

all considered applications, very low-complexity approxinations However, during training and when applying the trained
have been derived maintaining an almost equal classificaid - conyNet, there is still a significant number of floating-fioin
performance. . S o
computations (multiplications and additions). In ordeatzel-
_ Index Terms—Convolutional Neural Networks, Approxima- erate these operations, most current approaches andbdeaila
tion, Optimization, Numerical Computation software rely on parallel computing using GPUs1[12].1[15]
facilitated to some extent by the inherently parallel aexty
. INTRODUCTION tures of ConvNets. The recent trend in “deep learning” to use
Since their introduction in the 1990s by LeCenal. [1], more and more complex models with millions of parameters
convolutional neural networks (ConvNets) have proven to bequires enormous amounts of computational resourcesyin p
very powerful in many challenging computer vision taskdicular for training the models but also for applying thertga
such as hand-written character recognitioh [1], [2], embe@onvNets. Reducing the computational complexity of these
ded text detection and recognitionl [3],| [4], automatic &ci models is thus of great interest to the research community as
analysis [[5]-[7], traffic sign recognitiori [[8], pedestriaie- well as to industry. Moreover, such reduction in complexity
tection [9], vision-based navigatioh [10], and house nurabeof ConvNets is necessary to implement them on devices with
recognition [[11], just to cite a few. Although state-of-tag Ilimited resources (such as mobile devices) in order to dapera
results have been reached in many different fields, ConvNatsacceptable speed, for example for real-time application
have become very popular only recently with the impressiend reduce the overall power consumption.
results obtained by Krizhevskgt al. [12] in the recognition  In this paper, we focus on drastically reducing the compu-
task, followed by Simonyan and Zisserman who won th@ational cost itself by proposing a post-training approiion
localization challenge at the Large-Scale Visual Recdgmit scheme aiming at replacing all parameters of a ConvNet with
Challenge (ImageNet) 2014 [13]. low-complexity versions. That is, for the convolution fikke
The main property of ConvNets is their capability for autoenly additions and bit-shifting operations are performed—
matic extraction of complex and application-suitable Geas no multiplication is necessary. Additionally, the actioat
_ _ function is sought to be replaced with low-complexity afir
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cated hardware [16]-[19]. We aim at introducing an approatdrge-scale ConvNets, with a modular vision engine fordarg
for approximating CNNs in order to pave the way for futurémage processing, with FPGA and ASIC implementations.
efficient dedicated hardware design. Chakradharet al. [33] present a dynamically configurable
This work is organized as follows. Sectidd Il provides &PGA co-processor that adapts to complex ConvNet archi-
literature review on the efficient numerical implementatiotectures exploiting different types of parallelism. A veoy-
of neural networks and, in particular, ConvNets. Secfidh Icomplexity ASIC design of ConvNets has been developed by
details our approach for approximating the elements of Ghen et al. [34], allowing for very high execution speeds
given ConvNet aiming at designing low-complexity struesir and power consumption of state-of-the-art ConvNets. Kinal
In Section[IV¥ we present the results of our experimentZhanget al.[35] propose a FPGA design strategy and algorith-
evaluation of the proposed approach for two typical ConvNatic enhancements to optimize the computational throughput
architectures. We assess the approximate ConvNets eetativand memory bandwidth for any given ConvNet architecture.
their exact counterparts in terms of several figures of merit Other recent works have focused on thigorithmic and
We conclude the paper in Sectibn V. memoryoptimizations of large-scale ConvNets. For example,
Mamaletet al. [36] proposed different strategies for simpli-
fying the convolutional filters (fusion of convolutional én
pooling layers, 1D separable filters), in order to modify the
Although GPU implementations [20] allow for fast traininghypothesis space, and to speed-up learning and processing
and application of ConvNets on sufficiently equipped platimes. These convolutions can also effectively be perfarme
forms, their integration on embedded systems for real-tinhg simple multiplications of the filters with the respective
applications may be more difficult due to the limited amourntput images in the frequency domaln [37]. However, due to
of available resources on these devices, which usuallyinegju the overhead of the FFT, there is only a computational gain
a good trade-off between performance and code size. Sevevith larger filter sizes, and if a given filter can be reused
previous works have tackled this problem. In early workg{21 consecutively for many input images. Vanhouakeal. [38]
[23] weight parameters of neural networks have been represented a set of different techniques to accelerate thewo
resented as power-of-two integers. Thus all multipliaagio tation of ConvNets on CPU, mostly for Intel and AMD CPUs,
can be operated as simple bit shifts. Direct training of éhesxploiting for example SIMD instructions, memory locality
networks was also possible by keeping a floating-point versiand fixed-point representations. Also, many recent worg{3
of each weight parameter, or otherwise use a techniquedcalld6] have focused on reducing the complexity of convolution
“weight dithering” [24]. Simard and Graf [25] extended thisor fully-connected layers of large-scale ConvNets by reipig
idea by encoding all other parameters as powers of two excép high-dimensional matrix or tensor multiplications hwit
the weights, i.e. neuron activations, gradients, and Iegrn several low-rank matrix multiplications using differemw-
rates. Later, Draghici [26] conducted a broader analysis esnk factorization methods, either at test-time or both for
the computational power of neural networks with reduceehining and testing. Although, large gains in computaion
precision weights. Recently, Machaeo al. [27] proposed a and memory resources can be obtained on complex ConvNets,
specific approximation scheme for sparse representation-le these optimizations do not focus on hardware implemenmtatio
ing using only values of powers of two, and they integrateahd low-power constraints.
this quantization into the learning process. Finally, ia tork As opposed to many previous works that integrate the ap-
of Courbariauxet al. [28], all weights are encoded as binaryproximation process into the learning [47]-[51], our aFmio
values (1-bit), and for the training a floating-point versiooperates on existing fully-trained models, that origipatiay
is still needed. Similarly, Kim and Paris [29], proposes have been aimed for standard PCs or more powerful archi-
completely binary neural network. However, an initial reaktectures. Thus, our approximation scheme allows to integra

