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This paper proposes a formal modelling for Self-Organizing Multi-Agent Systems (SOMAS) based on stepwise refinements, with the Event-B language and the Temporal Logic of Actions (TLA). This modelling allows to develop this kind of systems in a more structured manner. In addition, it enables to reason, in a rigorous way, about the correctness of the derived models both at the local level and the global level. Our work is illustrated by the foraging ants case study.

Introduction

Self-Organizing Multi-Agent Systems (SOMAS) are made of a set of autonomous entities (called agents) interacting together and situated in an environment. Each agent has a limited knowledge about the environment and possesses its own goals. The global function of the overall system emerges from the interactions between the individual entities composing the system as well as interactions between the entities and the environment ( [START_REF] Di | Selforganization in multi-agent systems[END_REF]).

When designing this kind of systems, two levels of observation are generally distinguished: the micro level which corresponds to the agents local behaviour and the macro level which describes the global behaviour.

Thanks to their self-organizing mechanisms, SOMAS are able to adjust their behaviour and cope with the environment changes, i.e. to self-adapt. SOMAS are generally conceived following bottom-up approaches. Thus, the focus is on the local behaviour of the agents. The global function of the system emerges based on some heuristics independent from the overall function like cooperation for example (the case of the AMAS theory [START_REF] Gleizes | Self-adaptive Complex Systems[END_REF]).

One of the main challenges when engineering a SOMAS is about giving formal assurances and guarantees particularly related to its correctness, robustness and resilience. Correctness refers to fulfilment of the different constraints on to the agents activities. Robustness ensures that the system is able to converge to its global objective [START_REF] Di Marzo | Robustness and dependability of self-organizing systems -a safety engineering perspective[END_REF]. Whereas resilience informs about the capability of the system to adapt when robustness fails or a better performance is possible [START_REF] Carl | Robustness, adaptivity, and resiliency analysis[END_REF].

In order to promote the acceptance of SOMAS, it is essential to have effective tools and methods to give such assurances. Some works propose using test and simulation techniques [START_REF] Bernon | Enhancing self-organising emergent systems design with simulation[END_REF], others define metrics for evaluating the resulting behaviour of the system [START_REF] Kaddoum | Criteria for the evaluation of self-* systems[END_REF]. These techniques offer an experimental way to verify SOMAS but don't give any formal guarantee. Thus, our proposal is to take advantage of formal methods. This paper is a first contribution in an ambitious work having as objective to verify formally (by means of theorem proving) SOMAS. For this primary work, we are situated in a particular case where the emergent function of the system is known and observed via simulation. Our aim is to prove these observed properties.

We propose a formal modelling for the local behaviour of the agents based on stepwise refinement steps and the Event-B formalism [START_REF]Modelling in Event-B[END_REF]. Our refinement strategy guarantees the correctness of the system. In order to prove the desired global properties related to robustness and resilience, we use the Lamport's Temporal Logic of Actions (TLA) and its fairnessbased proof rules. The use of TLA was recently proposed in [START_REF] Méry | Formal modelling and verification of population protocols[END_REF] in the context of population protocols and fits well with SOMAS. Our work is illustrated by the foraging ants case study.

This paper is organized as follows. Section 2 presents a background related to the Event-B language, the main principles on which it is based as well as the TLA logic. In section 3, our refinement strategy of SOMAS is presented. An illustration of this strategy by the foraging ants is given in section 4. Section 5 presents a summary of related works dealing with verification of SOMAS. Section 6 concludes and draws future perspectives.

Background

Event-B

The Event-B formalism was proposed by J.R. Abrial [START_REF]Modelling in Event-B[END_REF] as an evolution of the B language. It allows a correct by construction development for distributed and reactive systems. Event-B uses set theory as a modelling notation which enables, contrary to process algebra approaches, to support scalable solutions for system modelling. In order to make formal verification, Event-B is based on theorem proving. This technique avoids the problem of states explosion encountered with the model checking technique.

The concept used to make a formal development with Event-B is that of a model. A model is formed of components which can be of two types: machine and context. A context describes the static part of the model and may include sets and constants defined by the user with their corresponding axioms. A machine is the dynamic part of the model and allows to describe the behaviour of the designed system. It is composed by a collection of variables v and a set of events ev_i.

The variables are constrained by conditions called invariants. The execution of the events must preserve these invariants. A machine may see one or more contexts, this will allow it to use all the elements defined in the seen context(s). The structures of a machine and an event in Event-B are described as presented respectively in the figures 1 and 2. An event is defined by a set of parameters p, the guard G_evi(p, v) which gives the necessary conditions for its activation and the action A_evi(p, v, v ′ ) which describes how variables v are substituted in terms of their old values and the parameters values. The action may Figure 2 The event structure in Event-B consist in several assignments which can be either deterministic or non-deterministic. A deterministic assignment, having the form x := E(p, v), replaces values of variables x with the result obtained from the expression E(p, v). A non-deterministic assignment can be of two forms: 1) x :∈ E(p, v) which arbitrarily chooses a value from the set E(p, v) to assign to x and 2) x : | Q(p, v, v ′ ) which arbitrarily chooses to assign to x a value that satisfies the predicate Q. Q is called a before-after predicate and expresses a relation between the previous values v (before the event execution) and the new ones v ′ (after the event execution).

An Event-B machine can be considered as an automaton which states are described by the values of the set of its variables and transitions between states are captured by the events. Based on this interpretation, T.S. Hoang and J.-R. Abrial ([9]) defined a framework for reasoning about liveness properties over an Event-B machine.

This framework focuses on three types of liveness properties: existence (some good property will always eventually happen), progress (the machine will always evolve from a state P 1 to a state P 2) and persistence (a property will eventually always hold). In our work, we only use the persistence property presented in the next paragraph.

The persistence property is expressed for a machine M by the formula M ⊢ ♦ P and is proved according to the rule LIV E ♦ given below. The symbols and ♦ are temporal operators. P called alwaysP means that P is always true in a given sequence of states. ♦P called eventually P means that P will hold in some state in the future.

M ⊢ ր P M ⊢ ¬ P LIV E ♦ M ⊢ ♦ P
In this rule, the first antecedent ensures that any infinite trace of the machine M will terminate on an infinite sequence of states verifying property P . The second antecedent guarantees that any finite trace of the machine M will not end with a state satisfying ¬P .

