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Displacement field of a screw dislocation in a 〈011〉 Cu nanowire: An atomistic study
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(Received 3 August 2013; published 10 December 2013)

By performing atomistic calculations with a tight-binding potential, we study the displacement field induced
by a screw dislocation lying along a free 〈011〉 Cu cylindrical nanowire. For this anisotropic orientation that is
often encountered experimentally, we show that the displacement field uz along the nanowire can be seen as the
superposition of three different fields: the screw dislocation field in an infinite medium, the warping displacement
field caused by the so-called Eshelby twist, and an additional image field induced by the free surfaces. A Fourier
series analysis of this latter image displacement and stress fields is given. For a circular cross section of the wire,
this image field corresponds mainly to an additional warping displacement uz ∝ xy. The dissociation mechanism
of the dislocation into partials and the surface stress effects being also captured in our simulations, the present
study enables one to quantify the various contributions to the formation of the x-ray diffractograms.

DOI: 10.1103/PhysRevB.88.224101 PACS number(s): 61.72.Bb, 81.07.Gf, 61.72.Dd

I. INTRODUCTION

The pioneering study of Eshelby1–3 on the stability of a
screw dislocation in a thin rod is an outstanding example4

of a single line defect leading to a macroscopic torsion
of the sample. This so-called Eshleby twist takes place to
cancel the torque due to the screw dislocation and thus
stabilizes the defect at the center of the twisted rod. The angle
of twist per unit length of the bar depends on the intensity of
the Burgers vector and the surface of the cross section of the
cylindrical wire.

Recent experimental works have revealed spectacular su-
perstructures directly related to the Eshelby twist.5 Other
studies based on sophisticated x-ray diffraction techniques
are currently carried out to resolve the displacement field in
these nanosystems.6–8 One significant advance would be, for
instance, to identify a single screw dislocation in a single
nanowire in order to correlate the influence of this defect to
the mechanical properties of the nanowire.

From a theoretical viewpoint, the full calculation of the
displacement field in a nanowire containing a dislocation is
also nontrivial since the question of the image displacement
fields induced by the free surfaces has to be resolved. The
metallic fcc nanowires are in general oriented along a 〈011〉
direction with an equilibrium shape made of {100} and
{111} facets.9 By twisting the wire10 or during its growth,
screw dislocation might nucleate along the nanowire. Various
ingredients are to be accounted in this problem. First in
metal, the perfect [011] screw dislocation dissociates into
two partials separated by a distance that can be significant
in comparison to the radius of the nanowire. This requires a
description at the atomistic scale to capture the displacement
field in this extended core.11 Secondly, two types of anisotropic
effects should be considered here, the anisotropy of the elastic
constants leading to an angular dependence of the shear
modulus in the cross-section plane and the anisotropy due
to the shape of the wire. Finally, the influence of the surface
stress on the boundary conditions should be also quantified
in such a study where the nanowires have radii in the 10-nm
range. As a result of these properties, the free surfaces induce
an image displacement field that will be superposed to the

dislocation and the torsion fields. In this work based on
atomistic calculations we examine in detail the role of each of
these components on the formation of the displacement field.
More precisely, by solving the realistic case of an anisotropic
Cu nanowire, three correlated questions are addressed:
(i) Are the boundary conditions modified by the surface stress?
(ii) Can we rationalize the atomic displacement field using
elasticity theory? (iii) Can we expect a clear signature of the
image field from an x-ray diffraction experiment?

The paper is organized as follows. First in Sec. II, we
briefly introduce the modeling techniques employed and some
important characteristics of the atomistic potential for the
present study. Then using anisotropic elasticity, we recall
the main theoretical arguments that explain how a screw
dislocation can be stabilized along a 〈011〉 nanowire by the
Eshelby twist. The problem of the boundary conditions is
formulated by taking into account the presence of surface
stress. In Sec. III, we show the results of our atomistic
simulations on the displacement field that minimizes the
elastic energy of a circular cylindrical nanowire containing
an axial screw dislocation. In Sec. III A, we first study the
influence of the surface stress on the boundary conditions on
the lateral surfaces. Then in Sec. III B the image displacement
field induced by the free lateral surface is analyzed in details
using a Fourier series analysis. An analytical expression of the
stress field for a circular nanowire is also proposed, in good
agreement with the atomistic calculations. In Appendix B, we
demonstrate the gain in energy of the image field from the first-
order expansion term. The Fourier series method is extended
to the case of a nanowire having the equilibrium hexagonal
cross section. This more realistic case is successfully treated
separately in Appendix A of this paper. Finally in Sec. III C,
we analyze whether a coherent x-ray diffraction experiment
made on one single nanowire would be sensitive to the image
fields evidenced in this work.

II. MODEL

A. The SMA potential

The atomic interactions in Cu nanowire are described
within the SMA potential derived from the second-moment
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approximation of the density of states (DOS) in the tight-
binding formalism.12,13 This analytical potential was quite
successful in predicting structural properties in pure fcc
metals. The N -body character of the SMA potential gives, for
instance, realistic vacancy formation energies, proper surface
relaxations, and good elastic anisotropy when interactions are
extended up to the second-neighbor atom distances. It is also
well known that the second-moment approximation cannot
reproduce the small value of the stacking fault energy that
plays a crucial role on the dissociation distance of a screw
dislocation. To capture this important quantity, higher-order
moments of the DOS in the tight-binding model should be
used. However, in the present study, to keep the analytical form
of the SMA potential and to perform large-scale simulations,
it was possible to bypass this limitation of the SMA potential
by adjusting the cutoff interaction distance to get a realistic
stacking fault energy. Details of this small modification are
given below and consequences on the calculated bulk and
surface properties are summarized here.

According to the SMA potential, the energy En of an atom
on the site n having neighbor atoms on the sites m at distances
rnm, writes

En = −β

√∑
m

exp

[
− 2q

(
rnm

r0
− 1

)]

+A
∑
m

exp

[
− p

(
rnm

r0
− 1

)]
, (1)

where A, β, p, q are the four parameters to be adjusted. r0 is the
first neighbor distance in the fcc metal structure. To perform
molecular statics simulations within this type of semiempirical
potentials, cutoff functions in Eq. (1) are generally introduced
to avoid any discontinuities in energies and forces. The cutoff
function consists of replacing the exponential terms in Eq. (1)
by fifth-order polynomial forms for interaction distances rnm

greater than a threshold distance rc to be chosen. In the present
study, while keeping the values of the A, β, p, q, and r0

parameters unchanged from previous studies on copper,14,15

we increase rc up to the third-nearest-neighbor distance. This
enables one to get a positive stacking fault energy that is
essential for the present study. Note for completeness that the
interactions still vanish at the fourth-nearest-neighbor distance
as in the previous parametrization.