Il. RELATED WORK

valued training phase is required. these models into hardware with much fewer resources.
More recently, special attention has been paid to hardware
implementations of ConvNets, especially on FPGAs.LIA [30], I1l. A PPROXIMATION APPROACH

for example, a high-level optimization methodology is ap,
plied to the implementation of the CFF face detecfar [6]. ] ) )
They propose algorithmic optimizations and advanced mgmor OUr goal is to derive low-complexity structures capable of
management and transform the floating-point computatitan if€ducing the computational costs of a given ConvNet. Igieall
fixed-point arithmetic. Interestingly such coarse appration the foI.onvmg two conditions are simultaneously expected t
could furnish very similar detection rates and low falsara 0 Satisfied:

rates on referenced datasets, for a roughly sevenfold dain di) the computational elements of the ConvNet (convolu-
speed. Later, this work has been extended[in [31], where tional filters, sub-sampling coefficients, bias values, and
the authors present for the first time several implementatio ~ Sigmoid function calls) are replaced by corresponding
of the CFF algorithm on FPGA, with a parallel architec-  low-complexity structures;

ture composed of a Processing Element ring and a FIF@i) the performance of the ConvNet is not significantly
memory, which constitutes a generic architecture capable o  degraded.

processing images of different sizes. Farabet and LeCun [3%wever, addressing both above conditions proves to be a
also propose a scalable hardware architecture to implembatd task. In particular, the large number of variables, the

. General Goal



non-linearities, and extremely long simulation times preg Standard methods for matrix approximation include: inspec
such approach. Also, to the best of our knowledge, liteeatution [67], matrix parametrizatiori [61], and matrix factrai
furnishes no mathematical result linking the approxinatid tion [68]. However, since a typical ConvNet may contain from
individual ConvNet elements and the final ConvNet perfothousands to millions of filters, inspection-based appneac
mance. Thus, we adopt a greedy-like heuristic which cansistre not feasible. Methods based on the parametrizationeof th
in individually simplifying each computational structuof a matrix elements are also ineffective because (i) the elésran
ConvNet in the hope of finding a resulting structure capabt®nvolutional filters are usually not clearly related, iteey do
of good performance [52]. not satisfy identifiable mathematical relationships aridtliie

In a ConvNet two main types of mathematical elementlements are not repeated. Additionally, ConvNet filteesraot
are found: (i) matrix structures and (ii) activation fumects. expected to satisfy properties, such as symmetry and orthog
The matrix structures are represented by convolution filtenality, which favors the derivation of approximations.ush
weights, sub-sampling operations, and bias values; whkereaethods based on matrix factorizations are less adequate.
the activation function is usually a non-linear functioncls
as the threshold, piecewise-linear, and sigmoid funcié8s C. Matrix Approximation by Linear Programming

To approximate these two classes of elements, differentyg adopted a general approach to the problem of obtaining

tools are required. For the matrix-based structures, vee& | according to a optimization problem as described below:
matrix approximation methods as a venue to derive low- N

complexity computational elemenfs [54]=[57]. For the \ati M = argmirerror(M, T). (1)

tion, we separate methods capable of approximating fums;,tio_rh b o bl ield b .
with efficient digital implementatior [58]=[60]. e above optimization problem can yield better approxemat

matrices if an expansion factam is introduced [[64]. By
adopting the usual Frobenius norm[[56] as an error measure,

