
A TEXTURE SYNTHESIS MODEL BASED ON1

SEMI-DICRETE OPTIMAL TRANSPORT IN PATCH SPACE2

B. GALERNE ∗, A. LECLAIRE† , AND J. RABIN ‡3

Abstract. Exemplar-based texture synthesis consists in producing new synthetic images which4
have the same perceptual characteristics than a given texture sample while exhibiting sufficient5
innovation (to avoid verbatim copy). In this paper, we propose to address this problem with a model6
obtained as local transformations of Gaussian random fields. The local transformations operate7
on 3 × 3 patches and are designed to solve a semi-discrete optimal transport problem in order8
to reimpose the patch distribution of the exemplar texture. The semi-discrete optimal transport9
problem is solved with a stochastic gradient algorithm, whose convergence speed is evaluated on10
several practical transport cases.11

After studying the properties of such transformed Gaussian random fields, we propose a multiscale12
extension of the model which aims at preserving the patch distribution of the exemplar texture at13
multiple scales. Experiments demonstrate that this multiscale model is able to synthesize structured14
textures while keeping several mathematical guarantees, and with low requirements in synthesis time15
and memory storage. In particular, a single patch optimal transport map is shown to be better than16
iterated nearest neighbor assignments in terms of statistical guarantees. Besides, once the model is17
estimated, the resulting synthesis algorithm is fast and highly parallel since it amounts to perform18
weighted nearest neighbor patch assignments at each scale.19
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1. Introduction. 1 In computer graphics or film rendering, it is often desirable23

to cover objects with detail patterns that look like natural textures. For that purpose,24

there is a need for algorithms that take a sample of a natural texture as input and25

are able to produce a (possibly much larger) new texture image which has the same26

perceptual characteristics. This problem, called exemplar-based texture synthesis, is27

by nature ill-posed, but one can set up some ideal guidelines to answer it properly. For28

example: the output texture should everywhere locally resemble to one part (at least)29

of the input; nonetheless the output must exhibit some innovation with respect to the30

input, meaning that verbatim copy is not an acceptable solution, etc. And beyond the31

quality of the synthesized image, some features of the model may suit given technical32

constraints depending on the application. For instance, one may require fast and33

parallel algorithms for the purpose of real-time image synthesis.34

In order to study this problem, researchers have first considered the framework35

of homogeneous textures, i.e. texture images which are statistically translation in-36

variant. Although quite restrictive (this class is not invariant to rough changes in37

illumination or viewpoint), this is a convenient framework to model a texture as a38

realization of a stationary random field. In this framework, texture analysis consists39

in inferring the distribution of this random field from one texture sample, while tex-40

ture synthesis can be understood as drawing a sample of this model. But the difficult41

question is now to wisely choose stochastic models whose parameters can be inferred42
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from one realization, and which can be sampled efficiently. In relation to this issue43

lies the question of statistical guarantee: during this analysis-synthesis pipeline, which44

statistics would we like to preserve with a precise control?45

From the psychovisual perspective, B. Julesz conjectured in [25, 26] that all first46

and second-order statistics of the model are sufficient to characterize a texture, for47

example the mean color, the correlations between pixel values, the density of a (possi-48

bly non-linear) filter response, correlations between filter responses, and so on. Even49

if he designed counter-examples that refute the first versions of his conjecture, the50

initial assertion still holds for a very large class of textures. This work suggests the51

following flexible methodology for texture synthesis: first, choose a set of statistics52

that are relevant for texture perception; and second, optimize the synthesized image53

to match these statistics with the ones observed on the exemplar texture. The algo-54

rithms following this methodology are sometimes referred to as parametric synthesis55

methods.56

One instance is given by the method of Heeger and Bergen [24] which imposes the57

density of subband responses to a steerable pyramid. Another one was designed by58

Portilla and Simoncelli [50] which is based on first and second-order moments, in par-59

ticular correlations in a complex wavelet transform, making use of a gradient descent60

based algorithm. One breakthrough of Portilla and Simoncelli was to propose a set of61

710 statistical measures that are sufficient to characterize a very large class of texture62

images, on the basis of a precise perceptual study. More recently, Gatys et al. [18] sug-63

gested to use a similar algorithm with responses to a pre-trained convolutional neural64

network. More precisely they extract spatially averaged, non-centered correlations65

(Gram matrices) at certain layers. An important difference between [50] and [18] is66

that the latter method uses much more parameters (≈ 170000) whose psychovisual67

interpretation is not a priori justified. But at this cost, the method of [18] is able to68

synthesize nearly every real-life texture in a quite convincing way. Notice also that a69

similar methodology, but based on first-order moments of scattering coefficients, was70

used in [4] for audio texture synthesis. The work of Gatys et al [18] was followed by71

several variants that improve the quality of synthesis or the computational time. Liu72

et al. [40] propose to include a spectrum constraint in the framework of [18] to better73

preserve the frequency content of the input. Berger and Memisevic [3] and Sendik74

and Cohen-Or [57] propose to include spatial shifts in the Gram matrices for synthesis75

of structured textures. Ulyanov et al. [61] propose to estimate a feed-forward convo-76

lutional network that mimics the optimization procedure of [18] in order to address77

real-time texture synthesis.78

These statistically inspired methods define a texture model which can only be79

expressed as the limit (should it exist) of the optimization procedure, starting from80

a white noise. In parallel, several authors have considered texture models that are81

inherently designed to respect a statistical constraint in average (not exact matching)82

while satisfying a maximal entropy principle. This point of view was proposed by Zhu,83

Wu and Mumford [69] who defined the FRAME model (Filters, Random fields, And84

Maximum Entropy). They proposed a methodology based on stochastic optimization85

(and Gibbs sampling) to estimate and sample a FRAME model. Unfortunately, such86

Monte-Carlo methods are very slow, and thus this framework is restricted to very87

quantized textures and very few filters. A variant of FRAME, proposed in [41], copes88

with some of these issues by replacing the Gibbs sampler with a Langevin diffusion,89

at the cost of loosing guarantee of convergence. Generally speaking, as discussed by90

the authors of [4], the parametric methods like [50] that perform gradient descent91

with white noise initialization can be considered as a very rough approximation of a92
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maximum entropy model.93

Going back in time, as a simple case of maximum entropy models, stationary94

Gaussian random fields are the maximum-entropy stationary models which respect95

the first and second-order moments of the texture, i.e. the mean color value and the96

power spectrum. These Gaussian models were actually used (under different names97

like convolution noise or asymptotic spot noise) in early texture models in computer98

graphics [34, 35, 62] and later studied in more details for exemplar-based synthesis99

in [14, 16]. Such Gaussian random fields are actually the perfect solutions for second-100

order modeling because they are of maximal entropy among stationary models with101

prescribed second-order moments, and besides they allow for efficient inference or102

sampling.103

As explained in [69, 45], the solution to the maximum entropy problem can104

always be expressed as a Gibbs distribution. Gibbs distributions, a.k.a. Markov105

random fields (MRF) were actually encountered in early image and texture mod-106

eling [9, 5, 8, 6, 19, 10, 7]. The use of MRF models for texture is motivated by107

the fact that texture perception is governed by the local interactions between the108

pixel values, which can be encoded in the local conditional distribution (which de-109

fines the Gibbs distribution thanks to Hammersley-Clifford theorem). These early110

MRF texture models were characterized by very few parameters that define the lo-111

cal conditional distribution. In all these works, the estimation of parameters relies on112

maximum likelihood, which requires in general an iterative procedure. Let us mention113

that the stochastic optimization procedure adopted in [19] for estimating parameters114

of MRF models is actually the same as the one proposed in [69], and was already115

studied by Lippman in [39].116

These parametric MRF models had quite limited expressive range because of117

the too small number of parameters. Paget and Longstaff [46] lifted this restriction118

with a nonparametric estimation of the local conditional distribution. As attested119

by the visual results shown in [46], their model is thus much richer than previous120

parametric MRF models, but the corresponding algorithm is yet quite slow. From121

this first nonparametric model, a huge progress for synthesis has been made by Efros122

and Leung [13] who proposed to replace the complex nonparametric estimate of the123

local conditional distribution by a simple empirical distribution with neighborhood124

constraints.125

The seminal work by Efros and Leung [13] has paved the way for many successful126

synthesis methods that operate on patches (i.e. on small square subimages of fixed127

size). Broadly speaking, the first patch-based methods (like the one of [13]) consist128

in progressive filling of the synthesis domain by (randomized) local copy-paste op-129

erations depending on the current surrounding patch. Wei and Levoy [66] proposed130

a multiscale variant of Efros-Leung method and replaced the local resampling by a131

deterministic projection on the exemplar patches; they also proposed an acceleration132

of the nearest neighbor search based on tree-structured vector quantization. Liang133

et al. [38] proposed to accelerate the Efros-Leung method by copying whole patches134

instead of processing pixels one by one. Efros and Freeman built on this method and135

carefully handled the boundaries between the patches: they proposed image quilt-136

ing [12] to compute a minimum error seam between adjacent copied blocks. This137

method was later accelerated by Kwatra et al. [29] who applied the graphcut method138

to compute the minimum error cut between two adjacent patches. More recently,139

Raad et al. [52] designed a kind of randomized multiscale version of image quilting140

where each new patch is drawn from a local Gaussian model (which is estimated from141

a set of similar patches, computed with a distance depending on the current synthesis142
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at the same scale and at the adjacent coarser scale). Also, Li and Wand [36, 37] ad-143

dressed image and texture synthesis by considering “neural patches”, that is, patches144

extracted from layers of a convolutional neural network. Apart from these works,145

many other authors have contributed to the field of patch-based methods, and the146

reader is referred to [65, 51] for a more exhaustive overview of the state of the art. One147

common drawback of patch-based methods is the lack of statistical control. Although148

Levina and Bickel [32] showed the consistency of the Efros-Leung resampling method,149

their result only holds true in an asymptotic framework where the input size tends150

to infinity. In practice, as mentioned in [13, 1], one can observe that the progressive151

filling of the pixels may get stuck in a local neighborhood of the input, thus repeating152

a small part of the exemplar in an absurd manner; we then say that the algorithm153

starts to grow garbage.154

Patch-based texture synthesis has later inspired texture optimization which was155

first proposed by Kwatra et al. [28]. It consists in iterative minimization of a functional156

that encodes the similarity at multiple scales between the patches of the synthesis and157

the patches of the example, starting from a white noise at coarse scale. The rationale158

behind this model is that every patch of the synthesis should resemble at least one159

patch of the exemplar texture, and it should be so at several scales. One advantage of160

such model compared to [13] for instance, is that it formulates a global image model161

which does not depend on any pixel-filling order. Therefore, the growing garbage effect162

is attenuated in such global model. However, as will be discussed later in the present163

paper, solving such a patch-based optimization problem does not directly provide164

a statistical control on the output texture. Indeed, the fact that every part of the165

output should be encountered in the input does not ensure that it is encountered in166

the same proportion (thus providing no symmetric guarantee that every part of the167

input is encountered in the output). Nevertheless, the texture optimization method168

of Kwatra et al. inspired the (very fast) parallel controllable texture synthesis method169

of Lefebvre and Hoppe [31] and several variants [23, 22, 11].170

The methodology of Kwatra et al. [28] was later generalized to other functionals,171

thus opening a field which is now referred to as variational texture synthesis. It can172

be thought of as a generalization of parametric texture synthesis: the corresponding173

functionals contain, in addition to statistically-inspired terms, some measure of reg-174

ularity (e.g. related to the local sparsity in a visual dictionary). Following a first175

model of Peyré [47] that exploits the sparsity of patches in an adapted dictionary,176

