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Abstract

We study the condensate phase dynamics in a low-temperature equilibrium gas of weakly interacting bosons, har-

monically trapped and isolated from the environment. We find that at long times, much longer than the collision time

between Bogoliubov quasiparticles, the variance of the phase accumulated by the condensate grows with a ballistic

term quadratic in time and a diffusive term affine in time. We give the corresponding analytical expressions in the limit

of a large system, in the collisionless regime and in the ergodic approximation for the quasiparticle motion. When

properly rescaled, they are described by universal functions of the temperature divided by the Thomas-Fermi chemical

potential. The same conclusion holds for the mode damping rates. Such universality class differs from the previously

studied one of the homogeneous gas.
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1. Introduction and overview

We consider here an unsolved problem of the theory of quantum gases : the coherence time of a spinless boson

gas in the weakly interacting regime, in a harmonic trap. The gas is prepared at thermal equilibrium at a temperature

T much lower than the critical temperature Tc, that is in the strongly condensed regime, and it is perfectly isolated

in its subsequent evolution. The coherence time of the bosonic field is then intrinsic and dominated by that of the

condensate. In view of recent technical developments [1, 2, 3], this question could soon receive an experimental

response in cold gases of atoms confined in non-dissipative magnetic potentials [4, 5, 6] and, unlike other solid state

systems [7, 8, 9, 10], well decoupled from their environment and showing only low particle losses. Our theoretical

study is also important for future applications in atom optics and matter wave interferometry.

Following the pioneering work of references [11, 12, 13], our previous studies [14, 15, 16, 17] performed in a

spatially homogeneous boson gas, rely on the Bogoliubov method, which reduces the system to a weakly interacting

quasiparticle gas. They have identified two mechanisms limiting the coherence time, both involving the dynamics of

the phase operator θ̂(t) of the condensate :

— phase blurring : when the conserved quantities (the energy E of the gas and its number of particles N) fluctuate

from one experimental realization to another, the average rate of evolution of the phase [θ̂(t) − θ̂(0)]/t in one

realization, as a function of these conserved quantities, fluctuates too. After averaging over realizations, this

induces a ballistic spread of the phase shift θ̂(t) − θ̂(0), that is a quadratic divergence of its variance, with a

ballistic coefficient A [14] :

Var[θ̂(t) − θ̂(0)] ∼ At2 (1)

this holds at long times with respect to γ−1
coll

, where γcoll is the typical collision rate between thermal Bogoliubov

quasiparticles ;

— phase diffusion : even if the system is prepared in the microcanonical ensemble, where E and N are fixed, the

interactions between quasiparticles cause their occupation numbers, and therefore the instantaneous speed d
dt
θ̂

of the phase, which depends on them, to fluctuate. This induces a diffusive spread of θ̂(t) − θ̂(0) at the times

t ≫ γ−1
coll

, with a coefficient D [15, 16] :

Varmc[θ̂(t) − θ̂(0)] ∼ 2Dt (2)
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In the general case, both mechanisms are present and the variance of the phase shift admits (1) as the dominant term,

and (2) as a subdominant term. The condensate phase spreading directly affects its first-order temporal coherence

function

g1(t) = 〈â†
0
(t)â0(0)〉 (3)

where â0 is the annihilation operator of a boson in the condensate mode, thanks to the the approximate relation

g1(t) ≃ e−i〈θ̂(t)−θ̂(0)〉e−Var[θ̂(t)−θ̂(0)]/2 (4)

admitted in reference [17] under the hypothesis of a Gaussian distribution of θ̂(t)− θ̂(0), then justified in reference [18]

at sufficiently low temperature under fairly general assumptions. 1 We propose here to generalize these first studies to

the experimentally more usual case of a harmonically trapped system (see however reference [19]). As the dependence

of the damping rates of the Bogoliubov modes on the energy or the temperature are already very different from those

of the homogeneous case, as it was shown in reference [20], it will certainly be the same for the spreading of the

condensate phase. The trapped case is non-trivial, since the Bogoliubov modes are not known analytically, and there

is no local density approximation applicable to the phase evolution (as verified by reference [21]). Fortunately we

have the possibility to consider :

— the classical limit for the Bogoliubov quasiparticles motion in the trapped gas. Indeed, at the thermodyna-

mic limit (N → +∞ with constant Gross-Pitaevskii’s chemical potential µGP and constant temperature), the

trapping angular frequencies ωα, α ∈ {x, y, z}, tend to zero as 1/N1/3 :

~ωα ≪ µGP, kBT (5)

so that we can cleverly reinterpret the thermodynamic limit as a classical limit ~→ 0 ;

— the limit of very weak interactions between Bogoliubov quasiparticles :

γcoll ≪ ωα (6)

This implies that all the modes, even those of weaker angular frequency ≈ ωα, are in the collisionless regime

(by opposition to hydrodynamics), and makes it possible to make a secular approximation on the kinetic

equations describing the collisions between the quasiparticles ;

— ergodicity in a completely anisotropic trap : as shown by references [22, 23], the classical motion of quasi-

particles in a non isotropic harmonic trap with cylindrical symmetry is highly chaotic at energies ǫ ≈ µGP but

almost integrable when ǫ → 0 or ǫ → +∞. In a completely anisotropic trap, at temperatures neither too small

nor too large with respect to µGP/kB, we can hope to complete the secular approximation by the hypothesis of

ergodicity, which we will endeavor to show.

Our article is articulated as follows. In section 2, after a few reminders about Bogoliubov’s theory in a trap,

we specify the state of the system and introduce the quantities to formally describe the phase spread, namely the

derivative of the condensate phase operator and its time correlation function. In section 3, we give an expression of

the ballistic coefficient A in the thermodynamic limit in any harmonic trap (including isotropic), first in the most

general state of system considered here, then in the simpler case of a statistical mixture of canonical ensembles

of the same temperature T . In the long section 4, we tackle the heart of the problem, calculating the correlation

function Cmc(τ) of dθ̂/dt in the microcanonical ensemble, which gives access in general terms to the sub-ballistic

1. Let us recall the assumptions used in reference [18] to establish equation (4). (i) The relative fluctuations of the modulus of â0 are small, the

system being strongly Bose condensed. (ii) The system is close enough to the thermodynamic limit, with normal fluctuations and asymptotically

Gaussian laws for the energy and the number of particles. This is used in particular to put the ballistic contribution of the phase shift to g1(t) in the

form (4). (iii) The diffusion coefficient of the phase (of order 1/N) must be much smaller than the typical collision rate γcoll between Bogolioubov

quasi-particles (of order N0) but much larger than the spacing of the energy levels (of order N−2) of quasiparticle pairs created or annihilated

during Beliaev collision processes. This is used, for a system prepared in the microcanonical ensemble, to show that g1(t) is of the form (4) on time

intervals t = O(N0) and t = O(N1), with the same diffusion coefficient. (iv) The correlation function of d
dt
θ̂ is real, as predicted by kinetic equations.

(v) We ignore the commutator of θ̂(t) with θ̂(0), which introduces a O(t/N) phase error into the factor exp[−i〈θ̂(t) − θ̂(0)〉]. This is an error of order

unity at times t ≈ N but g1(t) then began to decrease under the effect of phase diffusion in the microcanonical ensemble (and is otherwise already

very strongly damped under the effect of ballistic phase blurring after a time t ≈ N1/2).
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spreading terms of the phase, since they are independent of the state of the system in the thermodynamic limit at fixed

average energy and fixed average number of particles. We first introduce the semiclassical limit in subsection 4.1, the

Bogoliubov quasiparticles motion being treated classically but the bosonic field of quasiparticles remaining quantum ;

the semiclassical form of dθ̂/dt is deduced from a correspondence principle. We then write, in subsection 4.2, kinetic

equations on the quasiparticle occupation numbers in the classical phase space (r, p) and we show how, once linearized

they formally lead to Cmc(τ). The problem remains formidable, since the occupation numbers depend on the six

variables (r, p) and time. In the secular limit γcoll ≪ ωα and in the ergodic approximation for the quasiparticles motion

(which excludes isotropic or cylindrically-symmetric traps), we reduce in subsection 4.3 to occupation numbers that

are functions only of the energy of the classical motion ǫ and the time, which leads to explicit results on Cmc(τ), on

phase diffusion and, an interesting by-product, on the damping rate of Bogoliubov’s modes in the trap, in subsection

4.4 where we also evaluate the condensate phase shift due to particle losses. Finally, we make a critical discussion

of the ergodic approximation in subsection 4.5, estimating in particular the error that it introduces on the quantities

controlling the phase diffusion of the condensate. We conclude in section 5.

2. Summary of the formalism and results

The derivative of the phase - As we recalled in the introduction, the coherence time of a condensate is controlled

by the dynamics of its phase operator θ̂(t) at times long with respect to the typical collision time γ−1
coll

of quasiparticles.

The starting point of our study is therefore the expression of the temporal derivative of θ̂(t), smoothed temporally (that

is, coarse-grained over a short time with respect to γ−1
coll

but long with respect to the typical inverse frequency ǫth
k
/~ of

thermal quasiparticles). As it has been established in all generality in reference [18], to order one in the non-condensed

fraction :

− ~dθ̂

dt
= µ0(N̂) +

∑

k∈F+

dǫk

dN
n̂k ≡ µ̂ (7)

Here µ0(N) is the chemical potential of the gas in the ground state and N̂ is the total number of particles operator. The

sum over the generic quantum number k (it’s not a wavenumber) deals with the Bogoliubov modes of eigenenergy ǫk,

and n̂k is the operator number of quasiparticles in the k mode. The expression (7) is a quantum version of the second

Josephson relation : its right-hand side is a chemical potential operator µ̂ of the gas, since it is the adiabatic derivative

(with the occupation numbers n̂k fixed) with respect to N of the Bogoliubov Hamiltonian

ĤBog = E0(N̂) +
∑

k∈F+

ǫkn̂k (8)

The Bogoliubov modes are of the are family F+, according to the terminology of reference [24] in the sense that their

modal functions (uk(r)vk(r)) are solutions of the eigenvalue equation

ǫk

(

|uk〉
|vk〉

)

=

(

HGP + Qgρ0(r̂)Q Qgρ0(r̂)Q

−Qgρ0(r̂)Q −[HGP + Qgρ0(r̂)Q]

) (

|uk〉
|vk〉

)

≡ L(r̂, p̂)

(

|uk〉
|vk〉

)

(9)

with the normalization condition
∫

d3r (|uk(r)|2 − |vk(r)|2) = 1 > 0. We took the wave function φ0(r) of the condensate

real, normalized to one (
∫

d3r φ2
0
(r) = 1), and written to the order zero in the non-condensed fraction, that is to the

Gross-Pitaevskii approximation :

HGP|φ0〉 = 0 with HGP =
p̂2

2m
+ U(r̂) + gρ0(r̂) − µGP (10)

so that at this order, the condensed density is ρ0(r) = Nφ2
0
(r). Here, g = 4π~2a/m is the coupling constant, proportional

to the s-wave scattering length a between bosons of mass m, and U(r) =
∑

α mω2
αr2
α/2 is the trapping potential. The

projector Q projects orthogonally to |φ0〉 and ensures that |φ0〉⊥|uk〉 and |φ0〉⊥|vk〉 as it should be [24]. Since the

condensate is in its ground mode (φ0 minimizes the Gross-Pitaevskii energy functional), the ǫk are positive.