B. Low-complexity Matrix Structures (@) can be recast according to the following mixed integer
In [54], [57], [61]-[64], several methods for deriving ap-"enlinear programming (INLP) setup [69]:
proximations of discrete transform matrices—such as the (a*,T*) = argmin|M —a-THZ, )
a, T

discrete cosine transforr [65]—were proposed. Mebe an

N x N given matrix. For instancey can be a convolutional where a > 0 is the real-valued expansion factor afid||

filter. In this case, a computational instantiationMfapplied s the Frobenius norm [56]. The choice of the Frobenius
to evaluate a single output pixel requires in princi®¥ norm is justified by the following argument. An approximate
floating point multiplications. A typical ConvNet may coifta CNN must have its elements numerically ‘close’ to elements
thousands of convolutional filters. For example, the ct@si from the exact CNN. Therefore, a measure that takes into
architecture described in [].2] contains 244,760 fllterSlCWh consideration distance in a energy_based manner (eun”dea
is nOWﬂdayS considered a relatively small network. Themfo distance Sense) emerges natura”y as a means to guarwt[ee th
to minimize such a significant computational cost, we aim gie approximate filtering structures (e.g., convolutiomleés)
obtaining a low-complexity matrii capable of satisfying the are close to the exact counterpart. The Frobenius norniisatis
following relation in an optimal sens& ~ M. The matrixM  the above rationale. This analysis is confirmed.in [39].

is said to be an approximation fdt. Such approximate convo-  To ensure that the candidate matridebave low complex-
lutional filters would allow the realization of computatally jty, we limited the search space of the above problem to the
intensive ConvNets in limited resources architectures. matrices whose elements are defined over a sets of dyad|c

In this paper, a low-complexity matrix is a matrix of dyadigationals2. Some particular sets are [57], [67]:
rational entries. Dyadic rational numbers are fractions of

the form m/2", wheren is a positive integer andn is an Z1={-1,0,1},
odd integer. Such numbers are suitable for binary aritreneti %, ={-2,-1,0,1,2},
Indeed, a multiplication by a dyadic rational consists of ag, —{—4 -3 -2 -1,0,1,2,3 4},

multiplication bym followed by a right shift ofn bits. Because 3 1 1 113
m is an integer, we can take full advantage of fixed-point%;—{—4,—3,—2,—1,—‘—1,—5,—2,0,2,5,2,1,2,3,4},
arithmetic. Indeedm can be given a binary representation
with minimum number of adders, aiming at multiplicative ¢, — —7,—6,—5,—4,—3,—2,—1,—3—3,—},0,
irreducibility. Multiplicative irreducibility is attaied whenever 4 2 4
the minimum number of additions to implement a multipli- 113 123456 7}
cation by m is equal to the number of ones in the binary 4'2'4 7T T
representation ofn [64]. Multiplicative irreducibility is often 15 7 13 13 7 15
obtained when the CSD representation is considered [66]26—{—4,—77—57—77---7775,174},
Therefore, a multiplication bym can be converted into a 19 9 17 17 9 19
sequence of additions and bit-shifting operations. As & con%y —{—5,—7,—5,—7,...,7,5,7,5}
sequence, low-complexity matrices are multiplierlessesyv

27 13 25 25 13 27

desirable property as floating-point operations are muckemo g, — {_7, _

[ s T 7"'7_7_7_77}'
costly than additions and bit-shifting operations. 4° 2 4 4°2 4



Sets%, 77, and Zg possess uniformly spaced rationals.  of values. Associated ta*, we also obtaifT* £ T4+, which
A straightforward way of addressing](2) is as followsis the global optimal low-complexity matrix. Thereforegth

Considering a given set of dyadic ration&sfor each element sought approximatioM is given by:

of o - T, we simply find the closest neighbour of such element M= " T ©6)

in D. Such approach can be efficiently implemented by means ‘

of binary search. However, this approach is only effectise a The above ILP approach allows the user to easily include

long as [(2) remains an unconstrained optimization proble@bnstraints to the optimization problem. This is relevamt f

Alternatively, we can consider a more flexible approach éasgurther investigation in this topic; in particular when sjfie

on integer linear programming (ILP). mathematical properties are expected to be enforced on the
For fixed values ofr, the mixed INLP problem posed inl(2) resulting low-complexity matrices (for instance, 2D filter-

can be efficiently solved by means of binary (zero-one) linemalization [76, p. 115]).

programming. In other words, we aim at converting a nonlinea We emphasize that the solving method far (2) is only re-

problem into a linear one. Indeed, letj, i,j = 1,2,...,N, quired to be efficient enough to cope with the time constsaint
denote the entries d¥1 andr € & be a dyadic rational. We at the design phase of the approximate neural network. kroth
adopt the following binary decision variables: words, solvers available in contemporary optimizationkpac
1 ifti—r ages are sgitable; an.d_ the choice of the particulg_r methiod fo
% j(r) = { ’ b solving [2) is not a critical for our approach. Additionallye
0, otherwise. note that the optimization solver is simply a step for olitain

For binary (zero-one) variables we haye—y, wherey is a the final n_eu_ral r_1etwork. Once the apprommat_e structures ar
found, optimization solver are clearly not required anyenor

dummy variable. This fact paves the way for the linearizatio
of the above-mentioned optimization problem. Therefd2®, (
can be re-written according to the following binary lineap. Example

