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Low-complexity Approximate
Convolutional Neural Networks

Renato J. Cintra,Senior Member, IEEE, Stefan Duffner, Christophe Garcia and André Leite

Abstract—In this paper, we present an approach for mini-
mizing the computational complexity of trained Convolutional
Neural Networks (ConvNet). The idea is to approximate all
elements of a given ConvNet and replace the original convo-
lutional filters and parameters (pooling and bias coefficients;
and activation function) with efficient approximations capable of
extreme reductions in computational complexity. Low-complexity
convolution filters are obtained through a binary (zero-one) linear
programming scheme based on the Frobenius norm over sets of
dyadic rationals. The resulting matrices allow for multiplication-
free computations requiring only addition and bit-shiftin g opera-
tions. Such low-complexity structures pave the way for low-power,
efficient hardware designs. We applied our approach on threeuse
cases of different complexity: (i) a “light” but efficient ConvNet
for face detection (with around 1 000 parameters); (ii) another
one for hand-written digit classification (with more than 180 000
parameters); and (iii) a significantly larger ConvNet: AlexNet
with ≈1.2 million matrices. We evaluated the overall performance
on the respective tasks for different levels of approximations. In
all considered applications, very low-complexity approximations
have been derived maintaining an almost equal classification
performance.

Index Terms—Convolutional Neural Networks, Approxima-
tion, Optimization, Numerical Computation

I. I NTRODUCTION

Since their introduction in the 1990s by LeCunet al. [1],
convolutional neural networks (ConvNets) have proven to be
very powerful in many challenging computer vision tasks,
such as hand-written character recognition [1], [2], embed-
ded text detection and recognition [3], [4], automatic facial
analysis [5]–[7], traffic sign recognition [8], pedestriande-
tection [9], vision-based navigation [10], and house numbers
recognition [11], just to cite a few. Although state-of-the-art
results have been reached in many different fields, ConvNets
have become very popular only recently with the impressive
results obtained by Krizhevskyet al. [12] in the recognition
task, followed by Simonyan and Zisserman who won the
localization challenge at the Large-Scale Visual Recognition
Challenge (ImageNet) 2014 [13].

The main property of ConvNets is their capability for auto-
matic extraction of complex and application-suitable features

Manuscript received. . .
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from raw data (e.g., pixels in computer vision). To do so, they
integrate a pipeline of convolution and pooling layers gener-
ally followed by a multi-layer perceptron, jointly performing
local feature extraction and classification (or regression) in a
single architecture where all parameters are learnt using the
classical error back-propagation algorithm [14]. Traditionally,
ConvNets are used for image processing tasks and, to this end,
they are often applied on small regions of a bigger image in
a sliding-window framework, for instance to detect an object.
Because of weight sharing, each layer essentially performs
convolution or pooling operations using small kernels inside a
“retina”, and when applied to a large image, the replicationof
the ConvNet operation over all positions in the image can be
significantly optimized by performing each convolution over
the full image at once, efficiently implementing a full image
transformation pipeline.

However, during training and when applying the trained
ConvNet, there is still a significant number of floating-point
computations (multiplications and additions). In order toaccel-
erate these operations, most current approaches and available
software rely on parallel computing using GPUs [12], [15]
facilitated to some extent by the inherently parallel architec-
tures of ConvNets. The recent trend in “deep learning” to use
more and more complex models with millions of parameters
requires enormous amounts of computational resources, in par-
ticular for training the models but also for applying the learnt
ConvNets. Reducing the computational complexity of these
models is thus of great interest to the research community as
well as to industry. Moreover, such reduction in complexity
of ConvNets is necessary to implement them on devices with
limited resources (such as mobile devices) in order to operate
at acceptable speed, for example for real-time applications,
and reduce the overall power consumption.

In this paper, we focus on drastically reducing the compu-
tational cost itself by proposing a post-training approximation
scheme aiming at replacing all parameters of a ConvNet with
low-complexity versions. That is, for the convolution filters,
only additions and bit-shifting operations are performed—
no multiplication is necessary. Additionally, the activation
function is sought to be replaced with low-complexity alterna-
tives. Formulated as an optimization problem, we adopt matrix
approximation techniques based on the Frobenius norm error
and dyadic rational numbers represented in terms of Canonical
Signed Digit (CSD) encoding.

Indeed, a sound approximation theory is a necessary step
to facilitated hardware development. This is illustrated in the
case of image compression where the most efficient coding
schemes are based on approximate matrices realized in dedi-



2

cated hardware [16]–[19]. We aim at introducing an approach
for approximating CNNs in order to pave the way for future
efficient dedicated hardware design.

This work is organized as follows. Section II provides a
literature review on the efficient numerical implementation
of neural networks and, in particular, ConvNets. Section III
details our approach for approximating the elements of a
given ConvNet aiming at designing low-complexity structures.
In Section IV we present the results of our experimental
evaluation of the proposed approach for two typical ConvNet
architectures. We assess the approximate ConvNets relative to
their exact counterparts in terms of several figures of merit.
We conclude the paper in Section V.

