
HAL Id: hal-01726402
https://hal.science/hal-01726402v1

Submitted on 8 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Stepwise Refinement based Development of
Self-Organizing Multi-Agent Systems: Application to

the Foraging Ants
Zeineb Graja, Frédéric Migeon, Christine Maurel, Marie-Pierre Gleizes,

Ahmed Hadj Kacem

To cite this version:
Zeineb Graja, Frédéric Migeon, Christine Maurel, Marie-Pierre Gleizes, Ahmed Hadj Kacem. A
Stepwise Refinement based Development of Self-Organizing Multi-Agent Systems: Application to the
Foraging Ants. International Journal of Agent-Oriented Software Engineering, 2016, vol. 5 (n° 2/3),
pp. 134-166. �10.1504/IJAOSE.2016.10001862�. �hal-01726402�

https://hal.science/hal-01726402v1
https://hal.archives-ouvertes.fr

To link to this article : DOI : 10.1504/IJAOSE.2016.10001862
URL : https://doi.org/10.1504/IJAOSE.2016.10001862

To cite this version : Graja, Zeineb and Migeon, Frédéric and
Maurel, Christine and Gleizes, Marie-Pierre and Hadj Kacem,
Ahmed A Stepwise Refinement based Development of Self-
Organizing Multi-Agent Systems: Application to the Foraging
Ants. (2016) International Journal of Agent-Oriented Software
Engineering, vol. 5 (n° 2/3). pp. 134-166. ISSN 1746-1375

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18785

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Stepwise Refinement based Development of

Self-Organizing Multi-Agent Systems: Application to

the Foraging Ants

Zeineb Graja*

Research Laboratory on Development and Control of Distributed
Applications (ReDCAD)
Faculty of Economics and Management University of Sfax, Tunisia
E-mail: zeineb.graja@redcad.org

Frédéric Migeon*, Christine Maurel
Marie-Pierre Gleizes

Toulouse Institute of Computer Science Research (IRIT)
Paul Sabatier University, Toulouse, France
E-mail: migeon@irit.fr
E-mail: maurel@irit.fr
E-mail: gleizes@irit.fr

Ahmed Hadj Kacem

Research Laboratory on Development and Control of Distributed
Applications (ReDCAD)
Faculty of Economics and Management University of Sfax, Tunisia
E-mail: ahmed.hadjkacem@fsegs.rnu.tn
*Corresponding author

Abstract: This paper proposes a formal modelling for Self-Organizing Multi-
Agent Systems (SOMAS) based on stepwise refinements, with the Event-B
language and the Temporal Logic of Actions (TLA). This modelling allows to
develop this kind of systems in a more structured manner. In addition, it enables
to reason, in a rigorous way, about the correctness of the derived models both at
the local level and the global level. Our work is illustrated by the foraging ants
case study.

Keywords: Self-organizing multi-agent systems, foraging ants, formal
verification, convergence, resilience, refinement, Event-B, Temporal Logic of
Actions.

Biographical notes: Zeineb Graja received her PhD in Artificial Intelligence from
the Paul Sabatier University (Toulouse) and the University of Sfax in September
2015. Her research focuses on the formal verification of self-organising multi-
agent systems, the Event-B language and formal proof.

Frédéric Migeon is a Lecturer of computer science at the Paul Sabatier University
of Toulouse and a researcher at the Cooperative Multi-Agent Systems team . His

research interests are related to the development of Self-Adaptive Multi-Agent
Systems, formal modelling and Model Driven Architecture.
Christine Maurel is a Lecturer of computer science at the Paul Sabatier University
of Toulouse and a researcher at the Cooperative Multi-Agent Systems team. Her
research interests are related to formal modelling languages and Self-Adaptive
Multi-Agent systems.
Marie-Pierre Gleizes is a Full Professor of computer science at the Paul Sabatier
University of Toulouse and the leader of the Cooperative Multi-Agent Systems
team. Her research interests are related to the design of complex systems with
emergent functionality, in particular to ambient systems and their design with
Self-Adaptive Multi-Agent Systems.
Ahmed Hadj Kacem is a Full Professor of computer science at the University of
Sfax and a researcher of the Research Laboratory on Development and Control of
Distributed Applications. His research activities are comcentrated on distributed
adaptive software, in particular to the development of models, methods, tools and
mechanisms for designing and validating via formal techniques these systems.

1 Introduction

Self-Organizing Multi-Agent Systems (SOMAS) are made of a set of autonomous entities
(called agents) interacting together and situated in an environment. Each agent has a limited
knowledge about the environment and possesses its own goals. The global function of the
overall system emerges from the interactions between the individual entities composing the
system as well as interactions between the entities and the environment ([1]).

When designing this kind of systems, two levels of observation are generally
distinguished: the micro level which corresponds to the agents local behaviour and the
macro level which describes the global behaviour.

Thanks to their self-organizing mechanisms, SOMAS are able to adjust their behaviour
and cope with the environment changes, i.e. to self-adapt. SOMAS are generally conceived
following bottom-up approaches. Thus, the focus is on the local behaviour of the agents.
The global function of the system emerges based on some heuristics independent from the
overall function like cooperation for example (the case of the AMAS theory [2]).

One of the main challenges when engineering a SOMAS is about giving formal
assurances and guarantees particularly related to its correctness, robustness and resilience.
Correctness refers to fulfilment of the different constraints on to the agents activities.
Robustness ensures that the system is able to converge to its global objective [3]. Whereas
resilience informs about the capability of the system to adapt when robustness fails or a
better performance is possible [4].

In order to promote the acceptance of SOMAS, it is essential to have effective tools and
methods to give such assurances. Some works propose using test and simulation techniques
[5], others define metrics for evaluating the resulting behaviour of the system [6]. These
techniques offer an experimental way to verify SOMAS but don’t give any formal guarantee.
Thus, our proposal is to take advantage of formal methods. This paper is a first contribution
in an ambitious work having as objective to verify formally (by means of theorem proving)
SOMAS. For this primary work, we are situated in a particular case where the emergent
function of the system is known and observed via simulation. Our aim is to prove these
observed properties.

We propose a formal modelling for the local behaviour of the agents based on stepwise
refinement steps and the Event-B formalism [7]. Our refinement strategy guarantees the
correctness of the system. In order to prove the desired global properties related to robustness
and resilience, we use the Lamport’s Temporal Logic of Actions (TLA) and its fairness-
based proof rules. The use of TLA was recently proposed in [8] in the context of population
protocols and fits well with SOMAS. Our work is illustrated by the foraging ants case study.

This paper is organized as follows. Section 2 presents a background related to the Event-

B language, the main principles on which it is based as well as the TLA logic. In section
3, our refinement strategy of SOMAS is presented. An illustration of this strategy by the
foraging ants is given in section 4. Section 5 presents a summary of related works dealing
with verification of SOMAS. Section 6 concludes and draws future perspectives.

2 Background

2.1 Event-B

The Event-B formalism was proposed by J.R. Abrial [7] as an evolution of the B language.
It allows a correct by construction development for distributed and reactive systems. Event-

B uses set theory as a modelling notation which enables, contrary to process algebra
approaches, to support scalable solutions for system modelling. In order to make formal
verification, Event-B is based on theorem proving. This technique avoids the problem of
states explosion encountered with the model checking technique.

The concept used to make a formal development with Event-B is that of a model. A
model is formed of components which can be of two types: machine and context. A
context describes the static part of the model and may include sets and constants defined by
the user with their corresponding axioms. A machine is the dynamic part of the model and
allows to describe the behaviour of the designed system. It is composed by a collection of
variables v and a set of events ev_i.

The variables are constrained by conditions called invariants. The execution of the
events must preserve these invariants. A machine may see one or more contexts, this will
allow it to use all the elements defined in the seen context(s). The structures of a machine

Figure 1 The machine structure in Event-B

and an event in Event-B are described as presented respectively in the figures 1 and 2. An

event is defined by a set of parameters p, the guard G_evi(p, v) which gives the necessary
conditions for its activation and the action A_evi(p, v, v′) which describes how variables
v are substituted in terms of their old values and the parameters values. The action may

Figure 2 The event structure in Event-B

consist in several assignments which can be either deterministic or non-deterministic. A
deterministic assignment, having the form x := E(p, v), replaces values of variables x
with the result obtained from the expression E(p, v). A non-deterministic assignment can
be of two forms: 1) x :∈ E(p, v) which arbitrarily chooses a value from the set E(p, v)
to assign to x and 2) x : | Q(p, v, v′) which arbitrarily chooses to assign to x a value
that satisfies the predicate Q. Q is called a before-after predicate and expresses a relation
between the previous values v (before the event execution) and the new ones v′ (after the
event execution).