H 2017 .
programming problent [£0}=[72]: To illustrate the procedure, we selectéd and considered

NN 2 the search space of the expansion factor to be the interval
) i;;lré (mj —a-r)=-x(r), (3 0.25,1] with a step of 103. Additionally, we consider the fol-
_ lowing particular convolutional filter employed in the Coet
subject to described in Section IVAB:
xii(r) = 1, ij—12.. .N. 15200701 10317051 07906240 —0.2153791-0.234053
s 13982610 21860176 20152923 15620477 (8270900
Mg = | —0.6848867 (7470516 16923728 12537112 11946758

The above constraint is to ensure that each elemgntis
approximated by a unique dyadic rationaldh The solution —1.2387477-0.5483563 Q1261987 (B677799 (07742613
of the above problem is denoted x{g) ij—12 N e —1.4691808—1.2178997—0.2924347 (2172496 01325074
2, being linked to the choice ofi. Such binary (zero-one) Solving [2) for the above matrix, we obtain:

s?luhtio? can be Iem_ployed to comp_utedthe atl]ctual ep(’;ﬁff@sd a* —0.30931

of the low-complexity matrix associated to the considege 5 395 25 _075 —0.75

according to: 45 7 65 5 275

9 =3 rxym. (4) T*=|-225 25 55 4 375

' ey -4 -175 05 275 25

The resulting low-complexity matrix is denoted Ay. The -475 -4 -1 075 05
approximation error is implied by¥2) and can be computed 20 13 10 -3 -3
according to: 1 18 28 26 20 1
=-.1-9 10 22 16 1

_ 2

Error(a) =M —a-Tq|*. 4 116 _7 2 11 10

Because a sequence of values éoiis selected, the above -19 -16 -4 3 2

problem is solved for each instantiation; furnishing the se Fig.[I(a) depicts the Frobenius norm error for varying value
quence of errors indexed by: Error(a). Being a linear 4 4 (cf. ). For very smalla, the values ofa -M are close
programming problem, each instantiation can be solved effy zer0. So the discrete entries of the candidate matilces
ciently and very quickly by contemporary computationallpac gre ynable to provide a good approximation. dsncreases,
ages [73], [74]. State-of-the-art solvers can obtain swhst 5 gimjlar effect happens. However, for intermediate values
for ILP problems at an average computation complexity ¥he minimum can be found. Figl 1(b) shows details in the
0 (N) [75] or &(NlogN) [70]-[72]. Finally, we determine the \;cinity of the optimum. The curves shown in Figl 1 are

global optimum valuex* according to: piecewise concatenations of parabolae. This is due to the
a* = argminError(a), (5) Quadratic nature of the coefficients— a -m; j)? of the linear
a programming problem in[{3). Each parabola is linked to a

which can be solved by simple minimization over a vectgrarticular approximate candidate



0.2 : : : including the Alippi and Storti-Gajani (ASG) approxima-
tion [83], the piecewise linear approximation of a non-
linear function (PLAN) [84], and simple linear [58] and

0.15} ) J .
quadratic [[79] approximations. Based on these approxima-

5 tions, we derived expressions for the tanh-sigmoid appnexi

5 01r ] tions as shown in Tablé I. We adopted an 8-bit representation

for a resulting in the following approximate valua:="7/4.

0.05}
F. Complexity
00‘25 0‘5 0‘75 1 As a consequence of the above approximations, we have
' 'Expansion factor substantial savings in computation costs. Indeed, a sirajle

@ of the originalN x N matrix M requiresN? multiplications

of floating-point entries per pixel. On the other hand, the
0.08 ' ' ' ' ' proposed approximatiohl contains only small integers that
can be very efficiently encoded with minimal number of
adders|[658]. Similarly, the expansion factot can be given
a truncated rational approximation in the form of dyadic
rationals. The same rationale also applies to the remaining
computational structures of the original ConvNet. Thug th
final resulting structure is fullynultiplierless—only additions
and bit-shifting operations are required. In terms of hamehw
realization, the number of arithmetic operations tramsiato

