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The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria)
is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is
composed of phospholipids, the CW is composed at least of peptidoglycan (PG)
covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or
polyglutamate. Considering the CW is a porous structure with low selective permeability
contrary to the CM, the bacterial cell surface hugs the molecular figure of the
CW components as a well of the external side of the CM. While the surfaceome
corresponds to the totality of the molecules found at the bacterial cell surface,
the proteinaceous complement of the surfaceome is the proteosurfaceome. Once
translocated across the CM, secreted proteins can either be released in the extracellular
milieu or exposed at the cell surface by associating to the CM or the CW. Following
the gene ontology (GO) for cellular components, cell-surface proteins at the CM can
either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored
to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275),
cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound
through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding
proteins. Besides monopolypeptides, some proteins can associate to each other to
form supramolecular protein structures of high molecular weight, namely the S-layer,
pili, flagella, and cellulosomes. After reviewing the cell envelope components and the
different molecular mechanisms involved in protein attachment to the cell envelope,
perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are
further discussed.

Keywords: Gram-positive bacteria, cell-surface protein, surface proteome, subcellular localization,
pili/fimbriae/curli, lipoproteins, LPXTG sortase-dependent proteins, membrane proteins

INTRODUCTION

As the interface of the cell with its surrounding, the bacterial cell surface plays a crucial role
in all types of interactions. In the first instance, the diversity of the bacterial cell envelope is
generally viewed as dichotomic, on the one hand, the Gram-positive bacteria, and on the other
hand, the Gram-negative bacteria (Desvaux et al., 2004, 2009). This difference is based on the result
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of the Gram staining method originally developed by the
Danish pharmacologist and physician Hans Christian Joachim
Gram (Gram, 1884) and still routinely used worldwide to
differentiate bacteria (Beveridge, 2001). With the development
of microscopic techniques, it first appeared the difference in
staining was the result of profound divergence in structural
organisation of the bacterial cell envelope, where Gram-
positive bacteria have a thick cell wall (CW) sitting atop of
a cytoplasmic membrane (CM) (Silhavy et al., 2010). Later
on, molecular analyses further revealed that Gram-positive
bacteria corresponded to a phylogenetically coherent group
within the domain Bacteria and belonged to only two phyla,
namely the low G+C% Gram-positive bacteria of the phylum
Firmicutes and the high G+C% Gram-positive bacteria of
the phylum Actinobacteria (Woese, 1987; Woese et al., 1990).
Over the years, though, it appears this terminology presents
some ambiguity when considering the diversity of the domain
Bacteria (Desvaux et al., 2009). Considering the term “Gram-
positive bacteria,” it can refer to three distinct, and sometimes
incompatible elements, i.e., a Gram staining result, a cell envelope
architecture and/or a taxonomic group. For instance, bacteria
of the class Mollicutes, comprising the genus Mycoplasma,
cannot retain the Gram stain because they naturally lack
a CW although the low G+C% content of their genomes
and other molecular markers resemble those of Gram-positive
bacteria of the phylum Firmicutes (Razin et al., 1998). Species
of the genus Mycobacterium possess a peculiar cell envelope
with a mycomembrane preventing Gram staining and thus
require alternative staining methods called acid-fast (Somoskovi
et al., 2001) but nonetheless belong to the high G+C% Gram-
positive bacteria of the phylum Actinobacteria (Draper, 1998).
In some deep branches of the phylum Firmicutes, some bacteria
clearly exhibit Gram-negative cell envelope for which a new
class was proposed, i.e., the Negativicutes (Marchandin et al.,
2010).

Inspired by the research work of Gupta (1998a,b, 2000),
the description of the bacterial cell envelope respective to the
number of biological membranes appeared much more definite
and was first reintroduced in the field of bacterial protein
secretion (Desvaux et al., 2009). While monoderm bacteria refer
to species exhibiting only one biological membrane, namely
the CM, diderm bacteria correspond to species exhibiting two
biological membranes, i.e., an inner membrane and an outer
membrane. Monoderm bacteria can be further discriminated
into (i) simple monoderm, lacking a CW (e.g., bacteria from
the genus Mycoplasma), and (ii) parietal monoderm, exhibiting
a CW (archetypal Gram-positive bacteria) (Sutcliffe, 2010;
Gupta, 2011). As such, parietal monoderm bacteria include
most Firmicutes, e.g., from the class Bacilli and Clostridia,
but of course exclude the class Mollicutes and Negativicutes
as well as the Actinobacteria exhibiting a mycolate outer
membrane.

The CW of parietal monoderm bacteria is a complex structure
composed at least of peptidoglycan (PG) covalently linked
to other biopolymers, such as teichoic acids, polysaccharides,
polyglutamate, or proteins (Shockman and Barrett, 1983;
Figure 1). While constituting the outermost layer of the

cell envelope of parietal monoderm bacteria, the CW is not
impermeable but on the contrary a porous and penetrable
structure. As such, cell envelope proteins are in contact with the
external environment without ever having a domain protruding
out the confines of the CW. Like for the fractal dimension
of the protein surface (Richards, 1977; Banerji and Navare,
2013), the nature and definition of the bacterial cell surface
strictly depends on the molecule considered, e.g., a water
molecule or a globular protein, which can enter in contact,
access, diffuse or penetrate differently the CW (Figure 2).
To be exposed at the cell surface of parietal monoderm
bacteria, proteins need to be first secreted across the CM.
Several secretion systems allow protein translocation in parietal
monoderm bacteria (Tjalsma et al., 2004; Desvaux et al., 2005;
Desvaux and Hébraud, 2006; Sibbald et al., 2006; Chagnot
et al., 2013), namely (i) the Sec (secretion), (ii) the Tat (twin-
arginine translocation), (iii) ABC protein exporter, (iv) the
FPE (fimbrilin-protein exporter), (v) the FEA (flagella export
apparatus), and (vi) the ESX (ESAT-6 system), also called
Wss (WXG100 secretion system). Of note, the status of the
holins (hole forming) as protein secretion systems per se
remain controversial (Desvaux, 2012). Proteins secreted via the
Sec translocon generally possess a targeting signal called the
signal peptide (SP) of type I (SP I), which is composed of
three non-conserved domains, namely the n-domain (positively
charged and at the N-terminus), the h-domain (a-helical
hydrophobic core region), and the c-domain (cleavage site
processed by a membrane-bound signal peptidase) (Fekkes
and Driessen, 1999). While proteins secreted via Sec, Tat
ABC exporter and FPE possess N-terminal SPs with some
specificities, the signal targeting proteins to the FEA or ESX
remain elusive. Besides transport across the CM, the transport
and maturation of secreted proteins across the CW can be
regulated by different mechanisms, such as the proteolytic
maturation of secreted proenzymes, the requirement of divalent
cations for activation or the post-translocational intervention
of peptidyl-prolyl isomerase chaperones (Forster and Marquis,
2012).

To explicitly describe the subcellular localization of proteins,
the gene ontology (GO) respective to the cellular component
is extremely useful (Ashburner et al., 2000; Chagnot et al.,
2013). Indeed, secreted proteins can have different fate; they
are either (i) associated to the CM (GO: 0005886), (ii)
anchored to the CW (GO: 0009275), (iii) released in the
extracellular milieu (GO: 0005576), the so-called exoproteins
(extracellular proteins), or even (iv) injected into a prokaryotic
or eukaryotic host cell. At the CM, proteins can be either
integral (GO: 0031226), i.e., the IMPs (integral membrane
proteins), or anchored to the membrane (GO: 0046658), i.e.,
the lipoproteins. At the CW, proteins can be covalently bound,
i.e., the LPXTG-proteins, or bound through weak interactions,
i.e., the CW binding proteins. It is worth stressing that all
these extracytoplasmic proteins located at the cell envelope,
wherever at the CM or the CW, can be considered as surface
exposed. Besides monopolypeptides, some organelles can also
be present and result from the assembly of protein subunits to
form supramolecular structures, such as the well-known pili and
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FIGURE 1 | The surfaceome of parietal monoderm bacteria with respect of the organisation and composition of the cell envelope. The cell envelope (CE) of parietal
monoderm bacteria is composed of a biological membrane acting as selective permeable barrier, i.e., the cytoplasmic membrane (CM) and a cell wall (CW) providing
some resistance to mechanical stresses (e.g., internal turgor pressure) but also somehow acting as a philtre. While the CM is composed of phospholipids (PLs), the
CW can be further subdivided into the inner wall zone (IWZ) and the outer wall zone (OWZ). The OWZ constitutes the main CW fabric. It is composed of
N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM), both constituting the peptidoglycan (PG) with which wall teichoic acids (WTAs), and wall
polysaccharides (WPs) are anchored. Lipoteichoic acids (LTAs) are anchored to the CM and protrude from the CM. As revealed by electron microscopy studies and
contrary to the OWZ, the IWZ is a thinner zone of low density most certainly devoid of most cross-linked polymeric CW network, except LTAs and some proteins,
e.g., lipoproteins (Matias and Beveridge, 2005, 2006); because this zone is not strictly bounded by two biological membranes like in diderm bacteria, the IWZ
resembles but cannot be considered as a periplasm sensu stricto, i.e., it presents some analogies but no homology (Buist et al., 2008; Chagnot et al., 2013). In
addition to the proteins present both at the CM and CW and that are not depicted here for clarity (see text and Figures 4–6), these different macromolecular
molecules exposed on the external side of the CM constitute the surfaceome in parietal monoderm bacteria. CY, cytoplasm; EM, extracellular milieu.

flagella, but also the S-layer or cellulosome in some bacterial
species.

Following the etymological meaning of the Greek suffix
“-ome” (Lederberg and McCray, 2001), the totality of the
molecules found at the bacterial cell surface corresponds to the
surfaceome. Because of the spongy structure of the CW, it is
misleading to restrict the surface of parietal monoderm bacteria
to molecules strictly displayed at the outermost molecular layer
of the CW. Instead, the cell surface of a parietal monoderm
bacterium fits tightly to the molecular outline of the CW
components and to the external side of the CM (Figure 2);
as a biological membrane, the CM has a selective permeability
contrary to the CW. The CW is not a rigid shell but constitutes
a matrix, forming an elastic polyelectrolyte gel (Doyle and
Marquis, 1994; Neuhaus and Baddiley, 2003), which would then
acts like a sieve during the dynamic transit of solutes. The
proteosurfaceome is the proteinaceous subset of the surfaceome

found at the CW and totally or partially exposed on the external
side of the CM.