An Event-B machine can be considered as an automaton which states are described
by the values of the set of its variables and transitions between states are captured by the
events. Based on this interpretation, T.S. Hoang and J.-R. Abrial ([9]) defined a framework
for reasoning about liveness properties over an Event-B machine.

This framework focuses on three types of liveness properties: existence (some good
property will always eventually happen), progress (the machine will always evolve from
a state P1 to a state P2) and persistence (a property will eventually always hold). In our
work, we only use the persistence property presented in the next paragraph.

The persistence property is expressed for a machine M by the formula M ⊢ ♦�P and
is proved according to the rule LIV E♦� given below. The symbols � and ♦ are temporal
operators. �P called alwaysP means that P is always true in a given sequence of states.
♦P called eventually P means that P will hold in some state in the future.

M ⊢ ր P

M ⊢ 	 ¬ P LIV E♦�
M ⊢ ♦� P

In this rule, the first antecedent ensures that any infinite trace of the machineM will terminate
on an infinite sequence of states verifying property P . The second antecedent guarantees
that any finite trace of the machine M will not end with a state satisfying ¬P .

Proof obligations

Proof Obligations are associated with Event-B machines in order to prove that they satisfy
certain properties. As an example, we mention the Preservation Invariant INV and
the Feasibility FIS proof obligations. INV proof obligation is necessary to prove that
invariants hold after the execution of each event. Proving (or discharging) FIS proof
obligation means that when an event guard holds, every action can be executed. This proof

obligation is generated when actions are non-deterministic.

Refinement

This technique, allowing a correct by construction design, consists in adding details
gradually while preserving the original properties of the system. The refinement relates two
machines, an abstract machine and a concrete one. Data refinement consists in replacing
the abstract variables by the concrete ones. In this case, the refinement relation is defined
by a particular invariant called gluing invariant. The refinement of an abstract event is
performed by strengthening its guard and reducing non determinism in its action. The
abstract parameters can also be refined. In this case, we need to use witnesses describing the
relation between the abstract and the concrete parameters. The correctness of the refinement
is guaranteed essentially by discharging GRD (GuaRD) and SIM (SIMulation) proof
obligations. GRD states that the concrete guard is stronger than the abstract one. SIM
states that the abstract event can simulate the concrete one and preserves the corresponding
gluing invariants. An abstract event can be refined by more than one event. In this case, we
say that the concrete event is split. In the refinement process, new events can be introduced.
In order to preserve the correctness of the model, we must prove that these new introduced
events do not take the control for ever; i.e. they will terminate at a certain point or are
convergent. This is ensured by the means of a variant –a numerical expression or a finite
set– that should be decreased by each execution of the convergent events.

B-event is supported by the Rodin platform1 which provides considerable assistance to
developers by automating the generation and verification of all necessary proof obligations.

2.2 Temporal Logic of Actions (TLA)

TLA combines temporal logic and logic of actions for specifying and reasoning about
concurrent and reactive discrete systems [10]. Its syntax is based on four elements [8].

1. constants, and constant formulas, i.e. functions and predicates over these,

2. state formulas for reasoning about states, expressed over variables as well as constants,

3. transition or action formulas for reasoning about (before-after) pairs of states, and

4. temporal predicates for reasoning about traces of states. These are constructed from
the other elements and certain temporal operators.

In the remainder of this section, we give some concepts that will be used further in sections
3 and 4.

Stuttering step

A stuttering step on an action A under the vector variables f occurs when either the action
A occurs or the variables in f are unchanged. We define the stuttering operator [A] as:
[A]f =̂ A ∨ (f ′ = f). In a dual way, 〈A〉 asserts that A occurs and at least one variable in
f changes. 〈A〉f =̂ A ∧ (f ′ 6= f).

F ∧ (c ∈ S) ⇒ (Hc (G ∨ ∃d ∈ S.(c ≻ d) ∧Hd))
LATTICE

F ⇒ ((∃c ∈ S.Hc) G)

Figure 3 LATTICE rule of TLA

Fairness

Fairness asserts that if a certain action is enabled, then it will eventually be executed. Two
types of fairness can be distinguished.

1. Weak Fairness for action A denoted WFf (A) asserts that if an action A is constantly
activated, then it will be eventually executed.

WFf (A) =̂ ♦�Enabled〈A〉f ⇒ �♦〈A〉f

2. Strong Fairness for action A denoted SFf (A) asserts that if an action A is often
activated, it will be eventually executed.

SFf (A) =̂�♦Enabled〈A〉f ⇒ �♦〈A〉f

Enabled〈A〉f asserts that it is possible to execute the action 〈A〉f .
In addition, we define the leads to operator: P Q =̂ �(P ⇒ ♦Q), meaning that

whenever P is true, Q will eventually become true.

Proof rules for simple TLA

We consider the three proof rulesLATTICE (figure 3),WF1 andSF1 (figure 4) proposed
in [10]. LATTICE is an inductive proof rule in which F , G, Hc and Hd denote TLA

formulas, S represents a given set and ≻ is a partial order relation defined on the set S.
Informally, this rule means that provided that it is possible to move from a state satisfying
the formulaHc to a state satisfying the formulaG or to move to a state wherein the formula
Hd is true for a value d (d < c), it is guaranteed by induction that formulaGwill be reached.

WF1 gives the conditions under which weak fairness assumption of action A is
sufficient to proveP Q. ConditionWF1.1 describes a progress step where either stateP
orQ can be produced. ConditionWF1.2 describes the inductive step where 〈A〉f produces
state Q. Condition WF1.3 ensures that 〈A〉f is always enabled.

SF1 gives the necessary conditions to prove P Q under strong fairness assumption.
The two first conditions are similar to WF1. The third condition ensures that 〈A〉f is
eventually, rather than always, enabled. In these two rules, N represents a disjunction of
actions.

3 Formal modelling of SOMAS

The formal modelling is based on two levels of abstraction; i.e. the micro level which
corresponds to the local behaviour of the agents and the macro level which describes the

WF1.1 P ∧ [N]f ⇒ (P ′ ∨Q′)
WF1.2 P ∧ 〈N ∧A〉f ⇒ Q′

WF1.3 P ⇒ Enabled〈A〉f
WF1

�[N]f ∧WFf (A) ⇒ P Q

SF1.1 P ∧ [N]f ⇒ (P ′ ∨Q′)
SF1.2 P ∧ 〈N ∧A〉f ⇒ Q′

SF1.3 �P ∧�[N]f ⇒ ♦Enabled〈A〉f
SF1

�[N]f ∧ SFf (A) ⇒ P Q

Figure 4 Proof rules WF1 and SF1 for TLA

global behaviour of the system. In this section, we identify the main properties that must
be ensured when designing a SOMAS according to these levels. We give also a refinement
strategy allowing to ensure the proof of these properties.

3.1 Formal modelling of the micro level

The main concern at this level is the design of the behaviour of the agents and their
interactions. We consider that the agents interact via their environment. Thus, we give first
the environment definition and then the agent and the SOMAS definitions.

3.1.1 Formal modelling of the environment

We suppose that the environment is composed by a set of m elements noted l1, ...lm. The
environment state is described by the states of these different elements. We denote by
Echange the environment actions changing these elements. Formally, the environment is
described by the automaton E = (SE, SEinit, TE, δE) where:

• SE the set the environment states.
SE =

∏
i:1..m

Sli where Sli is the state of the li element.

• SEinit ∈ SE denotes the environment initial state.

• TE a labels set formalising the environment actions.
TE = Echange

• δE the set of all the possible transitions between the environment states.
δE ⊆ SE × TE × SE

In Event-B, the environment dynamic (Echange) is formalised by a set of events for which
the action is described by the before-after predicate EnvironmentChange(l, l′).