Tartavel et al. [59] proposed to minimize a functional that combines three terms: a177

Wasserstein distance used to compare the color distributions, a frequency term that178

compares the power spectra, and a third term which is related to the sparsity of patch179

decompositions in an adapted dictionary.180

Before explaining our contribution, let us remark that the interface between para-181

metric and non-parametric texture models seems a bit porous. For example, the182

method of Heeger and Bergen is often categorized in parametric texture synthesis but183

it imposes the p.d.f. for each subband, and not only a finite set of statistics. Instead184

of parametric methods, it seems wiser to make a distinction between statistically in-185

spired methods and patch-based methods as is done in [51]. But either this does not186

seem fair to patch-based methods which, as argued in the seminal paper [13], are187

originally inspired by a non-parametric estimation of the local conditional distribu-188

tion [48]. To summarize, the success of all texture synthesis methods relies on the two189

following goals (which are, more or less, directly or indirectly, achieved)190

1. extraction of local features in a translation invariant manner that is correlated191

with human perception, for example with color attributes, Fourier coefficients,192
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filter responses, patch attributes, textons (in the sense of Julesz [26]),193

2. global statistical control.194

As we already said, texture perception is governed by local interactions between195

pixels. Although motivated by the popularity of early texture MRF models, one can196

very well question the use of local conditional distributions for encoding the local197

interactions. In other words, is the conditional aspect really important, and why198

wouldn’t we consider directly the patch distribution? This question was discussed by199

Varma and Zissermann in [63]. They first show that for texture classification, defining200

texture classes using the distribution of raw pixel intensities in small patches (3×3 or201

5 × 5) can achieve better results than previous approaches based on filter responses202

(with larger support filters). They also exhibit a gain when classifying using local203

conditional distributions, but the gain is small and this procedure naturally entails204

some difficulties in the estimation. Actually, as soon as we extract enough independent205

3×3 filter responses, then preserving the joint distribution of these responses is exactly206

equivalent to preserving the distribution of 3×3 patches. Thus, for some applications207

where filtering does not a priori simplify the problem, one may very well work directly208

on the patch distribution.209

In this work, we propose to address texture synthesis by acting directly on the210

patch distribution at multiple scales using adapted local transformations. The link211

between local transformations and global statistical control is made possible by using212

semi-discrete optimal transportation. Optimal transport (OT) consists in comput-213

ing measurable mappings which send one probability distribution onto another one214

while minimizing a transportation cost. We shall speak of discrete OT if both source215

and target measures are discrete, continuous OT if they are continuous, and semi-216

discrete OT if the source measure is continuous while the target measure is discrete.217

OT has already been used in the past to address several image processing problems.218

For example Rabin et al. proposed to consider Wasserstein distances to compare his-219

tograms of gradient orientations for matching image features [53]. The same authors220

made connections between color transfer and optimal transport in the color space [54].221

Wasserstein barycenters were used in [55, 67] to address texture mixing. Tartavel et222

al. [60] extended variational texture synthesis by combining discrete OT distances223

computed on several (non-linear) filter responses. Finally, Gutierrez et al. [21] pro-224

posed a texture synthesis method that enforces the patch distribution at multiple225

scales by applying a discrete OT plan. This method can be understood as an elab-226

orate improvement of the texture optimization method [28] with a global statistical227

control. But its main drawback is that it is quite slow due to the computations of228

discrete OT plans, and thus it is not scalable for synthesis of large images.229

Here we will design a multiscale texture model that relies on semi-discrete op-230

timal transportation to reimpose the patch distribution at multiple scales. In the231

paper [2] about least square clustering, Aurenhammer et al. showed that a solution232

to semi-discrete OT could be found in the form of weighted nearest neighbor (NN)233

assignments. In order to be optimal, the weights defining the transport maps should234

solve a C1 concave maximization problem. Several gradient-based schemes have been235

proposed to solve this optimization problem [43, 33] and in particular a provably236

convergent damped Newton algorithm in [27]. But these methods require exact com-237

putation of measures of polytopes, which is difficult in high dimension. Here, we will238

exploit and study a stochastic optimization algorithm for semi-discrete OT that was239

recently proposed in [20]. Even if this average stochastic gradient descent (ASGD) is240

quite slow, it provides a good approximation to semi-discrete OT in patch space (in241

dimension 27 for 3× 3 color patches).242
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Starting from an adapted Gaussian noise at coarse scale, the proposed model con-243

sists in applying weighted NN assignments in order to reimpose the 3 × 3 patch dis-244

tribution at each scale, and going from one scale to the next one with exemplar-based245

upsampling. Heuristically speaking, the Gaussian model of the first layer sets the246

medium-range correlations of the texture whereas the further patch transformations247

add geometric details in a statistically coherent manner. Therefore, our algorithm248

is yet another bridge between the parametric and non-parametric synthesis models.249

The model estimation requires one pass of synthesis during which, at each scale, a250

source distribution (Gaussian mixture model) and an OT map are estimated. Once251

estimated, the OT maps are stored, and can be used for the synthesis of possibly252

very large images. Our method can be seen as a localized version of [21]. Indeed,253

in contrast to [21], our model leads to a much faster (and highly parallel) synthesis254

algorithm because the local patch transformations are computed once and for all, and255

are applied independently to all patches at each scale.256

Compared to other famous texture models, we will see that this multiscale OT-257

based model produces visual results that are close to the state-of-the-art with a low258

computational time and memory storage. In particular, compared to models based259

on iterated NN assignments [28], this model provides a more precise global statistical260

control, both on the medium-range correlations and on the patch distribution. In other261

words, only one OT map can do better than iterated NN projections, while being much262

faster. Compared to variational texture models, the multiscale OT model is much263

lighter and highly parallel, thus able to synthesize very large images in a few seconds.264

The computational time is better than the first neural-based texture models [18];265

however the class of well synthesized textures is smaller because OT maps are not266

able to retrieve strong local geometric constraints, and because a small quantity of267

blur is induced by the patch recomposition strategy (by `2 average). Yet, we will268

provide several examples for which the OT-based model performs better than [18]269

thanks to the global statistical control. Another benefit of this model is that it has270

essentially two parameters (number of scales and number of components in the GMM271

patch distributions) that can be easily tuned manually.272

The paper is organized as follows. In Section 2 we recall the framework of semi-273

discrete optimal transport and propose several practical cases to examine the con-274

vergence of the stochastic gradient scheme. In Section 3 we introduce the OT-based275

texture model, beginning with the monoscale model formulated as a local transform of276

a Gaussian random field, and next the multiscale extension. In Section 4, we present277

many texture synthesis results both for the monoscale and multiscale models, which278

demonstrate the benefit of global statistical control on multiscale patch distributions.279

We conclude the paper in Section 5 by raising issues concerning geometric models for280

the patch space and the putative limitations of statistically-inspired texture synthesis.281

2. Semi-discrete Optimal Transport. In this section, we recall the frame-282

work for semi-discrete optimal transport established in [2, 27, 20]. Also we propose283

a detailed numerical study of a stochastic gradient algorithm used for solving this284

optimal transport problem.285

2.1. The Optimal Transport Problem and its Dual Formulation. Let286

µ, ν be two probability measures on RD. If T is a measurable map, we denote by T]µ287

the push-forward measure defined as T]µ(A) = µ(T−1(A)). The Monge formulation288

of L2 optimal transport from µ to ν is formulated as289

(OT-M) inf

∫
RD

‖x− T (x)‖2dµ(x)290
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where the infimum is taken over all measurable maps T : RD → RD such that T]µ = ν.291

A convex relaxation of this problem is given by the Kantorovich formulation292

(OT-K) inf
π∈Π(µ,ν)

∫
RD×RD

‖x− y‖2dπ(x, y).293

where Π(µ, ν) is the set of probability measures on RD × RD having marginal dis-294

tributions µ, ν. It is clear that (OT-M) can be seen as a restriction of (OT-K) for295

transport plans π of the form (Id×T )]µ (whose support is contained in the graph296

of T ). General conditions for existence and unicity of solutions can be found in [64]297

and [56].298

In this paper we will concentrate on the semi-discrete case, meaning that µ is an299

absolutely continuous distribution and that ν has a finite support. More precisely,300

in all the following, we assume that µ has a bounded probability density function ρ301

and that ν is a discrete measure ν =
∑
y∈S νyδy with finite support S. As proved302

in [2, 33, 27], taking the convex dual of (OT-K) leads to a finite-dimensional convex303

optimization problem. Somehow, this amounts to consider maps given by biased304

nearest neighbor assignments305

(1) Tv(x) = argmin
y∈S

‖x− y‖2 − v(y),306

where v ∈ RS is a finite set of scalars. This map Tv is defined almost everywhere, and307

its preimages define a partition of RD up to a negligible set, called the power diagram308

(or also Laguerre tessellation)309

(2) Powv(y) = { x ∈ RD | ∀z ∈ S \ {y}, ‖x− y‖2 − v(y) < ‖x− z‖2 − v(z) }.310

When v = 0, we get the nearest neighbor (NN) projection which assigns to x the clos-311

est point in S (unique for almost all x), whose preimages form the Voronoi diagram.312

Including the scalars (v(y))y∈S (called power weights) in the comparison allows to313

move the boundaries of the cells. Notice that some power cells may vanish for partic-314

ular values of v. For convenience of notation, we will also define the c-transform of v315

with respect to the cost c(x, y) = ‖x− y‖2 as316

(3) vc(x) = min
y∈S
‖x− y‖2 − v(y).317

In the semi-discrete setting, solving the transport problem mainly consists in318

splitting the source mass with a power diagram in such a way that the µ-measure319

of each power cell corresponds to the ν-measure of the associated point. This is320

summarized in the following theorem, which is recalled without proof.321

Theorem 1 ([2, 27]). The semi-discrete optimal transport problem (OT-K) ad-322

mits solutions of the form Tv where v solves the concave optimization problem323

(4) argmax
v∈RS

H(v) where H(v) =

∫
RD

vc(x)dµ(x) +
∑
y∈S

v(y)νy.324

Besides, the function H is C1-smooth and its gradient is given by325

(5)
∂H

∂v(y)
= −

∫
Powv(y)