THE SURFACEOME OF PARIETAL
MONODERM BACTERIA

The cell envelope of parietal monoderm bacteria is composed
of a CM and a CW, which can be divided into the inner wall
zone (IWZ) and outer wall zone (OWZ) (Merchante et al., 1995;
Matias and Beveridge, 2005; Zuber et al., 2006; Figure 1). The CW
surrounding the CM is made of lipoteichoic acids (LTAs) and
a thick layer of PG, decorated with wall teichoic acids (WTAs),
wall polysaccharides (WPs), or/and polyglutamate. The CW
also accommodates some proteins, including monopolypeptides
and cell-surface supramolecular protein structures, namely
pili, flagella, cellulosome, S-layer. Altogether these different
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FIGURE 2 | Concepts of molecular surface, contact surface, accessible surface, and reentrant surface to define the bacterial cell surface in parietal monoderm
bacteria. Taking molecules of different sizes, their penetration in the cell envelope differs. The blue sphere represents a molecule of high molecular weight unable to
penetrate the CW fabric (depicted in grey), whereas the red sphere represents a smaller molecule diffusing through. Depending on the molecules considered, the
definition of the bacterial cell surface will also differ. The continuous lines represent the contact surface that is the molecular surface that actually comes in direct
contact with the surface of the molecule considered. The dashed lines represent the accessible surface that is the continuous sheet referring to the centre of the
molecule considered. The dotted lines correspond to the reentrant surface that is the interior-facing part of the molecule considered when it cannot come in direct
contact with the molecular surface of the cell envelope. The definition of bacterial cell surface of parietal monoderm bacteria is thus very different when referring to
the molecular surface of the cell envelope or the contact, accessible and reentrant surfaces with respect of the size of the molecule under consideration.

macromolecular molecules and associated molecules constitute
the surfaceome. This part focuses on the components of the cell
envelope, excluding the proteinaceous compounds discussed in
the subsequent part. Cell envelope proteins actually interact with
some of these components for anchoring via different molecular
mechanisms.

Composition and Organisation of the
Cytoplasmic Membrane
The phospholipid bilayer of the membrane parietal monoderm
bacteria is ∼90 Å thick and is composed of 10–40% lipids,
40–75% proteins, and 0.2–20% carbohydrates (Salton, 1967;
Ghosh and Carroll, 1968; Bodman and Welker, 1969; Duda
et al., 2006). Although membrane phospholipids vary from

one species to another, the most commonly found in the
CM are glycerophospholipids including phosphatidylglycerol,
diphosphatidylglycerol (cardiolipin), and to some extend
phosphatidylethanolamine and their amino acylated forms
(Fischer et al., 1978; Roy, 2009; Malanovic and Lohner, 2016).
Phospholipids vary also by their two fatty acid moieties, which
impact on membrane fluidity (Mishra et al., 2012; Custer
et al., 2014; Diomande et al., 2015; Malanovic and Lohner,
2016). Polyisoprenoid lipids are other important regulators of
membrane fluidity. They constitute, together with cardiolipins
and bacterial flotillins acting as scaffolding proteins, nanoscale
functional membrane microdomains, which seem essential to
the proper functioning of signal transduction cascades and
protein transport in Bacillus subtilis and Staphylococcus aureus
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cells (Lopez and Kolter, 2010; Bramkamp and Lopez, 2015).
By analogy with eukaryotic membranes, these microdomains
are also referred to as lipid rafts. Consistently, membrane
proteins or associated complexes constitute discrete focal sites
in the CM and CW (Campo et al., 2004; Rosch et al., 2007;
Lopez and Kolter, 2010; Kandaswamy et al., 2013). Biological
significance of functional membrane microdomains could be
to serve as platforms that control the assembly of membrane
and CW proteins and multiprotein complexes involved in
numerous cellular processes, such as cell division, protein
trafficking, genetic transfer, or signal transduction (Lopez and
Kolter, 2010; Schneider et al., 2015). Subcellular localization
and spatiotemporal distribution of CM and CW proteins or
supramolecular protein complexes are often intimately linked
to their function and vary with the environmental conditions
(Bierne and Dramsi, 2012; Mitra et al., 2016).

Composition and Organisation of the
Cell Wall
The OWZ constitutes the main part of the CW. It is 15–30 nm
thick and comprises the PG and WTA polymers (Navarre and
Schneewind, 1999; Vollmer et al., 2008). The PG is made of
N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM)
forming disaccharide glycan chains of various lengths that are
cross-linked by peptides. PG composition depends on bacteria
(Schleifer and Kandler, 1972). The glycan chain is uniform,

whereas the peptide moiety and the cross-links are variable. The
two major PGs in parietal monoderm bacteria have a meso-
diaminopimelic acid (A2pm) or a lysin at the third position of the
peptide. At this position, the cross-link occurs directly or through
a penta-glycine bond, respectively. In B. subtilis, it is estimated
that the glycan chain length is 1300 disaccharides in average, and
that approximately 20% of the peptide chains are cross-linked
(Ward, 1973; Atrih et al., 1998; Hayhurst et al., 2008). These
glycan chains form helices of∼50 nm width, and it was proposed
that these cable-like structures coil around the narrow axis of
the bacterium and are cross-linked by peptides (Hayhurst et al.,
2008). The glycan chains of ovococcal bacteria, e.g., Streptococcus
sp., are formed of more than 100 disaccharide units in average,
whereas the glycan chains of cocci, e.g., Staphylococcus sp., are
relatively short with 5–10 disaccharide units in average (Wheeler
et al., 2011). The average effective mesh size in PG, i.e., the
tessera, is estimated at 2.2 nm (Koch, 1990; Demchick and Koch,
1996; Figure 3). In other words, hydrophilic molecules of about
25 kDa (but also probably up to 50 kDa) can freely pass through
a structured CW meshwork. Along with this, the CW network
is actually not perfect, e.g., pseudo-tessera, and numerous PG
defects cause increase in the porosity (Pink et al., 2000; Turner
et al., 2013; Kim et al., 2015). Of note, though, the critical hole size
in the CW beyond which lysis occurs, is estimated in the range of
15–24 nm (Mitchell et al., 2013). The OWZ of parietal monoderm
bacteria is a very dynamic structure, as bacterial growth requires

FIGURE 3 | Peptidoglycan organisation at the cell wall. The peptidoglycan is composed of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) linked by
β-1,4 bonds, where the NAM are further crosslinked via octapeptides either at the same plane or with the upper or lower layer (arrows represent peptides protruding
up or down). The peptidoglycan is tiled with hexagonal tesserae, which constitute the structural unit of the CW fabric (one basic unit constituting a tessera is
displayed inside the dotted frame). Two layers of tesserae are here schematically represented to highlight the network form by the peptide crosslinking. Of note,
defects due to abnormal tesserae with more edges and larger area can also occur and resulting in the increase in porosity.
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constant remodelling of the CW, which has a turnover rate of 50%
per generation (Koch and Doyle, 1985). Remodelling is mediated
by CW-anchored autolysins that are active on the outermost layer
of the PG (Jolliffe et al., 1981).

LTAs and WTAs are zwitterionic polymers anchored to the
CM and CW, respectively. They are major polyanionic teichoic
acids of the envelope of parietal monoderm bacteria. LTAs are
localised in the IWZ at the interface of the CM and the CW
(Neuhaus and Baddiley, 2003; Reichmann and Grundling, 2011;
Schneewind and Missiakas, 2012; Percy and Grundling, 2014).
The most common LTA structure found in Firmicutes and,
referred as type I LTAs, consists in a polyglycerol phosphate
polymer linked to a glycolipid anchor, often a diglucosyl-
diacylglycerol (Glc2-DAG), anchored to the CM. Type II, III,
IV, and V LTAs have more complex repeating units that contain
glycosyl residues, e.g., in Streptococcus pneumoniae, type IV LTA
is decorated with phosphocholine.

WTAs are covalently attached by the PG disaccharide unit
via a phosphodiester linkage to NAM (Neuhaus and Baddiley,
2003; Brown et al., 2013). Although the structures of WTAs
vary considerably between species, the most common ones are
composed of glycerol-phosphate or ribitol-phosphate repeats.
LTAs and WTAs are often modified with sugar moieties and
D-alanine esters, which introduce positive charges to neutralise
the negatively charged phosphates in the polymer backbone
(Wooldridge and Williams, 1993; Xia et al., 2010; Schneewind
and Missiakas, 2012; Percy and Grundling, 2014; Carvalho et al.,
2015). In addition to their diversity between and within species,
the degree of D-alanylation of teichoic acids is fine tuned in
changing environments and thus likely influences the protein
repertoire displayed at the CW. The zwitterionic WTA polymers
potentially contribute to the sequestration of divalent cations
within the OWZ, including Ca2+, Mg2+, and Fe2+ (Beveridge
and Murray, 1980), and might thus influence the regulation
of protein transport across the CW (Forster and Marquis,
2012).

WPs have various compositions, e.g., teichuronic acids in
Bacillus (Ward, 1981) or highly diverse heteropolysaccharides
in Lactococcus (Yasuda et al., 2011; Vinogradov et al., 2013;
Ainsworth et al., 2014), which complexity and diversity can be
even greater than expected as revealed by the ever increasing
genome data regularly made available. The last and most external
layer of the CW may be composed of a capsule, generally
composed of WPs (Jones, 2005; Yother, 2011). Although the
WP capsule structures are well documented, the anchoring was
recently proposed to be at the β-D-N-acetylglucosamine of the
PG via a direct glycosidic bond (Larson and Yother, 2017). In
some cases, the capsule is composed of polyglutamate, e.g., in
Bacillus anthracis (McLean et al., 1992; Candela and Fouet, 2006).
Poly-γ-D-glutamate anchoring was reported to be covalent at the
PG (Candela and Fouet, 2005; Candela et al., 2005). However,
the exact anchoring mechanism is still controversial and may be
either on the A2pm or on the PG glucosamine (Richter et al.,
2009; Candela et al., 2014).

Overall, the CW of parietal monoderm bacteria is a
complex structure that protects them from mechanical and
osmotic lysis, and serves as a scaffold for anchoring proteins,

glycopolymers, and cations that perform various functions
(Navarre and Schneewind, 1999; Weidenmaier and Peschel,
2008). While WPs or WTAs can be essential for bacterial
growth (Oh et al., 2017), WTAs have been shown to be
dispensable in some other bacterial species (Chapot-Chartier and
Kulakauskas, 2014; Mistou et al., 2016). However, wall rhamnose
polysaccharides (RhaWPs) can be a functional counterpart of
WTAs, as suggested in Streptococcus agalactiae and Streptococcus
pyogenes (Caliot et al., 2012; van Sorge et al., 2014), where
they appear to be covalently linked to PG NAM (Deng et al.,
2000).