3.1.2 Formal modelling of the agents local behaviour

In a very abstract way, the behaviour of each agent is composed by three steps: the agent
senses information from the environment (perception step), makes a decision according to
these perceptions (decision step) and finally performs the chosen action (action step). We
refer to these steps as the perceive− decide− act cycle. Thus, an agent is characterized

by the representations of the environment that it possesses (Arep), the set of decision rules
telling it which decisions to make (Adecide), the set of actions it can perform (Aperform) and
the set of operations allowing it to update its representations of the environment (Aperceive).

Moreover, an agent is identified by its intrinsic characteristics such as the representations
it has on itself (Aprop), the state of its sensors (Asens) and the state of its actuators (Aact).

More formally, an agent is described by an automaton A = (SA, SAinit, TA, δA)
where,

• SA is the set of the agent states,
SA = Arep ×Aprop ×Asens ×Aact

• SAinit ∈ SA denotes the agent initial state,

• TA is a set of labels representing the transitions between the agent states. Each
transition represents a step of the agent life cycle,
TA = Aperceive ∪Adecide ∪Aperform

• δA is the set of all the possible agent state transitions.
δA ⊆ SA× TA× SA

3.1.3 Formal modelling of a SOMAS

A SOMAS composed by n agentsA1, A2, ...An and situated in an environment is modelled
by means of the automaton SY STEM = (S, Sinit, T, δ) where,

• S denotes the set of the system state. It is derived from the agents states and the
environment state. S =

∏
i:1..n

SAi × SE.

• Sinit is the initial system state. Sinit =
∏

i:1..n

SAi,init × SEinit with Sinit ∈ S.

• T is the set of the system states transitions. These transitions are obtained from the
agents and the environment transitions.
T =

⋃
i:1..n

TAi ∪ TE

• δ is the set of the possible transitions between the states of the system. δ ⊆ S × T × S

In Event-B, the characteristics of the agents, their representations of the environment,
the states of their sensors and actuators are modelled by means of variables. Whereas their
decisions, actions and update operations are formalized by events. Hence, a before-after-

predicate can be associated with each one of them. As a consequence, the decisions of
each agent a, can be formalised by a set of before-after-predicates allowing changing the
properties of the agent denoted DecideAct_i(a,Aprop, A

′
prop).

Moreover, the actions of each agenta can be considered as a set of before-after predicates

denoted PerformAct_i(a,Aprop ∪Asens ∪ E,A
′
prop ∪A

′
sens ∪ E

′). An action event is
responsible for moving the agent to the perception step, thus an action event allows to activate
the agent sensors. In addition, the actions of an agent can affect its properties (Aprop) as well
as a part of its environment. Finally, the event enabling an agent to update its perceptions
is described by the before-after predicate: PerceiveEnvironment(a,Arep, A

′
rep).

The automaton SY STEM modelling the SOMAS at the micro level is described by
means of the machine MicroLevel given by the figure 5. The local agents behaviour
described earlier is said "correct", if the following properties are satisfied.

Figure 5 The SOMAS modelling at the micro level: the machine MicroLevel

• LocProp1: the behaviour of each agent is complied with the perceive-decide-act cycle.

• LocProp2: the agent must be not blocked in the decision step, i.e. the made decision
must enable the agent to perform an action.

LocProp2 =̂ ∀a · a ∈ Agents ∧DecideAct_i(a,Aprop, A
′

prop) ⇒ ∃PerformAct_i·
G_PerformAct_i(PerformAct_i(a,Aprop ∪Asens ∪ E,A′

prop ∪A′

sens ∪ E′))

• LocProp3: the agent must not be blocked in the perception step; i.e. the updated
representations should allow it to make a decision.

LocProp3 =̂∀a · a ∈ Agents ∧ PerceiveEnvironment_i(a,Arep, A
′

rep) ⇒
∃DecideAct_i ·G_DecideAct_i(DecideAct_i(a,Aprop, A

′

prop))

In the two above formulas, G_PerformAct_i() and G_DecideAct_i() denote
respectively the guards of the events PerformAct_i and DecideAct_i.

3.2 Formal modelling of the macro level

At the macro level, the main concern is to model the observation of the macro state evolution
of the system according to the agents local actions, their interactions and the environment
changes. The system macro state is described in terms of an aggregation of its elements (the
agents and the environment). Thus, the number of agents being in a particular state or the
number of agents performing a particular behaviour can describe the system macro state.

The system can be either in a functionally adequate state; i.e. a state where the system
ensures its global function or in a state where the system employs its self-organising
mechanisms to cope with perturbations and to come back to a functionally adequate state.
Figure 6 summarises the SOMAS states observed by an external observer.

Figure 6 The abstract formalization of the system macro behaviour

Sadequate denotes a functionally adequate state and FA(macroState) the predicate
defined in terms of the system macro state and describing a functionally adequate state.
When the system global function is disturbed, the system switches to the SselfOrganising

state where it applies its self-organising mechanisms to ensure again its global function.
The observed transitions between these different states are due to changes classified as

follows:

• changes having no effects on the system functional adequacy represented by the set
MaintainGF .

• changes disrupting the system operation and preventing it to ensure its function, denoted
by the set Perturbations. In the foraging ants case study, adding food or putting
obstacles in the environment constitute perturbations for the ants.

• system actions allowing it to come back to a functionality adequate state denoted by the
set SelfOrganising. For example, the ants should ensure an efficient environment
exploration in order to discover new food sources. Thus, each ant need to be able to
go into new directions even if they contains less food.

Formally, a SOMAS observed by an external observer is defined as given in the definition
3.1

Definition 3.1: A SOMAS observed at the macro state is an automaton MacroLevel =
(GS,GSinit, GT,Gδ) where,

• GS = Sadequate ∪ SselfOrganising

where Sadequate ∩ SselfOrganising = ∅

• GSinit is the system initial state.
GSinit ∈ GS

• GT =MaintainGF ∪ Perturbations ∪ SelfOrganising
where MaintainGF , Perturbations and SelfOrganising are pairwise disjoint.

• Gδ ⊆ GS ×GT ×GS

The observed system behaviour is defined as a sequence (which can be infinite)

alternating states and actions gs0
gt1
−−→ gs1

gt2
−−→ gs2... where for all i > 0, gti ∈ GT

such as (gsi−1,
gti
−−→, gsi) ∈ Gδ. We denote by ε(GS) the set of all the observable traces

of the system. state(ǫ, i) denotes the observable sate of the system at time i in the trace
ǫ ∈ ε(GS).

The observed macro behaviour is modelled by means of an Event-B machine in
which the variables describes the global system state and the events belongs to the set
MaintainGF, SelfOrganising, Perturbations. This machine called MacroLevel is
given by the figure 7.

Figure 7 The SOMAS modelling at the macro level: the machine MacroLevel

Based on these definitions, the convergence and resilience properties of the macro level
are defined in the following paragraphs.

3.2.1 SOMAS convergence formalization

The convergence ([3]) indicates the capacity of the system to reach it objective in the absence
of disturbances. The system converges either upon initialisation, it is in a functionally
adequate state or when it is guaranteed that the system will be able to achieve a functionally
adequate state after a finite number of transitions.

Formally, convergence of the MacroLevel system is expressed by the formula:

GSinit ∈ Sadequate ∨ (∀ǫ ∈ ε(MacroLevel) · ∃i · state(ǫ, i) ∈ Sadequate).

This definition is formulated by the use of temporal operators as follows.

MacroLevel ⊢ ♦� FA(macroState)

The rule LIV E♦� given above allows us to prove convergence property.

MacroLevel ⊢ ր FA(macroState)

MacroLevel ⊢ 	 ¬ FA(macroState) LIV E♦�
MacroLevel ⊢ ♦� FA(macroState)

The first antecedent in this formula (MacroLevel ⊢ր FA(macroState)) ensures that
every execution of the machineMacroLevel terminates with an infinite sequence of states
satisfying the predicate FA(macroState). To prove this antecedent, three conditions need
to be guaranteed:

• Define the variant convProg in the machine MacroLevel. This variant is defined
in terms of the system macro state and models the system progression towards the
functional adequacy. The figure 8 supposes that the variant convProg is a natural
number, but it can be also a non empty finite set.