Proof obligations

Proof Obligations are associated with Event-B machines in order to prove that they satisfy certain properties. As an example, we mention the Preservation Invariant IN V and the Feasibility F IS proof obligations. IN V proof obligation is necessary to prove that invariants hold after the execution of each event. Proving (or discharging) F IS proof obligation means that when an event guard holds, every action can be executed. This proof obligation is generated when actions are non-deterministic.

Refinement

This technique, allowing a correct by construction design, consists in adding details gradually while preserving the original properties of the system. The refinement relates two machines, an abstract machine and a concrete one. Data refinement consists in replacing the abstract variables by the concrete ones. In this case, the refinement relation is defined by a particular invariant called gluing invariant. The refinement of an abstract event is performed by strengthening its guard and reducing non determinism in its action. The abstract parameters can also be refined. In this case, we need to use witnesses describing the relation between the abstract and the concrete parameters. The correctness of the refinement is guaranteed essentially by discharging GRD (GuaRD) and SIM (SIMulation) proof obligations. GRD states that the concrete guard is stronger than the abstract one. SIM states that the abstract event can simulate the concrete one and preserves the corresponding gluing invariants. An abstract event can be refined by more than one event. In this case, we say that the concrete event is split. In the refinement process, new events can be introduced.

In order to preserve the correctness of the model, we must prove that these new introduced events do not take the control for ever; i.e. they will terminate at a certain point or are convergent. This is ensured by the means of a variant -a numerical expression or a finite set-that should be decreased by each execution of the convergent events. B-event is supported by the Rodin platform 1 which provides considerable assistance to developers by automating the generation and verification of all necessary proof obligations.

Temporal Logic of Actions (TLA)

TLA combines temporal logic and logic of actions for specifying and reasoning about concurrent and reactive discrete systems [START_REF] Lamport | The temporal logic of actions[END_REF]. Its syntax is based on four elements [START_REF] Méry | Formal modelling and verification of population protocols[END_REF].

1. constants, and constant formulas, i.e. functions and predicates over these, 2. state formulas for reasoning about states, expressed over variables as well as constants, 3. transition or action formulas for reasoning about (before-after) pairs of states, and 4. temporal predicates for reasoning about traces of states. These are constructed from the other elements and certain temporal operators.

In the remainder of this section, we give some concepts that will be used further in sections 3 and 4.

Stuttering step

A stuttering step on an action A under the vector variables f occurs when either the action A occurs or the variables in f are unchanged. We define the stuttering operator [A] as:

[A] f = A ∨ (f ′ = f ).
In a dual way, A asserts that A occurs and at least one variable in f changes.

A f = A ∧ (f ′ = f ). F ∧ (c ∈ S) ⇒ (Hc (G ∨ ∃d ∈ S.(c ≻ d) ∧ H d ))
LAT T ICE F ⇒ ((∃c ∈ S.Hc) G) Figure 3 LAT T ICE rule of TLA

Fairness

Fairness asserts that if a certain action is enabled, then it will eventually be executed. Two types of fairness can be distinguished.

1. Weak Fairness for action A denoted W F f (A) asserts that if an action A is constantly activated, then it will be eventually executed.

W F f (A) = ♦ Enabled A f ⇒ ♦ A f 2.
Strong Fairness for action A denoted SF f (A) asserts that if an action A is often activated, it will be eventually executed.

SF f (A) = ♦Enabled A f ⇒ ♦ A f
Enabled A f asserts that it is possible to execute the action A f . In addition, we define the leads to operator: P Q = (P ⇒ ♦Q), meaning that whenever P is true, Q will eventually become true.

Proof rules for simple TLA

We consider the three proof rules LAT T ICE (figure 3), W F 1 and SF 1 (figure 4) proposed in [START_REF] Lamport | The temporal logic of actions[END_REF]. LAT T ICE is an inductive proof rule in which F , G, H c and H d denote TLA formulas, S represents a given set and ≻ is a partial order relation defined on the set S. Informally, this rule means that provided that it is possible to move from a state satisfying the formula H c to a state satisfying the formula G or to move to a state wherein the formula H d is true for a value d (d < c), it is guaranteed by induction that formula G will be reached.

W F 1 gives the conditions under which weak fairness assumption of action A is sufficient to prove P Q. Condition W F 1.1 describes a progress step where either state P or Q can be produced. Condition W F 1.2 describes the inductive step where A f produces state Q. Condition W F 1.3 ensures that A f is always enabled.

SF 1 gives the necessary conditions to prove P Q under strong fairness assumption. The two first conditions are similar to W F 1. The third condition ensures that A f is eventually, rather than always, enabled. In these two rules, N represents a disjunction of actions.

Formal modelling of SOMAS

The formal modelling is based on two levels of abstraction; i.e. the micro level which corresponds to the local behaviour of the agents and the macro level which describes the

W F 1.1 P ∧ [N ] f ⇒ (P ′ ∨ Q ′ ) W F 1.2 P ∧ N ∧ A f ⇒ Q ′ W F 1.3 P ⇒ Enabled A f W F 1 [N ] f ∧ W F f (A) ⇒ P Q SF 1.1 P ∧ [N ] f ⇒ (P ′ ∨ Q ′ ) SF 1.2 P ∧ N ∧ A f ⇒ Q ′ SF 1.3 P ∧ [N ] f ⇒ ♦Enabled A f SF 1 [N ] f ∧ SF f (A) ⇒ P Q Figure 4
Proof rules W F 1 and SF 1 for TLA global behaviour of the system. In this section, we identify the main properties that must be ensured when designing a SOMAS according to these levels. We give also a refinement strategy allowing to ensure the proof of these properties.

Formal modelling of the micro level

The main concern at this level is the design of the behaviour of the agents and their interactions. We consider that the agents interact via their environment. Thus, we give first the environment definition and then the agent and the SOMAS definitions.

Formal modelling of the environment

We suppose that the environment is composed by a set of m elements noted l 1 , ...l m . The environment state is described by the states of these different elements. We denote by E change the environment actions changing these elements. Formally, the environment is described by the automaton E = (SE, SE init , T E, δE) where:

• SE the set the environment states.

SE = i:1..m
Sl i where Sl i is the state of the l i element.

• SE init ∈ SE denotes the environment initial state.

• T E a labels set formalising the environment actions.

T E = E change
• δE the set of all the possible transitions between the environment states.

δE ⊆ SE × T E × SE
In Event-B, the environment dynamic (E change ) is formalised by a set of events for which the action is described by the before-after predicate EnvironmentChange(l, l ′ ).