CELL-SURFACE PROTEINS LOCALISED
AT THE CYTOPLASMIC MEMBRANE
(GO: 0005737)

Cell-surface proteins specifically localised at the CM can either
be integral to the CM (GO:0031226) or anchored to the CM
(GO: 0046658). Besides, some proteins can interact by weak
interactions with components of the CM surface and be extrinsic
to the CM (GO:0019897).

Proteins Integral to the Cytoplasmic
Membrane (GO: 0031226): The IMPs
As a common theme, all IMPs exhibit hydrophobic
transmembrane α-helical domains (TMDs) enabling anchoring
of the protein to the membrane (White and von Heijne, 2004).
IMPs can be broadly discriminated between single-spanning
IMPs (ss-IMPs) exhibiting a single TMD and multispanning-
IMPs (ms-IMPs) with more than one TMD (Figure 4; Goder
and Spiess, 2001; Higy et al., 2004). Whereas most IMPs
are not synthesised with a cleavable N-terminal SP, some
IMPs are (Facey and Kuhn, 2004). For the latters and after
cleavage of the hydrophobic transmembrane α-helical SP
by a signal peptidase (SPase), the ss-IMPs remain anchored
to CM thanks to an additional hydrophobic TMD, i.e., the
stop-transfer sequence also called signal domain of type I
(SD1), which exhibits a Nout–Cin topology; as such, these
ss-IMPs refer to the type I (ss-IMP1; Figure 4). Type II ss-
IMPs (ss-IMP2) have a signal-anchor sequence also called
signal domain of type II (SD2), with a Nin–Cout topology,
which actually corresponds to an uncleavable SP. Type III
ss-IMPs (ss-IMP3) have reverse signal-anchor sequence, i.e.,
a SD1 (TMD with a Nout–Cin topology); in the literature,
they are sometimes described as ss-IMP1 without SP since
the reverse signal-anchor sequence is a SD1. Of note, while
the translocation mechanism of both type I and type II IMPs
is in line with our current knowledge about the Sec/YidC
translocation, i.e., involving an N-terminal SP (whenever
cleavable or uncleavable) targeting the protein to CM, the
mechanism for the translocation of type III IMPs in the absence
of a SP remain unclear. In ms-IMPs, the type I (Nout–Cin TMD
topology) and type II (Nin–Cout TMD topology) signals alternate
along the protein sequence. Based on topology of the most
N-terminal TMD enabling anchoring of the ms-IMP to the
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FIGURE 4 | Topology and nomenclature of IMPs. IMPs are primarily
categorised into (A) single-spanning IMPs (ss-IMPs) and (B) multi-spanning
IMPs (ms-IMPs). Indeed, IMPs are anchored to the CM via hydrophobic
transmembrane α-helical peptide domains (TMDs); when a TMD has a
Nout–Cin topology, it is called a signal domain of type I (SD1; depicted in light
blue), whereas a TMD with Nin–Cout topology is called a signal domain of type
II (SD2; depicted dark blue) (White and von Heijne, 2004). In ss-IMPs, only one
TMD is present, whereas at least two TMDs are present in ms-IMPs.
Whenever ss-IMPs or ms-IMPs, they are further subcategorised into three
types. A ss-IMP of type I (ss-IMP1) possesses a cleavable N-terminal signal
peptide (SP; depicted in red) and are actually anchored to the CM by a SD1
(TMD with a Cin–Nout topology). A ss-IMP of type II (ss-IMP2) is anchored to
the CM by a SD2 (TMD with a Nin–Cout topology). Like for a ss-IMP1, a
ss-IMP of type III (ss-IMP3) is anchored to the CM by a SD1 but it did not
originally exhibit a SP. For ms-IMPs, the classification is similar and based on
the most N-terminal TMD anchoring the ms-IMP to the CM. As such, a
ms-IMP of type I (ms-IMP1) has a cleavable SP followed by a SD1. A ms-IMP
of type II (ms-IMP2) has a SD2 as the most N-terminal TMD. A ms-IMP of type
III (ms-IMP3) has a SD1 as the most N-terminal TMD (and no cleavable SP).
Of note, the TMD of a cleavable SP actually corresponds to a SD2; as such, a
SD2 in IMPs of type II can be referred as an uncleavable SP. In ms-IMPs, a
SD1 necessarily alternates with a SD2 along the polypeptide chain, and vice
versa. Except for the TMDs, other regions of the IMPs can be in contact with
the IWZ but also the OWZ or the extracellular milieu.

CM, the three types mentioned here above can be discriminated
(Figure 4).

IMP biogenesis in lipopolysaccharidic-diderm bacteria
(archetypal Gram-negative bacteria) involves an integrase known

as YidC (Scotti et al., 2000). Up to two paralogues of the integrase
YidC have been uncovered in parietal monoderm bacteria,
namely SpoIIIJ and YqjG (Tjalsma et al., 2000; van Wely et al.,
2001). While both SpoIIIJ and YqjG are involved IMP biogenesis
and are essential for cell viability (Murakami et al., 2002; Tjalsma
et al., 2003), SpoIIIJ is required for sporulation in B. subtilis
but not YqjG (Errington et al., 1992; Murakami et al., 2002).
Lately, these proteins have been renamed YidC1 and YidC2,
respectively, in parietal monoderm bacteria (Funes et al., 2009;
Wang and Dalbey, 2011; Palmer et al., 2012). In E. coli, YidC is
associated to the Sec translocase enabling insertion of all IMPs
to the CM in a SRP (signal-recognition particle) dependent
mechanism (Scotti et al., 2000; Fröderberg et al., 2003; Ziehe
et al., 2017). In this species, the YidC pathway is quite versatile
since integration of IMPs to the CM can be SecA-, SecB-,
and/or Sec-independent (Samuelson et al., 2000; Beck et al.,
2001; Yen et al., 2002; Fröderberg et al., 2003; White and von
Heijne, 2004). Moreover, flotillin-like proteins could contribute
to the insertion of IMPs (Dempwolff et al., 2016). So far, these
aspects have been poorly investigated in parietal monoderm
bacteria.

Cell-Surface Proteins Anchored to the
Cytoplasmic Membrane (GO: 0046658):
The Lipoproteins
In parietal monoderm bacteria, lipoproteins are synthesised
as pre-prolipoproteins that are exported by the Sec pathway
and exposed on the outer face of the CM (Hutchings et al.,
2009; Figure 5). The pre-prolipoproteins exhibit a SP of
type II (SP II) that is harbouring a conserved lipobox motif
at the cleavage site (Sutcliffe and Harrington, 2002). The
consensus sequence for the lipobox is [LVI]−3-[ASTVI]−2-
[GAS]−1-[C]+1 (Sutcliffe and Harrington, 2002; Babu et al.,
2006). Once translocated across the CM, the lipoprotein
maturation pathway in parietal monoderm bacteria is a
two-step process. First, the lipobox motif is recognised by a
prolipoprotein diacylglyceryl transferase (Lgt), which transfers
of a diacylglyceryl moiety from a glycerophospholipid onto
the thiol group of the conserved cysteine, giving rise to the
prolipoprotein. Then, the SP II of the prolipoprotein is cleaved
off by a lipoprotein signal peptidase (Lsp), generating a mature
lipoprotein. The lipoprotein is consequently covalently bound
to the acyl moiety of two fatty acids from the diacylglyceride
by a cysteine residue at position 1 of the N-terminal end
(Lai et al., 1980). Besides this classical form of lipid-modified
cysteine for lipoprotein anchoring to the CM, intensive mass
spectrometry analyses revealed three novel forms of mature
lipoproteins in parietal monoderm bacteria (Nakayama et al.,
2012; Figure 5). The N-acylated triacyl form of lipoproteins
containing N-acyl-S-diacyl-glyceryl-cysteine was identified
in S. aureus and S. epidermidis (Kurokawa et al., 2009;
Asanuma et al., 2011). The N-acetyl form of lipoproteins
identified in different Bacillaceae contains N-acetyl-S-diacyl-
glyceryl-cysteine (Kurokawa et al., 2012b). The lyso-form
of lipoproteins containing an N-acyl-S-monoacyl-glyceryl-
cysteine was identified in Bacillus cereus, Enterococcus
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FIGURE 5 | The different forms of lipoproteins in parietal monoderm bacteria. (A) A diacyl-lipoprotein contains an N-acyl-S-diacylated cysteine residue.
(B) A N-acylated-triacyl-lipoprotein contains an N-acyl-S-triacylated cysteine residue. (C) A lyso-lipoprotein contains an N-acyl-S-monoacyl-glyceryl-cysteine.
(D) A N-acetyl-form contains a N-acetyl-S-diacyl-glyceryl-cysteine.

faecalis, Lactobacillus bulgaricus, and Streptococcus sanguinis
(Asanuma et al., 2011). It further appeared that environmental
conditions influenced the ratio between diacyl and triacyl
forms of lipoproteins in S. aureus, with an accumulation
of the diacyl lipoprotein form at high temperatures and
high salt concentrations (Kurokawa et al., 2012a). Together,
these recent findings are suggestive of uncharacterised
non-canonical pathways for differential lipoprotein lipidation in
parietal monoderm bacteria, analogous to the N-acylation of the
lipidated cysteine by the apolipoprotein N-acyltransferase (Lnt)
in lipopolysaccharidic-diderm bacteria. Actually, the lipoprotein
intramolecular transacylase (Lit) involved in N-lyso-form
biosynthesis was recently identified in E. faecalis and B. cereus
(Armbruster and Meredith, 2017). If N-acylation is likely to
involve acyltransferases adapted to specific phospholipids as
acyl-donor substrates, novel enzymes and maybe pathways
are to be discovered to explain how these alternative N-acetyl
lipoprotein forms are biosynthesised in parietal monoderm
bacteria.

CELL-SURFACE PROTEINS LOCALISED
AT THE CELL WALL (GO: 0009275)

The first surface associated proteins were described because of
their activities on the bacterial CW. Most of them were autolysins
or proteases. PG-binding domains were thereafter observed
thanks to the sequencing data and bioinformatic analyses. Indeed,
amino acid repetitions involved in the surface binding were
highlighted. Most of the characterised and conserved domains

are registered and classified by bioinformatic resources, especially
InterPro (IPR; Zdobnov and Apweiler, 2001; Finn et al., 2017)
regrouping several databases for motif signatures, such as Pfam
(Soohammer et al., 1997; Finn et al., 2016), Prosite (Hulo et al.,
2006; Sigrist et al., 2013), or SMART (Schultz et al., 1998;
Letunic et al., 2015) (Table 1). Of note, the use of underscore
(“_”), as given in the name of domains in databases, must
be abstained by reminding the readers this sign is primarily
designed for bioinformatics purpose when a space cannot be
used due to command line constraints but are meant to be
replaced by a space (“ ”) or a dash (“-”) in textbook. These
binding domains allow protein subcellular location at the CW
and are therefore often crucial for their activity on the surface
structure and organisation (Figure 6). They can be divided into
three main classes: domains that are (i) covalently attached
to the PG, (ii) non-covalently bound to the PG, and (iii)
non-covalently bound to WPs (Figure 6). Besides, the CW
components targeted by some domains remain uncertain. These
proteins are generally secreted by the Sec translocon and possess
a SP I.