B. Bulk and surface properties

The intrinsic stacking fault energy γ SF plays an important
role in the core dissociation of a screw dislocation into
Shockley partials.4,16 It contributes to maintain the two partials
separated at a nanometer distance in copper. The modification
made on rc (i.e., rc = √

3r0) in the present SMA potential
leads to γ SF ≈ 55 mJ m−2 (while 45 mJ m−2 is found
experimentally4 and the value of 44.4 mJ m−2 is obtained by
Mishin et al.17). Classically,4,16 the other physical constants
that control the bulk dissociation length d0 between the two
partials are the norm of the Burgers vector b = 2.5642 Å and
the (111) shear modulus μ(111). Within our slightly modified
SMA potential, we get μ(111) = 46 GPa for copper. This elastic
coefficient should be compared to the usual 42 GPa given
by other atomic potentials.18 In the case of a free cylindrical

(111)

[011]

θ

z
[011]

y

x

[100]

r

(a)

(b)

FIG. 1. (Color online) (a) Total displacement field uz observed
from our simulations (see text) for a circular [011] nanowire of radius
10 nm containing a screw dislocation. The color scale represents
the uz intensity ranging from 0 to b. (b) The two Schockley partials
dissociated in the (111) plane and the twofold symmetry of the [011]
orientation of the fcc nanowire are revealed by using an arbitrary
color scale that draws atoms having high energy.

nanowire having a radius of 300 Å, the dissociation distance
obtained in our simulation is only a few tenths of Angströms
greater than d0 whose asymptotic value can be deduced from
the dissociation distances d(R) obtained for different radii R.
Indeed, we find that d(R) − d0 ∝ 1/R with a bulk d0 value
close to 14 Å.

The typical simulation conditions considered in this work
are the following and are illustrated in Fig. 1. We first build a
perfect cylindrical fcc nanowire along a [011] direction with
the desired cross-section shape. Then, a perfect screw disloca-
tion, with Burgers vector b = 1/2 a[011] is formed with the
associated displacement field in an infinite isotropic medium
(i.e., uz = u∞,i

z = bθ/2π ). This simple initial configuration
is then relaxed by performing quenched molecular dynamics
simulations [also called molecular static (MS) calculations] to
get the fully relaxed positions of the atoms in the structure and
the corresponding energy at T = 0 K. To mimic an infinite free
nanowire, torsion periodic boundary conditions are used in our
simulations.19 Since it is the torsion that stabilizes the screw
dislocation into the wire, it is necessary for a given nanowire
to perform a series of simulations with different torsions to
determine the twist that minimizes the total energy of the
system and defines the so-called Eshelby twist αE (see Fig. 2).
An other free variable to be examined is the contraction of
the wire along its main z axis. Indeed, the undercoordinated
surface atoms are in tension and they tend both to relax inward
and to reduce the whole length of the nanowire. It results that
bulk atoms are more and more in compression when the radius
of nanowires decreases. In practice, we have parallelized our
simulation code to run efficiently on graphics processing units

224101-2
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FIG. 2. (Color online) Atomistic calculations of the nanowire
energy per unit length as a function of the applied torsion α in the
two cases of a 10-nm radius nanowire containing a screw dislocation
(solid circle) or not (open circle). With the dislocation, the minimum
is shifted to a torsion value αE that is called the Eshelby twist.

(GPU) and in order to consider simulation boxes containing
up to one million atoms.

Figure 1 shows the metastable state reached after relaxation
in our MS calculation at the Eshelby twist and the geometry
of the system studied in this work. One of the two equivalent
{111} planes is chosen [here (111)] by the initial perfect screw
dislocation to dissociate into two Schockley partials and thus
to lower the energy. The Cartesian x, y, and z axes correspond,
respectively, to the [100], [011], and [011] directions while in
the cylindrical r ,θ ,z coordinates, θ is chosen to vanish along
[100]. Figure 1 also shows a first representation of the total
displacement field uz observed from our simulations. At first
glance, this latter seems to increase smoothly with θ . We will
show in this work that in addition to this dominant isotropic
tendency there are other important anisotropic contributions
that will modify the x-ray diffraction, for instance. The
anisotropy comes from the twofold symmetry of the [011]
orientation of the fcc nanowire leading to inequivalent in-plane
directions as it can be seen in Fig. 1 from the energies of the
surface atoms.

It is worth noting that before reaching the metastable state
made of the two parallel partials, we observe the formation and
the annihilation of constrictions that are very similar to the ones
discussed first by Rasmussen et al. (Ref. 11). Depending on
the length of the nanowire and for the periodic conditions
considered in this work, an even number of constrictions
nucleates and leads to the splittings of the perfect screw
dislocation into Shockley partials in the two different {111}
glide planes. Then during the quenched molecular dynamics,
constrictions are annihilated two by two. For an untwisted

nanowire of radius 6 nm, the energies of the constrictions
are very close to the ones obtained by Rasmussen et al. (i.e.,
in the present work: 3.35 eV for the edgelike and −1.10 eV
for the screwlike). However, we also find in our simulations
that the recombination energy decreases markedly with the
torsion and increases for smaller radius of the nanowire.

To interpret the uz displacement fields observed in this
work, some specific surface and bulk elastic properties should
be calculated within the SMA potential. First, since the
nanowire axis coincides with the [011] twofold symmetry
direction of the crystal and considering the x and y axis
defined in Fig. 1 (belonging to the symmetry planes),
the elastic constants C44, C45, and C55 are key terms to
quantify the elastic energy in the twisted wire containing
a screw dislocation. They can be obtained from the usual
transformation rules by considering the elastic constants
C0

11, C0
12, and C0

44 defined in the crystal axis coordinate
system.20 For the chosen {[100],[011],[011]} coordinate sys-
tem, C45 vanishes and we find C44 = (C0

11 − C0
12)/2 = 28

GPa and C55 = C0
44 = 82 GPa in good agreement with the

respective 26 GPa and 82 GPa experimental values.21 In
cylindrical coordinates, these elastic moduli can be written as

c44(θ ) = C⊕ + C	 cos 2θ,

c55(θ ) = C⊕ − C	 cos 2θ, (2)

c45(θ ) = C	 sin 2θ,

with C⊕ = (C44 + C55)/2 and C	 = (C44 − C55)/2. The
dependency with θ of Eq. (2) is plotted in Fig. 3(a) to underline
the strong bulk anisotropy expected in 〈011〉 nanowires. This
convenient representation is also used below to determine the
components of the stress tensor.