Formal modelling of the agents local behaviour

In a very abstract way, the behaviour of each agent is composed by three steps: the agent senses information from the environment (perception step), makes a decision according to these perceptions (decision step) and finally performs the chosen action (action step). We refer to these steps as the perceive -decide -act cycle. Thus, an agent is characterized by the representations of the environment that it possesses (A rep ), the set of decision rules telling it which decisions to make (A decide ), the set of actions it can perform (A perf orm ) and the set of operations allowing it to update its representations of the environment (A perceive ). Moreover, an agent is identified by its intrinsic characteristics such as the representations it has on itself (A prop ), the state of its sensors (A sens ) and the state of its actuators (A act ).

More formally, an agent is described by an automaton A = (SA, SA init , T A, δA) where,

• SA is the set of the agent states,

SA = A rep × A prop × A sens × A act • SA init ∈ SA denotes the agent initial state,
• T A is a set of labels representing the transitions between the agent states. Each transition represents a step of the agent life cycle,

T A = A perceive ∪ A decide ∪ A perf orm
• δA is the set of all the possible agent state transitions. δA ⊆ SA × T A × SA

Formal modelling of a SOMAS

A SOMAS composed by n agents A 1 , A 2 , ...A n and situated in an environment is modelled by means of the automaton SY ST EM = (S, S init , T, δ) where,

• S denotes the set of the system state. It is derived from the agents states and the environment state.

S = i:1..n SA i × SE.
• S init is the initial system state.

S init = i:1..n SA i,init × SE init with S init ∈ S.
• T is the set of the system states transitions. These transitions are obtained from the agents and the environment transitions.

T = i:1..n T A i ∪ T E
• δ is the set of the possible transitions between the states of the system. δ ⊆ S × T × S

In Event-B, the characteristics of the agents, their representations of the environment, the states of their sensors and actuators are modelled by means of variables. Whereas their decisions, actions and update operations are formalized by events. Hence, a before-afterpredicate can be associated with each one of them. As a consequence, the decisions of each agent a, can be formalised by a set of before-after-predicates allowing changing the properties of the agent denoted DecideAct_i(a, A prop , A ′ prop ). Moreover, the actions of each agent a can be considered as a set of before-after predicates

denoted P erf ormAct_i(a, A prop ∪ A sens ∪ E, A ′ prop ∪ A ′ sens ∪ E ′
). An action event is responsible for moving the agent to the perception step, thus an action event allows to activate the agent sensors. In addition, the actions of an agent can affect its properties (A prop ) as well as a part of its environment. Finally, the event enabling an agent to update its perceptions is described by the before-after predicate: P erceiveEnvironment(a, A rep , A ′ rep ). The automaton SY ST EM modelling the SOMAS at the micro level is described by means of the machine M icroLevel given by the figure 5. The local agents behaviour described earlier is said "correct", if the following properties are satisfied. • LocProp2: the agent must be not blocked in the decision step, i.e. the made decision must enable the agent to perform an action.

LocP rop2 = ∀a • a ∈ Agents ∧ DecideAct_i(a, Aprop, A ′ prop ) ⇒ ∃P erf ormAct_i• G_P erf ormAct_i(P erf ormAct_i(a, Aprop ∪ Asens ∪ E, A ′ prop ∪ A ′ sens ∪ E ′ ))
• LocProp3: the agent must not be blocked in the perception step; i.e. the updated representations should allow it to make a decision.

LocP rop3 =∀a • a ∈ Agents ∧ P erceiveEnvironment_i(a, Arep, A ′ rep ) ⇒ ∃DecideAct_i • G_DecideAct_i(DecideAct_i(a, Aprop, A ′ prop ))
In the two above formulas, G_P erf ormAct_i() and G_DecideAct_i() denote respectively the guards of the events P erf ormAct_i and DecideAct_i.

Formal modelling of the macro level

At the macro level, the main concern is to model the observation of the macro state evolution of the system according to the agents local actions, their interactions and the environment changes. The system macro state is described in terms of an aggregation of its elements (the agents and the environment). Thus, the number of agents being in a particular state or the number of agents performing a particular behaviour can describe the system macro state.

The system can be either in a functionally adequate state; i.e. a state where the system ensures its global function or in a state where the system employs its self-organising mechanisms to cope with perturbations and to come back to a functionally adequate state. Figure 6 summarises the SOMAS states observed by an external observer. S adequate denotes a functionally adequate state and F A(macroState) the predicate defined in terms of the system macro state and describing a functionally adequate state. When the system global function is disturbed, the system switches to the S self Organising state where it applies its self-organising mechanisms to ensure again its global function.

The observed transitions between these different states are due to changes classified as follows:

• changes having no effects on the system functional adequacy represented by the set M aintainGF .

• changes disrupting the system operation and preventing it to ensure its function, denoted by the set P erturbations. In the foraging ants case study, adding food or putting obstacles in the environment constitute perturbations for the ants.

• system actions allowing it to come back to a functionality adequate state denoted by the set Self Organising. For example, the ants should ensure an efficient environment exploration in order to discover new food sources. Thus, each ant need to be able to go into new directions even if they contains less food.

Formally, a SOMAS observed by an external observer is defined as given in the definition 3.1 Definition 3.1: A SOMAS observed at the macro state is an automaton M acroLevel = (GS, GS init , GT, Gδ) where,

• GS = S adequate ∪ S self Organising
where S adequate ∩ S self Organising = ∅

• GS init is the system initial state. GS init ∈ GS

• GT = M aintainGF ∪ P erturbations ∪ Self Organising where M aintainGF , P erturbations and Self Organising are pairwise disjoint.

• Gδ ⊆ GS × GT × GS

The observed system behaviour is defined as a sequence (which can be infinite) alternating states and actions gs 0 gt1 --→ gs 1 gt2 --→ gs 2 ... where for all i > 0, gt i ∈ GT such as (gs i-1 , gti --→, gs i ) ∈ Gδ. We denote by ε(GS) the set of all the observable traces of the system. state(ǫ, i) denotes the observable sate of the system at time i in the trace ǫ ∈ ε(GS).

The observed macro behaviour is modelled by means of an Event-B machine in which the variables describes the global system state and the events belongs to the set M aintainGF, Self Organising, P erturbations. This machine called M acroLevel is given by the figure 7. Based on these definitions, the convergence and resilience properties of the macro level are defined in the following paragraphs.

SOMAS convergence formalization

The convergence ( [START_REF] Di Marzo | Robustness and dependability of self-organizing systems -a safety engineering perspective[END_REF]) indicates the capacity of the system to reach it objective in the absence of disturbances. The system converges either upon initialisation, it is in a functionally adequate state or when it is guaranteed that the system will be able to achieve a functionally adequate state after a finite number of transitions.