The state of the system - Evaporative cooling in cold atom gases does not lead a priori to any of the usual ensembles

of statistical physics. To cover all reasonable cases, we therefore suppose that the gas is prepared at time 0 in a
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generalized ensemble, statistical mixture of eigenstates |ψλ〉 of the complete Hamiltonian Ĥ, with Nλ particles and

energy Eλ, hence of density operator

σ̂ =
∑

λ

Πλ|ψλ〉〈ψλ | (11)

with, as the only restriction, the existence of narrow laws on Eλ and Nλ, of variances and covariance not growing

faster than the averages Ē and N̄ in the thermodynamic limit.

Average phase shift - Let’s average expression (7) in the steady state |ψλ〉. At the right-hand side appears the

expectation in |ψλ〉 of the chemical potential operator. Because of the interactions between Bogoliubov quasiparticles,

the N body system is expected to be ergodic in the quantum sense of the term, that is, to obey to the, so called in the

Anglo-American literature, “Eigenstate Thermalisation Hypothesis" (see references [25, 26, 27]),

〈ψλ|µ̂|ψλ〉 = µmc(Eλ,Nλ) (12)

where µmc(E,N) is the chemical potential in the microcanonical ensemble of energy E with N particles. For a large

system, it suffices to expand to first order in the fluctuations, to obtain :

µmc(Eλ,Nλ) = µmc(Ē, N̄) + (Eλ − Ē)∂Eµmc(Ē, N̄) + (Nλ − N̄)∂Nµmc(Ē, N̄) + O(1/N̄) (13)

It remains to average on the states |ψλ〉 with the weights Πλ as in equation (11) to get the first brick of the time

coherence function (4), that is the average phase shift :

〈θ̂(t) − θ̂(0)〉 = −µmc(Ē, N̄)t/~ (14)

with an error O(1/N̄) on the coefficient of t.

Average quadratic phase shift - Proceeding in the same way for the second moment of the phase shift of the

condensate, we find as it is written implicitly in [16, 18] that

Var [θ̂(t) − θ̂(0)] = At2 + 2

∫ t

0

dτ (t − τ) Re Cmc(τ) (15)

with the ballistic coefficient

A = Var[(Nλ − N̄)∂Nµmc(Ē, N̄) + (Eλ − Ē)∂Eµmc(Ē, N̄)]/~2 (16)

and the correlation function of the phase derivative in the microcanonical ensemble of energy Ē and N̄ particles :

Cmc(τ) =

〈

dθ̂

dt
(τ)

dθ̂

dt
(0)

〉

mc

−
〈

dθ̂

dt

〉2

mc

(17)

This completes our formal knowledge of g1(t).

In view of future experimental observations, however, it remains to calculate explicitly A and Cmc(τ) for a harmo-

nically trapped system. It will be necessary in particular to verify that Cmc(τ) in the trapped case decreases fast enough

so that one finds a diffusive law (2) as in the spatially homogeneous case.

3. Calculation of the ballistic coefficient in the phase shift variance

In the generalized statistical ensemble - To calculate the average phase shift (14) and the ballistic coefficient

(16) in the general case, we must know the microcanonical chemical potential µmc(Ē, N̄) and its derivatives in the

harmonic trap. At the thermodynamic limit, µmc coincides with the chemical potential µcan in the canonical ensemble

of temperature T and number of particles N̄, more convenient to calculate, provided that the temperature T is adjusted

so that there is equality of mean energies Ecan(T, N̄) and Ē. In other words,

µmc(Ecan(T, N̄), N̄) ∼ µcan(T, N̄) (18)
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one just takes the derivative of this relation with respect to T or N̄ to get the useful derivatives of µmc, then one replaces

Ecan by Ē, to obtain :

∂Eµmc(Ē, N̄) ∼ ∂Tµcan(T, N̄)

∂T Ecan(T, N̄)
(19)

∂Nµmc(Ē, N̄) ∼ ∂Nµcan(T, N̄) − ∂N Ecan(T, N̄)

∂T Ecan(T, N̄)
∂Tµcan(T, N̄) (20)

At the first order in the non-condensed fraction, the canonical chemical potential is deduced from the free energy

F of the ideal gas of Bogoliubov quasiparticles of Hamiltonian (8) by the usual thermodynamic relation µcan = ∂N F.

The free energy is a simple functional of the density of states ρ(ǫ) of quasiparticles,

F(T, N̄) = E0(N̄) + kBT

∫ +∞

0

dǫ ρ(ǫ) ln
(

1 − e−βǫ
)

(21)

with β = 1/kBT . At the thermodynamic limit, the ground state energy E0 of the gas in the harmonic trap is deduced

from that of the homogeneous system [28] by a local density approximation, and the density of states ρ(ǫ) is obtained

by taking the classical limit ~→ 0, thanks to inequality (5) [6] :

ρ(ǫ) =

∫

d3rd3 p

(2π~)3
δ(ǫ − ǫ(r, p)) (22)

The classical Hamiltonian ǫ(r, p) is the positive eigenvalue of the Bogoliubov’s 2 × 2 matrix of equation (9) with the

position r and the momentum p treated classically 2 and the condensed density ρ0(r) written at the classical limit that

is in the Thomas-Fermi approximation :

gρTF
0 (r) =

{

µTF − U(r) ≡ µloc(r) if U(r) < µTF

0 elsewhere
(23)

Here, the Thomas-Fermi chemical potential, classical limit of µGP of Gross-Pitaevskii, is

µTF =
1

2
~ω̄[15N̄a(mω̄/~)1/2]2/5 (24)

and ω̄ = (ωxωyωz)
1/3 is the geometric average of the trapping angular frequencies. We deduce that

ǫ(r, p) =































{

p2

2m

[

p2

2m
+ 2µloc(r)

]}1/2

if U(r) < µTF

p2

2m
+ U(r) − µTF elsewhere

(25)

The six-fold integral (22) has been calculated in reference [29]. 3 Here we give the result in a somewhat more compact

form :

ρ(ǫ) =
µ2

TF

(~ω̄)3
f (ǫ̌ ≡ ǫ/µTF) (26)

f (ǫ̌) =
1

π













−2
√

2ǫ̌2 acos
ǫ̌ − 1

(1 + ǫ̌2)1/2
+ 2
√

2ǫ̌ ln
1 +
√

2ǫ̌ + ǫ̌

(1 + ǫ̌2)1/2
+
√
ǫ̌(5ǫ̌ − 1) + (1 + ǫ̌)2 acos

1

(1 + ǫ̌)1/2













(27)

We finally obtain the canonical chemical potential

µcan(T, N̄) = µ0(N̄) +
6kBT

5N̄

(

µTF

~ω̄

)3
∫ +∞

0

dǫ̌ f (ǫ̌) ln
(

1 − e−β̌ǫ̌
)

+
2µTF

5N̄

(

µTF

~ω̄

)3
∫ +∞

0

dǫ̌
f (ǫ̌)ǫ̌

eβ̌ǫ̌ − 1
(28)

2. The projector Q, projecting on a space of codimension one, can be omitted at the thermodynamic limit.

3. The case of an anisotropic harmonic trap comes down to the isotropic case treated in [29] by performing the change of variable (with unit

Jacobian) rα = λαr′α, with ωαλα = ω̄, such that U(r) = 1
2

mω̄2r′2.
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with the contribution of the ground state [6]

µ0(N̄) = µTF

[

1 + π1/2
(

µTFa3/g
)1/2

]

(29)

When one takes the derivative of (28) with respect to T and N̄ to evaluate expressions (19) and (20), one will remember

that β̌ = µTF/kBT depends on N̄ through µTF. For brevity, we do not give the result here.

In a slightly less general ensemble - A simpler expression 4 of the ballistic coefficient A can be obtained when the

state of the system is a statistical mixture of canonical ensembles of the same temperature T but of variable number of

particles. By expressing the various coefficients in (16, 19, 20) as derivatives of the free energy F(T, N̄) with respect

to N̄ and T , and remembering the expression VarcanE = kBT 2∂T Ecan of the variance of the energy in the canonical

ensemble, we find to the dominant order 1/N̄ that

A(T ) = (Var N)

(

∂Nµcan(T, N̄)

~

)2

+
kBT 2

[

∂Tµcan(T, N̄)
]2

~2∂T Ecan(T, N̄)
(30)

At zero temperature, only the first term contributes, and we find the prediction of references [30, 31] pushed to

order one in the non-condensed fraction fnc. A T , 0 but in the absence of fluctuations of N, only the second term

contributes ; it is none other than the ballistic coefficient Acan(T ) in the canonical ensemble. In the validity regime

of the Bogoliubov approximation, fnc ≪ 1, the chemical potential µcan(T, N̄) of the gas remains close to that of a

Thomas-Fermi pure condensate, so that

∂Nµcan(T, N̄) = ∂NµTF + O

(

fnc

N̄

)

(31)

∂Tµcan(T, N̄) is immediately first-order in fnc, and the same goes for the second term in equation (30). It is therefore

only for strongly subpoissonian fluctuations of N (Var N ≪ VarPoisN ≡ N̄) that the second term of (30), that is the

effect of thermal fluctuations, is not dominated by the first one. Assuming this condition satisfied in the experiment,

we represent in figure 1 the canonical coefficient Acan(T ) scaled by the APois value of A in a pure condensate with

Poissonian fluctuations of N,

APois = N̄

(

∂NµTF

~

)2

(32)

all divided by the small parameter of the Bogoliubov theory at zero temperature, 5 proportional to fnc(T = 0) :

[ρ0(0)a3]1/2 =
2
√

2

15π1/2N̄

(

µTF

~ω̄

)3

(33)

The ratio thus formed is a universal function of kBT/µTF. From the low and high energy expansions of the quasiparticle

density of states,

f (ǫ̌) =
ǫ̌→0

32

3π
ǫ̌3/2 − 2

√
2 ǫ̌2 + O(ǫ̌5/2) (34)

f (ǫ̌) =
ǫ̌→+∞

1

2
ǫ̌2 + ǫ̌ +

1

2
+ O(ǫ̌−1/2) (35)

4. The general expression (16) of A is a little tricky to grasp. Since the energy of the ground state depends on N, fluctuations of N mechanically

cause energy fluctuations. For example, if N fluctuates at T = 0 (in each subspace of fixed N, the system is in the ground state), we can, to find

A(T = 0) of equation (30) from equation (16), use the fact that Eλ − Ē = (Nλ − N̄)µ0(N̄) + O(N̄0) and that ∂Eµmc(Ē, N̄) ∼
T→0
−2/(25N̄), whose

report in (20) gives ∂Nµmc(Ē, N̄) ∼
T→0

∂Nµ0(N̄) + 2µ0(N̄)/(25N̄).