II. RELATED WORK

Although GPU implementations [20] allow for fast training
and application of ConvNets on sufficiently equipped plat-
forms, their integration on embedded systems for real-time
applications may be more difficult due to the limited amount
of available resources on these devices, which usually requires
a good trade-off between performance and code size. Several
previous works have tackled this problem. In early works [21]–
[23] weight parameters of neural networks have been rep-
resented as power-of-two integers. Thus all multiplications
can be operated as simple bit shifts. Direct training of these
networks was also possible by keeping a floating-point version
of each weight parameter, or otherwise use a technique called
“weight dithering” [24]. Simard and Graf [25] extended this
idea by encoding all other parameters as powers of two except
the weights, i.e. neuron activations, gradients, and learning
rates. Later, Draghici [26] conducted a broader analysis on
the computational power of neural networks with reduced
precision weights. Recently, Machadoet al. [27] proposed a
specific approximation scheme for sparse representation learn-
ing using only values of powers of two, and they integrated
this quantization into the learning process. Finally, in the work
of Courbariauxet al. [28], all weights are encoded as binary
values (1-bit), and for the training a floating-point version
is still needed. Similarly, Kim and Paris [29], proposes a
completely binary neural network. However, an initial real-
valued training phase is required.

More recently, special attention has been paid to hardware
implementations of ConvNets, especially on FPGAs. In [30],
for example, a high-level optimization methodology is ap-
plied to the implementation of the CFF face detector [6].
They propose algorithmic optimizations and advanced memory
management and transform the floating-point computation into
fixed-point arithmetic. Interestingly such coarse approximation
could furnish very similar detection rates and low false-alarm
rates on referenced datasets, for a roughly sevenfold gain of
speed. Later, this work has been extended in [31], where
the authors present for the first time several implementations
of the CFF algorithm on FPGA, with a parallel architec-
ture composed of a Processing Element ring and a FIFO
memory, which constitutes a generic architecture capable of
processing images of different sizes. Farabet and LeCun [32]
also propose a scalable hardware architecture to implement

large-scale ConvNets, with a modular vision engine for large
image processing, with FPGA and ASIC implementations.
Chakradharet al. [33] present a dynamically configurable
FPGA co-processor that adapts to complex ConvNet archi-
tectures exploiting different types of parallelism. A verylow-
complexity ASIC design of ConvNets has been developed by
Chen et al. [34], allowing for very high execution speeds
and power consumption of state-of-the-art ConvNets. Finally,
Zhanget al. [35] propose a FPGA design strategy and algorith-
mic enhancements to optimize the computational throughput
and memory bandwidth for any given ConvNet architecture.

Other recent works have focused on thealgorithmic and
memoryoptimizations of large-scale ConvNets. For example,
Mamaletet al. [36] proposed different strategies for simpli-
fying the convolutional filters (fusion of convolutional and
pooling layers, 1D separable filters), in order to modify the
hypothesis space, and to speed-up learning and processing
times. These convolutions can also effectively be performed
by simple multiplications of the filters with the respective
input images in the frequency domain [37]. However, due to
the overhead of the FFT, there is only a computational gain
with larger filter sizes, and if a given filter can be reused
consecutively for many input images. Vanhouckeet al. [38]
presented a set of different techniques to accelerate the compu-
tation of ConvNets on CPU, mostly for Intel and AMD CPUs,
exploiting for example SIMD instructions, memory locality,
and fixed-point representations. Also, many recent works [39]–
[46] have focused on reducing the complexity of convolution
or fully-connected layers of large-scale ConvNets by replacing
the high-dimensional matrix or tensor multiplications with
several low-rank matrix multiplications using different low-
rank factorization methods, either at test-time or both for
training and testing. Although, large gains in computational
and memory resources can be obtained on complex ConvNets,
these optimizations do not focus on hardware implementation
and low-power constraints.

As opposed to many previous works that integrate the ap-
proximation process into the learning [47]–[51], our approach
operates on existing fully-trained models, that originally may
have been aimed for standard PCs or more powerful archi-
tectures. Thus, our approximation scheme allows to integrate
these models into hardware with much fewer resources.

III. A PPROXIMATION APPROACH

A. General Goal

Our goal is to derive low-complexity structures capable of
reducing the computational costs of a given ConvNet. Ideally,
the following two conditions are simultaneously expected to
be satisfied:

(i) the computational elements of the ConvNet (convolu-
tional filters, sub-sampling coefficients, bias values, and
sigmoid function calls) are replaced by corresponding
low-complexity structures;

(ii) the performance of the ConvNet is not significantly
degraded.

However, addressing both above conditions proves to be a
hard task. In particular, the large number of variables, the
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non-linearities, and extremely long simulation times prevents
such approach. Also, to the best of our knowledge, literature
furnishes no mathematical result linking the approximation of
individual ConvNet elements and the final ConvNet perfor-
mance. Thus, we adopt a greedy-like heuristic which consists
in individually simplifying each computational structureof a
ConvNet in the hope of finding a resulting structure capable
of good performance [52].

In a ConvNet two main types of mathematical elements
are found: (i) matrix structures and (ii) activation functions.
The matrix structures are represented by convolution filter
weights, sub-sampling operations, and bias values; whereas
the activation function is usually a non-linear function, such
as the threshold, piecewise-linear, and sigmoid functions[53].