Cell-Surface Proteins Covalently Bound
to the Peptidoglycan: The LPXTG-
Proteins
Covalent binding of LPXTG-proteins to the CW has been the
subject of intensive studies and is certainly one of the best
characterised molecular mechanisms for protein anchoring
to the PG (Fischetti et al., 1990; Schneewind et al., 1992).
Here, we review the major mechanism of anchoring. In
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TABLE 1 | Domains involved in protein attachment to the cell wall in parietal monoderm bacteria.

Name Abbreviation Other
namesa

InterPro Other
databasesb

PDBc CW ligandd

Domain involved in covalent attachment to the CW

LPXTG domain LPXTG IPR019948 PF00746,
PS50847,
PR00015

3UXF PG

Domain involved in non-covalent attachment to the CW

Lysin motif LysM IPR018392 PF01476,
SM00257,
CD00118,
PS51782,
SSF54106

2MKX PG

WXL domain WXL IPR027994 PF13731 PG

SH3 domain of type 3 SH3-3 SH3b IPR003646 PF08239,
SM00287,
PS51781

4KRT PG

SH3 domain of type 5 SH3-5 IPR003646 PF08460 5D76 PG

SH3 domain of type 6 SH3-6 SH3b1 PF12913 3M1U PG

SH3 domain of type 7 SH3-7 SH3b2 IPR026864 PF12914 3M1U PG

SH3 domain of type 8 SH3-8 GW IPR025987 PF13457,
PS51780

1M9S PG and/or LTAs

Sporulation-related domain SPOR IPR007730 PF05036,
PS51724,
SSF110997

1X60 PG

Cell wall binding repeat of Cpl-7 CW-7 IPR013168 SM01095,
PF08230

4CVD PG

Peptidoglycan-binding domain of type 1 PGB1 IPR002477 PF01471,
SSF47090

4XXT PG

Peptidoglycan-binding domain of type 2 PGB2 IPR014927 PF08823 n.d.

Cell wall binding repeat of type 1 CWB1 ChBD IPR018337 PF01473,
PS51170

1HCX Choline
residues

Cell wall binding repeat of type 2 CWB2 IPR007253 PF04122 WPs

S-layer homology domain (SLH) SLH IPR001119 PF00395,
PS51272

3PYW PG

Clostridial hydrophobic repeat (ChW) ChW IPR006637 PF07538,
SM00728

n.d.

aOther names found in the literature to name the respective domain. Name and abbreviation given in the two first columns are preferred and must be favoured. SH3b,
sarcome homology 3 domain of bacterial type; ChBD, choline-binding domain.
bSignatures from InterPro member databases used to construct the entry, namely from Pfam (PF), SMART (SM), Conserved Domain Database (CD), Prosite (PS), Prints
(PR), SuperFamily (SF).
cAccession number to the resolved structure in PDB (protein data bank).
dCW, cell wall; PG, peptidoglycan; LTAs, lipoteichoic acids; WTAs, wall teichoic acids; WPs, wall polysaccharides; n.d., not determined. Choline residues are found in
WTAs and LTAs.

parietal monoderm bacteria, a range of proteins called LPXTG
(IPR019948) is covalently linked to the PG by enzymes
named sortases. Among LPXTG-proteins are found colonising
factors, toxins and proteases. In parietal monoderms, the
LPXTG motif was identified in both classes of Actinobacteria
and Firmicutes, especially in the orders of Coriobacteriales,
Streptomycetales, Propionibacteriales, Bifidobacteriales,
Micrococcales, and Corynebacteriales for the former, and
the orders of Erysipelotrichales, Clostridiales, Lactobacillales,
Bacillales, and Tissierellales for the latter. This is a C-terminal
motif composed of the LPXTG sequence where X represents
any amino acids, followed by a hydrophobic domain and
a short positively charged tail. Several variations around
this motif were reported, e.g., NP(Q/K)TN, but the overall

motifs remain homologous and are included for profile
search (Boekhorst et al., 2005). In any case, the motif is
recognised by sortases that are classified into six classes
from A to F (Dramsi and Bierne, 2017; Siegel et al., 2017).
Sortase A anchors a wide range of LPXTG-proteins, whereas
sortase B recognises the NP(Q/K)TN related motif. Sortase
C allows the pilus assembly (see below), whereas sortases
D, E, and F have been much less characterised. Sortases
anchor the LPXTG-proteins on the nascent PG through their
transpeptidase activity, by cleaving between T and G (or N) and
transferring the protein on the PG. Depending on the PG nature,
molecular binding can occur at the pentaglycine crossbridge
(Marraffini and Schneewind, 2005) or at the A2pm (Budzik et al.,
2008).
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FIGURE 6 | Anchoring localization of protein domains interacting with the CW. The localization of the CW proteins depends on their domains. Domains are
interacting covalently or not at the bacterial CW through interaction with surface structures that are the PG, the WTAs, the WPs or the LTAs. LPXTG proteins are
covalently attached to the A2pm or K residue of the PG. Proteins harbouring a LysM, SH3 of type 5 (SH3-5), SH3 of type 6 (SH3-6), SPOR, or CW-7 domain interact
non-covalently with the PG. WXL interacts with PG but the precise anchoring region is undetermined. Proteins possessing a CWB2 or SLH domain are localised at
the WTAs or WPs extremities, whereas proteins harbouring a CWB1 domain interact with the WTAs through a choline. For SH3 of type 8 (SH3-8), the CW target
remains controversial.

Cell-Surface Proteins Non-covalently
Bound to the Peptidoglycan
Besides covalent binding to the PG, some proteins exhibit
conserved motifs enabling specific binding to the CW
components via weak interactions, such as van der Waals
interactions, hydrogen or ions bonds.

Lysin Motif Domain
LysM (lysin motif) domain was first reported in a protein
encoded by gene 15 of B. subtilis bacteriophage 364 φ29 (Garvey
et al., 1986) and exhibiting lysozyme activity that is involved
in PG degradation. This conserved domain is found across all
kingdoms and is widely distributed among bacteria, although
mainly found in Firmicutes, Proteobacteria, Actinobacteria, and
Bacteroidetes. A LysM domain (IPR018392) consists of 43–
50 amino acids including the first 16 residues that are highly
conserved. Multiple LysM domains are often separated by linkers
that are rich in S, T, and N residues. From 1 up to 12 LysM
domains can be found in a single protein. In bacteria, LysM
domains are shown to bind directly the PG in a non-covalent
manner (Mesnage et al., 2014). In E. faecalis, the LysM domains

of AtlA interact with the N-acetyl group of the NAG with
a minimum of two PG disaccharides NAG-x-NAG (where x
corresponds to 1/4 of NAG or NAM). Interestingly, AtlA binds
chitin with a higher affinity than PG (Mesnage et al., 2014).
This may explain that the presence of a WTA covalently linked
at the C6 position of NAM prevents interaction between PG
and LysM domains (Steen et al., 2003; Frankel and Schneewind,
2012). Three LysM domains are sufficient for proper binding of
AcmA, the major N-acetylglucosaminidase of Lactococcus lactis
(Steen et al., 2005). However, multiple LysM domains are not
forming a quaternary structure. In contrast, each LysM domain
has a different affinity for the glucide interaction and is thought to
bind glycan chains in a cooperative manner (Wong et al., 2014).

WXL Domain
The WXL domain (IPR027994) comprises two highly conserved
sequence motifs Trp-X-Leu (WXL) including the distal
motif YXXX(L/I/V)TWXLXXXP within the last ∼120 to
190 C-terminal of extracellular proteins (Siezen et al., 2006;
Brinster et al., 2007). Initially observed in Lactobacillus
plantarum (Kleerebezem et al., 2003), Lactobacillus coryniformis
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(Schachtsiek et al., 2004), and Lactobacillus sakei (Chaillou
et al., 2005), extracellular proteins with a C-terminal WXL
domain are predicted mainly in the orders of Lactobacillales and
Bacillales, such as B. cereus, Listeria monocytogenes, Lactococcus
garvieae, Lactobacillus rhamnosus, Lactobacillus casei (Siezen
et al., 2006; Brinster et al., 2007; Dumas et al., 2008; Morita
et al., 2009, 2011; Renier et al., 2012; Toh et al., 2013). The WXL
domain was demonstrated to direct proteins to the bacterial
cell surface by non-covalent binding to PG (Brinster et al.,
2007). Consistently, WXL-proteins localise both at the cell
surface and in the culture medium and bind to the surface of
parietal monoderm bacteria in trans (Schachtsiek et al., 2004;
Brinster et al., 2007). Genes encoding WXL-proteins are often
organised in clusters (Siezen et al., 2006; Brinster et al., 2007;
Galloway-Pena et al., 2015). The hypothesis that proteins of
WXL clusters could form multicomponent complexes at the
bacterial surface was recently substantiated by the interaction
of two Enterococcus faecium WXL-proteins with their cognate
transmembrane protein in vitro (Galloway-Pena et al., 2015).
WXL-proteins remain poorly characterised at the experimental
level (Siezen et al., 2006; Brinster et al., 2007; Cortes-Perez et al.,
2015; Galloway-Pena et al., 2015). Functional, structural, and
biochemical analyses of these proteins are urgently required to
elucidate their architectural and biological properties.

SH3b Domains
SH3 [sarcoma (src) homology-3] domains were first described in
eukaryotic proteins. They consist of 60 amino acids in average.
In eukaryotes, SH3 domains are mainly involved in protein–
protein interactions (Kaneko et al., 2008). In bacteria, SH3-like
domains are named SH3b. However, in most articles authors
named them indifferently SH3, SH3b, or with other names, e.g.,
GW. To avoid the promulgation of confusing statements in the
scientific literature, they were here named according to the Pfam
classification. Accordingly, five subgroups of SH3b domains are
reported in parietal monoderm bacteria: SH3 of type 3 (PF08239),
SH3 of type 5 (PF08460), SH3 of type 6 (or SH3b1; PF12913),
SH3 of type 7 (or SH3b2; PF12914), and SH3 of type 8 (or GW;
PF13457). These different SH3 domains allow recognition and
binding to PG, but some would also be involved in protein–
protein interactions, as suggested for the SH3 domain of type
3 (Rudolf et al., 2015). Of note, the SLAP domain (IPR024968)
found in some bacterial cell surface proteins (Boot et al., 1995)
may be distantly related to SH3 but further phylogenetic as well
as experimental evidences of its implication in CW binding are
most required.