ρ(x)dx+ νy = −µ(Powv(y)) + νy.326

Thus, v is a critical point of H if and only if µ(Powv(y)) = νy ∀y, i.e. (Tv)]µ = ν.327
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Remark (about unicity): There is actually an infinity of solutions v to the328

problem (4) because H is invariant to the addition of a constant. However, for the329

case we consider here (L2 cost, µ absolutely continuous), under the assumptions330 ∫
‖x‖2dµ(x) < ∞ (which is often satisfied in practice), the problem (OT-K) admits331

a unique solution [56]. Therefore, Theorem 1 provides the solution of (OT-M) which332

is uniquely defined for almost every x even if there exists several different v defining333

the same assignment Tv.334

2.2. Stochastic Optimization. Thanks to Theorem 1, a solution Tv can be335

numerically computed using a gradient-based optimization of the function H and336

convergence will be guaranteed thanks to the concavity of H. But a difficulty of such337

approaches is that computing the gradient (5) amounts to computing the µ-measures338

of the power cells. In small dimensions (≤ 3) and for particular source measures µ,339

it is possible to numerically evaluate the gradient (and even the Hessian) with good340

precision, which has been exploited in quasi-Newton schemes in [43, 33, 27]. But in341

higher dimensions, it is harder to explicitly compute the geometry of the power cells,342

and thus exact gradient computations are not tractable.343

In a high-dimensional setting, one may turn to using Monte-Carlo estimates for344

the gradient instead of exact computations. In other words, the maximization of H345

can be addressed with stochastic gradient ascent, which is made possible by writing346

(6) H(v) = E[h(X, v)] where h(x, v) = vc(x) +
∑
y∈S

v(y)νy347

and where X is a random variable of distribution µ. Notice that for x ∈ Powv(y),348

v 7→ vc(x) is smooth with gradient −ey (where (ey) is the canonical basis of RS).349

Therefore, for any w ∈ RS , for almost all x ∈ RD, v 7→ h(x, v) is differentiable at w350

and351

(7) ∇vh(x,w) = −eTw(x) + ν.352

In order to minimize −H, Genevay et al. [20] recently proposed the following353

averaged stochastic gradient descent (ASGD) initialized with ṽ1 = 0354

(8)

{
ṽk = ṽk−1 + C√

k
∇vh(xk, ṽk−1) where xk ∼ µ

vk = 1
k (ṽ1 + . . .+ ṽk).

355

Since∇vh(x, ṽk−1) exists x-a.s. and is bounded, the convergence of this algorithm356

is ensured by [44, Th.7], in the sense max(H) − E[H(vk)] = O( log k√
k

). For the sake357

of completeness, we recall the proof of convergence in Appendix A. This proof is not358

affected by the fact that h(·, v) is only differentiable almost everywhere because µ is359

absolutely continuous.360

2.3. Convergence study. This section is devoted to a numerical study of the361

stochastic algorithm (8) for semi-discrete optimal transport. The behavior of this362

algorithm is briefly discussed in the original conference paper [20]. Here we propose363

to examine the convergence speed on various practical cases where the optimal solution364

can be computed in closed form.365

2.3.1. One-dimensional case study. In the one-dimensional case (D = 1),366

the semi-discrete optimal transport cost can be computed with a closed form formula367

based on cumulative distribution functions [64]. Indeed, let us consider the cumulative368
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distribution function Φ of the density ρ, Φ(x) :=
∫ x
−∞ ρ(t)dt, and Φ−1 its generalized369

inverse defined by370

(9) Φ−1(a) = inf{ x ∈ R | Φ(x) > a } ∈ [−∞,+∞], a ∈ [0, 1].371

Let us assume for the sake of simplicity that the locations of the target Dirac masses372

are sorted in increasing order: S = {y1 < y2 < ... < yJ}. We then obtain an optimal373

assignment T by setting374

(10) T (x) = yi ∀x ∈ (xi−1, xi) ∀1 ≤ i ≤ J375

where (x0 = −∞, x1, . . . , xJ−1, xJ = +∞) is any partition of R (up to a negligible376

set) into J intervals, the µ-measures of which equal the values νi:377

(11) µ([xi−1, xi]) =

∫ xi

xi−1

ρ(x)dx = ν({yi}) = νi.378

Proposition 2. In the one-dimensional case, one optimal assignment Tv∗ is ob-379

tained by setting380

(12) ∀ 1 ≤ i ≤ J, v∗i = v∗1 + 2
∑

1≤j<i

(yj+1 − yj)
(
−x∗j +

yj+1 + yj
2

)
,381

where the boundaries x∗i of the power cells Powv∗(yi) = (x∗i−1, x
∗
i ) are defined by382

(13) ∀i ∈ {1, . . . , J − 1}, x∗i = Φ−1
( ∑

1≤j≤i

νj

)
383

and by convention x∗0 = −∞ and x∗J = +∞.384

Proof. First, let us notice that (x∗i ) is an increasing sequence since νi > 0 for385

all i. Besides, since µ has a density, we have Φ(x∗i ) =
∑

1≤j≤i νj and thus the386

intervals [xi−1, xi] satisfy (11). Thus we only have to propose a weight vector v for387

which the associated power cells are exactly these intervals. If v is such a vector, then388

for fixed i ∈ {1, . . . , J − 1}, we compute vi by looking at the interface between power389

cells (x∗i−1, x
∗
i ) and (x∗i , x

∗
i+1). Since they are both non-empty, coming back to the390

definition (2) we get at the interface the equality391

(14) |x∗i − yi+1|2 − vi+1 = |x∗i − yi|2 − vi392

393

(15) i.e. vi+1 = vi + (yi+1 − yi)(−2x∗i + yi+1 + yi).394

We thus obtain (12) by trivial recursion. Conversely, one can check that defining v∗395

by (12) leads to the power cells Powv∗(yi) = (x∗i−1, x
∗
i ).396

Remark (about unicity): This is not true in general that v∗ is the unique so-397

lution of the problem and there are two reasons for that. The first (trivial) one is that398

the power cells are clearly invariant when adding a constant to all weights vi. The sec-399

ond one is related to the fact that the L2 optimal assignment is only unique µ-almost400

everywhere [64]. In particular, when the source distribution µ has a disconnected401

support, then several solutions can appear. For example, in the case402

(16) µ(x) = 1[−1,−0.5]∪[0.5,1](x)dx , ν = 0.5(δ−1 + δ1)403
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then Tv is optimal as soon as the boundary of the two power cells belongs to [−0.5, 0.5].404

This reflects the fact that there may be several partitions (x0, x1, . . . , xJ) satisfy-405

ing (11).406

Remark (about the link between x and v): In the following numerical study,407

we shall need to compute the power cells associated to a vector v (not necessarily the408

optimal one). In this case, we need a more complex recursion than (15). Indeed, in409

order to obtain the equality (14), we exploited the fact that for an optimal assignment,410

all power cells are non-empty and thus we can obtain x∗ from v∗ by the simple formula411

(17) ∀i ∈ {1, . . . , J − 1}, x∗i =
yi+1 + yi

2
−

v∗i+1 − v∗i
2(yi+1 − yi)

.412

Now if v is any vector (not necessarily a solution to (4)), then some of the associated413

power cells may collapse, and thus this formula does not hold true anymore. However,414

one can still compute x from v in a recursive manner, as follows.415

x0 = −∞, i = 1
For j = 1, . . . , J − 1

x′ ← yj+1+yi
2 − vj+1−vi

2(yj+1−yi)
If x′ > xi−1 and Powv(yj+1) 6= ∅

Then
∀k = i, . . . , j, xk ← x′

i← j + 1

416

In order to prove that this recursion holds, one should adapt the proof of Propo-417

sition 2 by handling the case when power cells may vanish. Notice that, once x′ has418

been affected, it is possible to ensure that Powv(yj+1) 6= ∅ by checking if419

(18) (x′ − yj+1)2 − vj+1 < min
k/∈[i,j+1]

(x′ − yk)2 − vk.420

Numerical results. We now study the numerical behavior of the stochastic op-421

timization algorithm applied on the following one-dimensional example. The source422

distribution µ is the normalized Gaussian distribution of density ρ(x) = 1√
2π
e−

x2

2 ,423

and the target distribution ν is the discrete uniform distribution on J equally spaced424

points between −1 and 1. An illustration of this setting is given in Fig. 1. In the425

following, x∗ and v∗ respectively refer to the optimal partition and optimal power426

weights computed explicitly as explained above.427

There are several ways of evaluating the convergence of this algorithm, see Fig. 2.428

One quite simple way is to monitor along the iterations k the evolution of the relative429

`2-error430

(19) E2(k) =
‖vk − v∗ − v̄∗‖
‖v∗ − v̄∗‖

431

where we remove the mean value v̄∗ of v∗ in order to cope with the invariance to con-432

stants (notice that by construction we have v̄k = 0). In this simple one-dimensional433

case we observed that E2 decreases to zero. But let us recall that, in the non-strongly434

convex case, the convergence result for ASGD gives the convergence of the cost func-435

tion H(vk) along the iterates, and not directly the convergence of vk. For that reason,436

we also monitor in Fig. 2 the sequence (H(vk)).437

Another relevant way to monitor the convergence is to observe the distance be-438

tween the transported measure Tvk]µ and the target measure ν. Since both measures439
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Fig. 1. 1D semi-discrete OT illustration. The green area represents the source Gaussian
distribution µ, and the magenta dots represents the target distribution ν on the points (yj). The
vertical blue lines indicate the boundaries x∗i of the optimal power cells Powv∗ (yj), and the vertical
red lines indicate the boundaries of the Voronoi cells Pow0(yj). The corresponding optimal assign-
ment Tv is displayed with black arrows, and the nearest-neighbor assignment T0 is indicated with
red dotted lines. One can observe that the OT assignment is very different from the NN projection.
In particular, one may notice that a point yj may not belong to the corresponding power cell.

are discrete with same support S, we can easily compute the distance in total varia-440

tion (TV) by441

(20) ETV(k) =
1

2

∑
y∈S
|Tvk]µ(y)− νy| =

1

2

∑
y∈S
|µ(Powvk(y))− νy|.442

This error is related to our optimization problem because 2ETV is exactly the `1-norm443

of the gradient of H (see (5)) and represents the amount of mistransported mass. But444

this TV error does not reflect how far the points have been mistransported. To account445

for the displacement error, one can of course rely on optimal transport distances. In446

Fig. 2 we monitor the L1-Wasserstein distance EW1
between Tvk]µ and ν which can447

be computed as L1-distance between the cumulative distribution functions. The L2-448