To approximate these two classes of elements, different
tools are required. For the matrix-based structures, we selected
matrix approximation methods as a venue to derive low-
complexity computational elements [54]–[57]. For the activa-
tion, we separate methods capable of approximating functions
with efficient digital implementation [58]–[60].

B. Low-complexity Matrix Structures

In [54], [57], [61]–[64], several methods for deriving ap-
proximations of discrete transform matrices—such as the
discrete cosine transform [65]—were proposed. LetM be an
N×N given matrix. For instance,M can be a convolutional
filter. In this case, a computational instantiation ofM applied
to evaluate a single output pixel requires in principleN2

floating point multiplications. A typical ConvNet may contain
thousands of convolutional filters. For example, the classical
architecture described in [12] contains 244,760 filters, which
is nowadays considered a relatively small network. Therefore,
to minimize such a significant computational cost, we aim at
obtaining a low-complexity matrix̂M capable of satisfying the
following relation in an optimal sense:M ≈ M̂ . The matrixM̂
is said to be an approximation forM . Such approximate convo-
lutional filters would allow the realization of computationally
intensive ConvNets in limited resources architectures.

In this paper, a low-complexity matrix is a matrix of dyadic
rational entries. Dyadic rational numbers are fractions of
the form m/2n, where n is a positive integer andm is an
odd integer. Such numbers are suitable for binary arithmetic.
Indeed, a multiplication by a dyadic rational consists of a
multiplication bym followed by a right shift ofn bits. Because
m is an integer, we can take full advantage of fixed-point
arithmetic. Indeedm can be given a binary representation
with minimum number of adders, aiming at multiplicative
irreducibility. Multiplicative irreducibility is attained whenever
the minimum number of additions to implement a multipli-
cation by m is equal to the number of ones in the binary
representation ofm [64]. Multiplicative irreducibility is often
obtained when the CSD representation is considered [66].
Therefore, a multiplication bym can be converted into a
sequence of additions and bit-shifting operations. As a con-
sequence, low-complexity matrices are multiplierless, a very
desirable property as floating-point operations are much more
costly than additions and bit-shifting operations.

Standard methods for matrix approximation include: inspec-
tion [67], matrix parametrization [61], and matrix factoriza-
tion [68]. However, since a typical ConvNet may contain from
thousands to millions of filters, inspection-based approaches
are not feasible. Methods based on the parametrization of the
matrix elements are also ineffective because (i) the elements of
convolutional filters are usually not clearly related, i.e., they do
not satisfy identifiable mathematical relationships and (ii) the
elements are not repeated. Additionally, ConvNet filters are not
expected to satisfy properties, such as symmetry and orthog-
onality, which favors the derivation of approximations. Thus,
methods based on matrix factorizations are less adequate.

C. Matrix Approximation by Linear Programming

We adopted a general approach to the problem of obtaining
M̂ according to a optimization problem as described below:

M̂ = argmin
T

error(M ,T) . (1)

The above optimization problem can yield better approximate
matrices if an expansion factorα is introduced [64]. By
adopting the usual Frobenius norm [56] as an error measure,
(1) can be recast according to the following mixed integer
nonlinear programming (INLP) setup [69]:

(α∗,T∗) = argmin
α ,T

‖M −α ·T‖2, (2)

where α > 0 is the real-valued expansion factor and‖ · ‖
is the Frobenius norm [56]. The choice of the Frobenius
norm is justified by the following argument. An approximate
CNN must have its elements numerically ‘close’ to elements
from the exact CNN. Therefore, a measure that takes into
consideration distance in a energy-based manner (euclidean
distance sense) emerges naturally as a means to guarantee that
the approximate filtering structures (e.g., convolution kernels)
are close to the exact counterpart. The Frobenius norm satisfies
the above rationale. This analysis is confirmed in [39].

To ensure that the candidate matricesT have low complex-
ity, we limited the search space of the above problem to the
matrices whose elements are defined over a sets of dyadic
rationalsD . Some particular sets are [57], [67]:

D1 ={−1,0,1} ,

D2 ={−2,−1,0,1,2},

D3 ={−4,−3,−2,−1,0,1,2,3,4},

D4 =

{

−4,−3,−2,−1,−
3
4
,−

1
2
,−

1
4
,0,

1
4
,
1
2
,
3
4
,1,2,3,4

}

,

D5 =

{

−7,−6,−5,−4,−3,−2,−1,−
3
4
,−

1
2
,−

1
4
,0,

1
4
,
1
2
,
3
4
,1,2,3,4,5,6,7

}

,

D6 =

{

−4,−
15
4
,−

7
2
,−

13
4
, . . . ,

13
4
,
7
2
,
15
4
,4

}

,

D7 =

{

−5,−
19
4
,−

9
2
,−

17
4
, . . . ,

17
4
,
9
2
,
19
4
,5

}

D8 =

{

−7,−
27
4
,−

13
2
,−

25
4
, . . . ,

25
4
,
13
2
,
27
4
,7

}

.
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SetsD6, D7, andD8 possess uniformly spaced rationals.
A straightforward way of addressing (2) is as follows.