5. One sometimes prefers to take as a small parameter 1/[ρ0(0)ξ3], where the healing length ξ of the condensate at the center of the trap is such

that ~2/(mξ2) = µTF. One can easily go from one small parameter to the other using the relation [ρ0(0)a3]1/2ρ0(0)ξ3 = 1/(8π3/2).
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Figure 1: Coefficient of ballistic spreading (1) of the condensate phase in the long time limit with respect to the collision time γ−1
coll

of quasiparticles,

for a gas of N̄ bosons prepared in the canonical ensemble in an harmonic trap (isotropic or not), depending on the temperature. The result is at the

thermodynamic limit where the trapping angular frequencies ωα are negligible compared to Thomas-Fermi’s chemical potential µTF (24). Full line :

second term of equation (30), deduced from the canonical chemical potential (28) to the Bogoliubov approximation (weak interactions, T ≪ Tc).

Dashes : equivalents at low and high temperature (dominant terms of equations (36, 37)). The division of Acan(T ) by the small parameter (33) of

Bogoliubov’s theory and by the value (32) of the ballistic coefficient for Poissonian fluctuations of N leads to a universal function of kBT/µTF.

we obtain low and high temperature expansions (Ť = kBT/µTF = 1/β̌)

Acan(T )

APois[ρ0(0)a3]1/2
=

Ť→0

21ζ(7/2)
√

2
Ť 9/2













1 +
4
√

2π9/2

525ζ(7/2)
Ť 1/2 + O(Ť )













(36)

=
Ť→+∞

15π1/2

2
√

2

3ζ(3)2

4ζ(4)
Ť 3

[

1 + β̌

(

4ζ(2)

3ζ(3)
− ζ(3)

2ζ(4)

)

+ O(β̌3/2)

]

(37)

whose dominant terms 6 are shown as dashed lines on figure 1. Let us note a particularly simple and beautiful rewor-

king of the high temperature equivalent, accidentally already operational at kBT/µTF ≥ 2 :

Acan(T )

APois

∼
kBT≫µTF

3ζ(3)

4ζ(4)

(

T

T
(0)
c

)3

(38)

where T
(0)
c is the critical temperature of an ideal gas of bosons in a harmonic trap at the thermodynamic limit, kBT

(0)
c =

~ω̄[N̄/ζ(3)]1/3. In this limit, Acan(T ) is therefore lower than APois by a factor proportional to the non-condensed fraction

(T/T
(0)
c )3 ≪ 1.

4. Variance of the condensate phase shift in the microcanonical ensemble

Here we calculate the correlation function of dθ̂/dt, namely Cmc(τ), for a system prepared in the microcanonical

ensemble, using at the thermodynamic limit
~ωα
µTF
→ 0 a semiclassical description of the quasiparticles and taking

into account the effect of their interaction by quantum Boltzmann kinetic equations on their classical phase space

distribution n(r, p).

4.1. Semi-classical form of Bogoliubov’s Hamiltonian and dθ̂/dt

In the semiclassical description, the motion of Bogoliubov quasiparticles is treated classically, that is that they

have at each moment a well defined position r and momentum p [6], whose evolution in phase space derives from the

Hamiltonian ǫ(r, p) given in equation (25) [22] :

dr

dt
= ∂p ǫ(r, p) (39)

dp

dt
= −∂r ǫ(r, p) (40)

6. In the value window of figure 1, in practice 1/10 ≤ Ť ≤ 10, the inclusion of subdominant terms does not usefully approximate the exact

result.
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but we treat in a quantum way the bosonic field of quasiparticles by introducing their occupation numbers operators

n̂(r, p) in the phase space, which allows us to take into account the discrete nature of the numbers of quasiparticles and

the quantum statistical effects (with the Bose law rather than the equipartition law of the classical field at equilibrium).

In this semiclassical limit, the Bogoliubov Hamiltonian (8) (without interaction between quasiparticles) is written

immediately

Hsc
Bog = E0(N̂) +

∫

d3r d3 p

(2π~)3
ǫ(r, p) n̂(r, p) (41)

One might think, given formula (7), that dθ̂/dt admits a similar writing, with ǫ(r, p) replaced by d
dN
ǫ(r, p). This is

not so, the reason being that the derivative d
dN
ǫ(r, p) is not constant on the classical trajectory. The dθ̂/dt operator is

part of a general class of so-called Fock quantum observables (diagonal in the Fock basis of quasiparticles thus - here

linear - functionals of Bogoliubov’s occupation numbers) :

Â =
∑

k∈F+

akn̂k with ak = (〈uk|, 〈vk|)A(r̂, p̂)

(

|uk〉
|vk〉

)

(42)

whereA(r̂, p̂) is a 2 × 2 hermitian matrix operator and ak its average in the Bogoliubov mode of eigenenergy ǫk. The

observable dθ̂/dt corresponds to the choiceAθ̇ = σz
d

dN
L where σz is the third Pauli matrix andL(r̂, p̂) is the operator

appearing in equation (9). By using Hellmann-Feynman’s theorem 7, we have indeed

(〈uk |,−〈vk|)
(

d

dN
L
) (

|uk〉
|vk〉

)

=
dǫk

dN
(43)

For these Fock operators we use the semiclassical correspondence principle

Âsc =

∫

d3r d3 p

(2π~)3
a(r, p) n̂(r, p) (44)

where a(r, p) = (U(r, p),V(r, p))A(r, p)
(

U(r,p)

V(r,p)

)

, A(r, p) being the classical equivalent of A(r̂, p̂), and a(r, p) repre-

sents the time average of a(r, p) on the only classical trajectory passing through (r, p) at time t = 0 :

a(r, p) ≡ lim
t→+∞

1

t

∫ t

0

dτ a(r(τ), p(τ)) (45)

The vector (U(r, p),V(r, p)), normalized according to the condition U2 − V2 = 1, is eigenvector of the classical

equivalentL(r, p) of L(r̂, p̂) with eigenvalue ǫ(r, p) :

(

U(r, p)

V(r, p)

)

=





























































































































1
2















(

p2/2m

ǫ(r, p)

)1/2

+

(

p2/2m

ǫ(r, p)

)−1/2














1
2















(

p2/2m

ǫ(r, p)

)1/2

−
(

p2/2m

ǫ(r, p)

)−1/2




























































if U(r) < µTF

(

1

0

)

elsewhere

(46)

At the basis of this correspondence principle lies the idea that the equivalent of a stationary quantum mode (|uk〉, |vk〉)
in the classical world is a classical trajectory of the same energy, itself also stationary as a whole by temporal evolution.

To the quantum expectation ak of the observable A(r̂, p̂) in the mode (|uk〉, |vk〉) thus we must associate an average

7. The theorem is here generalized to the case of a non-Hermitian operator L, (〈uk |,−〈vk |) being the dual vector of the eigenvector (|uk〉, |vk〉)
of L.
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Beliaev direct Beliaev inverse Landau direct Landau inverse

amplitude 2gρ
1/2

0
(r)Ap

q,|p−q|(r) amplitude 2gρ
1/2

0
(r)A|p+q|

p,q (r)

Figure 2: Beliaev and Landau process involving three quasiparticles and the corresponding coupling amplitudes.

over a trajectory of the expectation a(r, p) of the classical equivalentA(r, p) in the local mode (U(r, p),V(r, p)). We

therefore retain for the semiclassical version of the derivative of the condensate phase operator :

− ~dθ̂sc

dt
= µ0(N̂) +

∫

d3r d3 p

(2π~)3

dǫ(r, p)

dN
n̂(r, p) (47)

Here, let us repeat it, the expectation a(r, p) =
dǫ(r,p)

dN
is not a constant of motion, unlike ǫ(r, p), so we can not omit as

in (41) the temporal average.

4.2. About the usefulness of kinetic equations in calculating the correlation function of dθ̂/dt

We must determine, in the semiclassical limit, the correlation function of dθ̂/dt, for a system prepared in the

microcanonical ensemble. Given equations (17) and (47) we must calculate

Csc
mc(τ) =

∫

d3r d3 p

(2π~)3

∫

d3r′ d3 p′

(2π~)3

dǫ(r, p)

~dN

dǫ(r′, p′)

~dN
〈δn̂(r, p, τ) δn̂(r′, p′, 0)〉 (48)

where 〈. . .〉 represents the mean in the state of the system and where we introduced the fluctuations of the occupation

number operators in phase space at time τ,

δn̂(r, p, τ) = n̂(r, p, τ) − n̄(r, p) (49)

The microcanonical ensemble can be seen in the semiclassical phase space as a constant-energy statistical mixture

of Fock states |F 〉 = |n(r′′, p′′)(r′′ ,p′′)∈R6〉, eigenstates of Hsc
Bog

, where all n(r′′, p′′) are integers. It is assumed at first

that the system is prepared in one of such Fock states |F 〉 at the initial time t = 0, eigenstate of δn̂(r′, p′, 0) with the

eigenvalue n(r′, p′) − n̄(r′, p′) ; it remains then to calculate in equation (48) the quantity

〈F |δn̂(r, p, τ)|F 〉 = n(r, p, τ) − n̄(r, p) ≡ δn(r, p, τ) (50)

at τ > 0, that is the evolution of the mean occupation numbers n(r, p, τ) in phase space, their initial values being known,

taking into account (i) the Hamiltonian quasiparticle transport and (ii) the effect of quasiparticle collisions by the

Beliaev or Landau three-quasiparticles processes 8 represented in figure 2. This is exactly what the usual Boltzmann-

type quantum kinetic equations can do, with the difference that the semiclassical distribution function n(r, p, τ) does

not correspond here to a local thermal equilibrium state of the system, but to the mean occupation number at time

τ knowing that the initial state of the system is a quasiparticle Fock state. The evolution equation of the average

occupation numbers n(r, p, τ) is of the form

D

Dτ
n(r, p, τ) + Icoll(r, p, τ) = 0 (51)

The first term is the convective derivative resulting from the classical Hamilton equations :

D

Dτ
= ∂τ + ∂pǫ(r, p) · ∂r − ∂rǫ(r, p) · ∂p (52)

8. Four-quasiparticle processes, of higher order in the non-condensed fraction, are assumed here negligible.
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It preserves the density in the phase space along a classical trajectory (Liouville’s theorem). The second term describes

the effect of collisions between quasiparticles, local in position space, and which can only occur, at the order of

Beliaev-Landau, at points where the Thomas-Fermi density of the condensate ρ0(r) is nonzero (see the diagrams in

figure 2) : 9

Icoll(r, p, τ) =
1

2

∫

d3q

(2π~)3

2π

~

[

2gρ
1/2

0
(r)Ap

q,|p−q|(r)
]2
δ (ǫ(r, q) + ǫ(r, p − q) − ǫ(r, p))

× {−n(r, p, τ)[1 + n(r, q, τ)][1 + n(r, p − q, τ)] + n(r, q, τ)n(r, p− q, τ)[1 + n(r, p, τ)]}