Figure 8 The variant convProg definition in the machine MacroLevel.

• Prove that the event selfOrgConv (Figure 9) decrements, in each execution, the
variant convProg. The variable agentStep is used for defining the perceive−
decide− act cycle. The role of the variable agentMode is to synchronise the agents
execution and the environment one. So that he execution of the environment occurs
when each agent has accomplished one cycle. Thus these variables are used for the
synchronization of the system elements.

Figure 9 The event selfOrgConv in the machine MacroLevel

• Prove that the events m and observer (Figure 10) do not increment the variant
convProg in each execution.

The second antecedent (MacroLevel ⊢	 ¬FA(macroState)) guarantees that the
machine MacroLevel is deadlock-free in a state not satisfying FA(macroState). This
proof is formulated by the theorem given by figure 11.

Figure 10 The events m and observer in the machine MacroLevel.

Figure 11 The deadlock-free theorem of the machine MacroLevel in the state
¬FA(macroState)

3.2.2 SOMAS resilience formalization

The resilience ([3]) describes the ability of the system to adapt to changes and disruptions
that may occur. The resilience analysis evaluates the ability of self-organization mechanisms
to restore the system state after disturbances without explicitly detect an error.

We note by p a distribution coming from the agents or the environment and causing a
set of disturbances noted ψ (ψ ⊆ GS × p×GS). This disruption moves the system from
a functionally adequate state to a state of self-organization. The system is said resilient to
the p disruption if it is able to find a functionally adequate state after this disruption.

Formally, the systemMacroLevel = (GS,GSinit, GT,Gδ) is resilient to p disruption
if for any trace ǫ ∈ ε(GS) in which exists i > 0 verifying state(ǫ, i) = gs and for any
self-organising state gs′ verifying (gs, p, gs′) ∈ ψ, the following formula is true.

∀ǫ′ ∈ ε(MacroLevel, gs′) · ∃j > 0 · state(ǫ′, j) ∈ Sadequate.

This formula is expressed by means of first order logic and temporal operators as follows:

MAS ⊢ �(¬FA(macroState) ⇒ ♦FA(macroState)). (1)

The formula 1 can be rewritten by means of the leadsto operator as follows:

MAS ⊢ ¬FA(macroState) FA(macroState). (2)

In order to prove this formula, we use the TLA proof rule SF1 offering a more explicit
means for expressing scheduling execution of events.

Consider the notations:

• N = selfOrg ∨ selfOrgConv ∨ p ∨ observer ∨m,

• f = convProg(macroState),

The rule SF1 is rewritten as:

SF1.1 ¬FA(macroState) ∧ [N]f ⇒ (¬FA′(macroState) ∨ FA′(macroState))
SF1.2 ¬FA(macroState) ∧ 〈N ∧ selfOrgConv〉f ⇒ FA′(macroState)
SF1.3 �¬FA(macroState) ∧�[N]f ⇒ ♦Enabled〈selfOrgConv〉f

SF1
�[N]f ∧ SFf (selfOrgConv) ⇒ P FA′(macroState)

The condition SFf (selfOrgConv) is a strong fairness assumption on the action of the
selfOrgConv event. It is expressed using temporal operators as follows:

SFf (selfOrgConv)=̂�♦Enabled〈selfOrgConv〉f ⇒ �♦〈selfOrgConv〉f (3)

Thanks to the formula 3, we prove that the action of the event selfOrgConvwill eventually
be executed when this event is infinitely often activated (it is not constantly activated).

3.3 The refinement strategy

The formal development of SOMAS begins by a very abstract model representing
the system as a set of agents operating according to the Perceive-Decide-Act cycle.
These agents are situated in an environment which behaviour is modelled by the event
EnvironmentChange. The context ContextInit describes the modes wait etwork (the
set Modes) and the steps (the set Steps) in which an agent could be. This abstract model
guarantees LocProp1. An overview of this machine is given in figure 12.

Each of the events Perceive, Decide and Perform (figure 13) corresponds to one
step in the agent cycle and allows to move the considered agent from one step to the next.
In this abstract machine, the EnvironmentChange models the environment execution. It
will be refined in the next steps for modelling the changes that can occur in the environment
like perturbations for example.

This abstract model guaranteesLocProp1 (Each agent functions according to the cycle
perceive-decide-act). It will be subject of a three steps refinement series.

The first refinement consists in identifying the different actions performed by the agents.
Thus, the refinement of the machine InitialModel by Agents1 is achieved by splitting
the Perform event into the different actions an agent can perform. This refinement should
ensureLocProp2. Figure 14 is an excerpt from theAgents1machine modelling the actions
of an agent.

In the second refinement step, we refine the machineAgents1 by the machineAgents2.
We specify the events corresponding to the decisions that an agent can make. In addition,
we describe the rules allowing the agent to decide. We also introduce the actuators of the
agents. By using witness, we connect the actions introduced in the previous refinement with
the corresponding decisions defined in this stage of refinement. Figure 15 describes how
the decision and action events are refined.

Figure 12 The initial model InitialModel

Figure 13 Events Perceive, Decide and Perform of the initial machine InitialModel

Machine Agents1
SEES
Context1

EVENTS
...

EVENT Perform_Action_i
REFINES Perform

ANY
agent
action

WHERE
checkStep : agent ∈ Agents ∧ stepAgent(agent) = perform
checkAction : action = Action_i

THEN
updStepAg : stepAgent(agent) := perceive

END
END

Figure 14 The refinement of the event Perform in the Agents1 machine

EVENT Decide_Perform_Action_i
REFINES Decide

ANY
agent

WHERE
checkStep : agent ∈ Agents ∧ stepAgent(agent) = decide

THEN
updStepAg : stepAgent(agent) := perform
updActAg : actuators(agent) := enabled

END
EVENT Perform_Action_i
REFINES Perform_Action_i

ANY
agent

WHERE
checkStep : agent ∈ Agents ∧ stepAgent(agent) = perform
checkActuator : actuators(agent) = enabled

WITH
action : action =
Act_Action_i ⇔ actuators(agent) = enabled

THEN
updStepAg : stepAgent(agent) := perceive

END

Figure 15 The refinement of the Perform and Decide events in the Agents2 machine

In the third refinement, the perceptions of the agents and the necessary events to update
them are identified. As a consequence the different events related to the decisions and actions
are refined and property LocProp3 should be satisfied.

Figure 16 shows an excerpt from the Agents3 machine that refines the Agents2
machine. The gluInvSensorsPercept invariant is a gluing invariant making connection
between the perception and the activation of the agent’s sensors. In the context Context3,
we define the ability AbilityToPerceive (used in the Perceive event in the figure 16)
allowing the agent to determine the state of its local environment based on the global system
state.

Machine Agents3
SEES
Context3

VARIABLES
sensors
rep
ActualSysState

INVARIANTS
defSensorAg : sensors ∈ Agents → Activation
defRepAg : rep ∈ Agents → V alue
defGlobalStateSys : ActualSysState ∈ SysStates
gluInvSensorsPercept : ∀ag·ag ∈ Agents⇒

(stepAgent(ag) = perceive
⇔sensors(ag) = enabled)

EVENTS
EVENT Perceive
REFINES Perceive

ANY
agent

WHERE
grdAgent : agent ∈ Agents
grdChekSensors : sensors(agent) = enabled

THEN
updStepAg : stepAgent(agent) := decide
updRepAg : rep(agent) :=

AbilityToPerceive(ActualSysState)
updSensorAg : sensors := disabled

END
END

Figure 16 Refinement of the Perceive event in the machine Agents3

4 Application to the foraging ants

The case study is a formalization of the behaviour of a foraging ants colony. The system
is composed of several ants moving and searching for food in an environment. Their main
goal is to bring all the food placed in the environment to their nest. Ants do not have any
information about the locations of the sources of food, but they are able to smell the food
which is inside their perception field. The ants interact with one another via the environment
by dropping a chemical substance called pheromone. In fact, when an ant discovers a source
of food, it takes a part of it and comes back to the nest by depositing pheromone for marking
food paths. The behaviour of the system at the micro-level is described as follows. Initially,
all ants are in the nest. When exploring the environment, the ant updates its representations
in its perception field and decides to which location to move. When moving, the ant must
avoid obstacles. According to its smells, three cases are possible:

1. the ant smells food: it decides to take the direction in which the smell of food is stronger
(even if it smells some pheromone).