Wasserstein distance between Tvk]µ and ν was left aside here because it would require449

to solve a linear programming problem (which is quite long for J = 1000 points).450

However, recall that the optimal value max(H) is exactly the L2 optimal transport451

cost between µ and ν. In other words, the cost function452

(21) H(v) =
∑
y∈S

∫
Powv(y)

‖x− y‖2dµ(x) +
∑
y∈S

v(y)
(
νy − µ(Powv(y))

)
453

actually reflects the cost of the transport map Tv plus a term related to the constraint454

ν = T]µ (which is asymptotically satisfied).455

The results are displayed in Fig. 2. These graphs confirm that this stochastic456

optimization procedure is quite slow even in simple transportation cases. Still, one457

can obtain a relative `2-error around 10−3 in 108 iterations, even with 1000 points in458

the target distribution. When looking at the mass transportation problem, one can459

see that the results look very different depending on the adopted criterion. The TV460

distance (amount of mistransported mass) is of course the harder criterion and con-461

verges very slowly when J increases. However, in terms of H values or W 1 transport462
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Fig. 2. Convergence of ASGD (8) in 1D depending on the number J of points in the target
distribution. Along the iterations k, we monitor the relative `2-error E2 (top left), the values of the
cost function H (bottom left), the TV-distance ETV (top right), and the L1-Wasserstein distance
EW1 (bottom right). As expected, the convergence of ASGD for semi-discrete optimal transport
becomes very slow when the number of points grows. Also, one may notice that the TV error goes to
zero much more slowly than the other error measures, because it is oblivious of the points positions.

cost, the convergence is relatively good, which means that, even if the convergence463

is slow on v, with many iterations we obtain a mapping Tv which is a reasonable464

approximation of the optimal transportation. It is also surprising to observe that for465

the W 1 transport cost, the convergence is actually faster for large J in this simple466

one-dimensional case.467

2.3.2. D-dimensional case study. In higher dimension D, it is not possible468

anymore to draw explicit computations based on cumulative distribution functions.469

However, for very particular measures µ and ν, it is still possible to obtain a closed-470

form formula for an optimal set of weights v. Indeed, let us consider the semi-discrete471

optimal transport problem between472

• µ, the uniform distribution on [0, 1]D.473

• ν, the discrete uniform distribution on the J = ND points of the set

S = s .

(
t+

1

N − 1
{0, . . . , N − 1}D

)
⊂ RD

where t ∈ RD is an offset vector, s > 0 is a scaling factor.474

An illustration (for D = 2) of this optimal transport problem is given in Fig. 3.475

One can write points in S using the index i ∈ {0, . . . , N − 1}D

yi = s( i
N−1 + t) .
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Fig. 3. D-dimensional semi-discrete OT illustration (here with D = 2). The source
distribution µ is the uniform distribution on the green square, and the target discrete distribution ν
is the uniform distribution on the blue dots. Green segments indicate the locations of the boundaries
of the optimal power cells Powv∗ , and the blue lines indicate boundaries of the Voronoi cells Pow0.
The correspond optimal assignment Tv∗ is displayed with black lines.

On the illustration, one sees immediately that, whatever the values of s and t, the
optimal assignment consists in equally splitting the uniform mass of [0, 1]D between
the Nd hypercubes

i

N
+ [0, 1

N ]D (i ∈ {0, . . . , N − 1}d).

Then we can use the same methodology than in 1D to compute the optimal weights:
for two adjacent points yi, yj there exists k such that j = i+ ek and yj = yi + s

N−1ek,

and then the point xij = j
N is at the boundary between the two corresponding power

cells, and thus satisfies

v∗j = v∗i + ‖yj‖2 − ‖yi‖2 + 2〈xij , yi − yj〉.

This allows to recursively compute the optimal weights v∗i .476

Here we will concentrate on the relative `2-error on v and illustrate the effect of477

the dimension by varying D from 1 to 6 while keeping approximately J = ND ≈ 1300478

points in the target distribution (except for D = 5 and 6 for which J = 1024, 729479

respectively). As one can observe on Fig. 4, the convergence gets slower and slower480

when the dimension increases. But still, we can get to 10−3 relative precision on v481

after 108 iterations, even in dimension 6. Besides, the differences between dimensions482

4 to 6 seem to indicate that the convergence speed depends more on J (number of483

points in the target distribution) than on the dimension D.484

In conclusion, even if it converges quite slowly, the stochastic gradient method for485

semi-discrete OT provides a reasonable approximation of the OT map even for high486

dimensions (� 1). In the following, we will see how to use optimal transportation in487

the patch space to enrich the Gaussian texture model.488

3. Texture Synthesis Using Locally Transformed Gaussian Random489

Fields. In this section, we introduce a stochastic model for texture synthesis which490

consists in a local transform of a Gaussian random field. At the first level, the Gaussian491

random field captures long range correlations of the texture (but not its structured492

geometric features). Next, geometric structures are reimposed using a patch-based493

transformation. This patch-based transform is designed (offline) as an approximate494
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Fig. 4. Convergence of ASGD (8) depending on dimension D. Here we use ASGD to
solve the D-dimensional OT problem illustrated in Fig. 3. Along the iterations k, we monitor the
evolution of the relative `2-error E2. The curves are shown for dimensions D = 1 to 6, using
approximately the same number of points J in the target distribution (indicated in the legend). The
convergence gets slower when the dimension increases. But one can notice a slight gain when going
from D = 4 to 5 or 6, which can be explained by the fact that we had to take a smaller J for D = 5
or 6.

solution to a semi-discrete optimal transport problem, which ensures statistical com-495

pliancy with respect to the example. We first describe the monoscale version of the496

model which can be seen as an economical enrichment of the Gaussian model. We497

later propose a multiscale extension which allows to synthesize structured textures in498

a very efficient way while keeping statistical guarantees.499

In this section, u : Ω→ Rd is the exemplar texture defined on a domain Ω ⊂ Z2.500

3.1. Local transform of a Gaussian random field. As first level of synthesis,501

we propose to use the asymptotic discrete spot noise (ADSN) [14, 15] defined as502

(22) ∀x ∈ Z2, U(x) = ū+
∑
y∈Z2

tu(y)W (x− y) where

ū = 1
|Ω|
∑
u(x),

tu = 1√
|Ω|

(u− ū)1Ω
503

and where W is a normalized Gaussian white noise on Z2. This random field U is504

a stationary Gaussian random field whose first and second order moments are the505

empirical mean and covariance of the exemplar texture. Thus, U can be considered506

as a “Gaussianized” version of u, which have the correct correlations but no salient507

structures.508

Next we propose to apply a local transform T : RD → RD which operates in509

the patch space RD where ω = {0, . . . , w − 1}2 is the patch domain (w ∈ N∗), and510

D = dw2. This mapping T is applied to each patch of the Gaussian synthesis U , and511

an image V is later recomposed by averaging: the value at pixel x is the average of512

values of x in all overlapping patches. In other words, for fixed non-negative weights513

(θ(h))h∈ω whose sum equals 1, we define the transformed random field V as514

(23) ∀x ∈ Z2, V (x) =
∑
h∈ω

θ(h)T (U|x−h+ω)(h).515

In practice, we generally use θ = 1
|ω|1ω (simple average). In the following we state516

some properties of such a transformed random field.517
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Proposition 3. V is a stationary random field on Z2 and satisfies the follow-518

ing long-range independence property: if S denotes the finite support of the auto-519

correlation function520

(24) au(z) =
∑
x∈Z2

tu(z)tu(x+ z)T521

then for every A,B ⊂ Z2 such that (A − B) ∩ (S + 4ω) = ∅ the restrictions V|A, V|B522

are independent.523

Proof. The covariance of U is Cov(U)(x−y) = E[(U(x)−ū)(U(y)−ū)] = au(y−x).524

Since U is Gaussian, we get that U(x) |= U(y) as soon as x−y /∈ S. Therefore, if x−y /∈525

S + 2ω, then U|x+ω |= U|y+ω and thus Px |= Py. After averaging we get V (x) |= V (y) as526

soon as x− y /∈ S + 4ω. The generalization to subsets A,B is straightforward.527

This property is a guarantee of spatial stability for synthesis, meaning that the528

corresponding synthesis algorithm will not start to “grow garbage” as may do the529

method of [13]. Next we give another property which allows to control the difference530

between U and V in terms of medium-range correlations. For that we need the531

following lemma.532

Lemma 4. Let F , G be two real-valued stationary random fields defined over Z2

with respective standard deviations σF and σG. Then, for all t ∈ Z2,

|Cov(G)(t)− Cov(F )(t)| ≤ (σF + σG) Var(G(0)− F (0))
1
2 .

Proof. This is an elementary proof that solely uses the bilinearity of the covariance533

and the Cauchy-Schwarz inequality.534

Cov(G)(t) = Cov(G(t), G(0)) = Cov(G(t)− F (t), G(0)) + Cov(F (t), G(0))535

= Cov(G(t)− F (t), G(0)) + Cov(F (t), G(0)− F (0)) + Cov(F )(t)536537

Hence,538

|Cov(G)(t)− Cov(F )(t)| = |Cov(G(t)− F (t), G(0)) + Cov(F (t), G(0)− F (0))|539

≤ |Cov(G(t)− F (t), G(0))|+ |Cov(F (t), G(0)− F (0))|540

≤ Var(G(t)− F (t))
1
2 Var(G(0))

1
2 + Var(F (t))

1
2 Var(G(0)− F (0))

1
2541

= (σF + σG) Var(G(0)− F (0))
1
2 .542543

Remark: In the above lemma, F (0) can be replaced by F (h) for h ∈ Z2 by544

changing F in F (·+ h).545

We can now apply this lemma to the random fields U and V used in our model.546

Proposition 5. Recall that U is a stationary Gaussian field, and that V is a547

local transform of U using the patch operator T : RD → RD (see (23)). We assume548

that d = 1 (i.e. U and V are real-valued). Then, for all x ∈ Z2,549

(25) E((V (x)− U(x))2) ≤ ‖θ‖∞E
(
‖T (U|ω)− U|ω‖2

)
.550

Consequently, denoting σU and σV the standard deviations of U and V respectively,551

(26) ∀t ∈ Z2, |Cov(V )(t)−Cov(U)(t)| ≤ (σU +σV )
√
‖θ‖∞E

(
‖T (U|ω)− U|ω‖2

) 1
2 .552
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Proof. First, by convexity of s 7→ s2, for all x ∈ Z2,

(V (x)− U(x))2 =

(∑
h∈ω

θ(h)(T (U|x−h+ω)(h)− U(x))

)2

≤
∑
h∈ω

θ(h)(T (U|x−h+ω)(h)− U(x))2.

Now, for all h ∈ ω, the difference T (U|x−h+ω)(h) − U(x) is the h-coordinate of the
patch difference T (U|x−h+ω)− U|x−h+ω. More formally,

T (U|x−h+ω)(h)−U(x) = T (U|x−h+ω)(h)−U|x−h+ω(h) = (T (U|x−h+ω)−U|x−h+ω)(h).