A second source of anisotropy comes from the surface
properties of the wire, namely the shape of the cross section
and the variation of the surface stress along its contour. The
shape of the cross section plays a key role in the elasticity
boundary-value problem that is often nonintuitive but well
documented. For instance, it is well known that the torsion of
an anisotropic [011] bar with a circular section is analogous
to the torsion of an isotropic [100] bar with an elliptical
section and leads to the same warping displacement uz.2 In
both situations, uz is described by the same type of governing
equation. More generally in the case of the circular anisotropic
problem and for the out-of-plane displacements considered in
this work,22 the equilibrium equations reduce to the following
expression:

C55
∂2uz

∂x2
+ C44

∂2uz

∂y2
= 0. (3)

For wires having a radius of nanosize, the effects of elastic
surface properties (e.g., surface moduli and surface stress)
should be examined in details to quantify the total strain
energy. These questions have received lots of attention during
these last decades since the pioneering mathematical works
of Gurtin and Murdoch.23–25 Using, for instance, the Chen
et al.26 approach, the surface stress is described as symmetric
2×2 tensor σS in the tangent plane of the curved surface. This
latter is seen as a vanishingly thin membrane which can sustain
in-plane stresses but offers no resistance for bending. Using
force balance considerations, the derivation of the surface
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FIG. 3. (Color online) Bulk and surface anisotropy encountered
in this work for a [011] copper nanowire described within the SMA
potential: (a) θ dependence of the shear elastic moduli c44(θ ), c55(θ ),
and c45(θ ) according to Eq. (2) and (b) surface energy γ and surface
stress components σS

θθ and σS
zz calculated from perfect slabs having

various θ orientations.

boundary conditions leads to generalized Young-Laplace
equations where some components of the bulk stress tensor
σ are now related to σS and the curvature of the surface.26 In
the present case of an infinite circular nanowire of radius R,
the surface boundary conditions for the cylindrical coordinate
system (r ,θ ,z) write

σrr |r=R = −σS
θθ

R
,

σrθ |r=R = 1

R

∂σS
θθ

∂θ
, (4)

σrz|r=R = 1

R

∂σS
θz

∂θ
,

where σS
θθ and σS

θz do not depend on z here. Note that the
right terms in Eq. (4) vanish for large R and the classical
boundary conditions on the lateral surfaces are then recovered.
To study the influence of σS on the total uz displacement
field from our atomistic simulations, we need first to calculate

the stress tensors on each atom. This is straightforward
within the SMA potential that preserves an analytical form
of each components σij .27 Since we have slightly modified the
characteristic of the SMA potential (i.e., rc = √

3r0), the last
quantities of interest to be calculated in this section are the
surface energies γ and the surface stresses σS

ij as a function of
the surface orientation. These calculations are performed from
various slabs presenting unreconstructed (1 × 1) surfaces with
different orientations. Moreover, in-plane boundary conditions
are applied to fix the in-plane lattice parameter to the infinite
crystal value. Thus, the slab mimics a semi-infinite crystal
where the bulk stress is null. These calculations also account
for the usual inward atomic relaxation occurring at the surface.
In Fig. 3(b), we report γ and the two diagonal surface tensor
components σS

zz and σS
θθ . The z direction corresponds to the

[011] zone axis of the slab, and θ gives the surface orientation
with respect to [001]. The trends shown in Fig. 3(b) are
very similar to the ones already published with this type of
potential.28 Furthermore, by increasing rc from

√
2r0 to

√
3r0,

we observe (not shown here) that σS
zz and σS

θθ exhibit values
that are globally enhanced (roughly by a factor ranging from
1.05 to 1.1) except for θ = 0 where no change is noticed.
Concerning γ the influence of rc is also not pronounced and
similar anisotropy is found.

C. The Eshelby twist in an anisotropic nanowire

The interaction between the screw dislocation and the
lateral surface of the nanowire leads to a classical boundary
problem.3 Considering large radii where surface stress effects
are neglected, the total stress field σ tot

ij of a dislocation within
a nanowire can be treated as three superimposed stress fields:
the infinite stress field σ∞

ij induced by the screw dislocation
in an infinite crystal, a stress field σ twist

ij produced by the twist
of the nanowire to cancel the torque due to the dislocation,
and, finally, the image stress field σ

img
ij required to obtain a

vanishing traction on the lateral surface. The total stress field
inside the free twisted nanowire then writes

σ tot
ij = σ∞

ij + σ twist
ij + σ

img
ij , (5)

where σ tot
ij obey to the equilibrium equation that in the absence

of body forces, writes

∂σ tot
rz

∂r
+ 1

r

∂σ tot
θz

∂θ
+ 1

r
σ tot

rz = 0. (6)

Let us first recall the simplest case of an isotropic cylinder
containing a coaxial screw dislocation.4 The displacement u∞,i

z

(where the superscript i is for isotropic) is generally chosen as
a linear function of θ , with associated stresses σ

∞,i
θz that can

be written:

u∞,i
z = bθ

2π
= b

2π
tan−1 y

x
σ

∞,i
θz = μb

2πr
. (7)

The Eshelby twist that minimizes the elastic energy writes

αE = − b

πR2
. (8)

It produces displacements and stresses given by

u
twist,i
θ = αErz σ

twist,i
θz = μαEr. (9)
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For a circular cross section the boundary conditions on the
lateral surface can be expressed as

σ tot
rr

∣∣
r=R

= σ tot
rθ

∣∣
r=R

= σ tot
rz

∣∣
r=R

= 0, (10)

and are satisfied without requiring any image stress (σ img,i

ij =
0). In the anisotropic case, however, this is no longer
true. Additional image stresses are necessary to fulfill the
condition of a vanishing traction at the surface as expressed
in Eq. (10). Indeed for the same configuration of a coaxial
screw dislocation with Burgers vector b = 1/2 a[110], the
displacement field becomes (with C45 = 0)

u∞
z = b

2π
tan−1

√
C55

C44

y

x
, (11)

leading to two nonzero σ∞
θz and σ∞

rz components that write

σ∞
θz = b

√
C44C55

2πr
,

(12)

σ∞
rz = b

√
C44C55

4πr

(C44 − C55) sin 2θ

C44 cos2 θ + C55 sin2 θ
.

Concerning the torsion required to minimize the elastic energy,
the same Eshelby twist [given by Eq. (8)] is necessary for
the circular anisotropic case.2 The anisotropic situation is,
however, different since a warping displacement utwist

z is now
produced by the torsion. Indeed, for a circular cylinder and
any torsion α, we have

utwist
θ = αrz utwist

z = α

2

C55 − C44

C55 + C44
r2 sin 2θ, (13)

leading to a radial stress field with the sole component,

σ twist
θz = α

2C44C55r

C44 + C55
(14)

that fulfills the boundary conditions of Eq. (10).
Thus, in the presence of the stress fields σ∞

ij and σ twist
ij

given by Eqs. (12) and (14), the image stress field σ
img
ij

to be resolved for a circular cross section should have the
following properties. First, in order to satisfy the surface
traction conditions of Eq. (10) where surface stress effect is
neglected, the σ

img
rz component must take a value at r = R that

is opposite to the one of σ∞
rz in Eq. (12):

σ img
rz

∣∣
r=R

+ σ∞
rz

∣∣
r=R

= 0. (15)

Secondly, for any θ and r , a nonvanishing σ
img
θz component

appears from the equilibrium equation [Eq. (6)]. And finally,
a second relation between σ

img
rz and σ

img
θz is found to satisfy

the compatibility that ensures that the displacement u
img
z is

continuous and single valued. This latter can be obtained from
the partial derivatives of u

img
z that can be written as a function

of σ
img
rz and σ

img
θz as follows:

∂u
img
z

∂θ
= r

C44C55

[
σ

img
θz c55(θ ) − σ img

rz c45(θ )
]
,

(16)
∂u

img
z

∂r
= 1

C44C55

[ − σ
img
θz c45(θ ) + σ img

rz c44(θ )
]
.