2. the ant smells only pheromone: it decides to move towards the direction in which the
smell of pheromone is stronger.

3. the ant doesn’t smell anything: it chooses its next location randomly.

When an ant reaches a source of food in one location, it collects it and comes back to the
nest. If some food remains in this location, the ant drops pheromone when coming back.
Arriving at the nest, the ant deposits the harvested food and begins another exploration.

In addition to the propertiesLocProp1,LocProp2 andLocProp3 (described in section
3), the following properties should be verified at the micro-level.

• LocInv1: the ant should avoid obstacles

• LocInv2: a given location cannot contain both obstacle and food.

The main global properties associated with the foraging ants system are:

• convergence property: the ants are able to bring all the food to the nest

• resilience property: when a source of food is added, the ants are able to detect it

4.1 Formalization of the ants local behaviour

Abstract model: the initial machine Ants0 describes an agent (each agent is an ant)
operating according to the Perceive-Decide-Act cycle. It contains three events Perceive,
Decide and Perform describing the agent behavioural rules in each step. At this very
abstract level, these events are just responsible for switching an agent from one step to
another. The current cycle step of each agent is depicted by the variable stepAgent defined
as follows.

inv1 : stepAgent ∈ Ants → Steps

where Ants defines the set of the agents and Steps is defined by the axiom axm1.
The partition operator allows the enumeration of the different steps of an ant.

axm1 : partition(Steps, {perceive}, {decide}, {perform})

As an example, we give below the event Performmodelling the action step. The only
action specified at this level is to switch the ant from the action step to the perception one.

EVENT Perform
ANY
ant

WHERE
grd12 : ant ∈ Ants ∧ stepAgent(ant) = perform

THEN
act1 : stepAgent(ant) := perceive

END

A Stepwise Refinement based Development of SOMAS 19

The proof obligations related to this machine concern essentially preservation of the
invariant inv1 by the three events. All of them are generated and proved automatically
under the Rodin platform.
First refinement: in the first refinement Ants1, we add the variables QuantityFood,
Obstaclesmodelling respectively the food and the obstacles distribution in the environment,
currentLoc and load which give respectively the current location and the quantity of
food loaded of each ant. Invariants inv5 and inv3 guarantee the properties LocInv1 and
LocInv2 respectively. The notation dom is the domain of a function. The symbol✄− denotes
a range subtraction. Thus,QuantityFood✄− {0} is a subset of the relationQuantityFood
that contains all pairs whose second element is not equal to zero.

inv1 : QuantityFood ∈ Locations → N

inv2 : Obstacles ⊆ Locations \ {Nest}
inv3 : Obstacles ∩ dom(QuantityFood ✄− {0}) = ∅

inv4 : currentLoc ∈ Ants → Locations
inv5 : ∀ant·ant ∈ Ants ⇒ currentLoc(ant) /∈ Obstacles
inv6 : load ∈ Ants → N

Moreover, the Perform event is refined by the four following events:

1. PerformAntsMove: the ant moves in the environment

2. PerformAntsMoveDropPheromone: the ant moves and drops pheromone when
coming back to the nest

3. PerformAntsHarvestFood: the ant picks up food

4. PerformAntsDropFood: the ant drops food at the nest

In the following, the event PerformAntsMove is presented as an action event
example.

EVENT PerformAntsMove
REFINES Perform

ANY
ant, loc, decideAct

WHERE
grd12 : ant ∈ Ants ∧ stepAgent(ant) = perform
grd34 : loc ∈ Next(currentLoc(ant)) ∧ decideAct = move

THEN
act12 : stepAgent(ant) := perceive||currentLoc(ant) := loc

END

The parameter loc is the next location to which the ant will move. It is the result of
the decision process. This decision process will be modelled in the next refinement. The
parameter decideAct is also an abstract parameter that will be refined in the next step. It
indicates what type of decision can lead to the execution of thePerformAntsMove event.

The majority of the generated proof obligations are related to proving the refinement
correctness (the SIM proof obligation) and the preservation of invariants. With the
presented version of the PerformAntsMove event, it is impossible to discharge the
inv5 preservation proof obligation (inv5 states that an ant cannot be in a location
containing obstacles). In fact, if loc belongs to the set Obstacles, PerformAntsMove
will enable ant to move to a location containing an obstacle, which is forbidden by
inv5. In order to discharge the inv5 preservation proof obligation, we need to add
the guard grd5 : loc /∈ Obstacles to PerformAntsMove event. Finally, in order to

guarantee the property LocProp2 for the PerformAntsMove event, it is necessary to
add another event PerformAntsMoveImpossible that refines Perform and allows
to take into account the situation where the move to loc is not possible because of
obstacles. PerformAntsMoveImpossible will just allow ant to return to the perception
step. The same reasoning is applied for PerformAntsMoveDropPheromone. For
PerformAntsHarvestFood, we should consider the case where the food disappears
before that the ant takes it.

The Rodin tool generates 35 proof obligations for the correctness of the refinement.
85% of them are proved automatically and the rest has been proven using the interactive
proof environment.
Second refinement: the second refinement Ants2 serves to create the links between
the made decision and the corresponding action. We add the actuators of an ant: paw,
exocrinGland, mandible as well as the ant’s characteristic nextLocation which is
updated when taking a decision. The Decide event is split into five events:

1. DecideAntsMoveExplore: decide to move for exploring the environment

2. DecideAntsMoveBack: decide to come back to the nest

3. DecAntsMoveBackDrop: decide to come back while dropping pheromone

4. DecideAntsHarvestFood: decide to take the food

5. DecideAntsDropFood: decide to drop food at the nest

As an example, we give the event DecideAntsMoveExplore below.

EVENT DecideAntsMoveExplore
REFINES Decide

ANY
ant, loc

WHERE
grd12 : ant ∈ Ants ∧ stepAgent(ant) = decide
grd3 : loc ∈ Next(currentLoc(ant)) ∧ loc 6= Nest

THEN
act123 : stepAgent(ant) := perform||nextLocation(ant) := loc||paw(ant) := activate

END

As a result of the event DecideAntsMoveExplore execution, the ant chooses its next
location and activates its paws. What is necessary now, is to link the activation of
the paws with the triggering of the move action. Thus, we need to refine the event
PerformAntsMove by adding aWitness relating the parameter decideAct in the event
PerformAntsMove with the variable paw.

EVENT PerformAntsMove
REFINES PerformAntsMove

ANY
ant

WHERE
grd123 : ant ∈ Ants ∧ stepAgent(ant) = perceive ∧ loc ∈ Next(currentLoc(ant))
grd4 : paw(ant) = activate

WITNESSES

decideAct : decideAct = Move ⇔ paw(ant) = activate
loc : loc = nextLocation(ant)

THEN
act12 : stepAgentCycle(ant) := perceive||currentLoc(ant) := nextLocation(ant)
act3 : paw(ant) := disabled

END

The Rodin tool generates 62 proof obligations for the correctness of the refinement.
79% of them are proved automatically and the rest has been proven using the interactive
proof environment.
Third refinement: at this level of refinement (Ants3), the ants representations about the
environment are introduced. Every ant can sense food smell (food) as well as pheromone
scent (pheromone). We introduce also the variable DePhero modelling the distribution
of pheromone in the environment.

The event Perceive (here below) is refined by adding the necessary event actions for
updating the perceptions of an ant.

EVENT Perceive
REFINES Perceive

ANY
ant, loc, fp, php

WHERE
grd123 : ant ∈ Ants ∧ stepAgent(ant) = perceive ∧ loc = currentLoc(ant)
grd45 : fp ∈ Locations × Locations 7→ N ∧ fp = FPerc(QuantityFood)
grd67 : php ∈ Locations × Locations 7→ N ∧ php = PhPerc(DePhero)

THEN
act1 : stepAgentCycle(ant) := decide
act2 : food(ant) := {loc 7→ fp(loc 7→ dir)|dir ∈ Next(loc)}
act3 : pheromone(ant) := {loc 7→ php(loc 7→ dir)|dir ∈ Next(loc)}

END

FPerc (guard grd45) and PhPerc (guard grd67) models the ability of an ant to smell
respectively the food and the pheromone situated in its perception field. They are defined
in the accompanying context of Ants3. After execution of the event Perceive, the ant
acquires a knowledge about the food smell and pheromone scent for each direction from
its current location.