For N an integer larger than 1 let us denote by AN the discrete square AN =
{0, . . . , N − 1}2 and note that |AN | = N2. Thus we have∑

x∈AN

(V (x)− U(x))2 ≤
∑
h∈ω

∑
x∈AN

θ(h)((T (U|x−h+ω)− U|x−h+ω)(h))2

≤
∑
h∈ω

∑
y∈−h+AN

θ(h)((T (U|y+ω)− U|y+ω)(h))2.

Now remark that for all h ∈ ω we have the inclusion −h+AN ⊂ AN ⊕ (−ω). Hence∑
x∈AN

(V (x)− U(x))2 ≤
∑
h∈ω

∑
y∈AN⊕(−ω)

θ(h)((T (U|y+ω)− U|y+ω)(h))2

≤
∑

y∈AN⊕(−ω)

∑
h∈ω

θ(h)((T (U|y+ω)− U|y+ω)(h))2

≤
∑

y∈AN⊕(−ω)

‖T (U|y+ω)− U|y+ω‖2θ,

introducing the notation

‖P‖2θ =
∑
h∈ω

θ(h)P (h)2

for a patch P ∈ Rω. Using the stationarity of U and V we get

E((V (0)− U(0))2) =
1

|AN |
∑
x∈AN

E((V (x)− U(x))2)

≤ 1

|AN |
∑

y∈AN⊕(−ω)

E(‖T (U|y+ω)− U|y+ω‖2θ)

≤ |AN ⊕ (−ω)|
|AN |

E(‖T (U|ω)− U|ω‖2θ).

Letting N tends to +∞, we obtain that

E((V (0)− U(0))2) ≤ E(‖T (U|ω)− U|ω‖2θ).

Now note that ‖P‖2θ ≤ ‖θ‖∞‖P‖2 to obtain the enunciated result.553

This manuscript is for review purposes only.



TEXTURE SYNTHESIS BASED ON SEMI-DISCRETE OPTIMAL TRANSPORT 17

3.2. Optimal transport in patch space. Now that we have fixed a generic554

framework of locally transformed random fields, an important point is to wisely choose555

the patch transform T in order to reimpose the statistics of the exemplar texture556

on local features. For that we choose an OT map between the distribution of the557

Gaussian patches of U and the empirical patch distribution of the exemplar texture.558

The need of optimality in this transformation can be understood in this way: we559

want to change the patches to get the proper patch distribution, but with the least560

possible changes in order to keep the (second-order) statistical control obtained in561

the Gaussian field. This heuristics reflects in the fact that the optimal transport map562

T actually minimizes the right-hand side of (26). In order to stay in a reasonable563

framework for stochastic optimal transport, we will only work with 3× 3 patches.564

The adopted point of view is to consider that all statistics on local features are565

encoded in the patch distribution at multiple scales. In addition to the color distri-566

bution, the 3 × 3 patch distribution encompasses the joint distributions of all 3 × 3567

differential filters, e.g. the distributions of x or y derivatives, the distribution of the568

Laplacian, the density of oriented edges, the correlations between those derivatives,569

and so on. In this paragraph we explain the monoscale model that uses one OT map570

to reimpose the 3× 3 patch distribution, and we will explain the multiscale extension571

in Section 3.3.572

More precisely, the source distribution here is the distribution µ of U|ω, that573

is the distribution of any Gaussian patch of U (thanks to stationarity). Since the574

covariance function of U is given by (24), we can explicitly compute the parameters575

of µ. Notice that except in degenerate cases (that rarely happen in practice), µ is576

absolutely continuous with respect to the Lebesgue measure.577

On the other hand, an ideal target measure is the empirical distribution of patches578

of the exemplar texture u, that is,579

(27) νemp =
1

|P (u)|
∑

p∈P (u)

δp, where P (u) = { u|x+ω | x+ ω ⊂ Ω }.580

Unfortunately, texture images generally contain much more than 10 000 patches which581

is not a reasonable framework for ASGD-based OT in terms of computational time.582

Thus, we propose to approximate the empirical measure with the subsampled distri-583

bution584

(28) ν =
1

J

J∑
j=1

δpj ,585

where p1, . . . , pJ are J = 1000 patches which are uniformly drawn from P (u). Of586

course, if |P (u)| < 1000, we do not need this subsampling step and take ν = νemp.587

As will be discussed in Section 4.3, this subsampling step, although quite naive, is in588

practice sufficient to account for the variability of the target measure, and compares589

well to more involved procedures based on clustering.590

Thus, µ and ν are two probability measures on RD with D = dw2. Using the591

algorithm explained in Section 2.2, we compute the optimal assignment T that realizes592

the semi-discrete OT from µ to ν. Let us recall that this optimal assignment T = Tv593

is a weighted NN assignment defined by594

(29) Tv(p) = argmin
(pj)j=1,...,J

‖p− pj‖2 − vj595
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where v is an optimal set of weights computed with ASGD. Each iteration of ASGD596

needs one sample of the source distribution µ, which amounts here to sample a patch of597

the Gaussian random field U . Of course, instead of computing the entire synthesis with598

DFT and extract a patch, it is much more efficient to explicitly store the covariance599

matrix of U|ω and to use it for sampling2. Let us mention that for 3×3 color patches,600

the patch space has dimension 27.601

This monoscale texture model is illustrated in Fig. 5. On this figure, one can602

observe the effect of reimposing the patch distribution through the local transform T .603

This monoscale model is an interesting enrichment of the Gaussian model U , if only604

because it precisely respects the marginal color distribution of the original image. Of605

course, in comparison to the NN projection, the benefit of the statistical control is606

obvious (which will be confirmed in Section 4.3). The OT model also clearly better607

respects the density of oriented edges (but it is not trivial for a human observer to608

precisely evaluate this fact in a manner that is clearly independent of its sensitivity609

to the color distribution).610

One can also observe that some mid-range correlations persist after the local611

transformation T . This empirically confirms the result of Proposition 5. But the612

inequality obtained in this proposition is actually too loose to provide a fine control613

of the mid-range correlations. Indeed, for several textures, we evaluated the quality614

of the inequality (26) with Monte-Carlo simulations. We found that for small shifts615

t ∈ Z2, the bound provided by the right-hand side of (26) has the same order of616

magnitude as the input covariance Cov(U)(t) (and is twice smaller in the best cases).617

But the bound gets very bad for large shifts t, which could be expected because for618

many textures Cov(U)(t) decreases quickly when |t| increases (whereas the right-hand619

side of (26) does not depend on t). In any case, the empirical values obtained for the620

left-hand side are much smaller than the generic bound of this proposition.621

3.3. Multiscale extension. Now, we propose a multiscale extension of the pre-622

vious model. Starting from a Gaussian synthesis at a coarse scale, we recursively apply623

local transforms in order to reimpose the patch distributions at different scales. In624

order to go from one scale to the next one, we use a simple upsampling procedure625

which consists in pasting the same patch taken at two adjacent scales.626

Notation. In order to adapt the previous algorithm in a multiscale fashion, we627

need to compute as input628

• subsampled versions u` of the original image u at scales ` = 0, . . . , L− 1,629

• the empirical patch distribution ν` at each scale (approximated again by630

randomly picking 1000 patches in u`)631

The images u` are obtained by successive subsampling of u = u0 by a factor of 2
(obtained by bicubic averaging). We use the convention that u` is defined on the
subgrid

Ω` = Ω ∩ 2`Z2,

so that a coordinate y ∈ Ω` also appears in the adjacent finer grid with the same632

notation y ∈ Ω`−1.633

Initialization at the coarsest scale ` = L− 1. At the coarsest scale ` = L− 1, we634

use the monoscale model explained in Section 3.2. We compute the ADSN model U `635

on 2`Z2 associated to u`, and the corresponding Gaussian patch distribution µ`. And636

then, as in (23), we apply a local transform T ` which realizes the OT from µ` to ν`,637

2Since we need many samples, we actually store the Cholesky decomposition of the covariance,
which is all is need for Gaussian sampling (besides the mean value).
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Fig. 5. Texture synthesis with a local transform of a Gaussian field. In this figure we
illustrate the use of the monoscale model for synthesis. We display the original texture (left), the
synthesis U at the first level using the ADSN model, and the random field V obtained after local
transformation of U using an optimal assignment Tv in the patch space.

so that we get a random field638

(30) V `(x) =
∑
h∈2`ω

θ( h
2` )T `(U `|x−h+2`ω)(h), x ∈ 2`Z2.639

Again this OT map is actually a patch assignment: at the position x in the synthesis,640

we will use the patch taken in u` at position Y `(x) (see Fig. 6 for an illustration). We641

thus get a “coordinate map” Y ` : 2`Z2 → Ω` which allows to write T ` and V ` as642

(31) T `(U `|x+2`ω) = u`|Y `(x)+2`ω, x ∈ 2`Z2,643

644

(32) V `(x) =
∑
h∈2`ω

θ( h
2` )u`

(
Y `(x− h) + h

)
, x ∈ 2`Z2.645

Then we upsample the current synthesis using the twice larger patches at the same646

positions in the next scale647

(33) ∀x ∈ 2`Z2, ∀s ∈ {0, 2`−1}2, U `−1(x+s) =
∑
h∈2`ω

θ( h
2` )u`−1

(
Y `(x−h)+h+s

)
.648

Iterating local transforms at the next scales. Suppose that the model U ` has649

been computed at scale ` ∈ {1, . . . , L − 2}. Then we estimate a Gaussian mix-650

ture model (GMM) µ` with nGMM components that fits the patch distribution of U `.651

For that we use standard implementations of the expectation-maximization algorithm652

adapted to the GMM case [42]. Using the estimated µ` and the corresponding sam-653

pling function3, we compute an OT map T ` from µ` to ν` with ASGD, as in the654

monoscale case. Once T ` has been computed, the transformed random field V ` and655

its upsampled version U `−1 are obtained with the same formulae (30), (31), (32), (33).656

3Here again, it is of course more efficient to compute the Cholesky decompositions of the Gaussian
components covariances once and for all.
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Fig. 6. Multiscale synthesis. In this figure we illustrate the proposed multiscale synthesis
method, applied here with 4 scales. In the first row we display the original images u` at each scale.
In the last row we display the synthesized images V ` at each scale. In the middle row, we display
the synthesized images U2 and U1 (obtained before patch OT) in order to illustrate how to go from
scale 2 to scale 1. Notice in particular that the patch transform essentially assembles patches taken
from the exemplar (by averaging) and that the exemplar-based upsampling step takes the patches at
the same position, but twice larger.