Using Eq. (16), the equation of compatibility is simply
established here by verifying that ∂2u

img
z

∂θ∂r
= ∂2u

img
z

∂r∂θ
. We have

σ
img
θz c55(θ ) − σ img

rz c45(θ ) + r
∂

∂r

[
σ

img
θz c55(θ ) − σ img

rz c45(θ )
]

= ∂

∂θ

[ − σ
img
θz c45(θ ) + σ img

rz c44(θ )
]
. (17)

To summarize, we search the image displacement field u
img
z

that gives the complete expression of the displacement utot
z

along the nanowire axis resulting from the presence of the
dislocation, the lateral surface, and the Eshelby twist. In terms
of stress, this problem consists in solving the two relevant
σ

img
rz and σ

img
θz stress components that are solutions of both

the equilibrium [Eq. (6)] and the compatibility [Eq. (17)]
equations with an additional constrain on the value of σ

img
rz

at the lateral free surface (at r = R). This latter surface
traction condition takes different forms if one considers the
surface stress effect [Eq. (4)] or not [Eq. (15)]. In the present
work, the full solution utot

z of this problem is resolved by
performing atomistic simulations. From a detailed analysis of
these results, it will be possible to extract the unknown image
field after having quantified the role of the surface stress in our
simulations.

III. RESULTS

A. Surface stress effects

Classical elasticity does not treat intrinsic size dependence
in the elastic solutions of defects in nanowire. To model
possible size and surface stress effects, one has to account
for the generalized Young-Laplace (GYL) relations expressed
in Eq. (4) that modify the boundary conditions. The aim of this
section is to both verify the GYL relations from our atomistic
simulations and quantify the change induced by the surface
stress on the two stress components (i.e., σrz and σθz) relevant
in this work.

To enable the comparison with the continuous description
and since the stress tensor per atom is directly known from the
SMA potential, we adopt a coarse-grained method where each
grain is formed by few atoms and presents an average stress.
Grains have a typical size of 5 Å and are obtained by dividing
the cylinder in concentric shells that are themselves divided in
angular sectors.

Contrary to the perfect slabs in Fig. 3(b), the bulk stress
is not null in the nanowire. This bulk contribution must be
subtracted from the stress measured in a grain located at the
surface in order to get the surface stress (that is defined as
a surface excess quantity). In practice, for one column of
grains along a radial direction (defined by θ ), the desired stress
difference is obtained from the two first adjacent grains near
the surface. The area chosen to calculate σS

zz, σS
θθ , and σS

θz is
the one occupied by the grain at the surface. Some moving
average between neighbor grains are then performed.

To verify the validity of our method, we compare in Fig. 4(a)
the diagonal components σS

zz and σS
θθ deduced from the slabs

as in Sec. II B and the ones obtained from the lateral surface
of the circular nanowire with radius R = 30 nm. Figure 4(a)
indicates that the large size of the wire and its low bulk stress
enable one to generate all the surface orientations with states
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FIG. 4. (Color online) Test of the generalized Young-Laplace
equations [Eq. (4)] at the lateral surface of a circular copper cylinder of
radius R = 30 nm. (a) Comparison of the surface stress components
σS

zz and σS
θθ calculated either from perfect slabs as in Fig. 3(b) or

from a nanowire that is free of dislocation, then (b) the first, (c) the
second, and (d) the third GYL equation are analyzed in the case of
an untwisted nanowire containing the dislocation by comparing in
Eq. (4) the θ dependence of the right surface terms to the respective
left bulk terms calculated near the surface.

of stress that are close to the ones found from the slabs. The
presence of steps on the nanowire surface and the choice of
the grain size lead, however, to large fluctuations on the values
of σS

zz and σS
θθ .

In Figs. 4(b)–4(d), we wish to test the GYL equations
in the case of the untwisted nanowire containing the screw
dislocation. The first relation in Eq. (4) links −σS

θθ/R to
σrr |r=R and simply means that a state of tension of the surface
atoms leads to a radial compression of the bulk atoms that
increases when R decreases. Along each column of grains
defined by θ , we report in Fig. 4(b) how to vary σrr in grains
close to the surface. Of course, the nonclassical GYL boundary
conditions should be evidenced at the vicinity of the surface
only. This is clearly the case in Fig. 4(b) where the variation of
the σrr |r≈R curve around −0.03 GPa is well reproduced by the
−σS

θθ/R plot. One can recognize in particular on this figure the
large σS

θθ value of the (100) surface (for θ = 0◦ and 180◦) that
induces a pronounced σrr near the surface. Similar conclusions
are drawn for the two other GYL relations in Eq. (4) that are
numerically demonstrated in Figs. 4(c) and 4(d) : near the
surface for r ≈ R, the bulk stress components σrθ |r≈R and

σrz|r≈R tend, respectively, to 1
R

∂σS
θθ

∂θ
and 1

R

∂σS
θz

∂θ
where the θ

derivatives of the surface σS components are performed from
neighbor grains at the surface.

Only the third GYL equation [in Eq. (4)] involves σrz

and therefore deserves a particular attention for the present
work. Figure 4(d) shows that the variation of σrz (due to the
dislocation as it will be shown in Sec. III B) is attenuated

when r approaches R. According to the third GYL equation

σrz|r=R should be equal to 1
R

∂σS
θz

∂θ
. The convergence of those

two quantities can be seen on Fig. 4(d) when r tends to R.
However, one can also observe that σrz|r=R is very small.
Thus in the rest of this paper the boundary condition given by
the third GYL equation will be considered as equivalent to the
classical surface traction condition.

To summarize, we have shown from our atomistic calcu-
lations that the surface stress and the curvature of the lateral
surface of the copper nanowire modify the classical boundary
conditions as predicted by the GYL Eq. (4). These surface
effects do not impact directly σθz and our simulations show
that they have a neglectable influence on σrz for the nanowires
with large values of R such as the ones considered in this work
(6 nm < R < 30 nm). Of course, we expect a more significant
influence of the surface for thinner nanowires (for R < 3 nm)
but at this scale the discretization effects, the high density of
surface steps, and the dislocation core prevent the use of a
continuous description of the stress in such small objects.

B. Image effects

To study the image field induced by the circular surface, we
consider the case of a cylinder having a large radius of 30 nm
as illustrated in Fig. 5. The color scale is the same for the
four snapshots and represents the displacement field uz along
the [011] wire axis for different configurations. To compare
the various fields, we first report in Fig. 5(a) the anisotropic
solution [i.e., u∞

z − u∞,i
z from Eqs. (7) and (11)] given for a

screw dislocation in an infinite medium. Clearly from Fig. 5(a),
but also from Fig. 6(a′) where values of u∞

z − u∞,i
z are plotted

as a function of θ , one can evaluate the importance of the
anisotropy due to the high C55 : C44 ratio in this system. The
deviation from the isotropic field shown in Fig. 6(a′) can reach
an amplitude of 0.1 Å and has no r dependence in this infinite
crystal case.