0.06

0.04f

Error

0.02f

0 : : : : : chip area and power consumption|[85],1[86]. Thus, in limited
0.29 O‘EX ar?s'iiln fac?c'jz 0.33 034 resource scenarios (e.g., embedded systems and wiretess se
P sors), approximations may provide an effective way of porti
®) large ConvNets into physical realization.
Fig. 1: Approximation error for the particular matriddo: 10 Summarize, the proposed approximation approach con-
(a) error curve over the considered search intervalofand ~ SISts of:
(b) detailed view around the optimum value @f (i) finding approximate convolutional filter by solvingl (1)
for each exact convolutional filter from a given ConvNet;
(i) converting scaling factors, sub-sampling coefficgrand
Notice that the low-complexity matriX* is expressed in bias values into CSD representation aiming at the min-
terms of small integers, which can be given simple binary  imization of computation costs and multiplicative irre-
expansions (e.g., 22 26 — 24— 22). Similarly, we have that ducibility:
a* =0.30931~ 22 +27 - 2¢ = 0.30859375. o (ili) approximating the activation function to a simple fun
Therefore, considerind{(6), the actual fully multipliese tion.
approximation is furnished by:
20 13 10 -3 -3 V. EXPERIMENTS
. 18 28 26 20 1 We studied the effectiveness of the proposed approximation
M=(2%42°-21.1-9 10 22 16 15. approach on two classical computer vision problems: () a
-6 -7 2 11 10 binary and (ii) a multi-class classification problem. Thestfir
-19 -16 -4 3 2 application is face detection, where the ConvNet classifies

age regions as face or non-face. The second one is handwritte
digit recognition, where the trained model is used to cfgssi
Although there are several types of activation functiong, given image patch into one of the ten digits “0” to “9”.
we focus our analyses on the continuous tanh-sigmoid furor each of the two applications, we trained a ConvNet in
tion, which is defined according to the hyperbolic tangest classical way and evaluated its performance in terms of
function [53]. As indicated in[[53],[[77], the mathematicaprecison and recall, for the given application.
expression for the tanh-sigmoid functon is given by: The first ConvNet is relatively small, whereas the second
. model (for digit recognition) contains much more parangeter
9(x) =a-tanf(b-x), (7) We aim at demonstrating that our proposed approach is able
where a = 1.7159 andb = 2/3. This particular activation to effectively process larger networks.
function has been originally proposed by LeCunl[78] and After approximating the parameters of the models, we
adopted in several working models as the Convolutional Facempared their performance with their respective original
Finder (CFF)[[6]. exact versions. Note that we do not aim at improving the
In [58], [6Q], [79]-[82], approximations for the relatedstate-of-the-art in face detection or hand-written digitag-
sigmoid function given by = 1/(1+ e *) were examined, nition. Indeed, current literature presents concrete glarof

E. Activation Function Approximations



TABLE I: Approximations for the tanh-sigmoid

1, X< =5,
I1xJ|-x x_1 —Raox<c1
L) 1T x<0, N EEE g ~X< %
ASG-based o1 (x) =4a- IR " PLAN-based 03(x) =4-{ 3, —1<x<1,
o x=0 x+1 1<x< ¥,
T+ B <x<5,
1, X>5.
1, x<-4, -1, x<-2,
Linear | o3(x)=a-q 3, —4<x<4, | Linearll o4(X) =a-q¢3, —2<x<2,
1, X>4. 1, X> 2.
-1 X< —4, -1, X< =2,
, L J34+12%2-1, —-4<x<0, _ L J(3+12%-1, —2<x<0,
Quadratic | 0gg(x) = a- (3+1) ) SX< Quadratic Il gg(x) =4&- (3+1) 5 SX<
1-(5+1)7 0<x<4, 1-(3+1)7 0<x<2,
1, X> 4. 1, X> 2.

complex models, such as multi-view or part-based detectors TABLE II: Arithmetic cost for CFF-based models
for face detection[[87] and huge ensemble classifiers for

digit recognition [88]. Our goal is to demonstrate—based  Model Operation
on common representative models—that the complexity of a Mult. Add. CSD Add. Bit-shifting
given trained ConvNet model can be reduced significantly by =, 832 843 i i
approximating its parameters while maintaining a very kimi Ay 0 843 235 346
performance. _ _ Az 0 843 251 362
Hereafter an approximate network based on dyadicZet As 0 843 377 488
is referred to a%\. A, 0 843 457 568
As 0 843 506 617
A. Binary Classification Ag 0 843 756 867
Our first set of experiments employs a ConvNet that was A7 0 843 842 953
trained for face detection in grey-scale images. Thus, such As 0 843 1028 1139

network is a binary classifier that decides whether the given

input image is a face or not. As a working model, we selected

the classical face detector called Convolutional Face éfinccients and bias terms with their closest CSD representation

(CFF) proposed by Garcia and Delakis [6]. This model is @sing 8 bits, being 7 bits for the fractional part.

relatively “light” ConvNet with an input size of 3236 and six ~ Table[T] lists the arithmetic costs of the exact ConvNet

layers: four layers alternating convolution and averagglipg compared to its approximations. Floating-point multiglic

operations, with 4, 4, 14, and 14 maps, respectively, faldw tions, direct additions, additions due to the CSD expansion

by 14 neurons and one single final output neuron. The find bit-shifting operations were counted. The exact strect

convolution layer contains four filters of size<®, the second requires both floating-point multiplications and addigorn

one contains 20 filters of size»33, and the 14 neurons of contrast, the approximate methods completely elimindtes t

the first neuron layer are treated as convolutions of size 6need for multiplications at the expense of much simpler