Remarks. The OT maps T ` are computed once and for all during the “model657

estimation”, which consists in one first synthesis pass (setting the output size as658

the exemplar for instance). In other words, after the estimation, for all scales ` we659

store T `, that is, the corresponding 1000 patches p`j (of size 3×3) of the exemplar u`,660

the associated weights v and the upsampled patches P `j (of size 6 × 6). Once the661

model has been estimated, all these maps T ` can be evaluated on the fly.662

In conclusion to this section, let us emphasize that imposing the patch distribution663

at each scale with OT can thus be thought of as a very non-parametric way of imposing664

wavelet statistics. However, the correlations between adjacent scales are not directly665

addressed with these local transforms, but are more or less preserved with the adopted666

example-based upsampling of (33).667

4. Results and discussion. In this section, we provide several synthesis results668

obtained with the monoscale and multiscale models presented in the previous sections,669

which demonstrate that this model allows for fast synthesis of structured textures. We670

empirically confirm the benefit of applying well-designed local transforms to enforce671

the patch distribution (and study the impact of the average recomposition step). We672

compare with the simpler alternative which consists in iterating patch NN projections673

at each scale, and thus demonstrate that applying one OT map leads to visually better674
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results (thanks to the global statistical control), while being much faster. We discuss675

the two main parameters of the multiscale model, i.e. the number of scales L, and676

the number nGMM of components used in the GMM. We also discuss the number of677

patches used in the target discrete patch distributions, and compare with other simple678

measure quantization technique. Using several exemplar textures, we compare this679

multiscale model with several other models and algorithms for texture synthesis.680

4.1. Monoscale model. In Fig. 7, we display several synthesis results obtained681

with the monoscale model explained in Section 3.2. One can observe that applying the682

OT-based local transform is a way to enrich the Gaussian model which is statistically683

more relevant than the NN projection. Let us recall that the NN projection is here684

performed on the same subset of 1000 patches than OT (i.e. NN projection consists685

in taking v = 0 in Equation (1)). This monoscale model is interesting to synthesize686

slightly structured textures. In particular, for the second and third examples of Fig. 7,687

the input color distribution is not symmetric around the mean (because of shade688

effects), and the OT patch transform allows to break the symmetry of the Gaussian689

model in a better way than the NN projection.690

In Fig. 7, one can also apprehend the importance of capturing the mid-range691

correlations with an adapted Gaussian field as input to the local transform. If we use692

a trivial Gaussian white noise instead, it is still possible to compute a relevant OT693

map (that realizes the semi-discrete OT between the Gaussian white noise patch µ694

and the exemplar patch distribution ν), but then the transformed random field only695

looks like a very slightly structured noise. Indeed, pixels at distance > 4
√

2 are still696

independent.697

In Fig. 8, we empirically confirm that the OT-based local transform allows to698

reimpose the patch statistics. For 3×3 color patches, the patch space has dimension 27699

so an appropriate way to visualize the patch distributions is to monitor the one-700

dimensional distributions obtained in the principal components of the exemplar patch701

distribution. Again, these diagrams confirm that the distribution of the transformed702

patches is approximately the same as the exemplar patch distribution. The two703

sources of approximation are the quantization of the target distribution (by randomly704

picking 1000 patches in the exemplar texture) and the fact that ASGD has not fully705

converged. Also, on Fig. 8, one can see that the average recomposition step does not706

drastically change the patch distribution. Heuristically (think for example in terms707

of marginal color distribution) this average step will tend to concentrate the patch708

distribution, but for 3 × 3 the amount of induced blur is reasonable (because each709

patch is merged with only 8 neighbors that may already be compatible). However, as710

will be observed later, this step induces a slight loss in the textural grain.711

4.2. Multiscale model. Here, we present and comment several texture synthe-712

sis results obtained with the multiscale OT model. We display the successful results713

in Fig. 6 and Fig. 9 and the relative failures in Fig. 10. All these examples were gen-714

erated with L = 4 scales and nGMM = 4 components in the GMM source distribution715

at each scale. The example of Fig. 6 clearly illustrates the effect of imposing the716

patch distribution at each scale. In Fig. 9, one can observe that this model is able to717

synthesize structured textures provided that the structural elements of the exemplar718

are sufficiently repeated in the input image. Of course, this model works particularly719

well with textures exhibiting structures similar to excursions of Gaussian fields (see720

e.g. [30]), like the one of Fig. 6 and the top right example of Fig. 9. Notice that all the721

exemplar textures of Fig. 9 possess geometric elements that can be slightly deformed722

without perturbing the perception. On any other such texture, the model is expected723

This manuscript is for review purposes only.



22 B. GALERNE, A. LECLAIRE, J. RABIN

Original ADSN U Tv(U) (OT) T0(U) (NN) OT from WN

Fig. 7. Monoscale synthesis. In this figure we display synthesis results obtained with locally
transformed Gaussian random fields. For each row, column 1 contains an exemplar texture; column 2
contains samples of the associated ADSN model; column 3 and 4 contain local transformations of
the ADSN obtained with the 3 × 3 patch optimal assignment Tv (OT) or patch nearest neighbor
projection T0 (NN); column 5 contains a local transformation of a Gaussian white noise (WN) with
an optimal patch assignment adapted to the white noise input. The OT assignment better preserves
patch statistics than the NN projection. Besides, the last column illustrates the importance to start
from a spatially correlated Gaussian model at the first level.

to behave perfectly.724

In contrast, several textures of Fig. 10 have a very constrained local geometry725

which cannot be reimposed properly by working only with 3 × 3 patches. Such a726

property may cause synthesis defects detected after attentive examination (even if727

some of these examples can be seen as success with only pre-attentive examination).728

At first, one may attribute this limitation to the brutal subsampling of the exemplar729

distribution to 1000 patches (which would not be sufficient to reconstruct all the edges730

of the structural elements of the texture, especially if there is variability in color like731

in the examples in the last row of Fig. 10). But surprisingly, this may not be the main732

reason. Indeed, in Fig. 11, we show that using all patches of the exemplar does not733

help to recover the local geometry of the exemplar in a cleaner way. More generally,734

one may very well question the way to subsample the target patch distribution. We735

experimentally proposed a fixed number of 1000 patches for the discrete target 3× 3736

patch distributions. In our work, this choice is motivated by the convergence study737

of ASGD (see Section 2.3): we took the maximal order of magnitude for which the738

convergence of ASGD is clearly visible (in high dimension) with reasonable compu-739

tational time. The relevance of this choice is confirmed by Fig. 11 which shows that740

taking more than 1000 patches does not increase the variability (and actually slightly741

decreases it because ASGD converges more slowly). Therefore, we emphasize that this742

value must not be understood as a parameter of the model. As a collateral benefit, all743
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Fig. 8. Patch distribution (three first principal components). For the first image of Fig. 6
we plot the estimated distribution of patches in the three first principal components (columns) for
different patch sizes (rows). The PCA transform is obtained on the exemplar patch distribution. We
compare the patch distributions of the exemplar image (ref), of the synthesized image before patch
recomposition (OT) and after (OT recomp), and of the transformed patch with nearest-neighbor
projection (NN). Even if we only approximate the OT mapping, it suffices to reproduce the reference
patch distribution better than the NN projection.

the synthesis experiments shown in this paper suggests that 1000 is a good order of744

magnitude for quantizing any 3×3 patch distribution extracted from a texture image.745

Of course this choice impacts the computation time for synthesis (because each local746

transform computes a weighted NN projection on 1000 patches).747

On the other hand, with a budget of 1000 patches, one may imagine other tech-748

niques to quantize the target distribution. This can be seen as a clustering issue749

for which random subsampling provides a (quite naive and yet) reasonable solution,750

keeping in mind that the chosen patches are used for synthesis. For example, one751

may use a different target measure ν =
∑J
j=1 νjδqj obtained by first clustering the752

exemplar patch distribution with a k-means algorithm with J = 1000 clusters, and753

then computing the nearest patch qj of each centroid and the proportion νj of points754

in the cluster. We experimented this refined subsampling strategy, but unfortunately755

it does not improve the visual quality of the output as illustrated in Fig. 11.756

Another possibility to overcome the loss of geometric structures is to work with757

larger patches, which would allow to copy larger pieces of the exemplar. But for758

now this is rather impractical for the following technical reasons: firstly, in very759

high dimension, ASGD converges too slowly which makes it impractical (see Fig. 4);760

secondly, the average recomposition step would introduce too much blur and should761

be replaced; finally, the target exemplar distribution would be much more complex762

and thus would require a larger subsample set of patches.763

Again, this multiscale model can be seen as a rich extension of the Gaussian model764

(which is only adapted to microtextures [14]). Thus one natural condition for this765
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Fig. 9. Multiscale synthesis, successful cases. For each exemplar texture shown in the
middle column we display a synthesized texture of size 1280 × 768. We used L = 4 scales, and
nGMM = 4 Gaussian components at each scale. See the text for comments.
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Fig. 10. Multiscale synthesis, failure cases. For each exemplar texture shown in the middle
column we display a synthesized texture of size 1280 × 768. We used L = 4 scales, and nGMM = 4
Gaussian components at each scale. See the text for comments.
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Original All patches 1000 patches 100 patches

Original All patches 1000 patches 100 patches

Fig. 11. Subsampling the target patch distributions. In this experiment we question the
target patch distribution ν. In the first row, we display results obtained with simple subsampling
with all available patches (2nd column), 1000 patches (3rd column) and 100 patches (4th column).
In the second row, we use other discrete distributions supported on NN of k-means centroids applied
with 1000 patches (3rd column) and 100 patches (4th column). Let us mention that these images
have ≈ 30000 patches at scale 0, ≈ 9000 patches at scale 1, ≈ 2200 patches at scale 2 and ≈ 500
patches at scale 3. See the text for comments.

multiscale model to fit a given exemplar texture is that the exemplar at coarse scale766

uL−1 is a microtexture. This may explain some failures on examples where there is still767

too much structure at coarse scale, and thus defects of the coarse ADSN may transfer768

to the fine scale synthesis. For the quasi-periodic examples (Fig 10, fifth row), because769

of the frequential discretization involved in the discrete Fourier transform, interference770

patterns appear at the coarsest scale, which cannot be corrected by the further local771

transforms.772

Let us also mention that we observe a slight loss in textural details on several773

textures (e.g. on Fig. 6 and on the “rope” example in the second row of Fig. 10). Since774

the OT map reimposes the marginal statistics, such a loss can only be attributed to775

the average recomposition step. One can attenuate this artifact by using a simple776

trick which consists in changing the patch recomposition strategy at scale 0 (that is,777

taking θ = δ0 in formula (23)). With this simple modification, of course we better778

recover the marginal distribution, and thus the textural grain, as can be observed in779

Fig. 12. But this may also introduce other staircasing-like artifacts.780
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Fig. 12. Changing patch recomposition strategy at scale 0. In this figure we illustrate that
the slight textural loss observed in the multiscale model can be attenuated by changing the patch
recomposition strategy (using only the central value instead of averaging all values). However, doing
so may also produce other kind of undesirable artifacts (like staircasing effects as in the up right
example). In order to see the change, the reader is invited to zoom on these images (with a viewer
that performs NN interpolation; otherwise other filtering procedure may attenuate the grain).