The snapshot of Fig. 5(b) is obtained from our atomistic
simulations in the case of an untwisted circular wire. The
isotropic u∞,i

z field is again subtracted to enable the compari-
son with Fig. 5(a). Figure 5(b) clearly reveals the importance
of the image effects induced by the surface of the system. We
observe that the image field tends to reinforce the anisotropy
by a factor close to 2 at the vicinity of the surface where the
uz amplitude becomes maximum. To quantify this result, the
corresponding uz plot (denoted u∞

z + u
img
z − u∞,i

z ) is shown
in Fig. 6(b) while the image field u

img
z is extracted and reported

in Fig. 6(b′). This latter graph confirms that near the surface
u

img
z resembles to the displacement u∞

z − u∞,i
z . Figure 6(b′)

also shows that the u
img
z amplitude decreases in the inner of

the nanowire by following roughly a r2 dependence.
In Figs. 5(c) and 6(c), we illustrate the case of a pure torsion

of the nanowire without any dislocation. This atomistic MS
simulation performed at the Eshelby twist of αE [in Eq. (8)]
gives rise to a warping displacement field (denoted utwist

z ) in
very good agreement with the warping function utwist

z expected
from the elasticity theory and Eq. (13). This assertion will be
demonstrated below in this section.

Finally in Figs. 5(d) and 6(d), we report the total displace-
ment field utot

z due to both the presence of the screw dislocation
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FIG. 5. (Color online) Color scale representation of the displace-
ment field uz in a [011] fcc circular nanowire of radius 30 nm: (a)
Atoms are displaced according to the field difference u∞

z − u∞,i
z

between the anisotropic and the isotropic solutions of the screw
(b = 1/2 a[110]) dislocation in infinite fcc crystals; (b) displacement
field (denoted u∞

z + u
img
z − u∞,i

z ) obtained in our MS simulations
from the fully relaxed positions of atoms in the case of an
untwisted nanowire containing the screw dislocation. For comparison
the solution u∞,i

z is subtracted. (c) Atomistic MS simulation of
the displacement field (denoted utwist

z ) resulting from the torsion
at the Eshelby twist of the nanowire free of dislocation; (d) MS
simulation of the atomic displacement (utot

z − u∞,i
z ) in the case of

the twisted nanowire containing the dislocation. This full solution
corresponds well to the addition of (b) and (c).

and to the torsion of the nanowire that is necessary to cancel
the torque induced by the defect. Interestingly, we find in our
simulations that this latter angle of twist α agrees very well
with the Eshelby’s prediction αE of Eq. (8) (we find α =
−9.0968 10−6 rad/Å for R = 30 nm). The second important
remark to be mentioned here concerns the superposition
property of the displacement fields. Indeed, we verify that the
displacement field obtained from the full simulation of a free
circular nanowire containing a dislocation [in Fig. 5(d)] can
be seen as the superposition of two separated contributions,
i.e., the field resulting from the torsion of a perfect nanowire
at the Eshelby twist [in Fig. 5(c)] and the field induced by
the dislocation in an untwisted nanowire [in Fig. 5(b)]. In
other words, we verify that utot

z ≈ u∞
z + u

img
z + utwist

z meaning
that (as expected from elasticity theory) to get utot

z one only
needs to determine u

img
z in the untwisted case. This property

comes from the circular cross section of the nanowire where the
torsion field utwist

z given by Eq. (13) already satisfies the lateral
surface traction conditions of Eq. (10). Taking advantage of

FIG. 6. (Color online) Angular dependence of the displacement
field uz calculated from the various configurations illustrated in
Fig. 5. (a) First from the infinite crystal, the anisotropic and the
isotropic solutions u∞

z and u∞,i
z (dotted line) given by Eqs. (11) and

(7) are plotted with in (a′) the difference u∞
z − u∞,i

z corresponding
to Fig. 5(a). Then, from our atomistic simulations in the [011] fcc
circular nanowire of radius 30 nm, we report for different r values
ranging from 25 to 280 Å. In (b) the displacement observed in
Fig. 5(b) and denoted u∞

z + u
img
z − u∞,i

z , in (b′) the image field u
img
z

extracted from (b) and (a′), in (c) the warping displacement utwist
z

due to the torsion as seen in Fig. 5(c), and finally in (d) the total
displacement utot

z − u∞,i
z found in the free nanowire Fig. 5(d).

this specificity of the circular cross section, we now focus
on the modeling of u∞

z + u
img
z found from the untwisted

nanowire. u∞
z + u

img
z is the solution of the equilibrium Eq. (3),

that can take the following convenient expression in elliptic
coordinates:

1

re

∂

∂re

(
re

∂uz

∂re

)
+ 1

r2
e

∂2uz

∂θ2
e

= 0, (18)

with θe = arctan(C1/2
� y/x), r2

e = r2(C−1/2
� cos2 θ +

C
1/2
� sin2 θ ), and C� = C55/C44. Considering the twofold

symmetry, we seek a solution of Eq. (18) that writes

u∞
z + uimg

z = b

2π
θe +

N∑
n=1

A(n)r2n
e sin 2nθe, (19)

where values of the A(n) Fourier coefficients are fixed by the
surface traction condition.

Using u∞
z + u

img
z in Eq. (19) we deduce the corresponding

stress components σ∞
rz + σ

img
rz and σ∞

θz + σ
img
θz via the strain

components that reduce here to εθz = 1
2r

∂uz

∂θ
and εrz = 1

2
∂uz

∂r

with the relation, σθz = 2c44(θ )εθz + 2c45(θ )εrz and σrz =
2c55(θ )εrz + 2c45(θ )εθz. Once the A(n) dependence of σ∞

rz +
σ

img
rz is established from Eq. (19), it is straightforward to

get numerically the A(n) coefficients by applying the surface
constrain σ

img
rz |r=R + σ∞

rz |r=R = 0 given in Eq. (15). From the
determination of the A(n), one obtains a full modeling of both
the displacement and the stress fields, that can be directly
compared to our atomistic simulations. This is illustrated in
Fig. 7, where σ∞

rz + σ
img
rz and σ∞

θz + σ
img
θz fields are plotted for
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FIG. 7. (Color online) σθz (×) and σrz (+) stress components (in
GPa) calculated from our atomistic simulation at different r values
in the case of an untwisted circular nanowire of radius R = 30 nm.
These results are compared to the σ∞

θz + σ
img
θz and σ∞

rz + σ
img
rz terms

that are derived from the expression of displacement field u∞
z + u

img
z

written in Eq. (19). Different truncations of the series N = 1,2,10
are considered. The A(n) Fourier coefficients are adjusted in order to
cancel the traction on the lateral surface.

different radii of the untwisted nanowire. The good agreement
between the Fourier analysis based on Eq. (19) and the direct
calculation of the stress per atom from our simulations (i.e.,
from the atomic relaxed positions and the SMA potential) is
found as soon as r is greater than 50 Å and for a number of
harmonics n � 2 in Eq. (19). For a smaller r = 25 Å in Fig. 7,
some discrepancy can be noticed due to the dissociation of the
dislocation core. On the other hand, at the surface in Fig. 7, an
infinite number of harmonics is necessary to reproduce exactly
the vanishing traction.