+

∫

d3q

(2π~)3

2π

~

[

2gρ
1/2

0
(r)A|p+q|

p,q (r)
]2
δ (ǫ(r, p) + ǫ(r, q) − ǫ(r, p + q))

× {−n(r, p, τ)n(r, q, τ)[1+ n(r, p + q, τ)] + n(r, p + q, τ)[1 + n(r, p, τ)][1 + n(r, q, τ)]} (53)

In this process are involved, at point r, a quasiparticle of momentum p (whose evolution of the average occupation

number n(r, p τ) has to be determined), a second outgoing or incoming quasiparticle of momentum q on which it is

necessary to integrate, and a third quasiparticle whose momentum is fixed by momentum conservation. In equation

(53) the first integral takes into account the Beliaev processes ; it shows a factor of 1/2 to avoid double counting of

the final or initial two quasiparticle states (q, p − q) and (p − q, q) ; the second integral takes into account the Landau

processes. Note in both cases : (i) the factor 2π
~

, from Fermi’s golden rule, (ii) the − sign taking direct processes into

account (they depopulate the p mode at point r) and the + sign for inverse processes, with the bosonic amplification

factors 1 + n, (iii) the presence of an energy conservation Dirac function at r. The reduced coupling amplitudes for

three-quasiparticles processes at point r are given by [14, 32]

Ap1

p2 ,p3
(r) =

s2(r, p2) + s2(r, p3) − s2(r, p1)

4s(r, p1)s(r, p2)s(r, p3)
+

3

4
s(r, p1)s(r, p2)s(r, p3) (54)

with s(r, p) = U(r, p) + V(r, p). As expected, the kinetic equations admit the average thermal equilibrium occupation

numbers as a stationary solution 10

n̄(r, p) =
1

eβǫ(r,p) − 1
(55)

The well-known property of the Bose law 1 + n̄ = eβǫ n̄ allows to verify it easily : supplemented with energy conser-

vation, it leads to the perfect compensation in all points of direct and inverse processes, that is to the cancellation

of the quantities between curly brackets in equation (53), following the principle of microreversibility ; we also have
D
Dτ

n̄ = 0 since n̄(r, p) is a function of ǫ(r, p), a quantity that is conserved by the Hamiltonian transport.

As our system fluctuates weakly around the equilibrium, we linearise the kinetic equations around n = n̄ as in

reference [16] to get

D

Dτ
δn(r, p, τ) = −Γ(r, p, τ)δn(r, p, τ)+

∫

d3q

(2π~)3
K(r, p, q)δn(r, q, τ) (56)

the diagonal term comes from the fluctuation δn(r, p, τ) in the right-hand side of equation (53), and the non-local

momentum term comes from fluctuations δn(r, q, τ) and δn(r, p± q, τ) whose contributions are collected by changing

the variables q′ = p ± q in
∫

d3q. The expression of K(r, p, q) is not useful for the following, so let us only give the

expression of the local damping rate of the Bogoliubov quasiparticles of momentum p at point r :

Γ(r, p) =
4πρ0(r)g2

~

∫

d3q

(2π~)3

[

Ap

q,|p−q|(r)
]2
δ (ǫ(r, q) + ǫ(r, p − q) − ǫ(r, p))

[

1 + n̄(r, q) + n̄(r, p − q)
]

+
8πρ0(r)g2

~

∫

d3q

(2π~)3

[

A|p+q|
p,q (r)

]2
δ (ǫ(r, p) + ǫ(r, q) − ǫ(r, p + q))

[

n̄(r, q) − n̄(r, p + q)
]

(57)

9. These diagrams imply a hidden process of absorption or stimulated emission in the condensate mode.

10. Strictly speaking, this stationary solution corresponds to the average occupation numbers in the canonical ensemble, rather than in the

microcanonical one. The difference, computable as in Appendix C of reference [16], but out of reach of our kinetic equations, tends to zero at

the thermodynamic limit and is negligible here. It should also be noted that the non-conservation of the total number of quasiparticles by the

Beliaev-Landau processes requires the Bose’s n̄ law to have unit fugacity.
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This expression coincides with the damping rate of a momentum p mode in a spatially homogeneous condensed gas of

density gρ0(r) [32]. Just like δn(r, p, τ), 〈F |δn(r, p, τ)δn(r′, p′, 0)|F 〉 considered as a function of (r, p, τ), obeys equa-

tion (56) ; the same is true for its average 〈δn(r, p, τ)δn(r′, p′, 0)〉 over all initial Fock states |F 〉, since the coefficients

Γ and K do not depend on |F 〉. Let’s contract the latter by the quantity

B(r′, p′) ≡ 1

~

dǫ(r′, p′)

dN
(58)

as in equation (48) to form the auxiliary unknown

X(r, p, τ) =

∫

d3r′d3 p′

(2π~)3
B(r′, p′) 〈δn(r, p, τ)δn(r′, p′, 0)〉 (59)

Then X(r, p, τ) evolves according to the linear kinetic equations (56) with the initial condition

X(r, p, 0) =

∫

d3r′d3 p′

(2π~)3
Q(r, p; r′, p′) B(r′, p′) (60)

where the matrix of covariances at equal times of the number of quasiparticles has been introduced :

Q(r, p; r′, p′) = 〈δn(r, p, 0)δn(r′, p′, 0)〉 (61)

whose expression in the microcanonical ensemble will be connected to that in the canonical ensemble in due time, in

sub-section 4.3. The sought microcanonical correlation function of dθ̂sc/dt is then

Csc
mc(τ) =

∫

d3rd3 p

(2π~)3
B(r, p)X(r, p, τ) (62)

4.3. Solution in the secular-ergodic approximation

Our study restricts to the collisionless regime Γth ≪ ωα where Γth is the typical thermal value of the quasiparticles

damping rate Γ(r, p) and ωα are the trapping angular frequencies. The quasiparticles then have time to perform a large

number of Hamiltonian oscillations in the trap before undergoing a collision. We can therefore perform the secular

approximation that consists in replacing the coefficients of the linearized kinetic equation (56) by their temporal

average over a trajectory. Thus,

Γ(r, p)
secular→
approx.

Γ(r, p) = lim
t→+∞

1

t

∫ t

0

dτΓ(r(τ), p(τ)) (63)

the auxiliary unknown X(r, p, τ) of equation (59), just like the fluctuations of the occupation numbers δn(r, p, t), de-

pend only on the trajectory τ 7→ (r(τ), p(τ)) passing through (r, p) and on time. Still the problem remains formidable.

Fortunately, as we have said, in a completely anisotropic trap, the Hamiltonian dynamics of quasiparticles should

be highly chaotic, except within the limits of very low energy ǫ ≪ µTF or very high energy ǫ ≫ µTF [22, 23]. We thus

use the ergodic hypothesis, by identifying the temporal average on an trajectory of energy ǫ to the “uniform" mean in

the phase space on the energy shell ǫ :

Γ(r, p)
ergodic
=

hypothesis
Γ(ǫ) = 〈Γ(r, p)〉ǫ ≡

1

ρ(ǫ)

∫

d3rd3 p

(2π~)3
Γ(r, p)δ(ǫ − ǫ(r, p)) (64)

where the density of states ρ(ǫ) is given by equation (22). We will come back to this hypothesis in section 4.5. In this

case, the function X(r, p, τ) depends only on the energy ǫ = ǫ(r, p) and time :

X(r, p, τ)
ergodic
=

hypothesis
X(ǫ, τ) (65)
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We obtain the evolution equation of X(ǫ, τ) by averaging that of X(r, p, τ) on the energy shell ǫ : 11

∂τX(ǫ, τ) = −Γ(ǫ)X(ǫ, τ) − 1

2ρ(ǫ)

∫ ǫ

0

dǫ′L(ǫ − ǫ′, ǫ′){X(ǫ′, τ)[n̄(ǫ) − n̄(ǫ − ǫ′)] + X(ǫ − ǫ′, τ)[n̄(ǫ) − n̄(ǫ′)]}

− 1

ρ(ǫ)

∫ +∞

0

dǫ′ L(ǫ, ǫ′){X(ǫ′, τ)[n̄(ǫ) − n̄(ǫ + ǫ′)] − X(ǫ + ǫ′, τ)[1 + n̄(ǫ) + n̄(ǫ′)]} (66)

with

Γ(ǫ) =
1

2ρ(ǫ)

∫ ǫ

0

dǫ′ L(ǫ − ǫ′, ǫ′)[1 + n̄(ǫ′) + n̄(ǫ − ǫ′)] + 1

ρ(ǫ)

∫ +∞

0

dǫ′ L(ǫ, ǫ′)[n̄(ǫ′) − n̄(ǫ + ǫ′)] (67)

In these expressions, the first integral, limited to energies ǫ′ lower than the energy of the quasiparticle ǫ considered,

corresponds to Beliaev processes, and the second integral to Landau processes. The integral kernel 12

L(ǫ, ǫ′) =

∫

d3r d3 p d3q

(2π~)6

8πg2ρ0(r)

~

[

Aǫ+ǫ′

ǫ,ǫ′ (r)
]2
δ(ǫ − ǫ(r, p))δ(ǫ′ − ǫ(r, q))δ(ǫ + ǫ′ − ǫ(r, p + q)) (68)

=
32
√

2

π1/2

[ρ0(0)a3]1/2

~µTF

(

µTF

~ω̄

)3
∫ µTF

0

µ0dµ0(µTF − µ0)1/2ǫǫ′(ǫ + ǫ′)
[

Aǫ+ǫ′

ǫ,ǫ′ (µ0)
]2

µ
5/2

TF
(ǫ2 + µ2

0
)1/2(ǫ′2 + µ2

0
)1/2[(ǫ + ǫ′)2 + µ2

0
]1/2

(69)

uses the reduced coupling amplitude (54) at point r, reparametrized in terms of energies ǫi = ǫ(r, pi) (1 ≤ i ≤ 3) or even

in terms of the local Gross-Pitaevskii chemical potential µ0 = gρ0(r). It has the symmetry property L(ǫ, ǫ′) = L(ǫ′, ǫ).
We write the result before giving some indications on its obtention (one will also consult reference [16]). In the

secularo-ergodic approximation, the microcanonical correlation function of dθ̂sc/dt is

C
ergo
mc (τ) =

∫ +∞

0

dǫ ρ(ǫ)B(ǫ)X(ǫ, τ) (70)

Here B(ǫ) is the ergodic average of the quantity B(r, p) introduced in equation (58) :

B(ǫ) =
1

ρ(ǫ)

∫

d3r d3 p

(2π~)3

dǫ(r, p)

~dN
δ(ǫ − ǫ(r, p)) (71)

=
dµTF/dN

~π f (ǫ̌)

[

2ǫ̌1/2(ǫ̌ + 1) −
√

2(ǫ̌2 + 1) argsh
(2ǫ̌)1/2

(1 + ǫ̌2)1/2
− ǫ̌1/2(ǫ̌ − 1) − (1 + ǫ̌)2 acos

1

(1 + ǫ̌)1/2

]

(72)

B(ǫ) =
ǫ→0

dµTF

~dN

[

− ǫ̌
5
− 3π

40
√

2
ǫ̌3/2 + O(ǫ̌2)

]

, B(ǫ) =
ǫ→+∞

dµTF

~dN

[

−1 +
32

3π
ǫ̌−3/2 + O(ǫ̌−5/2)

]

(73)

with ǫ̌ = ǫ/µTF and f (ǫ̌) the reduced density of states (27). The auxiliary unknown X(ǫ, τ) is a solution of the linear

equation (66) with the initial condition

X(ǫ, 0) = n̄(ǫ)[1 + n̄(ǫ)][B(ǫ)− Λǫ] (74)

where ~Λ is the derivative of the microcanonical chemical potential with respect to to the total energy E of the gas 13,

as in equation (19) :

Λ =

∫ +∞
0

dǫ ρ(ǫ)ǫB(ǫ)n̄(ǫ)[1 + n̄(ǫ)]
∫ +∞

0
dǫ ρ(ǫ)ǫ2n̄(ǫ)[1 + n̄(ǫ)]

(75)

The equation (70) is the ergodic rewriting of equation (62). The initial condition (74) is the difference of two contri-

butions :

11. The simplest is to average the complete kinetic equations (51), then linearize the result around the stationary solution (55).