4.3. Comparison with iterated NN projections. In this paragraph, we com-781

pare the multiscale model with the model obtained by iterating NN projections at each782

scale (which is a simplification of the model of Kwatra et al. [28] with only 3×3 patches783

and working only with the `2 distance). As one can observe in Fig. 13, in terms of784

visual proximity of the generated textures, the multiscale iterated NN do not perform785

better than the multiscale OT.786

However, it is clear that the multiscale OT does not optimize the same patch-787

based cost function. Indeed, in these figures, we also plotted the following NN energy788

at each scale789

(34) E`NN =
∑
x

∥∥V `(x+ 2`ω)−NNu`

(
V `x+2`ω

)∥∥2
790

where we sum the square distances from each 3×3 patch of the current synthesis V ` at791

scale ` to its nearest neighbor in u`. Of course the ENN values obtained with iterated792

NN are lower than the ones attained with the (non-iterative) OT assignment, but as793

we said, this does not reflect a higher fidelity in the synthesized texture.794

This experiment highlights that the NN energy E` is not sufficient to account for795

the quality of the synthesized texture. In other words, it is not true that a perfect796

synthesis is given by any image whose patches can all be found somewhere in the797

input image. Indeed, a counter-example is given by one non-trivial texture u in which798

by chance happens a constant patch with color c; then a constant image with color799

c would be considered as a perfect synthesis for this energy ENN but a complete800

failure for a human observer. Therefore, this experiment underlies the need of a801

statistical control in the synthesis process, as was already stated by [59] and [21]. The802

poor quality of the images generated by iterated NN may explain why the authors803

of [28] used several patch sizes at each scale and relied on a more sophisticated patch804

aggregation than a weighted average.805

In Fig. 13 we also propose to iterate NN projections using the same subset of806

1000 patches as in OT. This subsampling procedure leads to a very degenerate texture807

(compared to OT or iterated NN with all patches). Again, this confirms the gain of808

including weights in the patch comparison, especially in order to get a non-degenerate809

multiscale model. But this also illustrates that OT is much more robust to the810

subsampling of the target distribution.811
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Fig. 13. Comparison with iterated NN projection. In the multiscale framework, we compare
the patch OT with iterated NN projections. The first row contains the original image at multiple
scales. The second row contains the synthesis obtained with 3 × 3 patch OT at multiple scales (at
each scale, the target distribution is formed with 1000 patches randomly chosen in the exemplar).
The third row contains the synthesis obtained by iterating NN projection at each scale with the
same 1000 patches. The same for the fourth row excepts that we perform NN projection on all the
exemplar patches. In the last row we display the sum of square distances from the synthesis patches
to their NN in the exemplar patches. See the text for comments.

Finally, let us add that it does not make sense to iterate the OT assignment Tv812

(with same v) because the source distribution is not the same after one pass. Again,813

in contrast to iterated NN, these OT maps are not designed to optimize a patch-based814

proximity criterion.815

4.4. Discussion on the model parameters. First let us recall that for the816

monoscale model, we propose to set the number of iterations of ASGD to 106 (as817

discussed in Section 2.3) and to sample the empirical 3 × 3 patch distribution of a818

texture with 1000 patches (as discussed in Section 4.2). These values should not be819

seen as parameters but as generic working values that are set as large as possible820

to ensure technical practicability of the corresponding algorithms (the visual results821

could only improve by increasing these values).822
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Original nGMM = 1 nGMM = 2 nGMM = 3 nGMM = 4

Fig. 14. Varying the number of Gaussian components. We vary the number nGMM of
components of the GMM at each scale while the number of scales is fixed to 4. One can observe
that we miss some parts of the synthesis when using too few components in the GMM. In general
we observed that the results do not further improve when taking more than 4 components.

The proposed multiscale model has essentially two parameters which can be easily823

tuned manually. The first one is the number nGMM of components in the source GMM824

distributions. As one can see on Fig. 14, when using too few Gaussian components,825

the synthesis model tends to forget some perceptual components of the texture (like826

the blue stains of the first example). This may seem quite surprising at first because827

the target distribution is still the same. But this actually confirms that the transport828

maps obtained by ASGD have a good statistical compliancy (even if ASGD is slow829

to converge). Changing the source measure µ with a distribution that does not fit830

the input data naturally deforms the transport maps. It is thus important to use831

enough Gaussian components in order to properly fit the input patch distribution. As832

reflected by Fig. 14, increasing nGMM may only increase the quality of the synthesized833

texture, but too large values may cause instabilities in the GMM estimation. In view834

of our experiments, we observed that using nGMM = 4 Gaussian components was835

sufficient for all the considered textures. This observation has to be related to the836

choice made in GMM models for denoising natural images: the authors of [70] suggest837

to use 200 generic Gaussian models whereas the authors of [68] use ≈ 20 Gaussian838

models adapted to the input image (see the discussion in [58]). Of course, in the very839

particular case of texture image, the number of needed Gaussian components should840

be much lower. Let us recall that the GMM modeling is only used during the model841

estimation (for computing the transport maps T ` at scales ` > 0), and thus the chosen842

value for nGMM has no impact on the computational time for synthesis.843

When the number of scales increases, the visual quality of the synthesized tex-844

ture is not expected to worsen since we reimpose more and more statistics. This is845

confirmed by the results of Fig. 15. However, beyond a certain number of scales, the846

synthesis algorithm locally produces quasi-verbatim copy of the exemplar, because847

there is not enough patch variability at coarse scale. This can be observed on the first848

example of Fig. 15: with an exemplar of size 256× 256, the exemplar at scale 6 is of849

size 4× 4 and thus only contains 4 patches of size 3× 3.850

Of course, the main advantage to increase the number of scales is to synthesize851

larger and larger geometric structures. It is thus reasonable to set the number of852

scales as the smallest L such that the patch domain at scale L− 1 (namely 2L−1ω) is853

large enough to contain the geometric elements of the exemplar. Ideally, the Gaussian854

model should fit the exemplar at the coarsest scale, and all the applied local maps855

should be enough to capture the non-Gaussian behavior contained in the fine scales.856
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Original L = 1 L = 2 L = 3

L = 4 L = 5 L = 6 L = 7

Original L = 1 L = 2 L = 3

L = 4 L = 5 L = 6 L = 7

Fig. 15. Varying the number of scales. We vary the number L of scales while the number
of Gaussian components is fixed to 4. Increasing the number of scales allows to reproduce larger
geometric structures of the exemplar. But using too many scales pushes the model to use very large
parts of the exemplar.

Generally speaking, for very complex textures (which contain structured information857

at all scales), the optimal number of scales is related to the size of the input original858

image (essentially proportional to the log2 of the dimensions). During the preparation859

of this paper, we often used 4 scales for small textures (of size ≤ 256) and 6 scales for860

large textures (of size > 512).861

Therefore, one must set the number of scales in order to realize a compromise862

between recovered geometric structures and variability of the resulting model. Let us863

mention that several L may satisfy this criterion and one should favor the smallest864

one, if only because the corresponding synthesis algorithm is faster.865

4.5. Comparison with other texture models. In this paragraph, we com-866

pare the texture synthesis results obtained with different models, including state of867

the art methods.868

In Fig. 16, we compare with the models of [50] and [59]. Recall that the method by869

Portilla and Simoncelli [50] consists in alternate projections on several well-chosen sta-870

tistical constraints (some of them corresponding to correlations of complex wavelet co-871

efficients), starting from a white noise initialization. The method of Tartavel et al. [59],872

also starting from a white noise, optimizes the visual proximity to the exemplar with873

a balance between different criteria: the color distribution, the power spectrum, and874
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the sparsity of patches in an adapted dictionary. For the examples of Fig. 16, the875

algorithm of [59] was used with default parameters. For the larger examples shown876

in Fig. 17, this algorithm was used with 4 scales and 12 × 12 patches (so that the877

receptive field is the same than our method with 6 scales and 3× 3 patches).878

As one can observe on Fig. 16, the multiscale OT model leads to results that879

are similar to [59] and often better than [50]. One important difference between our880

model and those two other methods is that at each scale, the images are generated by881

averaging a few patches which are directly taken in the exemplar. Therefore, it will882

be very unlikely with multiscale OT to create false colors which do not appear in the883

exemplar. Even if such false colors artifacts may be critical for the human evaluation884

of success/failure of texture synthesis, it must be said that taking patches directly in885

the exemplar poses an undeniable limitation in the innovation. However, even with886

this constraint, the results of Fig. 16 show that the multiscale OT has the capacity887

to generate innovative content while always being locally close to the exemplar.888

Again, on several examples of Fig. 16, one can observe a slight loss of textural889

grain in the result of multiscale OT. In comparison the methods [50] and [59] better890

respect the grain in the fine scales, because of the autocorrelation constraint in [50] and891

of the power spectrum term in [59] (particularly with the final post-processing steps892

of “histogram” and “spectrum” transfer). But the price to pay with these methods is893

to observe some local oscillations everywhere while the multiscale OT leads to cleaner894

local geometric structures. Finally let us observe that for some complex textures895