Considering a given set of dyadic rationalsD , for each element
of α ·T, we simply find the closest neighbour of such element
in D. Such approach can be efficiently implemented by means
of binary search. However, this approach is only effective as
long as (2) remains an unconstrained optimization problem.
Alternatively, we can consider a more flexible approach based
on integer linear programming (ILP).

For fixed values ofα, the mixed INLP problem posed in (2)
can be efficiently solved by means of binary (zero-one) linear
programming. In other words, we aim at converting a nonlinear
problem into a linear one. Indeed, letmi, j , i, j = 1,2, . . . ,N,
denote the entries ofM and r ∈ D be a dyadic rational. We
adopt the following binary decision variables:

xi, j(r) =

{

1, if ti, j = r,

0, otherwise.

For binary (zero-one) variables we havey2 = y, wherey is a
dummy variable. This fact paves the way for the linearization
of the above-mentioned optimization problem. Therefore, (2)
can be re-written according to the following binary linear
programming problem [70]–[72]:

min
xi, j (r)

N

∑
i=1

N

∑
j=1

∑
r∈D

(mi, j −α · r)2 ·xi, j(r), (3)

subject to

∑
r∈D

xi, j(r) = 1, i, j = 1,2, . . . ,N.

The above constraint is to ensure that each elementmi, j is
approximated by a unique dyadic rational inD . The solution
of the above problem is denoted asx(α)

i, j , i, j = 1,2, . . . ,N, r ∈
D , being linked to the choice ofα. Such binary (zero-one)
solution can be employed to compute the actual entriest(α)

i, j
of the low-complexity matrix associated to the consideredα
according to:

t(α)
i, j = ∑

r∈D

r ·x(α)
i, j (r). (4)

The resulting low-complexity matrix is denoted byTα . The
approximation error is implied by (2) and can be computed
according to:

Error(α) = ‖M −α ·Tα‖
2.

Because a sequence of values forα is selected, the above
problem is solved for each instantiation; furnishing the se-
quence of errors indexed byα: Error(α). Being a linear
programming problem, each instantiation can be solved effi-
ciently and very quickly by contemporary computational pack-
ages [73], [74]. State-of-the-art solvers can obtain solutions
for ILP problems at an average computation complexity in
O(N) [75] or O(N logN) [70]–[72]. Finally, we determine the
global optimum valueα∗ according to:

α∗ = argmin
α

Error(α), (5)

which can be solved by simple minimization over a vector

of values. Associated toα∗, we also obtainT∗ , Tα∗ , which
is the global optimal low-complexity matrix. Therefore, the
sought approximation̂M is given by:

M̂ = α∗ ·T∗. (6)

The above ILP approach allows the user to easily include
constraints to the optimization problem. This is relevant for
further investigation in this topic; in particular when specific
mathematical properties are expected to be enforced on the
resulting low-complexity matrices (for instance, 2D filternor-
malization [76, p. 115]).

We emphasize that the solving method for (2) is only re-
quired to be efficient enough to cope with the time constraints
at the design phase of the approximate neural network. In other
words, solvers available in contemporary optimization pack-
ages are suitable; and the choice of the particular method for
solving (2) is not a critical for our approach. Additionally, we
note that the optimization solver is simply a step for obtaining
the final neural network. Once the approximate structures are
found, optimization solver are clearly not required anymore.

D. Example

To illustrate the procedure, we selectedD8 and considered
the search space of the expansion factor to be the interval
[0.25,1] with a step of 10−3. Additionally, we consider the fol-
lowing particular convolutional filter employed in the ConvNet
described in Section IV-B:

M0 =











1.5200701 1.0317051 0.7906240 −0.2153791−0.2340538

1.3982610 2.1860176 2.0152923 1.5620477 0.8270900

−0.6848867 0.7470516 1.6923728 1.2537112 1.1946758

−1.2387477−0.5483563 0.1261987 0.8677799 0.7742613

−1.4691808−1.2178997−0.2924347 0.2172496 0.1325074











.

Solving (2) for the above matrix, we obtain:

α∗ = 0.30931,

T∗ =













5 3.25 2.5 −0.75 −0.75
4.5 7 6.5 5 2.75

−2.25 2.5 5.5 4 3.75
−4 −1.75 0.5 2.75 2.5

−4.75 −4 −1 0.75 0.5













=
1
4
·













20 13 10 −3 −3
18 28 26 20 11
−9 10 22 16 15
−16 −7 2 11 10
−19 −16 −4 3 2













.

Fig. 1(a) depicts the Frobenius norm error for varying values
of α (cf. 2). For very smallα, the values ofα ·M are close
to zero. So the discrete entries of the candidate matricesT
are unable to provide a good approximation. Asα increases,
a similar effect happens. However, for intermediate values
the minimum can be found. Fig. 1(b) shows details in the
vicinity of the optimum. The curves shown in Fig. 1 are
piecewise concatenations of parabolae. This is due to the
quadratic nature of the coefficients(r −α ·mi, j)

2 of the linear
programming problem in (3). Each parabola is linked to a
particular approximate candidateT.
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E
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Fig. 1: Approximation error for the particular matrixM0:
(a) error curve over the considered search interval forα and
(b) detailed view around the optimum value ofα.