We conclude from the above Fourier analysis that the stress
field calculated in our atomistic simulations can be rationalized
as a solution of a boundary problem in the framework of the
anisotropic elasticity theory. Very interestingly, this numerical
method is quite general and can be extended to a more
complex/realistic cross section shape. For instance, we have
successfully treated the case of the equilibrium hexagonal
cross section made of two (100) and four (111) lateral facets
that minimizes the surface energy of a [011] fcc nanowire (see
Fig. 11 in Appendix A). In this case, a new set of Fourier
coefficients A(n) is determined leading to the σ

img
rz and σ

img
θz

fields that render null the traction on the six plans delimiting
the lateral surface of the untwisted nanowire. It is worth noting
that contrary to the circular cross section where the torsion [uθ

in Eq. (13)] does not affect the traction at the surface, the

hexagonal case requires a second Fourier analysis to calculate
the σ twist

θz and σ twist
rz fields at the Eshelby angle of twist.

Returning to the case of the circular nanowire, it is tempting
to propose an analytical form of the atomistic stress fields
found in Fig. 7. From Eqs. (2) and (12), let us first rewrite
the stress field due to the dislocation in the following compact
form:

σ∞
rz = κ

r
f (θ ),

(20)
σ∞

θz = κ

r
,

where κ = b
√

C44C55/2π and f (θ ) = c45(θ )/c44(θ ) with
c45(θ ) and c44(θ ) defined in Eq. (2). Considering both the
surface condition of Eq. (15) and the equilibrium condition of
Eq. (6), a straightforward approximation of the image field is

σ img
rz

∼= − κr

R2
f (θ ) = − κr

R2

c45(θ )

c44(θ )
,

(21)
σ

img
θz

∼= −2
∫

σ img
rz dθ = − κr

R2
ln[c44(θ )/C0],

where C0 is to be determined as a combination of the elastic
constants C44 and C55. In Fig. 8, with C0 = C55/2, we show
that the expressions of σ∞

rz + σ
img
rz and σ∞

θz + σ
img
θz given by

Eqs. (20) and (21) capture very well both the r and the θ

FIG. 8. (Color online) σθz (×) and σrz (+) stress components (in
GPa) calculated from our atomistic simulation at different r values
in the case of an untwisted circular nanowire of radius R = 30 nm.
These results already shown in Fig. 7 are compared to the expressions
of σ∞

θz + σ
img
θz and σ∞

rz + σ
img
rz (solid lines) proposed in Eqs. (20) and

(21). The dotted lines are obtained without the image field by plotting
only σ∞

θz and σ∞
rz from Eq. (20).

224101-8



DISPLACEMENT FIELD OF A SCREW DISLOCATION IN . . . PHYSICAL REVIEW B 88, 224101 (2013)

dependence of the stress fields measured in the atomistic
simulations. Furthermore, by considering various nanowires
with radius R ranging from 6 to 30 nm, we also verified that
the 1/R2 law in Eq. (21) is well obeyed. Finally, one may
wish to improve the approximation made in Eq. (21). This is
possible by considering again a series of additional terms in the
image fields whose role is to fulfill the compatibility condition
of Eq. (17).

The last question we wish to elucidate in this section is the
interpretation of the displacement fields uz shown in Fig. 6 in
the case of the free (twisted) [011] circular nanowire containing
the screw dislocation. Indeed, if the image stress field is now
well understood from both the Fourier analysis and from our
analytical derivation, one may wonder if the solution envisaged
in Eq. (19) is also consistent with the displacements found in
our atomistic simulations. To verify this latter point, we replot
in Figs. 9(a) and 9(b), the two displacement fields denoted
u∞

z + u
img
z − u∞,i

z and utwist
z [already shown respectively in

Figs. 6(b) and 6(c)] that constitute the complete solution of
the free nanowire [in Fig. 6(d)]. By using the same set of
Fourier coefficients established previously in the stress field
study, one also obtains a good modeling of the displacement
field in Fig. 9(a) using Eq. (19). Besides in Fig. 9(b), one
can notice that the classical warping function of Eq. (13)
expected from the torsion of a pure orthotropic bar also
agrees well with our atomistic observation. To summarize,
we confirm in this section that the displacement field uz in a
free nanowire containing the screw dislocation can be seen as

FIG. 9. (Color online) Angular and radius dependence of the
displacement field uz reproduced from Figs. 5(b) and 5(c) (with ×
symbols) and compared to (a) u∞

z + u
img
z in Eq. (19) and (b) utwist

z in
Eq. (13) using solid lines.

the superposition of three fields: utot = u∞
z + utwist

z + u
img
z , the

latter image field being described by Eq. (19).
Finally, to give a simple representation of the image

field u
img
z modeled by the series in Eq. (19), it is worth

mentioning that u
img
z is very close to its first dominant term

[i.e., u
img
z

∼= A(1)r2
e sin 2θe = A(1)r2 sin 2θ = 2A(1)xy] and

therefore resembles to another warping function similar to
utwist

z . Using energetic arguments, this additional u
img
z term can

be simply justified. For the sake of clarity, this derivation is
given in Appendix B where we also conclude that the energetic
contribution of the image field remains small. We will show,
however, in the next section that its influence on the x-ray
diffraction spectra is significant and cannot be neglected in
such experiments.

C. X-ray diffractograms

In his original paper of 1952,1 Eshelby already considered
x-ray diffraction experiments to establish the presence or
absence of a dislocation in a whisker. At that time, only
the diffraction pattern caused by the isotropic displacement
u∞,i

z = bθ/2π was known from Wilson calculations.29,30

Nowadays, it becomes possible to perform coherent x-ray
diffraction on a single nanowire6,7 and from the atomistic
simulations to get a lot of information on the predicted
diffractogram.15 The aim of this section is to investigate
the effect on the 044 reflection of each contribution (i.e.,
anisotropy, dislocation core, surface effects, image effects,
twist) to the total uz field caused by an axial screw dislocation
in a [011] circular copper nanowire. This particular reflection
was chosen because it is highly sensitive to the uz component
of the displacement field and only to that component (z is
along the [011] direction). It can be measured in relatively
standard conditions. The same 044 reflection is examined
in Appendix A in the case of a Cu nanowire having the
equilibrium hexagonal cross section.