12. To get (69), we reduced equation (68) to a single integral on the r modulus (after having formally reduced to the case of an isotropic trap

as in note 3) by integrating in spherical coordinates on p, q and u, the cosine of the angle between p and q. In
∫ 1

−1
du, the argument of the third

Dirac vanishes at a point u0 and only one, given the inequalities ǫ
Bog

|p−q| ≤ ǫ
Bog
p + ǫ

Bog
q ≤ ǫ

Bog
p+q satisfied by the Bogoliubov dispersion relation

ǫ
Bog
p = [

p2

2m
(

p2

2m
+ 2µ0)]1/2, ∀µ0 ≥ 0.

13. The deep reason for the appearance of this derivative is given in reference [16]. It explains why the kinetic equations allow to find in the

canonical ensemble the ballistic term At2 of equation (15) with the correct expression of the coefficient A = (∂Eµmc/~)2Var E.
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— the first is the one that one would obtain in the canonical ensemble. The ergodic mean of the covariance matrix

(61) would then be simply Qcan(ǫ, ǫ′) = n̄(ǫ)[1 + n̄(ǫ)]δ(ǫ − ǫ′)/ρ(ǫ) ;

— the second comes from a projection of δn canonical fluctuations on the subspace of the δn fluctuations of

zero energy,
∫ +∞

0
dǫ ρ(ǫ)ǫδn(ǫ) = 0, the only one eligible in the microcanonical ensemble. Only subtle point,

this projection must be carried out parallel to the stationary solution e0(ǫ) = ǫn̄(ǫ)[1 + n̄(ǫ)] of the linearized

kinetic equations (66). 14 We then check that, for the value of Λ given, X(ǫ, 0) is in the subspace of zero energy

fluctuations.

4.4. Results and discussion

We present some results in graphic form, after a clever scaling making them independent of the trapping angular

frequencies (provided they are quite distinct two by two to allow the ergodic hypothesis) and of the strength of

the interactions 15 ; it is enough to know the temperature in units of Thomas-Fermi’s chemical potential µTF. These

results illustrate the universality class of the completely anisotropic harmonic traps, different from that of the spatially

homogeneous systems of reference [16].

An interesting by-product of our study is shown in figure 3 : it is the damping rate Γ(ǫ) in the secularo-ergodic

approximation of the Bogoliubov modes of energy ǫ. In a cold atom experiment it is possible to excite such modes

and to follow their decay in time. The rate we predict is then measurable and it can be compared to the experiments,

at least in its validity regime of classical motion ǫ ≫ ~ωα (deviations from the ergodic hypothesis are discussed in

section 4.5). The limiting behaviors

~Γ(ǫ) ∼
ǫ→0

3I
4

(

ǫ

µTF

)1/2

kBT [ρ0(0)a3]1/2 with I = 4.921 208 . . . (76)

~Γ(ǫ) ∼
ǫ→+∞

128
√

2

15
√
π

µ2
TF

ǫ
[ρ0(0)a3]1/2 (77)

shown in dashed lines in figure 3, 16 are derived in Appendix A. They are very different from the spatially homo-

geneous case, where the damping rate vanishes linearly in ǫ at low energy and diverges as ǫ1/2 at high energy. In

particular, the behavior (76) in ǫ1/2 results from the existence of the Thomas-Fermi edge of the condensate.

Let’s go back to the condensate phase spreading in the microcanonical ensemble. In figure 4, we represent in black

solid line the variance of the phase shift θ̂(t)−θ̂(0) of the condensate as a function of time t in the ergodic approximation

(70) at the temperatures T = µTF/kB and T = 10µTF/kB. The variance has a parabolic departure in time, which

corresponds to the precollisional regime t ≪ tcoll, where tcoll is the typical collision time between quasiparticles : we

can then assume that Cmc(τ) ≃ Cmc(0), so that the integral contribution to equation (15) is ≃ Cmc(0)t2. At long times,

t ≫ tcoll, the correlation function of dθ̂/dt seems to quickly reach zero (red solid line) ; a more detailed numerical

study (see the inset in figure 4 b) reveals however the presence of a power law tail t−α,

Cmc(t) ∼
t→+∞

C
t5

(78)

the exponent α = 5 is greater than the one αh = 3 of the decay law of Cmc(t) in the spatially homogeneous case

[16]. Its value can be found by a rough heuristic approximation, called rate approximation or projected Gaussian [15],

already used for αh with success in this same reference [16] : we keep in the linearized kinetic equations (66) only

14. For this projection to be compatible with linearized kinetic evolution, it is necessary that the projection direction and the hyperplane on

which we project be invariant by temporal evolution, the second point being ensured by conservation of energy. The form of e0(ǫ) derives from the

fact that (55) remains a stationary solution for an infinitesimal variation of β, β→ β + δβ, around its physical value.

15. In a first step, we show that the results can depend on the trapping frequencies ωα only through their geometric mean ω̄. This is a direct

consequence of the ergodic hypothesis and the fact that the observables involved here, including the Hamiltonian, depend only on the position r of

the quasiparticles via the trapping potential U(r) = 1
2 m

∑

α ω
2
αr2
α. In the integral

∫

d3r participating in the ergodic mean, one can then perform the

isotropising change of variables of note 3.

16. For kBT = µTF, Γ(ǫ)/ǫ1/2 has a deceptive maximum in the neighborhood of ǫ/µTF = 0.02 of about 5% above its limit in ǫ = 0.
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Figure 3: Beliaev-Landau damping rate Γ(ǫ) of Bogoliubov modes of a condensate in a completely anisotropic harmonic trap as a function of the

mode energy ǫ, at the thermodynamic limit, in the secularo-ergodic approximation (63, 64, 67), at temperature (a) kBT = µTF and (b) kBT = 10µTF,

where µTF is the Thomas-Fermi’s chemical potential of the condensate. Thanks to the chosen units, the curve is universal ; in particular, it does not

depend on the trapping angular frequencies ωα. The Bogoliubov modes considered must be in the classical motion regime ǫ ≫ ~ωα and the system

must be in the regime of an almost pure condensate, [ρ0(0)a3]1/2 ≪ 1 and T ≪ Tc, where ρ0(0) = µTF/g is the density of the condensate in the

center of the trap and Tc the critical temperature. In dashed lines, the equivalents (76) and (77) of Γ(ǫ) at low and high energy.
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Figure 4: In the conditions of figure 3, for a system prepared at t = 0 in the microcanonical ensemble at temperature (a) kBT = µTF or (b)

kBT = 10µTF, and isolated from its environment in its subsequent evolution, variance of the condensate phase shift θ̂(t) − θ̂(0) as a function of time

t (solid line black) and its asymptotic diffusive behavior (80) (dashed). The correlation function Cmc(t) of dθ̂/dt is shown on the same figure in the

secular-ergodic approximation (70) as a function of time (red solid line, ticks on the right) and, for (b), in an inset in log-log scale at long times

(black solid line) to show that after a quasi-exponential decay in the square root of time (fit with t6 exp(−C
√

t) in red dashed line) it follows a power

law ∝ t−5 (blue dashed). As in figure 3, the multiplication of the quantities on the axes by well-chosen factors makes these results universal.

the term of pure decay −Γ(ǫ)X(ǫ, τ) in the right-hand side, which makes them immediately integrable and leads to the

estimate 17

Cmc(t) ≈
∫ +∞

0

dǫ ρ(ǫ)[B(ǫ) − Λǫ]2n̄(ǫ)[1 + n̄(ǫ)]e−Γ(ǫ)t (79)

The power law behavior of the density of states ρ(ǫ) at low energy [see (34)], of the coefficients B(ǫ) in dθ̂/dt [see

(73)], of the occupation numbers n(ǫ) ∼ kBT/ǫ and of the damping rate Γ(ǫ) [see (76)] then reproduce the exponent

α = 5 found numerically. 18 Since Cmc(t) tends to zero faster than 1/t2+η, for some η > 0, we obtain the following

important result : the variance of the condensate phase shift Varmc[θ̂(t) − θ̂(0)] exhibits at long times the typical affine

growth of a diffusive regime with delay :

Varmc[θ̂(t) − θ̂(0)] =
t≫tcoll

2D(t − t0) + o(1) (80)

17. Care has been taken to account for the projection on the microcanonical subspace of zero energy fluctuations not only in the initial condition

(74), but also in the contraction by B(ǫ) in (70), replacing B(ǫ) with B(ǫ) −Λǫ ; this precaution, optional in the exact formulation, is necessary here

since the rate approximation violates conservation of energy.

18. In contrast, the predicted value for the coefficient C in (78) for kBT = 10µTF, that is ≃ 10−5, differs significantly from the numerical value

≃ 7 × 10−5.
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Figure 5: In the conditions of the previous figures 3 and 4, (a) diffusion coefficient D of the phase of the harmonically trapped condensate and (b)

delay time t0 to the phase diffusion as a function of temperature (in black solid line) deduced from equations (81, 82) and (70). These quantities are

independent of the statistical ensemble. With the chosen scalings, the curves are universal. Dotted lines : in (a) fit by a T 4 law at high temperature

and in (b) fit by a law linear in T at high temperature and by a T−3/2 law at low temperature. The power laws represented at high temperature are

only indicative because they certainly omit logarithmic factors in kBT/µTF. In (b) the dashed line gives the estimate 1/Γ(ǫ = kBT ) of the typical

collision time tcoll between quasiparticles.

represented by a dashed line on figure 4. The delay t0 is due to the non-zero width of the correlation function Cmc(τ) :

D =

∫ +∞

0

dτCmc(τ) (81)

t0 =

∫ +∞
0

dτ τCmc(τ)
∫ +∞

0
dτCmc(τ)

(82)

We represent the diffusion coefficient D of the condensate phase as a function of temperature in figure 5 a. It

exhibits a high temperature growth (kBT > µTF) much faster than in the spatially homogeneous case : it was only

linear (up to logarithmic factors), it seems to scale here as T 4 (dotted in the figure). The diffusion delay time t0
is plotted as a function of temperature in figure 5 b. We compare it to the estimate tcoll ≃ 1/Γ(ǫ = kBT ) of the

collision time between quasiparticles, in dashed line : this one gives a good account of the sudden rise of t0 at low

temperatures, but reproduces with much delay and greatly underestimating that at high temperatures. The rise of t0 is

well represented by a T−3/2 low temperature law, and appears to be linear in T at high temperature (see dashed line).