Notice that the low-complexity matrixT∗ is expressed in
terms of small integers, which can be given simple binary
expansions (e.g., 22= 26−24−22). Similarly, we have that
α∗ = 0.30931≈ 2−2+2−4−2−8 = 0.30859375.

Therefore, considering (6), the actual fully multiplierless
approximation is furnished by:

M̂ = (2−4+2−6−2−10) ·













20 13 10 −3 −3
18 28 26 20 11
−9 10 22 16 15
−16 −7 2 11 10
−19 −16 −4 3 2













.

E. Activation Function Approximations

Although there are several types of activation functions,
we focus our analyses on the continuous tanh-sigmoid func-
tion, which is defined according to the hyperbolic tangent
function [53]. As indicated in [53], [77], the mathematical
expression for the tanh-sigmoid functon is given by:

φ(x) = a · tanh(b ·x), (7)

where a = 1.7159 andb = 2/3. This particular activation
function has been originally proposed by LeCun [78] and
adopted in several working models as the Convolutional Face
Finder (CFF) [6].

In [58], [60], [79]–[82], approximations for the related
sigmoid function given byy = 1/(1+ e−x) were examined,

including the Alippi and Storti-Gajani (ASG) approxima-
tion [83], the piecewise linear approximation of a non-
linear function (PLAN) [84], and simple linear [58] and
quadratic [79] approximations. Based on these approxima-
tions, we derived expressions for the tanh-sigmoid approxima-
tions as shown in Table I. We adopted an 8-bit representation
for a resulting in the following approximate value: ˆa= 7/4.

F. Complexity

As a consequence of the above approximations, we have
substantial savings in computation costs. Indeed, a singlecall
of the originalN×N matrix M requiresN2 multiplications
of floating-point entries per pixel. On the other hand, the
proposed approximation̂M contains only small integers that
can be very efficiently encoded with minimal number of
adders [66]. Similarly, the expansion factorα∗ can be given
a truncated rational approximation in the form of dyadic
rationals. The same rationale also applies to the remaining
computational structures of the original ConvNet. Thus, the
final resulting structure is fullymultiplierless—only additions
and bit-shifting operations are required. In terms of hardware
realization, the number of arithmetic operations translate into
chip area and power consumption [85], [86]. Thus, in limited
resource scenarios (e.g., embedded systems and wireless sen-
sors), approximations may provide an effective way of porting
large ConvNets into physical realization.

To summarize, the proposed approximation approach con-
sists of:

(i) finding approximate convolutional filter by solving (1)
for each exact convolutional filter from a given ConvNet;

(ii) converting scaling factors, sub-sampling coefficients, and
bias values into CSD representation aiming at the min-
imization of computation costs and multiplicative irre-
ducibility;

(iii) approximating the activation function to a simple func-
tion.

IV. EXPERIMENTS

We studied the effectiveness of the proposed approximation
approach on two classical computer vision problems: (i) a
binary and (ii) a multi-class classification problem. The first
application is face detection, where the ConvNet classifiesim-
age regions as face or non-face. The second one is handwritten
digit recognition, where the trained model is used to classify
a given image patch into one of the ten digits “0” to “9”.
For each of the two applications, we trained a ConvNet in
a classical way and evaluated its performance in terms of
precison and recall, for the given application.

The first ConvNet is relatively small, whereas the second
model (for digit recognition) contains much more parameters.
We aim at demonstrating that our proposed approach is able
to effectively process larger networks.

After approximating the parameters of the models, we
compared their performance with their respective original,
exact versions. Note that we do not aim at improving the
state-of-the-art in face detection or hand-written digit recog-
nition. Indeed, current literature presents concrete example of
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TABLE I: Approximations for the tanh-sigmoid

ASG-based σ1(x) = â·







−1+
1+ |⌊x⌋|−x

2
2|x|

, x< 0,

1−
1+ |⌊x⌋|−x

2
2|x|

, x≥ 0.
PLAN-based σ2(x) = â·















































−1, x<−5,
x
16−

89
128, −5≤ x<− 19

8 ,
x
4 −

1
4, − 19

8 ≤ x<−1,
x
2, −1≤ x< 1,
x
4 +

1
4, 1≤ x< 19

8 ,
x
16+

11
16,

19
8 ≤ x< 5,

1, x≥ 5.

Linear I σ3(x) = â·











−1, x<−4,
x
4, −4≤ x< 4,

1, x≥ 4.

Linear II σ4(x) = â·











−1, x<−2,
x
2, −2≤ x< 2,

1, x≥ 2.

Quadratic I σ6(x) = â·



















−1, x<−4,

( x
4 +1)2−1, −4≤ x< 0,

1− ( x
4 +1)2, 0≤ x< 4,
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1− ( x
2 +1)2, 0≤ x< 2,

1, x≥ 2.

complex models, such as multi-view or part-based detectors
for face detection [87] and huge ensemble classifiers for
digit recognition [88]. Our goal is to demonstrate—based
on common representative models—that the complexity of a
given trained ConvNet model can be reduced significantly by
approximating its parameters while maintaining a very similar
performance.