7, each neuron being connected to only one map. Pooliagerations: additions and bit-shifting operations. Beeathe

maps contain a single coefficient, and all maps and neur@pproximate quantities can be easily represented in fixed-

have an additional bias. The entire ConvNet has 951 tragnabbint arithmetic representation, it is suitable for harowa

parameters in total. A thorough description of this patticu implementation. Additionally, the hardware implemerdatof

ConvNet is supplied in[6]. The employed activation funatio bit-shifting operations require virtually no cost, beoautscan

is the exact continuous tanh-sigmoidal function as detailde implemented by simple physical wiring. As a result, we

in (@). have a very favorable trade-off: multiplications are exujed
After training the ConvNet as described in [6], we approXor additions.

imated all the convolution filter matrices with low-compilgx In order to analyse the effect of the approximation on

versions. We created several approximations using therdift the actual performance of the ConvNet, we evaluated the

sets of dyadic rationals described in the previous sectiatifferent versions on three standard face detection beadksn

D,9,...,9. We also replaced all average pooling coeffiFDDB [89] (2845 images), AFW[[90] (205 images), and



Pascal Faces dataset [91] (851 images); and we used the
improved annotation and evaluation protocol proposed by
Mathiaset al. [87].

TablesIlIfM show the average precision rates for different
combinations of sigmoid and weight matrix approximations
relative to the exact model for the three datasets.

Overall, the “Linear 11" sigmoid approximation provides
the best results, followed by “ASG”, “Quadratic I”, and-
“PLAN". In terms of weight matrix approximationg\;—As
generally give unsatisfactory results, aAd performs best.
Also, it is interesting to note that the finer approximation

precision

Ag gave worse results thaf;. We further evaluated some Ag "n%);?‘ﬂ
variants, where different layers of the ConvNet have been 05 Az linear Il - - - 1
approximated with different sets of dyadic rationals. Facts ﬁ7,4,4,4 ::223: ” """
mixed approximate structures, we have denoted them by 0.4 1666 7 : :
A j ki, where the subscripts indicate the selected dyadic set 04 0.45 05 0-55 06 0.7
for each layer. In other words, indicésj indicate that the recall
dyadic setsZ and %, respectively, are employed in the first (@)
two convolution layers; and similarly, indicés| correspond
to the adoption of the dyadic set8c and %, respectively, 1 x x x
for the two final fully-connected layers. We found that the 3 T
first layer requires a finer approximation than the otherisye 09 R .
This allowed us to maintain a good performance with very e
low-complexity approximations (e.gAs, A4) for these later 08 | T ,
layers. This can be explained according to the foIIowing'g 3 )
(i) by its own very nature, the layers have different degreeg 7 | T il
of importance; (ii) errors in initial Ia)_/__ers tend to propwa £ '
throug_h the succeeq[ng layers; and (iii) error propagatim 06 | |
potentially be amplified along the layers. FIg. 2 shows the exact
receiver operating characteristic (ROC) curves of the best Ag linear I

: Lo 05| A linearll - - - 1
performing approximations for the three datasets. A744Z linear Il -----.

These results are quite impressive given the fact that we A7.6.,6,6 inear Il - 1
considerably reduced the precision of each parameter of the 0'40.4 0.45 05 0.55 0.6
ConvNet, and given the highly non-linear classificationbpro recall
lem where the frontier between the face and non-face classes )

can be very thin and complex.

Fig. [3 shows some face detection results from the exact
model (top) and the approximatidy 3 3 3 (bottom), i.e. a finer
approximation for the first layer and a very coarse one for the
rest of the layers. The results are almost identical.

B. Multi-class Classification

We studied a second case where a ConvNet has beeén
trained for a classical multi-class classification prohle¢he
MNIST hand-written digit recognition datasét [92]. To show
that the proposed approximations can also be applied terarg

(]
(3]
[0)
e
Q

networks we trained a ConvNet with a different architecture A Iin%);?(ﬁ
containing again six layers but much more maps and around 0.5 | As linear Il - - - .
180000 parameters and more than 5300 matrices in total. ﬁ7,4,4,4 :i”eaf” ------
The input is a 3% 32 grey-scale image, and the network is 04 7.6.6.6 near ) 1
0.4 0.45 0.5 0.55 0.6

composed of five convolution mapsx% kernels) followed by

five average pooling maps (connected one-to-one), 50 convo-
lution maps (3x 3, fully connected), 50 average pooling maps
(connected one-to-one), 100 neuronsx(6 matrices, fully

recall

(©

connected), and the 10 final output neurons correspondingfi§- 2: ROC curves for the (a) FDDB, (b) AFW, and (c) Pascal
the 10 digits to classify. datasets comparing the face detection performance of the

After having trained this ConvNet model on the MNISTOriginal (exact) ConvNet model with different approxineats.
dataset, we approximated all the convolution filters, tHifu