In Fig. 10(b), we plot the 044 reflection of the x-ray scat-
tered intensity I (q) obtained by Wilson for a screw dislocation
in an isotropic cylinder of radius R.29 I (q) is described in the
kinematic approximation from the calculation of the amplitude
A(q) ∝ ∑

atom j exp iq · rj where q is the scattering vector and
I (q) = |A(q)|2. According to Wilson (Ref. 30), for 0-mm
reflection with m even, A(q) takes the form,

A(q) ∝ −2

η
Jm−1(η) + 2m

η2

⎛
⎝1 − J0(η) − 2

m
2 −1∑
g=1

Jm−2g(η)

⎞
⎠ ,

(22)

where q = |q|, η = qR and J ′s are Bessel functions of the first
kind. This solution formulated in Eq. (22) serves as a valuable
reference since we can numerically verify that the same I (q)
diffractogram is obtained in our simulation box from a circular
untwisted cylinder where Cu atoms are displaced according
to u∞,i

z [Fig. 10(b)]. This classical isotropic result is, however,
nontrivial and should be compared to the well-known Airy
pattern plotted in Fig. 10(a) from a perfect circular nanowire
with uz = 0 or equivalently from the 000 reflection [m = 0 in
Eq. (22)]. Indeed, starting from the Airy pattern in Fig. 10(a)
made of concentric rings around a central spot, two important
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FIG. 10. (Color online) (qx , qy) reciprocal space map around the
044 reflection in the case of a circular nanowire of radius R = 30 nm
with qx and qy being the components of the scattering vector q along
[100]∗ and [011]∗, respectively: (a) uz = 0, Airy pattern; (b) uz =
u∞,i

z , isotropic Wilson solution; (c) uz = u∞
z , untwisted and no image

field; (d) uz = u∞
z + u

img
z , effect of the image field; (e) uz = u∞

z +
utwist

z , twisted and no image field; (f) uz = u∞
z + utwist

z + u
img
z , total

displacement field including the image field.

modifications are observed in the presence of the dislocation
at the 044 reflection. First, destructive interference occurs
for q = 0 in Fig. 10(b) and secondly the additional 1 − J0(η)
term that appears in Eq. (22) for m �= 0, leads to an apparent
doubling of the spacing between rings.

The diffraction pattern is even more complex in Fig. 10(c)
when the 044 reflection arises from the anisotropic displace-
ment field u∞

z = bθe/2π . Anisotropy strongly changes the
reciprocal space map [Fig. 10(c)] when compared to the
isotropic one. The central intense spot becomes oval, contains
now four distinct aligned extinction points and is surrounded
by a sophisticated assembly of portions of rings preserving
the symmetry two of the [011] nanowire. Interestingly, we can
also affirm that the dissociation of the perfect screw dislocation
into two partials has no effect on the 044 reflection since
by subtracting in our atomistic simulations the image field
u

img
z elucidated in Sec. III B from Eq. (19), one gets the same

diffractogram shown in Fig. 10(c) of a perfect dislocation. On
the other hand, if one keeps u

img
z in the calculation of I (q),

Fig. 10(d) shows noticeable differences due to the surface
image field.

Furthermore, by adding in the system the torsion field utwist
z

[in Eq. (13)] that produces the Eshelby twist (for α = αE),
most of the previous details ascribed to the anisotropy are

attenuated by the torsion. This is related to the fact that in a
large part of the diffracting volume (for 200 < r < 300 Å) the
absolute displacement field with torsion tends to the isotropic
one as seen in Fig. 6(d). With torsion but by removing the
image field in Fig. 10(e), the 044 reflection is closer to the
Wilson isotropic case found in Fig. 10(b) with some differences
that mainly concern the shape of the central spot. The last
Fig. 10(f) closes this section since it gives the importance of
the image field u

img
z resolved in the present work on the 044

reflection. In comparison to Fig. 10(e), clear signatures of the
image field are visible in Fig. 10(f). In particular, the apparent
rotation of the central spot and the presence of diffuse arcs
of circles should be seen experimentally. However, depending
on the experimental conditions, Cu nanowires might already
present facets forming an equilibrium hexagonal cross section.
This more realistic situation depicted in Appendix A shows
similar properties of the 044 reflection even though the 000
reflection is already more complicated. In short, the torsion
tends to counterbalance the anisotropy effect and gives an
x-ray pattern similar to the isotropic case while the image field
should be evidenced from its influence on the shape of the
central spot and on the splitting of the truncation rods.

Among the six calculated diffraction patterns shown in
Fig. 10, two might be obtained experimentally [i.e., Figs. 10(a)
and 10(f)] if the necessary conditions of high resolution and
intensity are fulfilled. The pixel size of Figs. 10 and 12
correspond to a reciprocal space resolution of 7.5 10−4 Å−1.
This resolution can be achieved, for example, at a standard
energy of 12 keV with an x-ray camera having a pixel size
of 100 microns at a distance of approximately 0.8 m from
the sample. These characteristics, or similar characteristics
can be obtained at many synchrotron facilities. For example,
the resolution reported by Vaxelaire et al. (Ref. 31) at an
energy very close to 12 keV and Jacques et al. (Ref. 8) at
a lower energy are, respectively, 1.1 10−4 Å−1 and 1.5 10−4

Å−1 (i.e., 7 and 5 times better). The diffracted intensity of a
nanowire increases with its diameter and the atomic number
of its elements. Experiments have been already reported on a
nanowire made of Si (lighter than Cu) with a radius close to the
one considered in Fig. 10.32 In conclusion, considering both
intensity and resolution, the diffracted patterns of Figs. 10(a)
and 10(f) should be accessible experimentally. This is also
true for the two diffracted patterns of Figs. 12(a) and 12(f) in
Appendix A.

IV. CONCLUSION

By performing intensive atomistic simulations with a tight-
binding potential we have studied the uz displacement field
and the resulting σrz and σθz stress components induced by a
metastable axial screw dislocation lying along a [011] copper
nanowire with a circular cross section. All the parameters
participating in this so-called boundary problem are examined:
the elastic anisotropy due to the twofold [011] nanowire
orientation, the dislocation core dissociation, the Eshelby
twist that stabilizes the dislocation, the surface stress, and
the influence of the cross-section shape. Our findings in the
present work are the following:

(i) The generalized Young-Laplace GYL equations [in
Eq. (4)] that give the relation between surface stress and bulk
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stress near the surface are verified in our simulations. Only
the third GYL equation involves σrz but it is shown that the
influence of the surface stress on this latter component can be
neglected for R ranging from 6 to 30 nm.

(ii) As a consequence, the image displacement field found
in our simulations can be analyzed by imposing the classical
free traction conditions on the lateral surface. The boundary
problem is then resolved numerically from a Fourier series
analysis giving both the displacement and stress fields in very
good agreement with our atomistic calculations. This method
is extended with success to the equilibrium hexagonal cross
section. The only discrepancy is found near the core of the
dislocation where as expected, the uz expression chosen in the
present analysis is too simple to reproduce the dissociation.
In the case of the circular cross section, the Fourier analysis
is completed by proposing an approximate analytical solution
of the image stress field in Eq. (21). Finally, we show using
energetic arguments that the gain in energy due to the image
displacement field is mostly contained in the first term of the
Fourier series (i.e., the r2 sin 2θ term) and is independent of
the torsion.

(iii) In the last part of this work, we wonder if the
image displacement field could be seen experimentally from
x-ray diffraction experiments. A detailed examination of the
reciprocal space map around the 044 reflection points out clear
signatures of the image field for both the circular and the
hexagonal cross sections.