Formally, convergence of the M acroLevel system is expressed by the formula:

GS init ∈ S adequate ∨ (∀ǫ ∈ ε(M acroLevel) • ∃i • state(ǫ, i) ∈ S adequate ).
This definition is formulated by the use of temporal operators as follows.

M acroLevel ⊢ ♦ F A(macroState)

The rule LIV E ♦ given above allows us to prove convergence property.

M acroLevel ⊢ ր F A(macroState) M acroLevel ⊢ ¬ F A(macroState) LIV E ♦ M acroLevel ⊢ ♦ F A(macroState)
The first antecedent in this formula (M acroLevel ⊢ր F A(macroState)) ensures that every execution of the machine M acroLevel terminates with an infinite sequence of states satisfying the predicate F A(macroState). To prove this antecedent, three conditions need to be guaranteed:

• Define the variant convP rog in the machine M acroLevel. This variant is defined in terms of the system macro state and models the system progression towards the functional adequacy. The figure 8 supposes that the variant convP rog is a natural number, but it can be also a non empty finite set.

Figure 8 The variant convP rog definition in the machine M acroLevel.

• Prove that the event self OrgConv (Figure 9) decrements, in each execution, the variant convP rog. The variable agentStep is used for defining the perceivedecide -act cycle. The role of the variable agentM ode is to synchronise the agents execution and the environment one. So that he execution of the environment occurs when each agent has accomplished one cycle. Thus these variables are used for the synchronization of the system elements. • Prove that the events m and observer (Figure 10) do not increment the variant convP rog in each execution.

The second antecedent (M acroLevel ⊢ ¬F A(macroState)) guarantees that the machine M acroLevel is deadlock-free in a state not satisfying F A(macroState). This proof is formulated by the theorem given by figure 11.

Figure 10 The events m and observer in the machine M acroLevel.

Figure 11 The deadlock-free theorem of the machine M acroLevel in the state ¬F A(macroState)

SOMAS resilience formalization

The resilience ( [START_REF] Di Marzo | Robustness and dependability of self-organizing systems -a safety engineering perspective[END_REF]) describes the ability of the system to adapt to changes and disruptions that may occur. The resilience analysis evaluates the ability of self-organization mechanisms to restore the system state after disturbances without explicitly detect an error. We note by p a distribution coming from the agents or the environment and causing a set of disturbances noted ψ (ψ ⊆ GS × p × GS). This disruption moves the system from a functionally adequate state to a state of self-organization. The system is said resilient to the p disruption if it is able to find a functionally adequate state after this disruption. Formally, the system M acroLevel = (GS, GS init , GT, Gδ) is resilient to p disruption if for any trace ǫ ∈ ε(GS) in which exists i 0 verifying state(ǫ, i) = gs and for any self-organising state gs ′ verifying (gs, p, gs ′ ) ∈ ψ, the following formula is true.

∀ǫ ′ ∈ ε(M acroLevel, gs ′ ) • ∃j > 0 • state(ǫ ′ , j) ∈ S adequate .
This formula is expressed by means of first order logic and temporal operators as follows:

M AS ⊢ (¬F A(macroState) ⇒ ♦F A(macroState)). (1) 
The formula 1 can be rewritten by means of the leadsto operator as follows:

M AS ⊢ ¬F A(macroState) F A(macroState). (2) 
In order to prove this formula, we use the TLA proof rule SF 1 offering a more explicit means for expressing scheduling execution of events.

Consider the notations:

• N = self Org ∨ self OrgConv ∨ p ∨ observer ∨ m, • f = convP rog(macroState),
The rule SF 1 is rewritten as:

SF 1.1 ¬F A(macroState) ∧ [N ] f ⇒ (¬F A ′ (macroState) ∨ F A ′ (macroState)) SF 1.2 ¬F A(macroState) ∧ N ∧ self OrgConv f ⇒ F A ′ (macroState) SF 1.3 ¬F A(macroState) ∧ [N ] f ⇒ ♦Enabled self OrgConv f SF 1 [N ] f ∧ SF f (self OrgConv) ⇒ P F A ′ (macroState)
The condition SF f (self OrgConv) is a strong fairness assumption on the action of the self OrgConv event. It is expressed using temporal operators as follows:

SF f (self OrgConv) = ♦Enabled self OrgConv f ⇒ ♦ self OrgConv f (3) 
Thanks to the formula 3, we prove that the action of the event self OrgConv will eventually be executed when this event is infinitely often activated (it is not constantly activated).

The refinement strategy

The formal development of SOMAS begins by a very abstract model representing the system as a set of agents operating according to the Perceive-Decide-Act cycle. These agents are situated in an environment which behaviour is modelled by the event EnvironmentChange. The context ContextInit describes the modes wait et work (the set M odes) and the steps (the set Steps) in which an agent could be. This abstract model guarantees LocP rop1. An overview of this machine is given in figure 12.

Each of the events P erceive, Decide and P erf orm (figure 13) corresponds to one step in the agent cycle and allows to move the considered agent from one step to the next. In this abstract machine, the EnvironmentChange models the environment execution. It will be refined in the next steps for modelling the changes that can occur in the environment like perturbations for example.

This abstract model guarantees LocP rop1 (Each agent functions according to the cycle perceive-decide-act). It will be subject of a three steps refinement series.

The first refinement consists in identifying the different actions performed by the agents. Thus, the refinement of the machine InitialM odel by Agents1 is achieved by splitting the P erf orm event into the different actions an agent can perform. This refinement should ensure LocP rop2. Figure 14 is an excerpt from the Agents1 machine modelling the actions of an agent.

In the second refinement step, we refine the machine Agents1 by the machine Agents2. We specify the events corresponding to the decisions that an agent can make. In addition, we describe the rules allowing the agent to decide. We also introduce the actuators of the agents. By using witness, we connect the actions introduced in the previous refinement with the corresponding decisions defined in this stage of refinement. Figure 15 describes how the decision and action events are refined. In the third refinement, the perceptions of the agents and the necessary events to update them are identified. As a consequence the different events related to the decisions and actions are refined and property LocP rop3 should be satisfied.

Figure 16 shows an excerpt from the Agents3 machine that refines the Agents2 machine. The gluInvSensorsP ercept invariant is a gluing invariant making connection between the perception and the activation of the agent's sensors. In the context Context3, we define the ability AbilityT oP erceive (used in the P erceive event in the figure 16) allowing the agent to determine the state of its local environment based on the global system state. 