Let us find by a simple reasoning the observed power laws. If a scaling law exists, it should survive the rate

approximation on the linearized kinetic equations ; we can therefore take the approximate expression (79) of Cmc(t) as

a starting point and put it in the expressions (81) and (82) of D and t0.

At high temperature, the integrals on ǫ giving D and t0 in the rate approximation are dominated by energies of

order kBT ; we set ǫ = kBT ǭ and send T to +∞ at fixed ǭ under the integral. The behaviors of ρ(ǫ) and B(ǫ) at high

energy are known. Only that of Γ(kBT ǭ) is missing ; to get it, we notice on (69) that L(kBT ǭ, kBT ǭ′) tends to a constant

when T → +∞. The approximation L(ǫ, ǫ′) ≃ L(ǫ−ǫ′, ǫ′) ≃ const, however, triggers a logarithmic infrared divergence

in the integrals on ǫ′ in (67), which stops at ǫ′ . µTF, so that 19

~Γ(kBT ǭ)

µTF[ρ0(0)a3]1/2
∼

kBT/µTF→+∞

512
√

2

15π1/2

1

ǭ2

µTF

kBT
ln

kBT

µTF

(83)

All this leads to the scaling laws D ≈ T 4 and t0 ≈ T at high temperature, up to logarithmic factors.

At low temperatures, we proceed in the same way. The behavior of Γ(kBT ǭ) is as T 3/2 when T → 0 at fixed ǭ,

as one could expect it from the equivalent (76) and as it is confirmed by a calculation. The only trap to avoid is that

19. A more accurate calculation leads to replace in (83) the symbol ∼ by = and the factor ln
kBT
µTF

by [ln
kBT
µTF
+ ǭ

4
+ ln(1 − e−ǭ) + 31

15
− 3 ln 2 +

O(µTF/kBT )].
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B(kBT ǭ) − ΛkBT ǭ scales as T 3/2 when T → 0, not as T as one might think, because the dominant terms of B(kBT ǭ)

and ΛkBT ǭ, both linear in kBT ǭ, exactly compensate each other, see equation (75). This leads to the exact power laws

(without logarithmic corrections) D ∝ T 4 and t0 ∝ T−3/2 at low temperature ; only the second one is accessible on the

temperature interval of figure 5, but we checked the first one numerically on a larger temperature range.

To encourage an experimental study with cold atoms, let’s finish with a small study of the fundamental limits

to the observability of phase diffusion of a trapped condensate. There are, of course, several practical difficulties to

overcome, such as (i) significant reduction of the fluctuations in the energy and number of particles in the gas to

mitigate the ballistic blurring of the phase, which is a dangerous competitor of the diffusion, (ii) the introduction of

a sensitive and unbiased detection scheme for the condensate phase shift or coherence function g1(t), of the Ramsey

type as proposed in references [17, 18], (iii) reduction of the technical noise of the experimental device, (iv) trapping

of the atoms in a cell with a sufficiently high vacuum to make cold atom losses by collision with the residual hot gas

negligible (one-body losses) : lifetimes of the order of the hour are possible under cryogenic environment [33, 34].

These practical aspects vary according to the experimental groups and are beyond the scope of this article. In contrast,

particle losses due to three-body collisions, with the formation of a dimer and a fast atom, are intrinsic to alkaline

atoms and constitute a fundamental limit. Each atom loss changes, at a random time, the rate of variation of the

phase d
dt
θ̂, since this is a function of N, which adds a stochastic component to its evolution [16, 35]. To calculate the

variance of the phase shift of the condensate induced by the three-body losses, we place ourselves at zeroth order

in the uncondensed fraction, that is in the case of a pure condensate at zero temperature prepared at time 0 with an

initially well defined number of particles N, as in reference [16] from which we can recycle (adapting them to the

trapped case and to three-body losses) expressions (G7) and (64) :

Varlosses[θ̂(t) − θ̂(0)] =

(

dµTF

~dN

)2 ∫ t

0

dτ

∫ t

0

dτ′
[

〈N̂(τ)N̂(τ′)〉 − 〈N̂(τ)〉〈N̂(τ′)〉
]

∼
Γ3 t→0

(

dµTF

~dN

)2

NΓ3t3 (84)

We introduced the Γ3 particle number decay rate, related as follows to the K3 rate constant of the three-body losses

and to the Thomas-Fermi ρ0(r) density profile of the condensate :

d

dt
N ≡ −Γ3N = −K3

∫

d3r [ρ0(r)]3 (85)

We obtain a more meaningful writing, directly comparable to our results without losses, by writing (84) in adimen-

sioned form :

Varlosses[θ̂(t) − θ̂(0)] ∼
Γ3t→0

8

525π
K̄3 t̄ 3 (86)

where Var and t̄ are the variance of the phase shift and the elapsed time in the units of figure 4, and K̄3 = mK3/(~a4).

The reduced constant K̄3 is an intrinsic property of the atomic species used in the experiment (even if it can be

varied using a magnetic Feshbach resonance [36]). To estimate the order of magnitude of K̄3 in a gas of cold atoms,

consider the example of rubidium 87 in the ground hyperfine sublevel |F = 1,mF = −1〉 at vanishing magnetic field :

measurements give K3 = 6 × 10−42 m 6/s and a = 5.31nm [37] so K̄3 ≃ 10. In figure 4a (kBT = µTF), at the reduced

entrance time t̄ = 5 in the asymptotic regime of phase diffusion we see that the loss-induced parasitic variance for

this value of K̄3 is about three times the useful variance ; their very different time dependencies should, however,

make it possible to separate them. The situation is much more favorable at higher temperature, kBT ≫ µTF, the effect

of the losses on the phase shift variance being for example still negligible at the reduced time t̄ = 100 in figure 4b

(kBT = 10µTF).

4.5. Discussion of ergodic hypothesis

As shown by references [22, 23] in the case of a harmonic trap with cylindrical symmetry, the classical motion

of Bogoliubov quasiparticles is highly chaotic at energies ǫ ≃ µTF but even at this energy, the Poincaré sections

reveal patches of stability in the phase space, which are not crossed by the trajectories of the chaotic sea : there is no

ergodicity in the strict sense.

What about the case of a completely anisotropic trap ? We want to test the ergodic hypothesis for two physical

quantities. The first one appears in our linearized kinetic equations, it is the Γ(r, p) damping rate. The second appears

16
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Figure 6: Histogram of time averages of the physical quantities (a) dǫ(r, p)/dµTF and (b) Γ(r, p) for 104 independent initial values (r(0), p(0))

drawn uniformly on the energy shell ǫ = µTF and a Hamiltonian evolution (39, 40) of Bogoliubov quasiparticles for a variable duration t : t = 0

(hollow bars, black line), t = 5 × 103/ω̄ (solid red bars), t = 2.5 × 105/ω̄ (black solid bars). The harmonic potential is completely anisotropic,

with incommensurate trapping frequencies (ratios ωx : ωy : ωz = 1 :
√

3 :
√

5 − 1). The temperature, which enters in the Γ(r, p) damping rate, is

T = µTF/kB. Black vertical dashed lines : on the left, the ergodic value (average of the physical quantity on the energy shell ǫ) ; on the right, the

temporal average of the quantity over a period of the linear trajectory of energy ǫ along the direction Oy (most confining axis of the trap), obtained

analytically for (a) (see note 21) and numerically for (b).

Figure 7: For the classical Hamiltonian dynamics of Bogoliubov quasiparticles in a harmonic potential, stability of the linear motion along an

eigenaxis Oα of the trap for an infinitesimal initial perturbation (a displacement) along another eigenaxis Oβ, as a function of the energy ǫ of the

trajectory and the ratio ωβ/ωα of the trapping frequencies (the shaded areas are stable).

in the initial conditions of the Cmc(τ) correlation function of dθ̂/dt, it is dǫ(r, p)/dµTF. For a uniform sampling of the

energy surface ǫ, that is with the probability distribution δ(ǫ − ǫ(r, p))/ρ(ǫ) in the phase space, we show in figure

6 the histograms of these quantities after time averaging on each trajectory over times t = 0, t = 5000/ω̄ and

t = 250 000/ω̄, at the energy ǫ = kBT = µTF for incommensurable trapping frequencies. 20 The temporal averaging

leads to a spectacular narrowing of the probability distribution, which peaks around the ergodic mean (dashed line on

the left), which goes in the direction of the ergodic hypothesis. This narrowing dynamics continues over very long

times, but never eliminates a small lateral peak far from the ergodic average.

An inspection of the trajectories contributing to the lateral peak shows that they are small perturbations of the stable

linear trajectories along the most confining trap axis. The temporal average value of the two quantities considered on

these linear trajectories is represented by the right dashed vertical lines in figure 6, it is actually close to the peak in

20. Equations of motion (39, 40), put together as d
dt

X = f(X), are numerically integrated with a semi-implicit scheme of the second order,

X(t + dt) = X(t) + dt[1 − dt
2

M]−1f(X(t)) where M is the first differential of f(X) in X(t) [38]. If the trajectory crosses the surface of the condensate

between t and t + dt, we must determine the crossing time ts with an error O(dt)3 , then apply the diagram semi-implicit successively on [t, ts] and

[ts, t + dt], to overcome the discontinuity of f(X) and its derivatives.
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Figure 8: For the classical Hamiltonian dynamics of Bogoliubov quasiparticles in a harmonic potential, Poincaré sections in the plane (ry =

0, py(ǫ) > 0) of planar trajectories in xOy (200 independent trajectories, evolution time 5000/ω̄), with a ratio ωx : ωy taking all possible values in

the trap of figure 6 : 1 :
√

3,
√

3 : 1, 1 :
√

5 − 1,
√

5 − 1 : 1,
√

3 :
√

5 − 1 and
√

5 − 1 :
√

3. The sections are ordered by increasing ratio ωx/ωy

from left to right and from top to bottom (given that 1/
√

3 < (
√

5−1)/
√

3 < 1/(
√

5−1) < 1). This shows that the Poincaré section is more chaotic

as the ratio ωx/ωy is larger. rx is in units of (µTF/mω̄
2)1/2 and px in units of (mµTF)1/2.

question. The stability diagram of a linear trajectory along an eigenaxis α of the trap, with respect to a perturbation

along another eigenaxis β is shown in figure 7, in the plane (energy, ratio ωβ/ωα). It shows that the linear trajectory

along the most confining axis is stable at all energies. 21 The Poincaré sections of the planar trajectories in the αOβ

planes in figure 8 specify the width of the stability island and reveal the existence of secondary islands, etc. There is

therefore no full ergodicity of our classical dynamics, even at the energies ǫ ≈ µTF, even in the completely anisotropic

case.