The SH3 of type 5 (SH3-5) is a domain of 63 amino acids
and is mainly found among Firmicutes, especially Streptococcus
and Lactobacillus genera. This domain described in lysostaphin
and Ale-1 proteins binds the pentaglycine peptide bridges of PG
(Grundling and Schneewind, 2006; Lu et al., 2006). The SH3 of
type 5 could be divided in two subgroups that bind PG with either
low or high affinity (Becker et al., 2009).

The SH3 of type 6 and of type 7 were identified in a major class
of CW endopeptidases, the NlpC/P60 hydrolases that cleave the
linkage between D-Glu and A2pm (or K residue; Xu et al., 2015).
The SH3 of type 6 (SH3-6) is suggested to bind the crossed-linked

stem peptide of the PG. In contrast, SH3 of type 7 does not bind
directly the cell surface but may be involved in the interaction
between the SH3 of type 6 and the other protein domains (Xu
et al., 2015).

The most well studied SH3-like domain is the SH3 of type 8
(SH3-8), also well-known as the GW (Glycine-Tryptophan rich)
domain (Braun et al., 1997). In parietal monoderm bacteria,
this domain of approximately 80 amino acids is mainly found
among Firmicutes, especially Bacillus, Listeria, Lactobacillus,
and Staphylococcus genera. In InlB from L. monocytogenes, the
SH3 of type 8 was first described to be required for the non-
covalent anchoring to the cell surface through an interaction with
LTAs (Jonquieres et al., 1999). More recently, however, it was
demonstrated to allow non-covalent anchoring directly to the
PG (Percy et al., 2016). In the autolysin Atl from S. epidermidis,
this domain was shown to be responsible for the direct binding
to the PG (Biswas et al., 2006), but later, it was proposed to
be responsible for the binding to LTAs (Zoll et al., 2010, 2012).
Interestingly, in Lactobacilli, this domain is exclusively present
in those proteins that harboured a S-layer (Johnson et al., 2015).
These domains are also involved in the binding to the host
cell receptors, or heparan sulphate proteoglycans (Jonquieres
et al., 2001; Marino et al., 2002). They also have been reported
to trigger MET phosphorylation and cellular phenotype and to
bind Human Thrombospondin 1 and Vitronectin (Bleymuller
et al., 2016). Overall, no consensus on the binding ligand for this
domain is proposed, which would require further investigations.
Nonetheless, a protein with less than two SH3-8 domains cannot
bind to the CW (Braun et al., 1997; Jonquieres et al., 1999;
Marino et al., 2002; Desvaux et al., 2010; Renier et al., 2012).
In some proteins, the designated SH3b domain is not detected
by InterPro/Pfam profiles; for instance, and in addition to a
choline binding domain CWB1 (cell wall binding repeat of
type 1, see below), LytB from S. pneumoniae exhibits a SH3b-
like domain suggested to be involved in PG recognition (Bai
et al., 2014). As this SH3b-like domain does not belong to
any of the different types of SH3 domain described above,
it suggests that novel types of SH3 domains remain to be
uncovered.

Sporulation-Related Domain
The sporulation-related (SPOR) domain (IPR007730) was first
described in the CwlC of B. subtilis (Mishima et al., 2005).
CwlC is a CW amidase involved in PG hydrolysis of the
mother cell allowing the release of the spore. This hydrolase
property led to the name of SPOR domain. A SPOR domain
consists of two repeats of 35 amino acid residues; from one
to five SPOR domains can be found in a single protein.
Among parietal monoderm bacteria, this domain was mainly
identified in Firmicutes, especially in Clostridiales and Bacillales.
This conserved domain binds the glycan part of PG and
binding occurs in a cooperative manner (Mishima et al., 2005).
Proteins harbouring a SPOR domain are essentially involved in
sporulation or in cell-division processes (Yahashiri et al., 2015,
2017). For example, CwlC is a PG amidase secreted during
sporulation and that hydrolyses the mother cell PG. It was
proposed that SPOR-proteins, involved in the division process
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are preferentially localised at the septum, where amidases remove
the stem peptides from the PG glycan chains. Thus, protein
localization may be due to the binding of SPOR domains on
naked PG, i.e., glycan strands lacking stem peptides, which
are more abundant at the bacterial septum (Yahashiri et al.,
2015).

Cell Wall Binding Repeat of Cpl-7
The cell wall binding repeat of Cpl-7 (CW-7; IPR013168) was
originally found in the lysin encoded by the S. pneumoniae
bacteriophage Cp-7 (Bustamante et al., 2010). This domain can
be as single or up to three repeats in tandem, essentially in
CW hydrolases. CW-7 was further shown to bind specifically to
PG, with the CW muropeptide GlcNAc-MurNAc-Ala-isoGln as
recognised CW target (Bustamante et al., 2012).

Other Domains Involved in PG Non-covalent Binding
Some other domains are described as potentially involved in
recognition and non-covalent binding to PG. Among them, many
phage lysins targeting the PG of L. casei harbour a novel type of
PG-binding domain that is highly specific for amidated d-Asp
Cross-bridge (Regulski et al., 2013). Other putative domains,
mostly found in some Firmicutes, such as PG-binding domain
of type 1 (PGB1; IPR002477; Layec et al., 2008) as well as
PGB2 (IPR014927) were reported and would require further in-
depth characterizations. In S. pneumoniae, LytB further exhibits
a putative chitin binding domain (WW) domain, which was also
proposed to be involved in PG binding (Bai et al., 2014).

Cell-Surface Proteins Bound to Cell Wall
Polysaccharides
Cell Wall Binding Repeat of Type 1
The CWB1 (IPR018337) is also called choline-binding (ChBD) or
CW binding repeat; for clarity and in echo to the cell wall binding
repeat of type 2 (CWB2) reviewed here below, the CWB1 is
preferred and favoured. This conserved domain is approximately
20 amino acids long. In parietal monoderm bacteria, CWB1
is mainly found among Firmicutes, especially in the families
of the Lachnospiraceae, Ruminococcaceae, Clostridiaceae,
Lactobacillaceae, and Streptococcaceae but also in some
Actinobacteria, e.g., the Coriobacteriia and Bifidobacteriales
orders. It was hypothesised that S. pneumoniae possessed an
autolysin able to interact with phosphatidyl choline residues of
the WTAs (Holtje and Tomasz, 1975). More than 10 years later,
a glycosyltransferase, able to bind WPs through a repeated unit
of amino acids was reported in Streptococcus sobrinus (Ferretti
et al., 1987). This report was just followed by the demonstration
that similar repeats in the lytic proteins of S. pneumoniae
phage were involved in the recognition of choline-containing
CWs (Garcia et al., 1998). Several surface proteins, including
LytA from S. pneumoniae, were described to possess such a
domain that was named glucan-binding domains (GBDs) and
eventually CWB1 (Giffard and Jacques, 1994). LytA was the most
characterised enzyme because it mediates indirectly virulence
by lysis, allowing the release of toxins. The four LytA CWB1
domains were co-crystallised with choline (Fernandez-Tornero
et al., 2001). Four choline interacting CWB1 sites are found in

LytA, implying that at least three CWB1 are needed to form an
interaction with one molecule of choline. It was then suggested
that proteins harbouring less than three CWB1 are not expected
to have affinity for CW choline residues.

Cell Wall Binding Repeat of Type 2
The CWB2 domain (IPR007253) was identified in CwlB of
B. subtilis (Kuroda and Sekiguchi, 1991). In this species, CwlB
is the major amidase. The CWB2 domain is approximately 90
amino acids long. In parietal monoderm bacteria, the CWB2
domain is found in the class of Actinobacteria, especially in
the Micrococcales order, and the class of Firmicutes, especially
in the orders of Clostridiales and Bacillales. Most of proteins
carrying the CWB2 domains are reported with triple adjacent
domains, more rarely with one or two (Fagan et al., 2011), e.g.,
the 29 Cwps (CW proteins) of Clostridium difficile all harboured
three CWB2 domains. Among them, SlpA is the main S-layer
protein of the C. difficile. Other Cwps were assigned with different
potential functions, including amidase and protease (Fagan et al.,
2011). This organisation may be due to the three-dimensional
architecture; the formation of CWB2 trimer was indeed proposed
to interact with the CW via a non-covalent linkage with the
polysaccharide II (PSII; Willing et al., 2015). In C. difficile, the
PSII is covalently anchored via a phosphodiester bond to the
PG. In Cwp6 (CW protein 6) and Cwp8 from C. difficile, the
trimer structure was recently solved by crystallography (Usenik
et al., 2017). This structure revealed that 12 conserved residues
were located between two domain interfaces. Moreover, using
docking experiments, the structure formed by the CWB2 trimer
was confirmed to be compatible with an interaction with the six
monosaccharides that composed the PSII (Usenik et al., 2017).
Two conserved surface R residues that may interact with the
PSII are also found in the S-layer homology (SLH) trimers (see
below; Kern et al., 2011). This result in combination with the SLH
organisation in trimer and a similar function of polysaccharide
anchoring suggests a common or convergent evolutionary origin
(Kern et al., 2011).

S-Layer Homology Motif
The SLH domain (IPR001119) was first reported in three
proteins of Clostridium thermocellum (Fujino et al., 1993).
This domain was later named SLH after comparison of the
S-layer protein sequences of Acetogenium kivui, C. thermocellum,
and Bacillus brevis (Ebisu et al., 1990; Lupas et al., 1994).
This domain consists of an approximately 55-amino acid-
long sequence with a group of five highly conserved residues
(ITRAE). In parietal monoderm bacteria, it is identified in
some species of the class Actinobacteria, such as in the order
Coriobacteriales, Bifidobacteriales, or Micrococcales, but mainly
among Firmicutes, including Clostridia and Bacilli. Three SLH
domains were shown to be sufficient for the anchoring at the CW
surface of B. anthracis, but only two are necessary for the CW
interaction (Mesnage et al., 1999; Huber et al., 2005). Moreover,
SLH proteins from C. thermocellum are able to bind the CW
of B. anthracis and vice versa (Chauvaux et al., 1999). SLH
domains are shown to bind WP in a non-covalent manner. The
WP fraction is pyruvylated by CsaB and this WP modification
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is essential for the SLH protein binding (Mesnage et al., 2000).
The Sap structure, a B. anthracis S-layer protein, confirmed the
potential interaction between WP and the three SLH motifs
(Kern et al., 2011). Pyruvate was later found to be placed at the
distal end of each WP (Forsberg et al., 2012). In Bacillus, it is
proposed that the N-acetyl mannose of the WP is pyruvylated
(Forsberg et al., 2012). In some cases, the SLH domains may be
not sufficient for WP interaction. For instance, in the SbsB of
Bacillus sphaericus, the C-terminal domain together with the SLH
domains is needed for the WP interaction (Huber et al., 2005).
Direct and exclusive binding of SLH to the PG or together with
the WP is still subject to discussion and remains controversial
(Zhao et al., 2005, 2006; Janesch et al., 2013).