Moreover, we split the event DecideAntsMoveExplore into three events:

1. DecideAntsMoveRandom: decide to move to a location chosen randomly because
no scent is smelt

2. DecideAntsMoveFollowFood: decide to move towards the direction where the food
smell is maximum

3. DecideAntsMoveFollowPheromone: decide to move towards the direction in
which the pheromone smell is maximum

This split guarantees the LocProp3 property for the decision concerning the move.
The event PerformAntsMove is also refined in order to take into account these different
decisions.

The Rodin tool generates 59 proof obligations for the correctness of the refinement.
40% of them are proved automatically.

4.2 Formalization of the ant global properties

The three refinement steps described in the last section have enabled us to specify a correct
individual behaviour for the ants. Let us now focus on the ability of the modelled behaviour
to reach the desired global properties.

4.2.1 Proving the ants convergence

The ants convergence concerns their ability to collect and bring all food to the nest. The
proof of this property needs the specification of the observer event and the termination proof
of all the events representing ants actions.

The observer event

The observer event is responsible to detect if the system has achieved its overall functionality.
This is a particular event with no action whose guard describes the state of the system when
it reaches its goal.

For the foraging ants, we considered that the overall functionality system is to bring
the food, initially dispersed in the environment, to the nest. Thus, the guard of the observer
event called AllFoodAtNest is described by the following expression.

∀loc·loc ∈ Locations \ {Nest} ⇒ QuantityFood(loc) = 0∧
TotalFood(InitFoodDist 7→ Locations) = QuantityFood(Nest)

In this expression,QuantityFood is a total function giving for each location in the grid
(environment) the amount of food it contains. The function TotalFood returns the sum of
the amount of food in the environment.

Termination of the action events

As mentioned in the sectin 1.1, the proof of events termination requires the definition of a
numerical expression or a finite set, called variant. It is possible to define a single variant by
machine, so this termination proof requires several refinement steps during each of which a
single action event will be considered. Table 1 describes for each event, the variant needed
to prove its termination.

Once the variants defined, the next step is to show that in each execution of these
events, the corresponding variants will be decreased. In some cases, this proof is trivial and
requires a slight modification of the guards and actions of the event responsible of the variant
decrease (the case of events PerformAntsDropFood, PerformAntsHarvestFood
and PerformAntsDropPheromone).

In other cases, the termination proof requires the addition of new axioms
(PerformAntsMoveBack, PerformAntsMoveExploreFollowFood and
PerformAntsMoveExploreFollowPheromone). Finally, it is necessary to suppose
strong fairness assumption to prove that the event PerformAntsMoveExploreRandom
decrements its variant. This proof is done therefore by means of the TLA logic.

In the following paragraphs we show the proof termination of one
event among the three groups defined above. We are interested particularly
to the events PerformAntsDropFood, PerformAntsMoveBack and
PerformAntsMoveExploreRandom.

The event PerformAntsDropFood proof termination.

To prove that the event PerformAntsDropFood converges, we define the variant
AntsDroppingFoodAtNest as the set of ants dumping food at nest. The events responsible
for changing this variant areDecideAntsDropFood andPerformAntsDropFood. They
are thus refined as shown in the following.

Event Variant

PerformAntsDropFood V1: the set of ants dumping food at nest
PerformAntsHarvestFood V2: the total quantity of food in the

environment except the nest
PerformAntsDropPheromone V3: the set of ants putting pheromone

PerformAntsMoveBack V4: the sum of the distances between the
locations of ants returning to the nest and
the nest

PerformAntsMoveExploreFollowFood V5: the sum of the distances between
the locations of ants moving towards a
particular source of food and the location
of the corresponding source of food

PerformAntsMoveExploreFollowPheromone V6: the sum of the distances between the
locations of ants following a particular
pheromone smell and the location
containing this pheromone

PerformAntsMoveExploreRandom V7: the set of ants moving aleatory

Table 1 The necessary variants for proving the termination of the action events.

Event DecideAntsDropFood refinement. This refinement models the set
AntsDroppingFoodAtNest updating. The update is done by adding a fully
loaded ant arriving at nest in this set. This refinement consists in adding the
action addAntDrpping (described below) among the actions of the event
DecideAntsDropFood.

addAntDrpping : AntsDroppingFoodAtNest := AntsDroppingFoodAtNest ∪ {ant}

Event PerformAntsDropFood refinement. In order to prove that the
event PerformAntsDropFood decreases in each execution the
variant AntsDroppingFoodAtNest, it is necessary to add the action
removeAntsDropFood defined below.

removeAntsDropFood : AntsDroppingFoodAtNest := AntsDroppingFoodAtNest \ {ant}

The event PerformAntsMoveBack proof termination

To prove the convergence of the event PerformAntsMoveBack, we define the varying
V 4 formalized by the following expression.

SumDistances({a·a ∈ AntsApproachingNest|a 7→ Dist(currentLoc(a) 7→ Nest)})

Informally, the variant V 4 is the sum of the distances between the nest and the locations
of all ants coming back to the nest (ants of the set AntsApproachingNest). In this
expression, the function SumDistances returns the sum of distances. Dist is a function
measuring the distance between two locations in the environment. When coming back to

the nest, the ant chooses the next location where it feels more the smell of the nest, i.e. the
closest location to the nest. Thus, in order to allow the PerformAntsMoveBack event
convergence proof, we add necessary axioms stating that when an ant fully loaded and
coming back to the nest chooses its next location, the distance between its current location
and the nest decreases.

The event PerformAntsMoveExploreRandom proof termination

To prove the termination of the PerformAntsMoveExploreRandom event, we add
the variable AntsMovingRandom representing all the ants exploring at random the
environment. Moreover, we refine the event PerformAntsMoveExploreRandom
by splitting it in two events: PerformAntsMoveExploreRandomRef and
PerformAntsMoveExploreRandomConv.

The event PerformAntsMoveExploreRandomRef models an ant random
movement that keeps the ant concerned throughout AntsMovingRandom
i.e. the next move of this ant will also be at random. The event
PerformAntsMoveExploreRandomConv describes a random movement allowing
the ant who made it to leave the set AntsMovingRandom and so allowing it to carry on
exploring the environment by following food or pheromone. Proving the convergence of
theses two events needs to prove the formula P Q where P denotes a state describing
the current cardinality of the set AntsMovingRandon and Q denotes a state where this
cardinality is decreased.

Using the strong fairness rule SF1 of the TLA logic, it is possible to prove that formula.
We consider:

N =̂PerformAntsMoveExploreRandomRef ∨
PerformAntsMoveExploreRandomConv
AMovRandConv=̂PerformAntsMoveExploreRandomConv
P =̂card(AntsMovingRandom) = n+ 1
Q=̂card(AntsMovingRandom) = n
where card(AntsMovingRandom) denotes the cardinality of the set
AntsMovingRandom,
the rule SF1 can be rewritten as

SF1.1 P ∧ [N]AntsMovingRandom ⇒ (P ′ ∨Q′)
SF1.2 P ∧ 〈N ∧AMovRandConv〉AntsMovingRandom ⇒ Q′

SF1.3 �P ∧�[N]AntsMovingRandom ⇒ ♦Enabled〈AMovRandConv〉AntsMovingRandom

SF1 �[N]AntsMovingRandom ∧ SFAntsMovingRandom(AMovRandConv) ⇒ P Q

The formula SF1.1 states that the execution of one event
among the events PerformAntsMoveExploreRandomRef and
PerformAntsMoveExploreRandomConv from theP state, can either move the system
to a state satisfying P ′ = card(AntsMovingRandom) = n+ 1, i.e. the cardinality of
the set AntsMovingRandom does not change, or move the system to the state Q′ =
card(AntsMovingRandom) = n, i.e. the cardinality of the set AntsMovingRandom
is decreased. In the formula SF1.2, the action AMovRandConv allows to achieve the state
Q′ = card(AntsMovingRandom) = n. The formula SF1.3 indicates that the action
AMovRandConv is eventually enabled.