M achine

Application to the foraging ants

The case study is a formalization of the behaviour of a foraging ants colony. The system is composed of several ants moving and searching for food in an environment. Their main goal is to bring all the food placed in the environment to their nest. Ants do not have any information about the locations of the sources of food, but they are able to smell the food which is inside their perception field. The ants interact with one another via the environment by dropping a chemical substance called pheromone. In fact, when an ant discovers a source of food, it takes a part of it and comes back to the nest by depositing pheromone for marking food paths. The behaviour of the system at the micro-level is described as follows. Initially, all ants are in the nest. When exploring the environment, the ant updates its representations in its perception field and decides to which location to move. When moving, the ant must avoid obstacles. According to its smells, three cases are possible:

1. the ant smells food: it decides to take the direction in which the smell of food is stronger (even if it smells some pheromone).

2. the ant smells only pheromone: it decides to move towards the direction in which the smell of pheromone is stronger.

3. the ant doesn't smell anything: it chooses its next location randomly.

When an ant reaches a source of food in one location, it collects it and comes back to the nest. If some food remains in this location, the ant drops pheromone when coming back.

Arriving at the nest, the ant deposits the harvested food and begins another exploration.

In addition to the properties LocP rop1, LocP rop2 and LocP rop3 (described in section 3), the following properties should be verified at the micro-level.

• LocInv1: the ant should avoid obstacles • LocInv2: a given location cannot contain both obstacle and food.

The main global properties associated with the foraging ants system are:

• convergence property: the ants are able to bring all the food to the nest • resilience property: when a source of food is added, the ants are able to detect it

Formalization of the ants local behaviour

Abstract model: the initial machine Ants0 describes an agent (each agent is an ant) operating according to the Perceive-Decide-Act cycle. It contains three events P erceive, Decide and P erf orm describing the agent behavioural rules in each step. At this very abstract level, these events are just responsible for switching an agent from one step to another. The current cycle step of each agent is depicted by the variable stepAgent defined as follows.

inv1 : stepAgent ∈ Ants → Steps where Ants defines the set of the agents and Steps is defined by the axiom axm1.

The partition operator allows the enumeration of the different steps of an ant.

axm1 : partition(Steps, {perceive}, {decide}, {perf orm})

As an example, we give below the event P erf orm modelling the action step. The only action specified at this level is to switch the ant from the action step to the perception one. The proof obligations related to this machine concern essentially preservation of the invariant inv1 by the three events. All of them are generated and proved automatically under the Rodin platform. First refinement: in the first refinement Ants1, we add the variables QuantityF ood, Obstacles modelling respectively the food and the obstacles distribution in the environment, currentLoc and load which give respectively the current location and the quantity of food loaded of each ant. Invariants inv5 and inv3 guarantee the properties LocInv1 and LocInv2 respectively. The notation dom is the domain of a function. The symbol ✄ -denotes a range subtraction. Thus, QuantityF ood ✄ -{0} is a subset of the relation QuantityF ood that contains all pairs whose second element is not equal to zero.

inv1 : QuantityF ood ∈ Locations → N inv2 : Obstacles ⊆ Locations \ {N est} inv3 : Obstacles ∩ dom(QuantityF ood ✄ -{0}) = ∅ inv4 : currentLoc ∈ Ants → Locations inv5 : ∀ant•ant ∈ Ants ⇒ currentLoc(ant) / ∈ Obstacles inv6 : load ∈ Ants → N
Moreover, the P erf orm event is refined by the four following events:

1. P erf ormAntsM ove: the ant moves in the environment 2. P erf ormAntsM oveDropP heromone: the ant moves and drops pheromone when coming back to the nest 3. P erf ormAntsHarvestF ood: the ant picks up food 4. P erf ormAntsDropF ood: the ant drops food at the nest In the following, the event P erf ormAntsM ove is presented as an action event example. The parameter loc is the next location to which the ant will move. It is the result of the decision process. This decision process will be modelled in the next refinement. The parameter decideAct is also an abstract parameter that will be refined in the next step. It indicates what type of decision can lead to the execution of the P erf ormAntsM ove event.

The majority of the generated proof obligations are related to proving the refinement correctness (the SIM proof obligation) and the preservation of invariants. With the presented version of the P erf ormAntsM ove event, it is impossible to discharge the inv5 preservation proof obligation (inv5 states that an ant cannot be in a location containing obstacles). In fact, if loc belongs to the set Obstacles, P erf ormAntsM ove will enable ant to move to a location containing an obstacle, which is forbidden by inv5. In order to discharge the inv5 preservation proof obligation, we need to add the guard grd5 : loc / ∈ Obstacles to P erf ormAntsM ove event. Finally, in order to guarantee the property LocP rop2 for the P erf ormAntsM ove event, it is necessary to add another event P erf ormAntsM oveImpossible that refines P erf orm and allows to take into account the situation where the move to loc is not possible because of obstacles. P erf ormAntsM oveImpossible will just allow ant to return to the perception step. The same reasoning is applied for P erf ormAntsM oveDropP heromone. For P erf ormAntsHarvestF ood, we should consider the case where the food disappears before that the ant takes it. The Rodin tool generates 35 proof obligations for the correctness of the refinement. 85% of them are proved automatically and the rest has been proven using the interactive proof environment. Second refinement: the second refinement Ants2 serves to create the links between the made decision and the corresponding action. We add the actuators of an ant: paw, exocrinGland, mandible as well as the ant's characteristic nextLocation which is updated when taking a decision. The Decide event is split into five events:

1. DecideAntsM oveExplore: decide to move for exploring the environment As a result of the event DecideAntsM oveExplore execution, the ant chooses its next location and activates its paws. What is necessary now, is to link the activation of the paws with the triggering of the move action. Thus, we need to refine the event P erf ormAntsM ove by adding a W itness relating the parameter decideAct in the event P erf ormAntsM ove with the variable paw. The Rodin tool generates 62 proof obligations for the correctness of the refinement. 79% of them are proved automatically and the rest has been proven using the interactive proof environment. Third refinement: at this level of refinement (Ants3), the ants representations about the environment are introduced. Every ant can sense food smell (f ood) as well as pheromone scent (pheromone). We introduce also the variable DeP hero modelling the distribution of pheromone in the environment.