Hereafter an approximate network based on dyadic setDi

is referred to asAi .

A. Binary Classification

Our first set of experiments employs a ConvNet that was
trained for face detection in grey-scale images. Thus, such
network is a binary classifier that decides whether the given
input image is a face or not. As a working model, we selected
the classical face detector called Convolutional Face Finder
(CFF) proposed by Garcia and Delakis [6]. This model is a
relatively “light” ConvNet with an input size of 32×36 and six
layers: four layers alternating convolution and average pooling
operations, with 4, 4, 14, and 14 maps, respectively, followed
by 14 neurons and one single final output neuron. The first
convolution layer contains four filters of size 5×5, the second
one contains 20 filters of size 3×3, and the 14 neurons of
the first neuron layer are treated as convolutions of size 6×
7, each neuron being connected to only one map. Pooling
maps contain a single coefficient, and all maps and neurons
have an additional bias. The entire ConvNet has 951 trainable
parameters in total. A thorough description of this particular
ConvNet is supplied in [6]. The employed activation function
is the exact continuous tanh-sigmoidal function as detailed
in (7).

After training the ConvNet as described in [6], we approx-
imated all the convolution filter matrices with low-complexity
versions. We created several approximations using the different
sets of dyadic rationals described in the previous section:
D1,D1, . . . ,D8. We also replaced all average pooling coeffi-

TABLE II: Arithmetic cost for CFF-based models

Model
Operation

Mult. Add. CSD Add. Bit-shifting

Exact 882 843 - -
A1 0 843 235 346
A2 0 843 251 362
A3 0 843 377 488
A4 0 843 457 568
A5 0 843 506 617
A6 0 843 756 867
A7 0 843 842 953
A8 0 843 1028 1139

cients and bias terms with their closest CSD representation
using 8 bits, being 7 bits for the fractional part.

Table II lists the arithmetic costs of the exact ConvNet
compared to its approximations. Floating-point multiplica-
tions, direct additions, additions due to the CSD expansion,
and bit-shifting operations were counted. The exact structure
requires both floating-point multiplications and additions. In
contrast, the approximate methods completely eliminates the
need for multiplications at the expense of much simpler
operations: additions and bit-shifting operations. Because the
approximate quantities can be easily represented in fixed-
point arithmetic representation, it is suitable for hardware
implementation. Additionally, the hardware implementation of
bit-shifting operations require virtually no cost, because it can
be implemented by simple physical wiring. As a result, we
have a very favorable trade-off: multiplications are exchanged
for additions.

In order to analyse the effect of the approximation on
the actual performance of the ConvNet, we evaluated the
different versions on three standard face detection benchmarks:
FDDB [89] (2 845 images), AFW [90] (205 images), and
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Pascal Faces dataset [91] (851 images); and we used the
improved annotation and evaluation protocol proposed by
Mathiaset al. [87].

Tables III-V show the average precision rates for different
combinations of sigmoid and weight matrix approximations
relative to the exact model for the three datasets.

Overall, the “Linear II” sigmoid approximation provides
the best results, followed by “ASG”, “Quadratic I”, and
“PLAN”. In terms of weight matrix approximations,A1–A5

generally give unsatisfactory results, andA7 performs best.
Also, it is interesting to note that the finer approximation
A8 gave worse results thanA7. We further evaluated some
variants, where different layers of the ConvNet have been
approximated with different sets of dyadic rationals. For such
mixed approximate structures, we have denoted them by
Ai, j ,k,l , where the subscripts indicate the selected dyadic set
for each layer. In other words, indicesi, j indicate that the
dyadic setsDi andD j , respectively, are employed in the first
two convolution layers; and similarly, indicesk, l correspond
to the adoption of the dyadic setsDk and Dl , respectively,
for the two final fully-connected layers. We found that the
first layer requires a finer approximation than the other layers.
This allowed us to maintain a good performance with very
low-complexity approximations (e.g.,A3, A4) for these later
layers. This can be explained according to the following:
(i) by its own very nature, the layers have different degrees
of importance; (ii) errors in initial layers tend to propagate
through the succeeding layers; and (iii) error propagationcan
potentially be amplified along the layers. Fig. 2 shows the
receiver operating characteristic (ROC) curves of the best
performing approximations for the three datasets.

These results are quite impressive given the fact that we
considerably reduced the precision of each parameter of the
ConvNet, and given the highly non-linear classification prob-
lem where the frontier between the face and non-face classes
can be very thin and complex.

Fig. 3 shows some face detection results from the exact
model (top) and the approximationA7,3,3,3 (bottom), i.e. a finer
approximation for the first layer and a very coarse one for the
rest of the layers. The results are almost identical.

B. Multi-class Classification

We studied a second case where a ConvNet has been
trained for a classical multi-class classification problem: the
MNIST hand-written digit recognition dataset [92]. To show
that the proposed approximations can also be applied to larger
networks we trained a ConvNet with a different architecture
containing again six layers but much more maps and around
180 000 parameters and more than 5 300 matrices in total.
The input is a 32×32 grey-scale image, and the network is
composed of five convolution maps (5×5 kernels) followed by
five average pooling maps (connected one-to-one), 50 convo-
lution maps (3×3, fully connected), 50 average pooling maps
(connected one-to-one), 100 neurons (6× 6 matrices, fully
connected), and the 10 final output neurons corresponding to
the 10 digits to classify.