Strong fairness assumption of the action AMovRandConv formulated by
SFAntsMovingRandom(AMovRandConv), allows to prove the formula P Q.

4.2.2 Proving the ants resilience to new food introduction

The models obtained so far describe the ants behaviour. They guarantee deadlock freeness
at the local level and the system convergence to a state where all the food is harvested at the
global level. This convergence has been proved by assuming that the environment remains
unchanged. Thus, the events related to the emergence of new food sources or the appearance
of new obstacles were not taken into account.

So, in this section, we are interested by the reaction of the ants when new food sources
are added to the environment. We want to prove that ants are able to detect it. We express
this property by using temporal logic by the formula 4.

ResNewFood =̂ �(∀loc.(loc ∈ NewFoodLocations∧

∃ant.comeBackAnt(ant) = FALSE ∧ nextLocation(ant) = loc)

⇒ ♦(loc ∈ DetectedFoodLocations)) (4)

In the formula 4, the variableNewFoodLocations denotes the set of locations in which
the food is added. The variable DetectedFoodLocations denotes the set of food sources
detected.

Informally, this formula means that any food source (denoted loc) added in the
environment (loc ∈ NewFoodLocations) will eventually be detected. The condition
(∃ant.comeBackAnt(ant) = FALSE ∧ nextLocation(ant) = loc) specifies that there
is an ant in exploration mode (comeBackAnt(ant) = FALSE) which has detected a
source of food by making a move into its direction.

The introduction of a new food in the environment is modelled by the event
EnvironmentChangeAddFood which refines EnvironmentChange and given by the
figure 17.

EVENT EnvironmentChangeAddFood
REFINES EnvironmentChange

ANY
newFood

WHERE
grd1 : ∀agent·agent ∈ Ants ⇒ antMode(agent) = wait
grd2 : newFood ⊆ ({loc·loc ∈ Locations ∧ QuantityFood(loc) = 0|loc} \ {Nest})

THEN
act1 : antMode : |antMode′ = Ants × {work}
act2 : NewFoodLocations := NewFoodLocations ∪ newFood
act3 : QuantityFood : |QuantityFood′(newFood) ∈ 1..QuantityFoodMax∧

∀loc ∈ Locations \ {newFood} ⇒ QuantityFood′(loc) = QuantityFood(loc)
END

Figure 17 The event EnvironmentChangeAddFood

The action act3 changes the amount of food in one location by adding food in the
relevant one and keeping the amount of food unchanged in the other locations.

Moreover, we model the self-organization mechanisms allowing the ants to
explore more efficiently the environment by going into directions not yet visited
and thus discover new source of food. Therefore, we introduce the event
PerformAntsMoveExploreAvoidCompetition enabling the ants to avoid going into
directions containing a lot of ants even if they contain food.

In addition, it is necessary to model the events allowing the system to
progress towards the desired state, i.e. the introduced source of food is detected.
Thus, the event PerformAntsMoveExploreFollowFood is refined by the event
PerformAntsMoveExploreFollowFoodF irstT ime which models the detection of
a source of food for the first time. A source of food is detected for the first time if
it is chosen by an ant to be its next location. Thus the guard of the concrete event
PerformAntsMoveExploreFollowFoodF irstT ime is enriched by the expression
nextLocation(ant) ∈ NewFoodLocations.

Additionally, the location containing the detected source of food should be removed
from the set of the locations containing the newly introduced food and added to the set of
detected food locations. These actions are formalized as described in the figure 18.

actionDetectedUpdate : DetectedFoodLocations := DetectedFoodLocations ∪ {nextLocation(ant)}
actionNewFooddUpdate : NewFoodLocations := NewFoodLocations \ {nextLocation(ant)}

Figure 18 Actions added to the actions list of the event
PerformAntsMoveExploreFollowFoodF irstT ime

Finally, the observer event ObservResilience is introduced. This event contains
no action and its guard describes the state on which any added food is detected, i.e.
NewFoodLocations = ∅.

Once the model elements are defined, we proceed to prove the resilience property
ResNewFood. We consider the two predicates P and QDetected defined according to the
cardinality of the set NewFoodLocations.

P =̂card(NewFoodLocations) = n+ 1,
QDetected =̂card(NewFoodLocations) = n
and we want to prove the formula P QDetected.
We define N and ADetected as follows:
N=̂PerformAntsMoveExploreFollowFoodF irstT ime ∨
PerformAntsMoveExploreFollowFood ∨
PerformAntsMoveExploreAvoidCompetition ∨
PerformAntsMoveExploreFollowPheromone ∨
PerformAntsMoveExploreRandom ∨
EnvironmentChangeAddFood ∨
ResilienceOberver
and
ADetected =̂ PerformAntsMoveExploreFollowFoodF irstT ime.
By applying SF1, it is possible to prove P QDetected:

SF1.1 P ∧ [N]NewFoodLocations ⇒ (P ′ ∨ Q′

Detected)
SF1.2 P ∧ 〈N ∧ ADetected〉NewFoodLocations ⇒ Q′

Detected)
SF1.3 �P ∧�[N]NewFoodLocations ⇒ ♦Enabled〈ADetected〉NewFoodLocations

SF1 �[N]NewFoodLocations ∧ SFNewFoodLocations(ADetected) ⇒ P QDetected

The condition SF1.1 describes a stage in which the system progresses to a state
satisfying the predicate P or to a state verifying QDetected. The condition SF1.2 is
an induction step during which the action 〈ADetected〉NewFoodLocations (detection of
food added) leads to a state satisfying QDetected. The condition SF1.3 ensures that
〈ADetected〉NewFoodLocations will eventually be activated.

Assuming that the operations of adding food in the environment will eventually
be arrested and by applying the rule LATTICE, we can prove that the set
NewFoodLocations will eventually be void. The achievement of this state activates the
ResilienceObserver event marking the end of the resilience process.

5 Related work

Related work cited in this section deals in the first part, with the formal modelling and
verification of self-organization. The second part is dedicated to the presentation of works
using Event-B for the development of adaptive systems.

5.1 Formal modelling of self-organizing systems

The verification of self-organizing systems was the subject of several research works.
The majority of the proposed approaches is based on simulation and the stochastic model
checking to measure the impact of various parameters on the system behaviour.

In [11], Gardelli uses stochastic Pi-Calculus for modelling SOMAS for intrusion
detection. This formalization was used to perform simulations using the SPIM tool to
evaluate the impact of certain parameters, such as the number of agents and frequency of
inspections, on the system behaviour.

In [12], a hybrid approach for modelling and verifying self-organizing systems has
been proposed. This approach uses stochastic simulations to model the system described
as Markov chains and the technique of probabilistic model checking for verification. To
avoid the state explosion problem, encountered with model-checkers, the authors propose
to use approximate model-checking based on simulations. The approach was tested for the
problem of collective sorting using the PRISM tool.

Konur and colleagues ([13]) use also thePRISM tool and probabilistic model checking
to verify the behaviour of robot swarm and particularly foraging robots. The authors verify
properties expressed by PCTL logic (Probabilistic Computation Tree Logic) for several
scenarios. These properties provide information, in particular, on the probability that the
swarm acquires a certain amount of energy for a certain number of agents and in a certain
amount of time. Simulations were also used to show the correlation between the density of
foraging robots in the arena and the amount of energy gained.

Most of the works exposed above use the model checking technique to evaluate the
behaviour of the system and adjust its parameters. Although they were able to overcome the
state explosion problem and prove the effectiveness of their approaches, these works do not
offer any guidance to help the designer to find the source of error in case of problems and
to correct the local behaviour at the micro level. For the purpose of giving more guidance
for the designer, we find that the use of Event-B language and its principle of refinement
are very useful.

5.2 Formal modelling using the Event-B language

In [14], the authors propose a formal modelling framework for critical MAS, through a
series of refinement step to derive a secure system implementation. Security is guaranteed
by satisfying three properties: 1) an agent recovering from a failure cannot participate in a
cooperative activity with others, 2) interactions can take place only between interconnected

agents and 3) initiated cooperative activities should complete successfully. This framework
is applied to model critical activities of an emergency.