Cell-Surface Proteins Bound to the CW
by Unknown Mechanism
The ChW (clostridial hydrophobic repeat with a conserved W
residue) domain (IPR006637) was first identified in Clostridium
acetobutylicum and was predicted to be involved in cell surface
anchoring or in protein–protein interaction (Nölling et al., 2001;
Desvaux, 2005a). This domain is constituted of highly conserved
GW dipeptide motifs and is about 50 amino acids long. A single
protein can harbour between one and 12 ChW domains. It
was suggested that the ChW domains are associated in triplet
for the surface interaction but the biochemical nature of the
CW ligand remains unknown (Sullivan et al., 2007). In parietal
monoderm bacteria, the ChW domain is essentially found in
some Firmicutes, especially of the class Clostridia, but also in
some Erysipelotrichia and Bacilli, e.g., in the genera Lactococcus,
Streptococcus, and Enterococcus, as well as in some bacteria of
the phyla Actinobacteria, especially in the genus Streptomycetes.
ChW-proteins are mostly endolysins suggesting the importance
of this domain for CW interaction and enzymatic activity
(Oliveira et al., 2013).

Cell-Surface Proteins with
Uncharacterised Cell-Envelope
Interacting Domain: The Moonlighting
Proteins
Parietal monoderm bacteria have some surface-exposed proteins
that lack a canonical signal sequence and a CW interacting
domain. Although not sharing any domain or sequence
homology, they share the ability to interact with fibronectin
or extracellular matrix (ECM)-components. The most common
are cytoplasmic enzymes or proteins, referred as moonlighting
proteins. They include the ubiquitous glycolysis enzymes
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Pancholi
and Fischetti, 1992), enolase, phosphoglycerate kinase, the
glutamine synthetase (GlnS), and the translation elongation
factor Ef-Tu (Amblee and Jeffery, 2015). While most act as
adhesins by interacting with components of the host ECM
(plasminogen, fibronectin, laminin, or mucin), some like Ef-Tu
interact also with neuropeptides at the membrane level (Fulde
et al., 2013; Mijouin et al., 2013; Amblee and Jeffery, 2015;
N’Diaye et al., 2016a,b, 2017). Beside the anticipated lack of an
SP and cell surface association domain, bioinformatic analysis

of 98 experimentally reported intracellular proteins having a
moonlighting cell surface function, failed to identify specific
features shared by these proteins (Amblee and Jeffery, 2015). The
domain interacting with plasminogen is frequently localised at
the C-terminus of the protein, however, no conserved domain
could be identified (Bergmann et al., 2003; Ehinger et al.,
2004). Ionic bonds and low pH were shown to contribute to
the association of cytoplasmic proteins with the cell surface
of Lactobacillus crispatus (Antikainen et al., 2007). Conversely,
GAPDH and enolase have been shown to bind LTA on the
bacterial cell surface by ionic bonds (Antikainen et al., 2007;
Kinoshita et al., 2008). Reversely, GAPDH of S. pneumoniae
did not bind synthetic LTAs or TAs and direct binding to
PG was observed (Terrasse et al., 2015). Moonlighting proteins
occur in all bacteria and are thus involved in a large range
of unrelated functions including colonisation, modulation of
the host response and virulence (Kainulainen and Korhonen,
2014).

Other non-classical proteins exposed on the cell surface
of parietal monoderm bacteria are known as fibronectin-
binding proteins (FBPs) characterised by two adjacent conserved
domains: the about first 400 amino acids (PF05833) of which
89 residues associate with fibronectin-binding activity (Courtney
et al., 1994) followed by the conserved domain of unknown
function DUF814 (IPR008532) of ∼100 amino acid residues
including conserved motif (D/E)X(W/Y)XH. First identified in
the fibronectin-binding protein FBP54 of S. pyogenes (Courtney
et al., 1994), these domains have been reported in PavA of
S. pneumoniae (Holmes et al., 2001), FbpA of Streptococcus
gordonii (Christie et al., 2002), Fbp68 of C. difficile (Hennequin
et al., 2003), FbpB of Clostridium perfringens (Katayama et al.,
2009), EfbA in E. faecalis (Torelli et al., 2012), Fnm in E. faecium
(Somarajan et al., 2015), YloA in B. subtilis (Rodriguez Ayala
et al., 2017) and FbpA in Weissella cibaria (Wang et al., 2017).
Consistently with impaired binding capacity to fibronectin upon
nested deletions of the C-terminal part of S. pneumoniae PavA
(Holmes et al., 2001), structural and functional analyses of
FBPS of Streptococcus suis revealed that the C-terminal half of
FBPs mediates binding to fibronectin whereas the N-terminal
half interacts specifically with the surface of Streptococcus suis
(Musyoki et al., 2016). The fact that N-terminal half of FBPs
does not bind to S. pneumoniae nor S. agalactiae cells suggests
an interaction with a specific CW component that remains to
be identified. Despite their contribution to fibronectin binding
and overall virulence in several pathogens, the exact role of
these FBPs is still unclear (Kawabata et al., 2001; Dramsi et al.,
2004; Pracht et al., 2005; Torelli et al., 2012; Somarajan et al.,
2015).

How these proteins are released outside from the cell and
attached to the cell surface remains poorly understood. Several
lines of evidence indicate that the release of GAPDH of
S. agalactiae, S. aureus, and S. pneumoniae bacterial involves
autolysis (Pasztor et al., 2010; Oliveira et al., 2012; Terrasse et al.,
2015). Consistently, moonlighting proteins localise preferentially
at the septum. However, this issue is still debated as not all
cytoplasmic proteins are detected at the CW (Ebner et al., 2016).
Interestingly, based on indirect evidence using an inhibitor of
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a mechanosensitive channel it was recently proposed that EF-
Tu and DnaK of S. epidermidis could be exported through
the large mechanosensitive channel (N’Diaye et al., 2016b).
Variations of channel diameter between bacterial species may
explain differences between patterns of moonlighting proteins.

CELL-SURFACE SUPRAMOLECULAR
PROTEIN STRUCTURES

Besides monopolypeptides, some surface proteins form complex
surface organelles. In parietal monoderm bacteria, such
supramolecular protein structures include the S-layer, flagellum,
various pili and cellulosome.

S-Layer
S-layer is a proteinaceous two-dimensional crystalline array
constituting the outermost CW layer in the absence of a capsule
(Fagan and Fairweather, 2014). Located above the PG, this surface
supramolecular structure is not a common theme in parietal
monoderm bacteria, e.g., it is present in numerous Bacillus or
Clostridium species but absent from Listeria and Staphylococcus
genera. Usually, a S-layer is formed by the auto-assembly of a
unique protein that may be glycosylated. The S-layer proteins are
usually rich in hydrophobic and acidic amino acids (Sára and
Sleytr, 2000). The interactions between the S-layer subunits are
stronger than surface interactions (Messner and Sleytr, 1992).
Most often bacteria with an S-layer possess a single S-layer and
in very rare cases two (Kuen et al., 1997). Most of the S-layer
proteins are non-covalently anchored through SLH or CWP
domains at the bacterial surface. Of note and as mentioned above,
a protein harbouring a SLH or a CWP domain is not necessarily
an S-layer protein.

The function of the S-layer remains unclear but it is generally
suggested to act either as a scaffold, a sieve or a shield to
some environmental stresses (Sára and Sleytr, 2000; Fagan and
Fairweather, 2014; Gerbino et al., 2015). While cited as a
virulent factor or adhesion factor, such a role has not been
convincingly demonstrated in any parietal monoderm bacteria.
In B. anthracis, Sap was suggested to be the receptor of the
phage AP50c (Plaut et al., 2014). Investigating its contribution
to colonisation processes, S-layer was negatively correlated with
biofilm formation in B. cereus (Auger et al., 2009). Consistently,
a C. difficile mutant strain lacking the Cwp84 protease, which
plays a key role in the maturation of the S-layer protein SlpA,
forms a biofilm 72-fold more important than the wild type strain
(Pantaleon et al., 2015). Except for C. difficile (Merrigan et al.,
2013), the bacterial S-layer is considered as non-essential. The
S-layer proteins can account for up to 15% of total bacterial
proteins, also the absence of common physiological functions
among bacteria is intriguing. Undoubtedly, this call for in-
depth investigations under conditions more relevant to the
ecophysiology of the bacterial species considered.

Flagellum
The bacterial flagellum is secreted and assembled via the FEA.
Several transmembrane components constitute the translocon

(FlhAB-FliOPQR) and form the translocase together with the
ATPase FliI (Macnab, 2003, 2004). The flagella per se is composed
of a basal body, the hook, the junction and the filament
proteins, which are secreted and assembled by the FEA (Evans
et al., 2014). These proteins do not exhibit a SP and the
signal necessary for targeting is still controversial (Aldridge
and Hughes, 2001, 2002). While most knowledge about the
assembly and regulation mechanisms results from investigations
in different LPS-diderm bacteria, information related to parietal
monoderm bacteria remains restricted to fewer bacterial species,
e.g., B. subtilis (Mukherjee and Kearns, 2014; Rossez et al.,
2015).

Of course the flagellum is a well-known motility factor that
can be involved in swimming but also swarming (Henrichsen,
1972; Belas, 2014). Swarming is especially relevant for surface
colonisation processes, including adhesion and biofilm formation
(Beeby, 2015; Chaban et al., 2015). Mechanosensing by
flagella and chemotaxis further allow the bacteria to switch
developmental programmes and adapt in response to changes
in their environment. Glycosylation of the flagella has now been
demonstrated in several parietal monoderm bacteria (Schirm
et al., 2004, 2005; Twine et al., 2008, 2009; Kajikawa et al., 2016)
and they further appeared to play a role in pathogenesis and
biofilm formation (Valguarnera et al., 2016; Valiente et al., 2016).

Pili
Pili are tubular cell-surface appendages, which size, diameter,
and shape can be extremely variable depending on the type
of appendage considered. In parietal monoderm bacteria, three
main types of pili can be encountered, (i) the pili made of
covalently linked subunits involved in colonisation and host
interaction, (ii) the type 4 pili (T4P) involved in transformation,
motility and adherence, and the most recently uncovered (iii)
pili made of amyloids. In parietal monoderm bacteria, beside
the evidence the formation of a DNA translocation channel, no
conjugative pili has been formally demonstrated.