After having trained this ConvNet model on the MNIST
dataset, we approximated all the convolution filters, the fully-
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Fig. 2: ROC curves for the (a) FDDB, (b) AFW, and (c) Pascal
datasets comparing the face detection performance of the
original (exact) ConvNet model with different approximations.
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TABLE III: Average precision for CFF with the FDDB test set and different approximations relative to the exact model

Exact ASG PLAN Linear I Linear II Quadratic I Quadratic II

Exact 1.000 0.953 0.894 0.002 0.988 0.887 0.938
A1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A2 0.001 0.001 0.000 0.000 0.001 0.000 0.002
A3 0.549 0.311 0.432 0.005 0.510 0.426 0.180
A4 0.523 0.602 0.365 0.001 0.558 0.383 0.602
A5 0.490 0.098 0.517 0.000 0.657 0.510 0.073
A6 0.938 0.914 0.817 0.002 0.888 0.797 0.949
A7 0.960 0.943 0.847 0.002 0.963 0.848 0.935
A8 0.821 0.792 0.648 0.001 0.810 0.650 0.793

A7,3,3,3 0.917 0.902 0.886 0.003 0.947 0.888 0.851
A7,4,4,4 0.967 0.931 0.855 0.000 0.976 0.861 0.928
A7,6,6,6 0.959 0.907 0.862 0.004 0.959 0.863 0.933

TABLE IV: Average precision for CFF with the AFW test set and different approximations relative to the exact model

Exact ASG PLAN Linear I Linear II Quadratic I Quadratic II

Exact 1.000 0.839 0.829 0.000 1.041 0.797 0.383
A1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A2 0.001 0.001 0.000 0.000 0.000 0.000 0.000
A3 0.220 0.041 0.260 0.004 0.199 0.248 0.014
A4 0.422 0.356 0.317 0.000 0.457 0.336 0.275
A5 0.220 0.015 0.314 0.000 0.217 0.251 0.002
A6 0.864 0.794 0.715 0.000 0.893 0.694 0.700
A7 0.978 0.844 0.753 0.000 0.985 0.755 0.614
A8 0.698 0.553 0.576 0.000 0.565 0.544 0.169

A7,3,3,3 0.955 0.525 0.835 0.004 0.914 0.816 0.184
A7,4,4,4 1.020 0.827 0.755 0.000 0.954 0.761 0.576
A7,6,6,6 0.967 0.881 0.787 0.000 0.979 0.788 0.827

TABLE V: Average precision for CFF with the “Pascal faces” test set and different approximations relative to the exact model

Exact ASG PLAN Linear I Linear II Quadratic I Quadratic II

Exact 1.000 0.933 0.774 0.001 1.039 0.747 0.893
A1 0.001 0.001 0.000 0.000 0.001 0.001 0.001
A2 0.006 0.006 0.004 0.000 0.006 0.003 0.009
A3 0.234 0.128 0.239 0.000 0.234 0.230 0.098
A4 0.357 0.375 0.259 0.001 0.361 0.258 0.370
A5 0.433 0.143 0.386 0.000 0.449 0.345 0.101
A6 0.862 0.844 0.656 0.000 0.894 0.638 0.847
A7 0.917 0.879 0.707 0.001 0.971 0.702 0.889
A8 0.725 0.700 0.520 0.001 0.697 0.517 0.617

A7,3,3,3 0.899 0.752 0.755 0.004 0.899 0.752 0.645
A7,4,4,4 0.930 0.889 0.710 0.000 0.967 0.708 0.906
A7,6,6,6 0.931 0.906 0.725 0.004 0.970 0.722 0.916
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Fig. 3: Some CFF face detection results on the AFW dataset.Top: exact model;bottom:approximationA7,3,3,3. Despite the very
coarse approximation, the results are very close. In the second last image, the approximate model even detects an additional
face, missed by the original CFF. However, in the last example a false detection is produced.

TABLE VI: Arithmetic cost for MNIST-based models

Model
Operation

Mult. Add. CSD Add. Bit-shifting

Exact 183375 178110 - -
A1 0 178110 12740 23325
A2 0 178110 12722 23307
A3 0 178110 49127 59712
A4 0 178110 61228 71813
A5 0 178110 65211 75796
A6 0 178110 141401 151986
A7 0 178110 158595 169180
A8 0 178110 188417 199002

connected layer matrices and the activation functions which
is based on the tanh-sigmoid function. Again, all pooling
coefficients and bias terms were replaced by their closest CSD
representation using 8 bits. The computation cost of the exact
and approximate structures is shown in Table VI. Similarly to
the previous experiment, the approximate models have totally
eliminated the multiplicative costs. Floating-point arithmetic is
not required; being fixed-point arithmetic adequate. The cost
of the extra additions due to the CSD representation is very
low compared to the multiplicative cost required by the exact
model. The cost of bit-shifting operations is negligible.