An Event-B modelling for fault tolerant MAS was proposed in [15]. The authors propose
a refinement strategy that starts by specifying the main purpose of the system, defines the
necessary agents to accomplish it, then introduces the various failures of agents and ends
by introducing the communication model and error recovery mechanisms. The refinement
process ensures a set of properties, mainly 1) reachability of the main purpose of the system,
2) the integrity between agents local information and global information and 3) efficiency
of cooperative activities for error recovery.

The work ofHoang andAbrial in [16] was interested in checking liveness properties in
the context of the nodes topology discovery in a network. The proposed refinement strategy
allows to prove the stability property, indicating that the system will reach a stable state
when the environment remains inactive. The system is called stable if the local information
about the topology in each node are consistent with the actual network topology.

These works based on the correct by construction approach, often providing a top-
down formalization approach, have the particularity of being exempt from the combinatorial
explosion problem found with the model checking technique. They have the advantage
of allowing the designer to discover the restrictions to be imposed to ensure the desired
properties. We share the same goals as the works presented i.e. ensuring liveness properties
and simplifying the development by the use of stepwise refinements. Our refinement strategy
was used to guide the modelling of individual behaviours of agents, unlike the proposed
refinement strategies that use a top-down development of the entire system. We made this
choice to be closer as possible to the bottom-up nature of self-organizing systems.

In this paper, we use the theorem proving technique. Our aim is double. First, to allow
the designer to specify formally by stepwise refinements the local behaviour of the agents.
Second, to prove the properties at the local and the global levels. Contrary to [15] and [14],
we propose a bottom-up refinement strategy that we consider more appropriate and more
natural to model self-organizing MAS. In fact, this strategy allows us to model the local
behaviour of the agents and then to reason about the global behaviour of the system.

There are other works usingObjectZ orB like [17] and [18]. In [17], the authors propose
the formalization of an organisational meta-model for SOMAS by the use of ObjectZ and
the statechart diagrams. This meta-model specify formally the concepts of role, interaction

and organisation but does not allow to reason about convergence and resilience of the
system. The work presented in [18] proposes design patterns based on the B language for
modelling situated agents according to the model Influence/Reaction which is functioning
similarly to the perceive− decide− act cycle adopted in our work. The objective of this
formalization was to guarantee security properties but not properties related to convergence
and resilience as the case of our work.

6 Conclusion

We have presented in this paper a formal modelling for SOMAS by means of Event-B. In
our formalization, we consider the system in two abstraction levels: the micro and macro
levels. This abstraction allows to focus the development efforts on a particular aspect of the
system. We propose a stepwise refinement strategy to build a correct individual behaviour.
This refinement strategy is extended in order to prove global properties such as convergence
and resilience. Our proposal was applied to the foraging ants case study. While the proof

obligations were used to prove the correctness of the micro level models, it was necessary to
turn to TLA in order to prove the properties at the macro-level. We think that this combination
of TLA and Event-B is very promising for formal reasoning about SOMAS.

Our ambitions for future works are summarized in the following three points:

• Defining formal refinement patterns by means of Event-B. Our goal is to provide
a SOMAS designer a helpful tool allowing the use of formal techniques in the
development process.

• Integration of the proposed formal framework within SOMAS development methods
in order to ensure formal proofs at the early stages of the system development. This
integration will be made by using model-driven engineering techniques.

• Introduction of the self-organization mechanisms, based on the cooperation in
particular, at the proposed refinement strategy of the local agents behaviour and the
analysis of the impact of these mechanisms on the resilience of the system. For the
foraging ants, for example, the objective is to analyse the ability of the ants to improve
the rapidity of reaching and exploiting food thanks to their cooperative attitude. To
achieve this aim, we plan to use a probabilistic approach coupled with Event-B.

References

[1] Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. Self-
organization in multi-agent systems. Knowledge Eng. Review, 2005.

[2] Marie-Pierre Gleizes. Self-adaptive Complex Systems (regular paper). In
Massimo Cossentino, Mickael Kaisers, Karl Tuyls, and Gerhard Weiss, editors,
European Workshop on Multi-Agent Systems (EUMAS), Maastricht, The Netherlands,

13/11/2011-16/11/2011, volume 7541, pages 114–128, http://www.springerlink.com/,
2012. Springer-Verlag.

[3] G. Di Marzo Serugendo. Robustness and dependability of self-organizing systems - a
safety engineering perspective. In Proceedings of the 11th International Symposium

on Stabilization, Safety, and Security of Distributed Systems, pages 254–268, Berlin,
Heidelberg, 2009. Springer-Verlag.

[4] Steven Carl Bankes. Robustness, adaptivity, and resiliency analysis. In AAAI Fall

Symposium: Complex Adaptive Systems, volume FS-10-03 of AAAI Technical Report.
AAAI, 2010.

[5] Carole Bernon, Marie Pierre Gleizes, and Gauthier Picard. Enhancing self-organising
emergent systems design with simulation. In Gregory M. P. O’Hare, Alessandro Ricci,
Michael J. O’Grady, and Oguz Dikenelli, editors, ESAW, volume 4457 of Lecture Notes

in Computer Science, pages 284–299. Springer, 2006.

[6] E. Kaddoum, C. Raibulet, J-P. GeorgÃ©, G. Picard, and M-P. Gleizes. Criteria for the
evaluation of self-* systems. In Workshop on Software Engineering for Adaptive and

Self-Managing Systems, 2010.

[7] J.-R. Abrial. Modelling in Event-B. Cambridge University Press, 2010.

[8] Dominique Méry and Michael Poppleton. Formal modelling and verification of
population protocols. In IFM, pages 208–222, 2013.

[9] Thai Son Hoang and Jean-Raymond Abrial. Reasoning about liveness properties
in Event-B. In Formal Methods and Software Engineering - 13th International

Conference on Formal Engineering Methods, ICFEM 2011, Durham, UK, October

26-28, 2011. Proceedings, pages 456–471, 2011.

[10] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, 1994.

[11] Luca Gardelli, Mirko Viroli, and Andrea Omicini. Exploring the dynamics of self-
organising systems with stochasticπ-calculus: Detecting abnormal behaviour in MAS.
In Robert Trappl, editor, Cybernetics and Systems 2006, volume 2, pages 539–
544, Vienna, Austria, 18–21 April 2006. Austrian Society for Cybernetic Studies.
18th European Meeting on Cybernetics and Systems Research (EMCSR 2006), 5th
International Symposium “From Agent Theory to Theory Implementation” (AT2AI-
5). Proceedings.

[12] Matteo Casadei and Mirko Viroli. Using probabilistic model checking and simulation
for designing self-organizing systems. In SAC, pages 2103–2104, 2009.

[13] S. Konur, D. Clare, and M. Fisher. Analysing robot swarm behaviour via probabilistic
model checking. Robot. Auton. Syst., 60(2):199–213, February 2012.

[14] I. Pereverzeva, E. Troubitsyna, and L. Laibinis. Formal development of critical multi-
agent systems: A refinement approach. In EDCC, pages 156–161, 2012.

[15] I. Pereverzeva, E. Troubitsyna, and L. Laibinis. Development of fault tolerant mas
with cooperative error recovery by refinement in event-b. CoRR, abs/1210.7035, 2012.

[16] Thai Son Hoang, Hironobu Kuruma, David A. Basin, and Jean-Raymond Abrial.
Developing topology discovery in event-b. Sci. Comput. Program., 74(11-12):879–
899, 2009.

[17] Vincent Hilaire, Pablo Gruer, Abderrafiaa Koukam, and Olivier Simonin. Formal
driven prototyping approach for multiagent systems. IJAOSE, 2(2):246–266, 2008.

[18] Olivier Simonin, Arnaud Lanoix, Alexis Scheuer, and François Charpillet. Specifying
in B the Influence/Reaction Model to Study Situated MAS: Application to vehicles
platooning. In V2CS : First International workshop on Verification and Validation of

multi-agent models for complex systems, page 15 pages, France, November 2011.