The event P erceive (here below) is refined by adding the necessary event actions for updating the perceptions of an ant. F P erc (guard grd45) and P hP erc (guard grd67) models the ability of an ant to smell respectively the food and the pheromone situated in its perception field. They are defined in the accompanying context of Ants3. After execution of the event P erceive, the ant acquires a knowledge about the food smell and pheromone scent for each direction from its current location.

Moreover, we split the event DecideAntsM oveExplore into three events:

1. DecideAntsM oveRandom: decide to move to a location chosen randomly because no scent is smelt 2. DecideAntsM oveF ollowF ood: decide to move towards the direction where the food smell is maximum 3. DecideAntsM oveF ollowP heromone: decide to move towards the direction in which the pheromone smell is maximum This split guarantees the LocP rop3 property for the decision concerning the move. The event P erf ormAntsM ove is also refined in order to take into account these different decisions.

The Rodin tool generates 59 proof obligations for the correctness of the refinement. 40% of them are proved automatically.

Formalization of the ant global properties

The three refinement steps described in the last section have enabled us to specify a correct individual behaviour for the ants. Let us now focus on the ability of the modelled behaviour to reach the desired global properties.

Proving the ants convergence

The ants convergence concerns their ability to collect and bring all food to the nest. The proof of this property needs the specification of the observer event and the termination proof of all the events representing ants actions.

The observer event

The observer event is responsible to detect if the system has achieved its overall functionality. This is a particular event with no action whose guard describes the state of the system when it reaches its goal.

For the foraging ants, we considered that the overall functionality system is to bring the food, initially dispersed in the environment, to the nest. Thus, the guard of the observer event called AllF oodAtN est is described by the following expression.

∀loc•loc ∈ Locations \ {N est} ⇒ QuantityF ood(loc) = 0∧ T otalF ood(InitF oodDist → Locations) = QuantityF ood(N est)
In this expression, QuantityF ood is a total function giving for each location in the grid (environment) the amount of food it contains. The function T otalF ood returns the sum of the amount of food in the environment.

Termination of the action events

As mentioned in the sectin 1.1, the proof of events termination requires the definition of a numerical expression or a finite set, called variant. It is possible to define a single variant by machine, so this termination proof requires several refinement steps during each of which a single action event will be considered. Table 1 describes for each event, the variant needed to prove its termination.

Once the variants defined, the next step is to show that in each execution of these events, the corresponding variants will be decreased. In some cases, this proof is trivial and requires a slight modification of the guards and actions of the event responsible of the variant decrease (the case of events P erf ormAntsDropF ood, P erf ormAntsHarvestF ood and P erf ormAntsDropP heromone).

In other cases, the termination proof requires the addition of new axioms (P erf ormAntsM oveBack, P erf ormAntsM oveExploreF ollowF ood and P erf ormAntsM oveExploreF ollowP heromone). Finally, it is necessary to suppose strong fairness assumption to prove that the event P erf ormAntsM oveExploreRandom decrements its variant. This proof is done therefore by means of the TLA logic.

In the following paragraphs we show the proof termination of one event among the three groups defined above. We are interested particularly to the events P erf ormAntsDropF ood, P erf ormAntsM oveBack and P erf ormAntsM oveExploreRandom.

The event P erf ormAntsDropF ood proof termination.

To prove that the event P erf ormAntsDropF ood converges, we define the variant AntsDroppingF oodAtN est as the set of ants dumping food at nest. The events responsible for changing this variant are DecideAntsDropF ood and P erf ormAntsDropF ood. They are thus refined as shown in the following.

Proving the ants resilience to new food introduction

The models obtained so far describe the ants behaviour. They guarantee deadlock freeness at the local level and the system convergence to a state where all the food is harvested at the global level. This convergence has been proved by assuming that the environment remains unchanged. Thus, the events related to the emergence of new food sources or the appearance of new obstacles were not taken into account.

So, in this section, we are interested by the reaction of the ants when new food sources are added to the environment. We want to prove that ants are able to detect it. We express this property by using temporal logic by the formula 4.

ResN ewF ood = (∀loc.(loc ∈ N ewF oodLocations∧

∃ant.comeBackAnt(ant) = F ALSE ∧ nextLocation(ant) = loc) ⇒ ♦(loc ∈ DetectedF oodLocations)) (4)
In the formula 4, the variable N ewF oodLocations denotes the set of locations in which the food is added. The variable DetectedF oodLocations denotes the set of food sources detected.

Informally, this formula means that any food source (denoted loc) added in the environment (loc ∈ N ewF oodLocations) will eventually be detected. The condition (∃ant.comeBackAnt(ant) = F ALSE ∧ nextLocation(ant) = loc) specifies that there is an ant in exploration mode (comeBackAnt(ant) = F ALSE) which has detected a source of food by making a move into its direction.

The introduction of a new food in the environment is modelled by the event EnvironmentChangeAddF ood which refines EnvironmentChange and given by the figure 17. The action act3 changes the amount of food in one location by adding food in the relevant one and keeping the amount of food unchanged in the other locations.

Moreover, we model the self-organization mechanisms allowing the ants to explore more efficiently the environment by going into directions not yet visited and thus discover new source of food. Therefore, we introduce the event P erf ormAntsM oveExploreAvoidCompetition enabling the ants to avoid going into directions containing a lot of ants even if they contain food.

In addition, it is necessary to model the events allowing the system to progress towards the desired state, i.e. the introduced source of food is detected. Thus, the event P erf ormAntsM oveExploreF ollowF ood is refined by the event P erf ormAntsM oveExploreF ollowF oodF irstT ime which models the detection of a source of food for the first time. A source of food is detected for the first time if it is chosen by an ant to be its next location. Thus the guard of the concrete event P erf ormAntsM oveExploreF ollowF oodF irstT ime is enriched by the expression nextLocation(ant) ∈ N ewF oodLocations.

Additionally, the location containing the detected source of food should be removed from the set of the locations containing the newly introduced food and added to the set of detected food locations. These actions are formalized as described in the figure 18. Finally, the observer event ObservResilience is introduced. This event contains no action and its guard describes the state on which any added food is detected, i.e. N ewF oodLocations = ∅.

Once the model elements are defined, we proceed to prove the resilience property ResN ewF ood. We consider the two predicates P and Q Detected defined according to the cardinality of the set N ewF oodLocations.