Covalently Assembled Pili
First reported and studied in the mycolic-diderm Actinobacteria
and Corynebacteria, pili made of covalently linked pilins are
assembled and anchored to the PG by sortases (Yanagawa
et al., 1968; Ton-That and Schneewind, 2003). Since then they
have been described in various parietal monoderm bacteria,
e.g., including some bacilli, enterococci, streptococci, lactococci,
lactobacilli, and bifidobacteria (Ton-That and Schneewind, 2003;
Kankainen et al., 2009; Hendrickx et al., 2011; O’Connell
Motherway et al., 2011; Oxaran et al., 2012; Murphy et al.,
2014). Pili are all composed of a major pilin that forms the
shaft and a minor tip pilin that is located at the tip of the
pilus. Genes encoding pili are organised in operon of two
or three prepilin genes and one or two pilin-specific sortase
enzymes (Hendrickx et al., 2011). All prepilins contain an
N-terminal SP for secretion and a C-terminal LPXTG domain
for covalent binding to PG or formation of intermolecular
bonds between pilins. In addition, they exhibit tandem Ig-like
domains, also referred as CnaB domains (PF16569), contributing
to pili integrity, stability, and biomechanical properties through
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self-generated intramolecular bonds between a lysine and an
asparagine residue (Kang et al., 2007; Budzik et al., 2009; Kang
and Baker, 2012; Echelman et al., 2016). The YPNK motif is
typical of major and basal pilins and provides the K residue to
form the intermolecular isopeptide bond with another molecule
of pilin. Besides, major pilins have a conserved glutamate
residue in an E-box motif (consensus YXLXETXAPXGY) that
contributes to the autocatalytic formation of intramolecular
isopeptide bonds (Budzik et al., 2009; Kang et al., 2009; Alegre-
Cebollada et al., 2010). Basal pilins are usually smaller and
have a proline-rich C-terminal tail involved in CW anchoring
(Krishnan et al., 2007; Linke et al., 2010). Pilins are assembled
by sequential transpeptidation reactions involving sortases.
Successively, the threonine of the LPXTG sorting signal of
the minor tip pilin is covalently linked to the conserved K
residue of the YPKN pilin motif of the major pilin by a
pilus-specific class C sortase (Budzik et al., 2008). Subunits
of the major pilin are then successively polymerised head-to-
tail by the pilus-specific sortase. High resolution transmission
electron microscopy and pilin structural studies confirmed that
these pili were heteropolymers of two to three head-to-tail
covalently linked pilins (Kang et al., 2009). Once assembled
and depending on the species, the pilus is generally anchored
to the PG by the housekeeping sortase A either directly or
through the incorporation of the minor basal pilin (Dramsi
et al., 2006; Budzik et al., 2007; Mandlik et al., 2008; Necchi
et al., 2011; Shaik et al., 2014). Tip pilins do not exhibit
YPKN motif, but consistently with their adhesive function they
harbour adhesion domains, e.g., vWFA (von Willebrand factor
A) domain, in addition to classical IgG-like folds (Krishnan
et al., 2007; Linke et al., 2010). However, several exceptions to
this general picture have been reported, e.g., the pilin motif
YPKN can be restrain to a single lysine (Kang et al., 2007; Cozzi
et al., 2015), tip and basal pilins can spread along the pilus shaft
(Dramsi et al., 2006; Kankainen et al., 2009; Reunanen et al.,
2012; Yu et al., 2015), sortase A can be dispensable for pilus
anchoring to the CW (LeMieux et al., 2008; Lazzarin et al.,
2015).

Covalently assembled pili are essentially involved in
colonisation processes, especially sessile development
(Nallapareddy et al., 2006; Krishnan et al., 2007; Manetti
et al., 2007; Konto-Ghiorghi et al., 2009; Pointon et al., 2010;
Rinaudo et al., 2010; Sillanpaa et al., 2010, 2013; Danne et al.,
2011; Oxaran et al., 2012). Zipper-like interactions favoured
by multiple SpaC distributed along the pilus were suggested a
major contributor to biofilm formation (Tripathi et al., 2013).
These pili can also play key roles in bacterial adhesion to ECM
proteins, e.g., fibronectin, collagens or mucins, via the tip pilin
(Schwarz-Linek et al., 2003; Hilleringmann et al., 2008; von
Ossowski et al., 2011). Covalent intra- and intermolecular
bonds of covalently assembled pili confer remarkable spring-like
biomechanical properties, which can withstand physiological
shear forces. In addition to specific heterophilic interactions
with mucin and collagen, tip pilin SpaC mediates homophilic
interactions involved in bacterial aggregation (Tripathi et al.,
2013). In S. pyogenes, the N-terminal thioester domain of the
pilus adhesin Cpa was demonstrated to form covalent bonds

with the polyamine spermidine, suggesting these pili could be
involved in covalent attachment to host cells (Linke-Winnebeck
et al., 2014).

Non-covalently Assembled Pili: The Type 4 Pili
Initially described and thoroughly studied in LPS-diderm
bacteria, type 4 pili (T4P) are thin flexible filaments (5–8 nm)
of several microns in length composed of thousands of copies
of a major pilin (Craig et al., 2003). T4P pili are helical
polymers of a major, which consists in a conserved α-helix
at the N-terminus followed by a C-terminal β-sheet domain
(Craig et al., 2004). The cohesion of the filament relies on
hydrophobic interactions between the N-terminal helices amino
acids N-terminal α-helices in the centre of the fibre. The presence
of filaments resembling T4P in parietal monoderm bacteria
was first observed in Ruminococcus albus (Rakotoarivonina
et al., 2002). Since then, clusters of genes associated to T4P
formation, have been detected in many genomes of Firmicutes
(Imam et al., 2011; Berry and Pelicic, 2015). In parietal
monoderm bacteria, components of the T4P are secreted and
assembled by the FPE. According to B. subtilis nomenclature,
the FPE system is composed of the ATPase ComGA, the IMP
ComGB and the type 4 prepilin peptidase ComC, whereas
ComGC is the major pilin, ComGD, ComGE, ComGF, and
ComGG are minor pilins (Chen et al., 2006; Desvaux and
Hébraud, 2006, 2009). In C. perfringens and S. sanguinis,
the FPE comprises a retraction ATPase (IPR006321) and two
conserved proteins involved in pili assembly (IPR005883 and
IPR007813) in addition to the assembly ATPase ComGA
(IPR001482), the IMP ComGB (IPR003004) and the type 4
prepilin peptidase ComC (IPR000045) (Melville and Craig,
2013; Berry and Pelicic, 2015). Besides, the T4P is composed
of two major and three minor pilins (IPR012902). Based on
models derived from LPS-diderm bacteria where the T4P is
secreted and assembled by a type II secretion system (Peabody
et al., 2003; Desvaux et al., 2009; Chagnot et al., 2013), the
prepilins of <200 amino acid residues exhibit a SP with a
conserved type 4 prepilin motif including a glutamate at position
5 of the mature protein (Tjalsma et al., 2000; Desvaux and
Hébraud, 2006, 2009). Prepilins are processed by the prepilin
peptidase cleaving the SP between the n- and h-domain.
Polymerization of the mature pilins involves the assembly
ATPase and integral membrane and accessory proteins. When
present, the retraction ATPase mediates depolymerization of
pilin subunits and subsequent pilus retraction (Melville and
Craig, 2013; Berry and Pelicic, 2015). Structural characterization
of PilA1, the major pilin of the T4P in C. difficile, confirms
general structural conservation with an N-terminal α-helix,
followed by a helical αβ-loop and a four-stranded anti-parallel
β sheet, instead of the typical the C-terminal disulfide bond of
type 4 pilins (Piepenbrink et al., 2015). Amino acid sequence
variation in the C-terminal part of PilA1 between strains
revealed alternative stabilising hydrogen bonds between the
β loops, highlighting that T4P of parietal monoderms rely on
specific mechanisms in spite structural and function conservation
with those of LPS-diderm bacteria. Interestingly, S. sanguinis
encodes an additional T4P, which proteins are orthologous to

Frontiers in Microbiology | www.frontiersin.org 15 February 2018 | Volume 9 | Article 100

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00100 February 12, 2018 Time: 14:24 # 16

Desvaux et al. Protein Cell-Surface Display in Gram-Positive Bacteria

proteins involved in the assembly of the T4P in B. subtilis and
S. pneumoniae (Xu et al., 2007; Gurung et al., 2016; Gurung et al.,
2017).

T4P are generally involved in twitching motility, DNA
uptake during conjugation and transformation, adherence to host
cells and biofilm formation (Giltner et al., 2012). In parietal
monoderm bacteria, the involvement of T4P in bacterial motility
have been reported in C. perfringens and S. sanguinis (Varga
et al., 2006; Gurung et al., 2016), whereas transformation by
T4P has been experimentally demonstrated in S. pneumoniae
(Laurenceau et al., 2013, 2015). It was evidenced that DNA
fragments are too large to go through the T4P and exogenous
double-stranded DNA would actually be captured by the pilus
before being guided to the Com (competence development)
uptake machinery (Dubnau, 1999; Dubnau and Provvedi, 2000;
Chen and Dubnau, 2004; Johnston et al., 2014; Laurenceau et al.,
2015). In R. albus, T4P is specifically involved in adherence to
cellulose (Rakotoarivonina et al., 2002).