TABLE IlI: Average precision for CFF with the FDDB test setdadifferent approximations relative to the exact model

|Exact ASG PLAN Linear| Linearll Quadratic| Quadratic Il

Exact | 1.000 0.953 0.894 0.002 0.988 0.887 0.938
A1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ay 0.001 0.001 0.000 0.000 0.001 0.000 0.002
Az 0.549 0.311 0.432 0.005 0.510 0.426 0.180
A4 0.523 0.602 0.365 0.001 0.558 0.383 0.602
As 0.490 0.098 0.517 0.000 0.657 0.510 0.073
Ag 0.938 0.914 0.817 0.002 0.888 0.797 0.949
A7 0.960 0.943 0.847 0.002 0.963 0.848 0.935
Ag 0.821 0.792 0.648 0.001 0.810 0.650 0.793

A7z333 | 0.917 0.902 0.886 0.003 0.947 0.888 0.851

Az444 | 0967 0.931 0.855 0.000 0.976 0.861 0.928

Azeee | 0.959 0.907 0.862 0.004 0.959 0.863 0.933

TABLE IV: Average precision for CFF with the AFW test set aniffetent approximations relative to the exact model

|Exact ASG PLAN Linear| Linearll Quadratic| Quadratic Il

Exact | 1.000 0.839 0.829 0.000  1.041 0.797 0.383
A, | 0000 0.000 0000 0.000  0.000 0.000 0.000
A; | 0001 0.001 0000 0.000  0.000 0.000 0.000
As | 0220 0041 0260 0004  0.199 0.248 0.014
A; | 0422 0356 0317 0000  0.457 0.336 0.275
As | 0220 0015 0314 0000 0217 0.251 0.002
As | 0864 0794 0715 0000  0.893 0.694 0.700
A; | 0978 0.844 0753 0.000 0.985 0.755 0.614

As | 0698 0553 0576 0.000  0.565 0.544 0.169
Azzss | 0.955 0525 0.835 0.004  0.914 0.816 0.184
Azass | 1.020 0.827 0755 0.000 0.954 0.761 0.576

Azses | 0.967 0.881 0.787  0.000 0.979 0.788 0.827

TABLE V: Average precision for CFF with the “Pascal facesstteet and different approximations relative to the exaateho

|Exact ASG PLAN Linear| Linearll Quadratic| Quadratic Il

Exact | 1.000 0.933 0.774 0.001  1.039 0.747 0.893
Ai | 0001 0001 0000 0000  0.001 0.001 0.001
A; | 0006 0.006 0004 0000  0.006 0.003 0.009
As | 0234 0128 0239 0000  0.234 0.230 0.098
A; | 0357 0375 0259 0001  0.361 0.258 0.370
As | 0433 0143 0386 0000  0.449 0.345 0.101
As | 0.862 0.844 0656 0.000  0.894 0.638 0.847
A; | 0917 0879 0707 0001 0.971 0.702 0.889
As | 0725 0700 0520 0001  0.697 0.517 0.617
Azzssz | 0.899 0752 0755 0.004  0.899 0.752 0.645
Azass | 0930 0.889 0710 0.000 0.967 0.708 0.906
Azges | 0.931 0.906 0.725 0.004 0.970 0.722 0.916
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coarse approximation, the results are very close. In thergetast image, the approximate model even detects an @aialiti
face, missed by the original CFF. However, in the last exanapfalse detection is produced.

TABLE VI: Arithmetic cost for MNIST-based models

0.998 T T T T

Model Operation ]

Mult. ~ Add. CSD Add. Bit-shifting 0.996 1
Exact 183375 178110 - -
A 0 178110 12740 23325 g5 099 1
A 0 178110 12722 23307 2
Az 0 178110 49127 59712 & o002 ]
Ay 0 178110 61228 71813 Aqlineardl - - -
As 0 178110 65211 75796 Aglinearll - T
Ag 0 178110 141401 151986 099 | Aslinear’ RN

6 . * )
A7 0 178110 158595 169180 Aplinearl - - -
Ag 0 178110 188417 199002 0.988 g Mo - : MR
0.95 0.96 0.97 0.98 0.99 1

recall

connected layer matrices and the activation functions whi€ig- 4: ROC curves for the MNIST hand-written digit clas-
is based on the tanh-sigmoid function. Again, all poolin ification test set compar_lng_the perfo_rmance of the orlgina
coefficients and bias terms were replaced by their closest c&xact) ConvNet model with its approximations.
representation using 8 bits. The computation cost of thetexa
and approximate structures is shown in Tdble VI. Similaoly t
the previous experiment, the approximate models haveytotaf- Large-Scale Deep Neural Networks
eliminated the multiplicative costs. Floating-point hanitetic is Finally, we applied our approximation approach to a deeper
not required; being fixed-point arithmetic adequate. Thet ciand more complex network architecture, the well-known
of the extra additions due to the CSD representation is VesyexNet proposed by Krizhevskst al.[12], and the ImageNet
low compared to the multiplicative cost required by the éxagataset[[13] for image classification with 1000 classess Thi
model. The cost of bit-shifting operations is negligible.  model contains more than.2 million matrices and 5096
Table [VIl shows the relative classification rates on theectors. We approximated all convolution filter matrices of
MNIST test set for the different approximations, and Hiy. #he fully-trained 8-layer ConvNet using two different sefs
depicts the respective ROC curves of the best-performidgadic rationals for different layers, a very coarse @gtand