To quantitatively measure the error made by the ergodic hypothesis in the computation of Cmc(0) and Cmc(τ > 0),

we consider the differences between

〈

dǫ(r, p)

dµTF

2〉

ǫ

and

〈

dǫ(r, p)

dµTF

〉2

ǫ

(87)

〈

1

Γ(r, p)

〉

ǫ

and
1

〈Γ(r, p)〉 ǫ
=

1

Γ(ǫ)
(88)

where we recall that the horizontal bar O(r, p) above a physical quantity represents the time average on the trajectory

21. The linear trajectory of a quasiparticle of energy ǫ along the proper axis Oα of the trap is written m1/2ωαrα(t) = |µTF + iǫ | sin(
√

2ωαt)/
√

G(t)

and pα(t)/(2m)1/2 = ǫ/
√

G(t) with G(t) = µTF + |µTF + iǫ | cos(
√

2ωαt). This corresponds to the choice rα(0) = 0, pα(0) ≥ 0 and is for −ts ≤ t ≤ ts,

where the time to reach the surface of the condensate is given by
√

2ωαts = acos
ǫ−µTF
|µTF+iǫ| . Outside the condensate, the quasiparticle oscillates

harmonically like a free particle for a time 2ω−1
α atan[(ǫ/µTF)1/2] before regaining the condensate, to cross it in a time 2ts , and so on. The knowledge

of the trajectory makes immediate the linear analysis of numerical stability. It also allows to calculate analytically the time average of dǫ(r, p)/dµTF

on the linear trajectory ; if we put ǫ̌ = ǫ/µTF, the result is written

dǫ(r, p)

dµTF
=

ln 1+ǫ̌+
√

2ǫ̌

(1+ǫ̌2)1/2 −
√

2 atan
√
ǫ̌

acos ǫ̌−1

(1+ǫ̌2)1/2 +
√

2 atan
√
ǫ̌
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Figure 9: Visualization of the error introduced by the ergodic hypothesis Ō = 〈O〉ǫ on two physical quantities O(r, p) involved in the diffusion

of the condensate phase, as a function of the energy ǫ : (a) for O(r, p) = dǫ(r, p)/dµTF, we compare as in equation (87) 〈Ō2〉ǫ (red circles) to its

ergodic approximation 〈O〉2ǫ from (72) (solid line black) ; (b) for O(r, p) = Γ(r, p), we compare as in equation (88) 〈1/Ō〉ǫ (red circles) to its ergodic

approximation 1/〈O〉ǫ (solid line black). The time average Ō is computed over an evolution time t = 5 × 104/ω̄ of the quasiparticles in the trap of

figure 6 ; the average on the energy shell ǫ is taken on 200 independent trajectories, with initial conditions (r, p) drawn according to the uniform law

δ(ǫ − ǫ(r, p))/ρ(ǫ), which leads to a statistical uncertainty represented by the error bars in the figure. Dashed lines in (b) : asymptotic equivalents

(89) of 〈1/Γ̄〉ǫ (in red) and (77) of 1/〈Γ〉ǫ (in black).

going through (r, p) in phase space, as in equation (63), and the brackets 〈O(r, p)〉ǫ represent the uniform mean over

the energy shell ǫ as in equation (64). In equations (87, 88), the left column contains the quantities appearing in

Cmc(0) or in the secular kinetic equations before the ergodic approximation, and the right column what they become

after ergodic approximation. Importantly, we consider in equation (88) 1/Γ̄ rather than Γ̄ because it is the inverse M−1

and M−2 that appear in expressions (81, 82) of the diffusion coefficient D and the delay time t0, M being the operator

representing the right-hand side of linearized kinetic equations (66). 22 The quantities to be compared (87, 88) are

represented as functions of the energy ǫ in figure 9 at temperature T = µTF/kB. There is a remarkable agreement on a

wide range of energies around ǫ = µTF. Deviations from the ergodic approximation at very low energy and very high

energy were expected : within these limits, the classical dynamics becomes integrable [22]. At high energy, we obtain

for the quantity Γ(r, p) the following analytic prediction : 23

〈

1

~Γ(r, p)

〉

ǫ

∼
ǫ→+∞

π5/2

56
√

2

ǫ

µ2
TF

1

[ρ0(0)a3]1/2
(89)

It differs from the ergodic prediction (77) by a numerical coefficient, and reproduces well the results of the numerical

simulations (see the red dashed line in figure 9 b). This prevents us from calculating the diffusion coefficient D and the

diffusion delay t0 in the secularo-ergodic approximation at a too high temperature. Concerning dǫ(r, p)/dµTF, which

tends to −1 at high energy, the deviation can only be significant at low energy ; in fact it does so only at very low

energy, and it would be a problem for our ergodic calculation of D and t0 only at temperatures kBT ≪ µTF rarely

reached in cold atom experiments.

22. Should it be recalled, 〈Γ(r, p)〉ǫ = Γ(ǫ), the uniform mean being invariant by time evolution. So, the inequality between arithmetic mean and

harmonic mean imposes 〈1/Γ(r, p)〉ǫ ≥ 1/Γ(ǫ).

23. At the dominant order in ǫ, we get Γ(r, p) using the equivalent (97) (in which µ0 = gρ0(r)) on a harmonic trajectory undisturbed by the

condensate, rα(t) = Aα cos(ωαt + φα), ∀α ∈ {x, y, z}. Let us consider cleverly the quantity gρ0(r) to be averaged as a function f (θ) of the angles

θα = ωαt + φα. It is a periodic function of period 2π in each direction, expandable in Fourier series, f (θ) =
∑

n∈Z3 cnein·θ . In the incommensurable

case, n · ω , 0 and the time average of ein·θ is zero ∀n ∈ Z
3∗, so that f (θ) = c0. In the usual integral expression of c0, we make the change of

variable xα = Xα cos θα, where Xα = (ǫα/µTF)1/2 and ǫα is the energy of the motion along Oα. It remains to take the limit of all Xα tending to +∞
under the integral sign to get

~Γ(r, p)

µTF[ρ0(0)a3]1/2
∼

ǫ→+∞
32
√

2

15π3/2

(

ǫ

µTF

)1/2
∏

α

(

µTF

ǫα

)1/2

By averaging the inverse of this equivalent over the probability distribution 2ǫ−2δ(ǫ −∑

α ǫα) of the energies per direction for a harmonic oscillator

of total energy ǫ, we find (89).
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5. Conclusion

Motivated by recent experimental advances in the manipulation of trapped cold atom gases [1, 2, 3], we theoreti-

cally studied the coherence time and the phase dynamics of a Bose-Einstein condensate in an isolated and harmonically

trapped boson gas, a fundamental problem important for interferometric applications. The variance of the phase shift

experienced by the condensate after a time t increases indefinitely with t, which limits the intrinsic coherence time of

the gas. For t ≫ tcoll, where tcoll is the typical collision time between Bogoliubov quasiparticles, it becomes a quadratic

function of time,

Var[θ̂(t) − θ̂(0)] = At2 + 2D(t − t0) + o(1) (90)

where θ̂ is the phase operator of the condensate. This asymptotic law has the same form as in the spatially homoge-

neous case previously studied [16], which was not guaranteed, but the coefficients of course differ. To calculate them,

we consider the thermodynamic limit in the trap, in which the number of particles tends to infinity, N → +∞, at fixed

temperature T and fixed Gross-Pitaevskii chemical potential µGP. This requires that the reduced trapping frequencies

tend to zero, ~ωα/µGP → 0, which we reinterpret as a classical limit ~→ 0.

The dominant term At2 is due to the fluctuations in the initial state of the quantities conserved by temporal evolu-

tion, N and E, where E is the total energy of the gas. We give an explicit expression (16) - (19) - (20) of the coefficient

A in a generalized ensemble, any statistical mixture of microcanonical ensembles with at most normal fluctuations of

N and E. In this case, A = O(1/N). We obtain a simpler form (30) in the case of a statistical mixture of canonical

ensembles of the same temperature but of variable number of particles. At usual temperatures, larger than µGP/kB, and

for Poissonian particle number fluctuations, the contribution to A of thermal fluctuations of E is rendered negligible

by a factor of order the non-condensed fraction ∝ (T/Tc)
3. The variance of N must be reduced to see the effect of

thermal fluctuations on the ballistic spread of the condensate phase.

The subdominant term 2D(t − t0) does not depend on the ensemble in which the system is prepared, at least to

the first non-zero order 1/N at the thermodynamic limit, and it is the only one that remains in the microcanonical

ensemble. The calculation of its two ingredients, the diffusion coefficient D of the phase and the diffusion delay

t0, requires the knowledge at all times of the correlation function of dθ̂/dt in the microcanonical ensemble, and

thus the resolution of linearized kinetic equations on the Bogoliubov quasiparticle occupation numbers. It is indeed

the temporal fluctuations of these occupation numbers for a given realization of the system which stochastise the

evolution of the phase of the condensate. To this end, we adopt a semiclassical description, in which the motion of

quasiparticles in the trapped gas is treated classically in the phase space (r, p), but the quasiparticle bosonic field is

still quantum, through the occupation number operators n̂(r, p). In quantum observables of the form Â =
∑

k akn̂k,

such as dθ̂/dt, the average ak and the sum on the Bogoliubov quantum modes k are then replaced, according to

a correspondence principle, by a temporal mean and an integral on the classical trajectories (see equations (42)-

(44)). The linearized kinetic equations on the fluctuations δn̂(r, p) include a transport part, according to the classical

Hamiltonian motion of quasiparticles, and a collision integral, local in position, which describes the Beliaev-Landau

interaction processes among three quasiparticles. They take the same form as the linearized quantum Boltzmann

equations on the semiclassical distribution function n(r, p, t) of quasiparticles in phase space. We simplify them in the

secular limit ωαtcoll ≫ 1 and under the assumption of a classical ergodic motion of quasiparticles. This hypothesis,

according to which the fluctuations δn̂(r, p) averaged on a trajectory depend only on the energy of the trajectory, only

holds if the trap is completely anisotropic ; in this case we give a careful numerical justification.