P =card(N ewF oodLocations) = n + 1, Q Detected =card(N ewF oodLocations) = n and we want to prove the formula P Q Detected . We define N and A Detected as follows: N =P erf ormAntsM oveExploreF ollowF oodF irstT ime ∨ P erf ormAntsM oveExploreF ollowF ood ∨ P erf ormAntsM oveExploreAvoidCompetition ∨ P erf ormAntsM oveExploreF ollowP heromone ∨ P erf ormAntsM oveExploreRandom ∨ EnvironmentChangeAddF ood ∨ ResilienceOberver and A Detected = P erf ormAntsM oveExploreF ollowF oodF irstT ime. By applying SF 1, it is possible to prove P Q Detected :

SF 1.1 P ∧ [N ] N ewF oodLocations ⇒ (P ′ ∨ Q ′ Detected ) SF 1.2 P ∧ N ∧ A Detected N ewF oodLocations ⇒ Q ′ Detected ) SF 1.3 P ∧ [N ] N ewF oodLocations ⇒ ♦Enabled A Detected N ewF oodLocations SF 1 [N ] N ewF oodLocations ∧ SF N ewF oodLocations (A Detected ) ⇒ P Q Detected
The condition SF 1.1 describes a stage in which the system progresses to a state satisfying the predicate P or to a state verifying Q Detected . The condition SF 1.2 is an induction step during which the action A Detected N ewF oodLocations (detection of food added) leads to a state satisfying Q Detected . The condition SF 1.3 ensures that A Detected N ewF oodLocations will eventually be activated.

Assuming that the operations of adding food in the environment will eventually be arrested and by applying the rule LAT T ICE, we can prove that the set N ewF oodLocations will eventually be void. The achievement of this state activates the ResilienceObserver event marking the end of the resilience process.

Related work

Related work cited in this section deals in the first part, with the formal modelling and verification of self-organization. The second part is dedicated to the presentation of works using Event-B for the development of adaptive systems.

Formal modelling of self-organizing systems

The verification of self-organizing systems was the subject of several research works. The majority of the proposed approaches is based on simulation and the stochastic model checking to measure the impact of various parameters on the system behaviour.

In [START_REF] Gardelli | Exploring the dynamics of selforganising systems with stochastic π-calculus: Detecting abnormal behaviour in MAS[END_REF], Gardelli uses stochastic Pi-Calculus for modelling SOMAS for intrusion detection. This formalization was used to perform simulations using the SP IM tool to evaluate the impact of certain parameters, such as the number of agents and frequency of inspections, on the system behaviour.

In [START_REF] Casadei | Using probabilistic model checking and simulation for designing self-organizing systems[END_REF], a hybrid approach for modelling and verifying self-organizing systems has been proposed. This approach uses stochastic simulations to model the system described as Markov chains and the technique of probabilistic model checking for verification. To avoid the state explosion problem, encountered with model-checkers, the authors propose to use approximate model-checking based on simulations. The approach was tested for the problem of collective sorting using the P RISM tool.

Konur and colleagues ( [START_REF] Konur | Analysing robot swarm behaviour via probabilistic model checking[END_REF]) use also the P RISM tool and probabilistic model checking to verify the behaviour of robot swarm and particularly foraging robots. The authors verify properties expressed by P CT L logic (Probabilistic Computation Tree Logic) for several scenarios. These properties provide information, in particular, on the probability that the swarm acquires a certain amount of energy for a certain number of agents and in a certain amount of time. Simulations were also used to show the correlation between the density of foraging robots in the arena and the amount of energy gained.

Most of the works exposed above use the model checking technique to evaluate the behaviour of the system and adjust its parameters. Although they were able to overcome the state explosion problem and prove the effectiveness of their approaches, these works do not offer any guidance to help the designer to find the source of error in case of problems and to correct the local behaviour at the micro level. For the purpose of giving more guidance for the designer, we find that the use of Event-B language and its principle of refinement are very useful.

Formal modelling using the Event-B language

In [START_REF] Pereverzeva | Formal development of critical multiagent systems: A refinement approach[END_REF], the authors propose a formal modelling framework for critical MAS, through a series of refinement step to derive a secure system implementation. Security is guaranteed by satisfying three properties: 1) an agent recovering from a failure cannot participate in a cooperative activity with others, 2) interactions can take place only between interconnected agents and 3) initiated cooperative activities should complete successfully. This framework is applied to model critical activities of an emergency.

An Event-B modelling for fault tolerant MAS was proposed in [START_REF] Pereverzeva | Development of fault tolerant mas with cooperative error recovery by refinement in event-b[END_REF]. The authors propose a refinement strategy that starts by specifying the main purpose of the system, defines the necessary agents to accomplish it, then introduces the various failures of agents and ends by introducing the communication model and error recovery mechanisms. The refinement process ensures a set of properties, mainly 1) reachability of the main purpose of the system, 2) the integrity between agents local information and global information and 3) efficiency of cooperative activities for error recovery.

The work of Hoang and Abrial in [START_REF] Thai | Developing topology discovery in event-b[END_REF] was interested in checking liveness properties in the context of the nodes topology discovery in a network. The proposed refinement strategy allows to prove the stability property, indicating that the system will reach a stable state when the environment remains inactive. The system is called stable if the local information about the topology in each node are consistent with the actual network topology.

These works based on the correct by construction approach, often providing a topdown formalization approach, have the particularity of being exempt from the combinatorial explosion problem found with the model checking technique. They have the advantage of allowing the designer to discover the restrictions to be imposed to ensure the desired properties. We share the same goals as the works presented i.e. ensuring liveness properties and simplifying the development by the use of stepwise refinements. Our refinement strategy was used to guide the modelling of individual behaviours of agents, unlike the proposed refinement strategies that use a top-down development of the entire system. We made this choice to be closer as possible to the bottom-up nature of self-organizing systems.

In this paper, we use the theorem proving technique. Our aim is double. First, to allow the designer to specify formally by stepwise refinements the local behaviour of the agents. Second, to prove the properties at the local and the global levels. Contrary to [START_REF] Pereverzeva | Development of fault tolerant mas with cooperative error recovery by refinement in event-b[END_REF] and [START_REF] Pereverzeva | Formal development of critical multiagent systems: A refinement approach[END_REF], we propose a bottom-up refinement strategy that we consider more appropriate and more natural to model self-organizing MAS. In fact, this strategy allows us to model the local behaviour of the agents and then to reason about the global behaviour of the system.