Thus, the present work should help analyzing future
x-ray experiments. Furthermore, it provides a useful theoreti-
cal framework to investigate other issues of the Eshelby twist
like, for instance, the question of the stability of the screw
dislocation in a nanowire.
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APPENDIX A: EQUILIBRIUM HEXAGONAL
CROSS SECTION

For the sake of clarity, we report separately in this appendix
the Fourier analysis of the stress components σθz and σrz

caused by a screw dislocation in an untwisted nanowire having
an equilibrium hexagonal cross section made of {100} and
{111} facets that minimize the surface energy of the nanowire
(see the inset of Fig. 11). The area of the cross section
is maintained equal to the one of the circular nanowire of
radius R = 30 nm. Let us recall that as soon as the cross
section is not circular, the stress field due to the torsion
also leads to nonvanishing σ twist

θz and σ twist
rz stress components

presenting harmonics. Thus, to treat the complete case of a
twisted nanowire with dislocation, a second Fourier analysis
is performed (in addition to the one shown in Fig. 11) to
get the amplitudes of the harmonics due to the torsion of a
hexagonal nanowire free of dislocation. The addition of the
two series gives the full stress field due to both the dislocation
and the torsion. As a consequence in Fig. 12, we keep the
notation u

img
z for defining the displacement image field in the

FIG. 11. (Color online) σθz (×) and σrz (+) stress components (in
GPa) calculated from our atomistic simulation at different r values
in the case of an untwisted hexagonal nanowire. These results are
compared to the σ∞

θz + σ
img
θz and σ∞

rz + σ
img
rz terms that are derived

from the expression of the displacement field u∞
z + u

img
z written in

Eq. (19). Two truncations of the series N = 2,10 are shown. The
A(n) Fourier coefficients are adjusted in order to cancel the traction
on the lateral {100} and {111} facets. The stress singularities related
to the surface edges are visible.

untwisted case, but utwist
z is now different from Eq. (13) and is

a new warp associated with the twist of the hexagonal cylinder.
Again clear signatures of the image field u

img
z are observed in

Fig. 12 where various reciprocal space maps around the 044
reflection are calculated for different displacement fields in the
hexagonal nanowire.

APPENDIX B: ENERGY GAIN DUE TO THE IMAGE FIELD

To interpret from energetic arguments the image field u
img
z

found in this work, we retain its first-order term u
img
z

∼=
2A(1)xy in Eq. (19). Let us then write the displacement field
in Cartesian coordinates:

ux = −αyz,

uy = αxz,
(B1)

uz = u∞
z + uimg

z + utwist
z

∼= u∞
z + A1xy − α

C	
C⊕

xy,

where α is the twist and A1 = 2A(1) the amplitude of
the image field to be determined, C⊕ = (C44 + C55)/2 and
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FIG. 12. (Color online) (qx , qy) reciprocal space map around
the 044 reflection in the case of a hexagonal nanowire of radius
R = 30 nm with qx and qy being the components of the scat-
tering vector q along [100]∗ and [011]∗, respectively: (a) uz = 0;
(b) uz = u∞,i

z , isotropic solution; (c) uz = u∞
z , untwisted and no

image field; (d) uz = u∞
z + u

img
z , effect of the image field; (e) uz =

u∞
z + utwist

z , twisted and no image field; (f) uz = u∞
z + utwist

z + u
img
z ,

total displacement field including the image field.

C	 = (C44 − C55)/2. The part of the elastic energy per unit
length U ∗ that depends on the strain components εzx =
1
2 ( ∂uz

∂x
+ ∂ux

∂z
) and εzy = 1

2 ( ∂uz

∂y
+ ∂uy

∂z
) estimated from Eq. (B1)

can then be expressed as

U ∗(A1,α)

=
∫∫

2
(
C44ε

2
zy + C55ε

2
zx

)
dxdy

=
∫∫

C44x
2

2

(
κ

C44x2 + C55y2
+ A1 + α

C55

C⊕

)2

dxdy

+
∫∫

C55y
2

2

(
κ

C44x2 + C55y2
− A1 + α

C44

C⊕

)2

dxdy

= U ∗(0,0) + I1A1 + I2

2
A2

1 + I3α + I4

2
α2 + I5A1α,

(B2)

where the integrals In write

I1 = κ

∫∫
C44x

2 − C55y
2

C44x2 + C55y2
dxdy = κπR2 (1 − √

C�)

(1 + √
C�)

,

I2 =
∫∫

(C44x
2 + C55y

2)dxdy = πR4

2
C⊕,

I3 = κ
C⊗
C⊕

∫∫
x2 + y2

C44x2 + C55y2
dxdy = bR2

2

C⊗
C⊕

,

I4 = C⊗
C2⊕

I2 and I5 ∝
∫∫

(x2 − y2)dxdy = 0,

with κ = b
√

C44C55/2π , C⊗ = C44C55, and C� = C55/C44.
Since I5 is null, we recover that the angle of twist αE

minimizing U ∗ does not depend on the amplitude of the image
field A1. Moreover from Eq. (B2), we verify that the gain in
energy �Utorsion due to the torsion is maximum for

α = −I3

I4
= − b

πR2
= αE, (B3)

and does not depend on R:

�Utorsion = − I 2
3

2I4
= − b2

4π

C⊗
C⊕

, (B4)

a result that is consistent with the isotropic solution where
C44 = C55.1 On the other hand, if one examines now the energy
gain induced by the image field �Uimage, a maximum of gain
is reached for

A1 = −I1

I2
= − 2κ

R2C⊕

(1 − √
C�)

(1 + √
C�)

, (B5)

where C� = C55/C44 and corresponds to a reduction of the
energy:

�Uimage = − I 2
1

2I2
= − b2

4π

C⊗
C⊕

(1 − √
C�)2

(1 + √
C�)2

. (B6)

Numerically for R = 30 nm, the twist obtained at equilibrium
is −9.0968 10−6 rad/Å in our simulations as mentioned
previously and corresponds well to the αE value −9.069 10−6

rad/Å in Eq. (B3). For this state of torsion, the energy gain
�Utorsion is 0.1345 eV/Å as expected from the theoretical
value in Eq. (B4). Notice that according to our simulations
the presence (or not) of the dislocation does not affect
significantly �Utorsion that is equal to 0.1335 eV/Å without
the dislocation. Concerning now the image field, we observe
that the amplitude of the displacement field is well described
by its first-order term since Eq. (B5) predicts an amplitude
A1 = 0.172/R2Å

−1
while we find A1 = 0.19/R2Å

−1
from

our simulations for R radii ranging from 6 to 30 nm.
Finally, the comparison of Eqs. (B4) and (B6) shows that
�Utorsion is much larger than �Uimage by a factor close
to 14.4 for copper with �Uimage = 0.00942 eV/Å. This ra-
tio �Utorsion/�Uimage = (1 + √

C�)2/(1 − √
C�)2 decreases

slowly when C� = C55/C44 increases.
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27S. Olivier, G. Tréglia, A. Saúl, and F. Willaime, Surface Science

600, 5131 (2006).
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