approximations (combined for the 10 classes). a slightly finer setZ:
The results show that the approximations, although very 1 1 11
coarse, have a very small effect on the overall performafce o Dy = {—27 -1, 3 —§,0, 33 1,2},
the ConvNet. In a multi-class setting, the trained Convldet,
. . . . 1 1 1 111
least in this particular case, is much more robust to theiloss D=1 —2,—1, 5’_1’_@0’5’ 7 5,1,

precision of the weights induced by our approximation saliem
compared to the binary classifier. For example, a very coarsgain, all other coefficients are approximated by their ekis

approximation likeAz3 11 leads to a relative performance8-bit CSD representation. The pooling layers do not have
decrease of less than 1%. any coefficient here, and only linear and Rectified Linear



TABLE VII: Mean classification

10

rates for the MNIST test setdadifferent approximations relative to the exact model.

| Exact ASG PLAN Linear!| Linearll Quadratic| Quadratic I
Exact | 1.0000 1.0000 0.9847 0.9680 0.9978 1.0000 1.0000
Ay 0.9684 0.9684 0.9588 0.9260 0.9615 0.9684 0.9684
A 0.9643 0.9643 0.9627 0.8805 0.9573 0.9643 0.9643
Az 0.9961 0.9961 0.9848 0.9655 0.9944 0.9961 0.9961
Ay 0.9973 0.9973 0.9863 0.9700 0.9969 0.9973 0.9973
As 0.9976 0.9976 0.9866 0.9666 0.9969 0.9976 0.9976
Ag 0.9991 0.9991 0.9868 0.9701 0.9973 0.9991 0.9991
A7 0.9992 0.9992 0.9846 0.9680 0.9977 0.9992 0.9992
Ag 0.9994 0.9994 0.9848 0.9675 0.9981 0.9994 0.9994
Azzi1 | 0.9931 0.9931 0.9749 0.9625 0.9924 0.9931 0.9931
Az111 | 0.9891 0.9891 0.9684 0.9580 0.9866 0.9891 0.9891
Ag411 | 0.9937 0.9937 0.9780 0.9618 0.9943 0.9937 0.9937
As111 | 0.9885 0.9885 0.9655 0.9572 0.9872 0.9885 0.9885

TABLE VIII: Classification accuracy and top-5 accuracy fof,se cases: one smaller ConvNet for face detection, a larger
ImageNet and different approximations relative to the exaggnyNet for hand-written digit classification, and a muchreno

AlexNet model

Absolute Relative
Accuracy Top-5 Accuracy Top-5
Exact 0.5682 0.7995 1.0000 1.0000
Ag 0.4862 0.7288 0.8558 0.9117
Ao 0.5463 0.7820 0.9616
A10999099 0.5423 0.7794  0.9544
A1010909909 | 05442 0.7796  0.9578

complex, deep ConvNet for large-scale image classification
For all three models, our proposed scheme was able to
produce low-complexity approximations without a signifita
loss in performance.
These results suggest that huge reductions in computationa
complexity of trained ConvNet models can be obtained, and

0.9782  extremely efficient hardware implementations can be redliz

0.9750  Further studies need to be undertaken to analyse the impact o
type of approximations for more use cases and different

0.9751 this

architectures.

Units (ReLU) are used as activation function, which are
already of very low complexity and thus do not require any

approximation.

I [
We used the ImageNet 2012 validation set to evaluate

1]

our different approximations. And, as usual in the literafu [2]
we compute the classification accuracy as well as the top-
5 accuracy for the 50000 test images. Tdble IVIII shows thg;
results. The approximatioA;g with the set2; gives the
best performance, with a relative decrease in accuracy of
only 3.84% and 218% on the top-5 accuracy. However, ass
the following line shows, we can achieve almost the same
performance using the coarser s@y for all convolution
layers except the first one. This again suggests that a fingj
approximation of the first layer is required to prevent a ticas

performance drop.

V. CONCLUSION

(6]

(7]

We presented a novel scheme for approximating the pa-
rameters of a trained ConvNet, notably the convolutionrlte g
neuron weights, as well as pooling and bias coefficientsi- Act

vation functions were also approximated. The particufaoit
the matrix approximations is that they allow for an extregme

I El

efficient implementation—software or hardware—using only
additions and bit-shifts, and no multiplication. We thogbly
evaluated the impact of this parameter approximation measﬁo]
ing the overall performance of ConvNets on three different
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