Amyloid Pili
Among macromolecular structures displayed at the surface
of parietal monoderm bacteria, amyloid pili remain poorly
characterised. Reminiscent of the curli in Enterobacteriaceae,
these amyloid fibres are quaternary structure of peptide or
protein aggregates forming parallel β-sheets perpendicular
to the fibre axis (Rambaran and Serpell, 2008). Initially
reported in B. subtilis, amyloid pili have so far mainly been
involved in biofilm formation (Taglialegna et al., 2016a).
Their biogenesis relies on different steps depending on the
precursor protein, but always leads to stable β-sheet aggregates.
Secreted by the Sec pathway, the B. subtilis amyloid protein
TasA forms amyloid fibres of variable length and 10–15 nm
in width (Romero et al., 2010). The co-encoded dedicated
signal peptidase SipW and TapA are required to process and
produce functional TasA fibres, respectively (Romero et al.,
2011, 2014). Like for other amyloidogenic precursors, acidic pH
promotes aggregation of TasA (Chai et al., 2013). However, the
mechanism of TasA amyloïd fibre biogenesis is still unknown.
In S. aureus, amyloids fibres are made of secreted peptides
known as phenol-soluble modulins (Schwartz et al., 2012,
2014; Marinelli et al., 2016; Tayeb-Fligelman et al., 2017). The
LPXTG-cell wall anchored adhesins P1 (AgII) and WapA in
Streptococcus mutans and BapA in S. aureus have the ability
to form amyloid fibres (Oli et al., 2012; Taglialegna et al.,
2016b; Besingi et al., 2017). BapA is a member of biofilm-
associated protein (Bap) family defined as high-molecular-
weight CW anchored LPXTG proteins involved in biofilm
formation (Shankar et al., 1999; Cucarella et al., 2001; Lembre
et al., 2014). In BapA, the domain B self-assembles into
amyloid fibres in acidic pH and low calcium concentration
(Taglialegna et al., 2016b). Although domain B of BapA
orthologue of Staphylococcus saprophyticus is amyloidogenic,
other peptides may be involved in the biogenesis of Bap amyloid
fibres since a short amyloidogenic peptide derived from the
imperfect tandem repeats (C-repeats) in Bap proteins of other
Staphylococcus species has been identified (Lembre et al., 2014).
The amyloidogenic moiety is located in the C-terminal region

of P1 and central part for WapA (Besingi et al., 2017). The
amyloidogenic moiety of P1 also associates with covalently
attached full-length P1 suggesting that P1 may serve as the
platform for amyloidogenesis (Heim et al., 2014). Although
much less characterised, the amyloidogenic moiety of WapA
encompasses a collagen-binding domain (IPR008456) composed
of two antiparallel β-sheets and two short α-helices. Occurring
in specific conditions, amyloidogenesis can be viewed as a
conformational adaptation of cell surface proteins with dual
functions.

Conjugative Pili
Consistently with their ability to exchange DNA, several
species of parietal monoderm bacteria have in their genomes
mobile genetic elements that encode conjugative systems
reminiscent of type IV secretion system (T4SS) in LPS-diderm
bacteria (Guglielmini et al., 2013, 2014). Although incompletely
understood, the best characterised conjugative elements in
Firmicutes are the transposon Tn916 of E. faecalis, the plasmids
pIP501 of S. agalactiae, pCF10 of E. faecalis and pCW3 of
C. perfringens, the integrative and conjugative elements ICEBs1
of B. subtilis and ICESt1 of Streptococcus thermophilus (Alvarez-
Martinez and Christie, 2009; Bhatty et al., 2013; Goessweiner-
Mohr et al., 2013; Bellanger et al., 2014; Auchtung et al.,
2016; Wisniewski and Rood, 2017). In contrast to conjugation
in LPS-diderm bacteria, conjugation in parietal monoderm
bacteria would not require pili formation (Andrup and Andersen,
1999). However, considering the identification of several proteins
homologous to the T4SS and the analogous situation with the
FPE in B. subtilis where only pseudo-pilus would be formed
in parietal monoderm bacteria, much deeper investigations in
that direction would be required to categorically exclude the
formation of conjugative pili in any parietal monoderm bacteria.
Not to forget that just a couple of decades ago, the presence of any
pili in parietal monoderm bacteria was not even considered.

Cellulosome
A cellulosome is a supramolecular multienzymatic complex
present at the bacterial surface of some parietal monoderm
bacteria and dedicated to degradation of plant CW
polysaccharides (Bayer et al., 2004; Fontes and Gilbert,
2010). It is organised around a scaffolding which assembles
different catalytic subunits. Cellulosomes are only found in some
parietal monoderm bacteria of the families Lachnospiraceae and
Clostridiaceae (Guedon et al., 2000; Desvaux and Petitdemange,
2001; Desvaux, 2005a). In C. thermocellum, the scaffolding CipA
(cellulosome-integrating protein A) is composed of a CBM
(carbohydrate-binding module), a DocII (dockerin domain of
type II), and 9 CohI (cohesin domains of type I) (Béguin and
Lemaire, 1996; Smith and Bayer, 2013). Whereas different types
of CBM allows binding to different carbohydrate-polymers
with various affinities, CohI acts as a receptor domain for a
dockerin domain of type I (DocI) harboured by cellulosomal
enzymes. CipA can display up to nine different cellulosomal
enzymes thanks to the 9 CohI and its anchor to the bacterial
cell surface via DocII, which interacts with a CohII (type II
cohesin domain) presents in a cell-surface protein, such as SdbA
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(scaffolding dockerin binding A) (Stern et al., 2016). Depending
on the bacterial species, the scaffolding can harbour more or
less cohesion domains (Schwarz, 2001). An even higher level
of complexity can even be reached when different scaffoldings
assemble one with another from complex cellulosomes like
in Pseudobacteroides cellulosolvens or Acetivibrio cellulolyticus
(Xu et al., 2003, 2004; Hamberg et al., 2014). The assembly of
several cellulosomes to form a polycellulosome would occur
via DocI/CohI interactions (Carvalho et al., 2003). Cellulosome
components exhibit SP and would be secreted by the Sec
pathway, even so the mechanism for the assembly of the
different subunits at the cell surface appears quite complex
(Desvaux, 2005a,b; Bras et al., 2016; Bule et al., 2017; Smith et al.,
2017). The cellulosome is generally exposed at the bacterial cell
surface following cohesin-dockerin interaction with cell-surface
proteins, themselves anchored in the CW via SLH domains.

CONCLUSION

By reviewing the components of the cell envelope of parietal
monoderm bacteria, this review stressed the difference between
the surfaceome, i.e., the totality of molecules present at
the bacterial cell surface, and the proteosurfaceome, the
proteinaceous subset of the surfaceome. Besides, the concept of
bacterial cell surface must be carefully balanced and considered
with regards of the idea of scale and the notions of molecular,
accessible, contact and reentrant surfaces. Considering both the
CM and CW as well as monopolypeptides and supramolecular
protein structures, this review provides an overview of the
mechanisms of protein anchoring to the cell envelope of
parietal monoderm bacteria. Nonetheless, it can hardly be
considered as exhaustive. Indeed, some additional domains have
been described in some bacterial species but have not been
registered in InterPro as yet and/or would demand further
characterization. For instance, the C-terminal WrY domain of Sbi
(second binding protein for immunoglobulins) from S. aureus
binds the LTAs (Smith et al., 2012). In Aap (accumulation
associated proteins) from S. aureus, bioinformatic analyses
strongly suggest the G5 domain could be involved in NAG
binding but experimental evidences supporting this function are
still awaited (Bateman et al., 2005). This is also the case for
several S-layer proteins, which do not harbour SLH domains
but are clearly attached to the CW (Chami et al., 1997; Schäffer
et al., 1999; Steindl et al., 2002; Avall-Jaaskelainen and Palva,
2005). At the opposite, some domains reported in InterPro
would still require further characterization since their first report
to ascertain their involvement in protein attachment to the
CW, e.g., the PGB2 (IPR014927) (Foster, 1991). Of note, no
protein domain involved in the interaction with components
of the capsule, such as the polyglutamate, has been uncovered
so far. Bacteriophages often use cell surface polysaccharides
as receptors. Exploration of the diversity of receptor-binding
proteins of bacteriophages may help to identify novel WP binding
domains although their multimeric state required for efficient
binding will imply structural analyses (Regulski et al., 2013;
McCabe et al., 2015; Koc et al., 2016).

It can also be stressed that some cell-surface proteins
can exhibit several anchoring domains, e.g., some IMPs can
also be lipoproteins or some LPXTG-proteins can also have
additional CWBDs. Even for the well-characterised domains
presented in this review, there is still some work to be done
to refine their biochemical properties, especially to decipher
in detail the interactions of a given domain with its CW
ligand(s) and define their three-dimensional structure, which
have been resolved only in a handful of them. For more complex
structures, e.g., pili, tomography by cryo-EM is certainly one
of the method of choice to reveal their molecular details (Li
and Thanassi, 2009). While considered rare or even absent a
decade ago, it appears bacterial proteins can be glycosylated,
especially those cell-surface exposed (Lu et al., 2015; Schaffer
and Messner, 2017). However, the extent to which glycosylation
contributes to protein anchoring to the cell envelope of parietal
monoderm bacteria remains an open question. All-in-all, it
can be bet that novel cell-envelope binding domains will be
uncovered in the years to comes and increase the repertoire
of known surface proteins in parietal monoderm bacteria.
Most of the protein domains interact non-covalently with the
CW. Consistently with bacterial growth, the surfaceome is
extremely dynamic and in constant renewing. Together with
other processes, labile interactions participate to the flexibility
and the spatio-temporal remodelling of the surfaceome in
response to physiological or environmental changes (Bierne
and Dramsi, 2012; Mitra et al., 2016). Undoubtedly, the
composition of proteosurfaceome is of great importance for
the colonisation of various environments, including bacterial
adhesion and biofilm formation ability of parietal monoderm
bacteria (Planchon et al., 2009; Renier et al., 2011; Chagnot et al.,
2012, 2013).

By providing a comprehensive view of mechanisms of protein
anchoring to the cell envelope of parietal monoderm bacteria, this
review should be helpful for scientists and researchers involved
in global approaches, especially genomics, transcriptomics and
proteomics. Predicting the subcellular localization of genome
encoded proteins is a key step in comprehending the physiology
of a given micro-organism but also applied research dedicated to
the mining of new degradative enzymes, adhesins or antigens.
Respective to the proteosurfaceome, several individual tools
allow predicting the presence of SP, e.g., SignalP (Nielsen,
2017), cell-envelope anchoring domain, e.g., InterProScan (Jones
et al., 2014), or even the final subcellular location, e.g., PSORT
(Peabody et al., 2016), but an integrated and combining approach
based on the secretome concept, which considers the biology
of protein secretion by including the protein secretion systems,
post-translational and post-translocational modifications as well
as retention signals, proved much more powerful than individual
predictors (Renier et al., 2012). While genomics is useful for
initial mapping of the secretome, which further allows defining
the proteosurfaceome (i.e., the cell surface complement of the
secretome), proteomics remains the ultimate method of choice
to ascertain that proteins are effectively expressed and located as
predicted (Planchon et al., 2007; Solis and Cordwell, 2011, 2016).
Besides proteomics, which by definition focuses on the whole
protein content, glycomics and lipidomics can also be used to
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investigate globally the polysaccharidic and lipid fractions of
the bacterial surfaceome (Chessa et al., 2008; Kondakova
et al., 2015). So far, however, such approaches have not
been broadly applied in parietal monoderm bacteria but
it is certainly a promise in the years to come to define
more comprehensively the surfaceome of these bacteria, which
are for some of them important pathogens. As a primary
target, such research directions on the surfaceome are a
prerequisite for the development of novel antibacterial agents or
therapeutics.
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