The desired quantities D and t0, correctly adimensioned, are universal functions of kBT/µTF where µTF is the

Thomas-Fermi limit of µGP, and are in particular independent of the ratios ωα/ωβ of the trapping frequencies. They

are represented on figure 5. An interesting and more directly measurable by-product of our study are the Γ(ǫ) damping

rates of the Bogoliubov modes of energy ǫ in the trap. Once the adimensioned temperature kBT/µTF is fixed, the

rate is also described by a universal function of ǫ/µTF independent of the trapping frequencies, see figure 3. These

results are part of a new class of universality, that of the completely anisotropic harmonic traps, very different from

that, theoretically better explored, of spatially homogeneous systems, and will hopefully receive an experimental

confirmation soon.
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Appendix A. Behavior of Γ(ǫ) at low and high energy

To get the limiting behaviors (76) and (77) of the Γ(ǫ) damping rates of the Bogoliubov modes in a trap in the

secularo-ergodic approximation, we rewrite the integral in phase space (64) as an average on the local Gross-Pitaevskii

chemical potential µ0 = gρ0(r) of the damping rate Γh(ǫ, µ0, kBT ) of a mode of energy ǫ in a homogeneous system of

density µ0/g and temperature T :

Γ(ǫ) =

∫ µTF

0

dµ0Pǫ(µ0)Γh(ǫ, µ0, kBT ) (91)

with

Pǫ(µ0) ≡ 1

ρ(ǫ)

∫

d3r d3 p

(2π~)3
δ(ǫ − ǫ(r, p))δ(µ0 − gρ0(r)) =

4

πρ(ǫ)

1

(~ω̄)3

ǫ2(µTF − µ0)1/2

(µ2
0
+ ǫ2)1/2[(µ2

0
+ ǫ2)1/2 + µ0]1/2

(92)

In the ǫ → 0 limit, we first heuristically replace the integrand in equation (91) with a low energy equivalent, using :

Pǫ(µ0) ∼
ǫ→0

3

8
√

2

ǫ1/2(µTF − µ0)1/2

µ
1/2

TF
µ

3/2

0

(93)

~Γh(ǫ, µ0, kBT )

2
∼
ǫ→0

ǫ

(

µ0a3

g

)1/2

F(kBT/µ0) (94)

In equation (93), we used equation (34) ; the result (94) is in reference [32], where the function F is computed and

studied. As F(θ) ∼
θ→+∞

3π3/2

4
θ, this causes in equation (91) the divergent integral ǫ3/2

∫ µTF

0
dµ0/µ

2
0

to appear. It is clear,

however, that one should cut this integral to µ0 > ǫ so that the equivalent (94) remains usable, hence the scaling

law Γ(ǫ) ≈ ǫ1/2, dominated by the edge of the trapped condensate and very different from the linear law of the

homogeneous case. To find the prefactor in the law, we simply make the change of scale µ0 = ǫν0 in the integral

and use the “high temperature " approximation of reference [39] on Γh, uniformly valid near the edge of the trapped

condensate,

~Γh(ǫ, µ0, kBT )

2
∼

kBT≫ǫ,µ0

kBT

(

µ0a3

g

)1/2

φ(ǫ/µ0) (95)

before going to the ǫ → 0 limit under the integral sign, which leads to the sought equation (76) with 24

I =
∫ +∞

0

dν0

ν
1/2

0
φ(1/ν0)

(1 + ν2
0
)1/2[ν0 + (1 + ν2

0
)1/2]1/2

= 4.921 208 . . . (96)

In the limit ǫ → +∞, we use the fact that, in the homogeneous case, the damping rate of quasiparticles is reduced

to the collision rate ρ0σv of a particle of velocity v = (2ǫ/m)1/2 with condensate particles, with zero velocity and

density ρ0, with the cross section σ = 8πa2 for indistinguishable bosons (this is a Beliaev process) :

~Γh(ǫ, µ0, kBT )

2
∼

ǫ→+∞
µ0a

(2mǫ)1/2

~
(97)

Using the same high energy expansion (35) for ρ(ǫ), we find that Pǫ(µ0) ∼ (8/π)(µTF − µ0)1/2ǫ−3/2. The insertion of

these equivalents in equation (91) gives (77).

24. In practice, the function φ is deduced from equation (57) by doing the classical field approximation 1 + n̄(r, q) ≃ n̄(r, q) ≃ kBT/ǫ(r, q).

In the numerical calculation of I, done by taking ǫ̌ = 1/ν0 as the integration variable, we reduce the effect of digital truncation with the help of

the development asymptotic φ(ǫ̌) =
ǫ̌→+∞

4
(

2π
ǫ̌

)1/2 [

2 ln ǫ̌
2
+

1−ln(ǫ̌/2)
ǫ̌

+
23+6 ln(ǫ̌/2)

8ǫ̌2 + O( ln ǫ̌

ǫ̌3 )
]

, which corrects and improves equation (35) of reference

[39].
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Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, “Bose-Einstein condensation of exciton polaritons", Nature 443, 409 (2006).

[9] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, “Superfluidity of Polaritons in

Semiconductor Microcavities", Nature Phys. 5, 805 (2009).

[10] M. Alloing, M. Beian, M. Lewenstein, D. Fuster, Y. González, L. González, R. Combescot, M. Combescot, F. Dubin, “Evidence for a Bose-

Einstein condensate of excitons", Europhys. Lett. 107, 10012 (2014).

[11] D. Jaksch, C.W. Gardiner, K.M. Gheri, P. Zoller, “Quantum kinetic theory. IV. Intensity and amplitude fluctuations of a Bose-Einstein conden-

sate at finite temperature including trap loss", Phys. Rev. A 58, 1450 (1998).

[12] R. Graham, “Decoherence of Bose-Einstein Condensates in Traps at Finite Temperature", Phys. Rev. Lett. 81, 5262 (1998).

[13] A.B. Kuklov, J.L. Birman, “Orthogonality catastrophe and decoherence of a confined Bose-Einstein condensate at finite temperature", Phys.

Rev. A 63, 013609 (2000).

[14] A. Sinatra, Y. Castin, E. Witkowska, “Nondiffusive phase spreading of a Bose-Einstein condensate at finite temperature", Phys. Rev. A 75,

033616 (2007).

[15] A. Sinatra, Y. Castin, “Genuine phase diffusion of a Bose-Einstein condensate in the microcanonical ensemble: A classical field study", Phys.

Rev. A 78, 053615 (2008).

[16] A. Sinatra, Y. Castin, E. Witkowska, “Coherence time of a Bose-Einstein condensate", Phys. Rev. A. 80, 033614 (2009).

[17] A. Sinatra, Y. Castin, “Spatial and temporal coherence of a Bose-condensed gas", in Physics of Quantum Fluids : new trends and hot topics in

atomic and polariton condensates, édité par M. Modugno, A. Bramati, Springer Series in Solid-State Sciences 177 (Springer, Berlin, 2013).

[18] H. Kurkjian, Y. Castin, A. Sinatra, “Brouillage thermique d’un gaz cohérent de fermions", Comptes Rendus Physique 17, 789 (2016) [open

access, doi: 10.1016/j.crhy.2016.02.005].

[19] A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, “Bose-Einstein Condensation of Atoms in a Uniform Potential", Phys.

Rev. Lett. 110, 200406 (2013).

[20] P.O. Fedichev, G.V. Shlyapnikov, J.T.M. Walraven, “Damping of Low-Energy Excitations of a Trapped Bose-Einstein Condensate at Finite

Temperatures", Phys. Rev. Lett. 80, 2269 (1998).

[21] A. Sinatra, Y. Castin, E. Witkowska, “Limit of spin squeezing in trapped Bose-Einstein condensates", EPL 102, 40001 (2013).

[22] M. Fliesser, A. Csordás, R. Graham, P. Szépfalusy, “Classical quasiparticle dynamics in trapped Bose condensates", Phys. Rev. A 56, 4879

(1997).

[23] M. Fliesser, R. Graham, “Classical quasiparticle dynamics and chaos in trapped Bose condensates", Physica D 131, 141 (1999).

[24] Y. Castin, R. Dum, “Low temperature Bose-Einstein condensates in time dependent traps : beyond the U(1)-symmetry breaking approach",

Phys. Rev. A 57, 3008 (1998).

[25] J.M. Deutsch, “Quantum statistical mechanics in a closed system", Phys. Rev. A 43, 2046 (1991).

[26] M. Srednicki, “Chaos and quantum thermalization", Phys. Rev. E 50, 888 (1994).

[27] M. Rigol, V. Dunjko, M. Olshanii, “Thermalization and its mechanism for generic isolated quantum systems", Nature 452, 854 (2008).

[28] T.D. Lee, C.N. Yang, “Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics", Phys. Rev. 105, 1119 (1957).

[29] L. Carr, Y. Castin, G. Shlyapnikov, “Achieving a BCS transition in an atomic Fermi gas", Phys. Rev. Lett. 92, 150404 (2004).

[30] E.M. Wright, D.F. Walls, J.C. Garrison, “Collapses and Revivals of Bose-Einstein Condensates Formed in Small Atomic Samples", Phys.

Rev. Lett. 77, 2158 (1996).

[31] Y. Castin, J. Dalibard, “Relative phase of two Bose-Einstein condensates", Phys. Rev. A 55, 4330 (1997).

[32] S. Giorgini, “Damping in dilute Bose gases : A mean-field approach ", Phys. Rev. A 57, 2949 (1998).

[33] P.A. Willems, K.G. Libbrecht, “Creating long-lived neutral atom traps in a cryogenic environment", Phys. Rev. A 51, 1403 (1995).

[34] The ALPHA collaboration, “Confinement of anti-hydrogen for 1000 seconds", Nature Physics 7, 558 (2011).

[35] A. Sinatra, Y. Castin, “Phase Dynamics of Bose-Einstein Condensates : Losses versus Revivals", Eur. Phys. J. D 4, 247 (1998).

[36] Z. Shotan, O. Machtey, S. Kokkelmans, L. Khaykovich, “Three-Body Recombination at Vanishing Scattering Lengths in an Ultracold Bose

Gas", Phys. Rev. Lett. 113, 053202 (2014).

[37] M. Egorov, B. Opanchuk, P. Drummond, B.V. Hall, P. Hannaford, A.I. Sidorov, “Measurement of s-wave scattering lengths in a two-

component Bose-Einstein condensate", Phys. Rev. A 87, 053614 (2013).

[38] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1988).

[39] P. O. Fedichev, G. V. Shlyapnikov, “Finite-temperature perturbation theory for a spatially inhomogeneous Bose-condensed gas", Phys. Rev.

A 58, 3146 (1998).

22

https://hal.archives-ouvertes.fr/hal-00109021
https://hal.archives-ouvertes.fr/hal-00310488
https://hal.archives-ouvertes.fr/hal-00402158
https://hal.archives-ouvertes.fr/hal-01118346
https://authors.elsevier.com/sd/article/S1631070516000062
https://hal.archives-ouvertes.fr/hal-00796178
https://hal.archives-ouvertes.fr/hal-00002433

	Introduction and overview
	Summary of the formalism and results
	Calculation of the ballistic coefficient in the phase shift variance
	Variance of the condensate phase shift in the microcanonical ensemble
	Semi-classical form of Bogoliubov's Hamiltonian and  d / dt 
	About the usefulness of kinetic equations in calculating the correlation function of  d / dt 
	Solution in the secular-ergodic approximation
	Results and discussion
	Discussion of ergodic hypothesis

	Conclusion