Table VII shows the relative classification rates on the
MNIST test set for the different approximations, and Fig. 4
depicts the respective ROC curves of the best-performing
approximations (combined for the 10 classes).

The results show that the approximations, although very
coarse, have a very small effect on the overall performance of
the ConvNet. In a multi-class setting, the trained ConvNet,at
least in this particular case, is much more robust to the lossin
precision of the weights induced by our approximation scheme
compared to the binary classifier. For example, a very coarse
approximation likeA3,3,1,1 leads to a relative performance
decrease of less than 1%.
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Fig. 4: ROC curves for the MNIST hand-written digit clas-
sification test set comparing the performance of the original
(exact) ConvNet model with its approximations.

C. Large-Scale Deep Neural Networks

Finally, we applied our approximation approach to a deeper
and more complex network architecture, the well-known
AlexNet proposed by Krizhevskyet al. [12], and the ImageNet
dataset [13] for image classification with 1000 classes. This
model contains more than 1.2 million matrices and 5096
vectors. We approximated all convolution filter matrices of
the fully-trained 8-layer ConvNet using two different setsof
dyadic rationals for different layers, a very coarse setD9 and
a slightly finer setD10:

D9 =

{

−2,−1,−
1
2
,−

1
8
,0,

1
8
,
1
2
,1,2

}

,

D10 =

{

−2,−1,−
1
2
,−

1
4
,−

1
8
,0,

1
8
,
1
4
,
1
2
,1,2

}

.

Again, all other coefficients are approximated by their closest
8-bit CSD representation. The pooling layers do not have
any coefficient here, and only linear and Rectified Linear
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TABLE VII: Mean classification rates for the MNIST test set and different approximations relative to the exact model.

Exact ASG PLAN Linear I Linear II Quadratic I Quadratic II

Exact 1.0000 1.0000 0.9847 0.9680 0.9978 1.0000 1.0000
A1 0.9684 0.9684 0.9588 0.9260 0.9615 0.9684 0.9684
A2 0.9643 0.9643 0.9627 0.8805 0.9573 0.9643 0.9643
A3 0.9961 0.9961 0.9848 0.9655 0.9944 0.9961 0.9961
A4 0.9973 0.9973 0.9863 0.9700 0.9969 0.9973 0.9973
A5 0.9976 0.9976 0.9866 0.9666 0.9969 0.9976 0.9976
A6 0.9991 0.9991 0.9868 0.9701 0.9973 0.9991 0.9991
A7 0.9992 0.9992 0.9846 0.9680 0.9977 0.9992 0.9992
A8 0.9994 0.9994 0.9848 0.9675 0.9981 0.9994 0.9994

A3,3,1,1 0.9931 0.9931 0.9749 0.9625 0.9924 0.9931 0.9931
A3,1,1,1 0.9891 0.9891 0.9684 0.9580 0.9866 0.9891 0.9891
A4,4,1,1 0.9937 0.9937 0.9780 0.9618 0.9943 0.9937 0.9937
A4,1,1,1 0.9885 0.9885 0.9655 0.9572 0.9872 0.9885 0.9885

TABLE VIII: Classification accuracy and top-5 accuracy for
ImageNet and different approximations relative to the exact
AlexNet model

Absolute Relative
Accuracy Top-5 Accuracy Top-5

Exact 0.5682 0.7995 1.0000 1.0000
A9 0.4862 0.7288 0.8558 0.9117
A10 0.5463 0.7820 0.9616 0.9782

A10,9,9,9,9,9 0.5423 0.7794 0.9544 0.9750
A10,10,9,9,9,9 0.5442 0.7796 0.9578 0.9751

Units (ReLU) are used as activation function, which are
already of very low complexity and thus do not require any
approximation.

We used the ImageNet 2012 validation set to evaluate
our different approximations. And, as usual in the literature,
we compute the classification accuracy as well as the top-
5 accuracy for the 50000 test images. Table VIII shows the
results. The approximationA10 with the setD10 gives the
best performance, with a relative decrease in accuracy of
only 3.84% and 2.18% on the top-5 accuracy. However, as
the following line shows, we can achieve almost the same
performance using the coarser setD9 for all convolution
layers except the first one. This again suggests that a finer
approximation of the first layer is required to prevent a drastic
performance drop.

V. CONCLUSION

We presented a novel scheme for approximating the pa-
rameters of a trained ConvNet, notably the convolution filters,
neuron weights, as well as pooling and bias coefficients. Acti-
vation functions were also approximated. The particularity of
the matrix approximations is that they allow for an extremely
efficient implementation—software or hardware—using only
additions and bit-shifts, and no multiplication. We thoroughly
evaluated the impact of this parameter approximation measur-
ing the overall performance of ConvNets on three different

use cases: one smaller ConvNet for face detection, a larger
ConvNet for hand-written digit classification, and a much more
complex, deep ConvNet for large-scale image classification.

For all three models, our proposed scheme was able to
produce low-complexity approximations without a significant
loss in performance.

These results suggest that huge reductions in computational
complexity of trained ConvNet models can be obtained, and
extremely efficient hardware implementations can be realized.
Further studies need to be undertaken to analyse the impact of
this type of approximations for more use cases and different
architectures.
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