(like the “chalks” texture, Fig. 16, fifth row), the method [59] may fail because sparse896

representations in a dictionary are not able to account for the variability in the patches,897

while the OT-based method is inherently designed to respect the patch variability at898

several scales.899

In Fig. 17, we provide other comparative results with very large textures: the ex-900

emplar textures have size 512× 512 while the synthesized images have size 512× 512901

or 1024 × 1024. In addition to the methods of [50] and [59] that we already dis-902

cussed above, we compare with the patch-based method of [52] and the neural net-903

work method of [18]. The model by Raad et al. [52] consists in progressive sampling904

of the texture using local conditional Gaussian models estimated by a set of similar905

patches taken in the exemplar. Besides, as in our model, the synthesis is performed in906

a multiscale fashion: the synthesis at one scale impacts the selection of similar patches907

at the adjacent finer scale. Thus, this model [52] can be thought of as a multiscale908

and randomized extension of [13]. The synthesis algorithm by Gatys et al. [18] follows909

the same statistical framework than Portilla and Simoncelli [50] except that they use910

second-order statistics extracted at each layer of a convolutional neural network (more911

precisely spatially averaged Gram matrices of the responses).912

Fig. 17 confirms the need of a constraint on global statistics of the synthesized913

texture. Indeed, several failure examples of the patch-based method [52] can be914

explained by the fact that progressive sampling does not ensure any global statistical915

compliancy, as was already reflected by the “growing garbage” effect observed in the916

original method by Efros and Leung [13]. This seems to be in contradiction with917

the result by Levina and Bickel [32] who showed a statistical consistency result for918

such an algorithm; but let us emphasize that this theoretical result holds true in an919

asymptotic setting where the dimension of the exemplar texture grows to infinity. One920

benefit of the multiscale OT model is that it is designed to enforce such statistical921

consistency with a fixed-size exemplar. Nevertheless, as can be observed in [52], the922

model by Raad et al. is very adapted to synthesis of quasi-periodic textures, for which923

our model will often fail (recall Fig. 10, fifth row).924
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Let us now compare to the method by Gatys et al. [18]. We observed that for925

many structured textures, the results provided by Gatys et al. are nearly perfect926

in the sense that the synthesized content locally resembles parts from the exemplar927

while being always slightly different. In other words, this method precisely respects928

the geometric structures while bringing enough innovation; this is clear that the OT-929

based method does not respect the local geometry in such a precise way. However,930

on the first example of Fig. 17, one can observe a drift in the color distribution in931

the result of [18]. And indeed, it is not obvious to understand the link between the932

color distribution and the CNN responses used in [18]. In contrast, the statistical933

guarantee provided by OT allows to avoid such artifacts. This is also true for other934

examples of Fig. 17 but in a less obvious manner. Moreover, we encourage the reader935

to observe the results of Fig. 17 at different scales (i.e. with several zoom-in factors,936

or by varying the distance to the screen used for display). In particular, one may937

observe that the method of [18] does not have the same behavior on very large scale938

structures: in the two last examples of Fig. 17, one can observe that multiscale OT is939

better able to retrieve medium-range correlations than the CNN-based method. This940

reflects that the power spectrum of the texture is not directly taken into account in941

the CNN statistics, while it guides the coarse-scale synthesis in the multiscale OT942

model thanks to the Gaussian initialization.943

5. Conclusion. In this paper we introduced a texture model based on local944

transformations of Gaussian random fields using semi-discrete OT maps in the 3× 3945

patch space. Such OT maps allow to reimpose the patch distribution of the exem-946

plar texture in a non-parametric way. In addition to strong theoretical guarantees947

(stationarity, long-range independence) such random fields inherit the medium-range948

correlations (power spectrum) from the Gaussian model while exhibiting sharper ge-949

ometric details. Once estimated, these semi-discrete OT maps can be written as950

weighted nearest-neighbor assignments which can be applied to all patches in paral-951

lel.952

We also proposed a multiscale extension of this model that allows to reimpose the953

patch distribution at different scales. This multiscale OT model is able to synthesize954

structured textures in a very efficient manner. Except on some textures with very955

constrained local geometry, the visual results are better than state of the art methods956

while being much faster. In particular, we demonstrated that applying one single957

patch OT at each scale is both faster and statistically more relevant than using iterated958

nearest neighbor projections as in [28]. Several synthesis results demonstrated the959

benefit of imposing a global statistical control at several scales. Let us also emphasize960

on the fact that the multiscale OT model only applies a series of weighted nearest961

neighbor projections to a well-chosen Gaussian field. All of these elementary steps are962

quite simple to understand and thus the results (and in particular the failure cases)963

of this model can be explained easily.964

The main limitation of this model is the difficulty of modelling complex geomet-965

rical constraints between patches. One way to better impose complex local geometry966

is to work with larger patches as is done in many texture synthesis methods, but967

of course copying large patches often leads to verbatim copy. It is remarkable that968

the multiscale OT model is able to generate new structures by using only average969

recomposition of very small patches. But using larger patches in this model is for970

now prohibited: on the one hand, the stochastic optimization framework would not971

be efficient enough to approximate the OT map, and on the other hand, the average972

recomposition of patches would introduce too much blur in the synthesis.973
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It is likely that this OT model could be improved by using better geometric models974

for the patch space. First, one can hope to build a distance that better accounts for975

the patch deformations, which would allow to perform local patch averages in a more976

relevant way than the `2 distance. Besides, such a framework could help to fit a low977

dimensional model for the patches extracted from an exemplar texture. This would978

allow to consider larger patches while keeping a reasonably low number of intrinsic979

dimensions. For this reason, one would hope to get adapted tools for stochastic OT980

that better scale with the size of patches. Yet, it seems to us that finding a patch981

model that is well-correlated to local human perception is a challenging issue: such982

a model would be at least as complex as perceptual models for color space (because983

the color distribution is a marginal of the patch distribution).984

Finally, let us conclude on the fact that there probably exists a true limit in what985

can be modeled through patch statistics. On the one hand, considering too many986

statistics may probably force to do verbatim copy. On the other hand, if one allows987

degrees of freedom apart from certain statistics, one must accept the fact that the988

synthesis may not have everywhere the same aspect than the original (for example989

sampling from an absolutely continuous distribution in a Euclidean color space will990

most certainly generate false colors). For those reasons, the quality of a texture model991

should not be measured only through the visual proximity of synthesized textures to992

the exemplar but also through the scope of available theoretical properties, which993

may help to better understand its practical behavior or to use it for other kind of994

applications.995
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Appendix A. Convergence of Averaged Stochastic Gradient Descent.1001

Here we give a proof of the convergence of the stochastic gradient descent algo-1002

rithm used to compute the solution to the semi-discrete optimal transport problem.1003

This proof is already given in the supplementary material of [44] but we emphasize1004

on the fact that differentiability is not required everywhere.1005

Let H be a Hilbert space, and f : H → R be a convex differentiable function1006

that we wish to minimize. Let (Fn) a filtration and for each n, let fn : H → R be a1007

convex random function which is Fn-measurable. We assume that for each θ ∈ H, fn1008

is differentiable at θ with E[‖∇fn(θ)‖] <∞ and with1009

(35) E[∇fn(θ)|Fn−1] = ∇f(θ).1010

We also assume a uniform bound on the gradients, i.e. there exists B > 0 such for all1011

θ ∈ H, ‖∇fn(θ)‖ ≤ B almost surely (this implies E[‖∇fn(θ)‖] <∞).1012

Let θ0 be an F0-measurable random variable in H, and consider the recursion1013

θn = θn−1 − γn∇fn(θn−1)1014

θ̄n =
1

n

n−1∑
k=0

θk1015

1016

where γn > 0 is a non-increasing sequence of gradient steps.1017
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Theorem 6 ([44]). Let θ∗ ∈ argmin f . Then

E[f(θ̄n)− f(θ∗)] 6
1

2n

(
Dn

γn
+B2

n∑
k=1

γk

)
,

where Dn = E[‖θ0 − θ∗‖2] +B2
∑n
k=1 γ

2
k.1018

For example, if γn = c√
n

with c > 0, then

Dn = δ0 +B2c2
n∑
k=1

1

k
6 δ0 +B2c2(1 + log n)

n∑
k=1

γk =

n∑
k=1

1√
k
6 2
√
n

so that

E[f(θ̄n)− f(θ∗)] 6
1

2
√
n

(δ0
c

+B2c(3 + log n)
)

= O
(

log n√
n

)
.

1019

Proof. With the definition of the recursion, we can write

‖θk − θ∗‖2 = ‖θk−1 − θ∗‖2 − 2γk〈f ′k(θk−1), θk−1 − θ∗〉+ γ2
k‖f ′k(θk−1)‖2.

Using the hypothesis (35) on ∇fn leads to

E
[
‖θk−θ∗‖2|Fk−1

]
= ‖θk−1−θ∗‖2−2γk〈∇f(θk−1), θk−1−θ∗〉+γ2

kE
[
‖f ′k(θk−1)‖2|Fk−1

]
.

Denoting δk = E
[
‖θk − θ∗‖2

]
and taking expectation leads to

δk 6 δk−1 − 2γkE
[
〈∇f(θk−1), θk−1 − θ∗〉

]
+ γ2

kE
[
‖f ′k(θk−1)‖2

]
.

Using the bound on the gradients, we get1020

(36) 2γkE
[
〈∇f(θk−1), θk−1 − θ∗〉

]
6 δk−1 − δk + γ2

kB
2.1021

Besides, the convexity of f gives that

f(θ∗) > f(θk−1) + 〈∇f(θk−1), θ∗ − θk−1〉

so that1022

(37) 〈∇f(θk−1), θk−1 − θ∗〉 > f(θk−1)− f(θ∗) > 0.1023

Therefore δk 6 δk−1 +B2γ2
k and recursively

δn 6 δ0 +B2
n∑
k=1

γ2
k =: Dn.

Using convexity and summing (37) leads to

f(θ̄n)− f(θ∗) 6
1

n

n−1∑
k=0

(
f(θk)− f(θ∗)

)
6

1

n

n−1∑
k=0

〈∇f(θk), θk − θ∗〉.
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Taking expectation and using again (36) gives

E
[
f(θ̄n)− f(θ∗)

]
6

1

2n

n∑
k=1

(
δk−1 − δk

γk
+ γkB

2

)
.

Finally, since we have δk 6 Dk 6 Dn for k 6 n and γk+1 6 γk, we get1024

n∑
k=1

δk−1 − δk
γk

=
δ0
γ1

+

n−1∑
k=1

δk

( 1

γk+1
− 1

γk

)
− δn
γn

1025

6 Dn

(
1

γ1
+

n−1∑
k=1

( 1

γk+1
− 1

γk

))
− δn
γn

1026

=
Dn

γn
− δn
γn

6
Dn

γn
.1027

1028

Plugging that in the last inequality gives the desired bound.1029
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Original OT (4 scales) Tartavel et al. [59] P. and S. [50]

Fig. 16. Comparison. In this figure we compare several models for texture synthesis. In
the first column, we display the exemplar textures (size 128 × 128). In the other columns, we
display the corresponding synthesized textures (size 256 × 256) obtained with the multiscale OT
model (2nd column), the method of Tartavel et al. [59] (2nd column), and the method of Portilla
and Simoncelli [50] (abbreviated P. and S.). The images of column 3 were generated with the
implementation provided by the authors of [59]. The images of column 4 were generated by the
reference implementation [49].
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Original OT (6 scales) Tartavel et al. [59] Gatys et al. [18] Raad et al. [52] P. and S. [50]

Fig. 17. Comparison. In this figure we compare several models for texture synthesis. In the
first column, we display the exemplar textures (size 512 × 512). In the other columns, we display
the corresponding synthesized textures (size 1024 × 1024) obtained with the multiscale OT model
(2nd column), the method of Tartavel et al. [59] (3rd column), the method of Gatys et al. [18] (4th
column), the method of Raad et al. [52] (5th column), the method of Portilla and Simoncelli [50]
(abbreviated P. and S.) (6th column). The images of columns 4, 5, 6 were generated by the authors
of [51]. The images of column 3 were generated with the implementation provided by the authors
of [59] (with 4 scales and 12 × 12 patches).
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