There are other works using ObjectZ or B like [START_REF] Hilaire | Formal driven prototyping approach for multiagent systems[END_REF] and [START_REF] Olivier Simonin | Specifying in B the Influence/Reaction Model to Study Situated MAS: Application to vehicles platooning[END_REF]. In [START_REF] Hilaire | Formal driven prototyping approach for multiagent systems[END_REF], the authors propose the formalization of an organisational meta-model for SOMAS by the use of ObjectZ and the statechart diagrams. This meta-model specify formally the concepts of role, interaction and organisation but does not allow to reason about convergence and resilience of the system. The work presented in [START_REF] Olivier Simonin | Specifying in B the Influence/Reaction Model to Study Situated MAS: Application to vehicles platooning[END_REF] proposes design patterns based on the B language for modelling situated agents according to the model Influence/Reaction which is functioning similarly to the perceive -decide -act cycle adopted in our work. The objective of this formalization was to guarantee security properties but not properties related to convergence and resilience as the case of our work.

Conclusion

We have presented in this paper a formal modelling for SOMAS by means of Event-B. In our formalization, we consider the system in two abstraction levels: the micro and macro levels. This abstraction allows to focus the development efforts on a particular aspect of the system. We propose a stepwise refinement strategy to build a correct individual behaviour. This refinement strategy is extended in order to prove global properties such as convergence and resilience. Our proposal was applied to the foraging ants case study. While the proof obligations were used to prove the correctness of the micro level models, it was necessary to turn to TLA in order to prove the properties at the macro-level. We think that this combination of TLA and Event-B is very promising for formal reasoning about SOMAS.

Our ambitions for future works are summarized in the following three points:

• Defining formal refinement patterns by means of Event-B. Our goal is to provide a SOMAS designer a helpful tool allowing the use of formal techniques in the development process.

• Integration of the proposed formal framework within SOMAS development methods in order to ensure formal proofs at the early stages of the system development. This integration will be made by using model-driven engineering techniques.

• Introduction of the self-organization mechanisms, based on the cooperation in particular, at the proposed refinement strategy of the local agents behaviour and the analysis of the impact of these mechanisms on the resilience of the system. For the foraging ants, for example, the objective is to analyse the ability of the ants to improve the rapidity of reaching and exploiting food thanks to their cooperative attitude. To achieve this aim, we plan to use a probabilistic approach coupled with Event-B.
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 16 Figure 16 Refinement of the P erceive event in the machine Agents3

  EVENT Perform ANY ant WHERE grd12 : ant ∈ Ants ∧ stepAgent(ant) = perf orm THEN act1 : stepAgent(ant) := perceive END

  EVENT PerformAntsMove REFINES Perform ANY ant, loc, decideAct WHERE grd12 : ant ∈ Ants ∧ stepAgent(ant) = perf orm grd34 : loc ∈ N ext(currentLoc(ant)) ∧ decideAct = move THEN act12 : stepAgent(ant) := perceive||currentLoc(ant) := loc END

2 . 3 . 4 . 5 .

 2345 DecideAntsM oveBack: decide to come back to the nest DecAntsM oveBackDrop: decide to come back while dropping pheromone DecideAntsHarvestF ood: decide to take the food DecideAntsDropF ood: decide to drop food at the nest As an example, we give the event DecideAntsM oveExplore below. EVENT DecideAntsMoveExplore REFINES Decide ANY ant, loc WHERE grd12 : ant ∈ Ants ∧ stepAgent(ant) = decide grd3 : loc ∈ N ext(currentLoc(ant)) ∧ loc = N est THEN act123 : stepAgent(ant) := perf orm||nextLocation(ant) := loc||paw(ant) := activate END

:

  ant ∈ Ants ∧ stepAgent(ant) = perceive ∧ loc ∈ N ext(currentLoc(ant)) grd4 : paw(ant) = activate WITNESSES decideAct : decideAct = M ove ⇔ paw(ant) = activate loc : loc = nextLocation(ant) THEN act12 : stepAgentCycle(ant) := perceive||currentLoc(ant) := nextLocation(ant) act3 : paw(ant) := disabled END

  EVENT Perceive REFINES Perceive ANY ant, loc, f p, php WHERE grd123 : ant ∈ Ants ∧ stepAgent(ant) = perceive ∧ loc = currentLoc(ant) grd45 : f p ∈ Locations × Locations → N ∧ f p = F P erc(QuantityF ood) grd67 : php ∈ Locations × Locations → N ∧ php = P hP erc(DeP hero) THEN act1 : stepAgentCycle(ant) := decide act2 : f ood(ant) := {loc → f p(loc → dir)|dir ∈ N ext(loc)} act3 : pheromone(ant) := {loc → php(loc → dir)|dir ∈ N ext(loc)} END
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 17 Figure 17The event EnvironmentChangeAddF ood

  actionDetectedU pdate : DetectedF oodLocations := DetectedF oodLocations ∪ {nextLocation(ant)} actionN ewF ooddU pdate : N ewF oodLocations := N ewF oodLocations \ {nextLocation(ant)}
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 18 Figure 18 Actions added to the actions list of the event P erf ormAntsM oveExploreF ollowF oodF irstT ime

  

Event

Variant

PerformAntsDropFood

V1: the set of ants dumping food at nest PerformAntsHarvestFood V2: the total quantity of food in the environment except the nest PerformAntsDropPheromone V3: the set of ants putting pheromone PerformAntsMoveBack V4: the sum of the distances between the locations of ants returning to the nest and the nest PerformAntsMoveExploreFollowFood V5: the sum of the distances between the locations of ants moving towards a particular source of food and the location of the corresponding source of food PerformAntsMoveExploreFollowPheromone V6: the sum of the distances between the locations of ants following a particular pheromone smell and the location containing this pheromone PerformAntsMoveExploreRandom V7: the set of ants moving aleatory 

The event P erf ormAntsM oveBack proof termination

To prove the convergence of the event P erf ormAntsM oveBack, we define the varying V 4 formalized by the following expression.

Informally, the variant V 4 is the sum of the distances between the nest and the locations of all ants coming back to the nest (ants of the set AntsApproachingN est). In this expression, the function SumDistances returns the sum of distances. Dist is a function measuring the distance between two locations in the environment. When coming back to the nest, the ant chooses the next location where it feels more the smell of the nest, i.e. the closest location to the nest. Thus, in order to allow the P erf ormAntsM oveBack event convergence proof, we add necessary axioms stating that when an ant fully loaded and coming back to the nest chooses its next location, the distance between its current location and the nest decreases.

The event P erf ormAntsM oveExploreRandom proof termination

To prove the termination of the P erf ormAntsM oveExploreRandom event, we add the variable AntsM ovingRandom representing all the ants exploring at random the environment. Moreover, we refine the event P erf ormAntsM oveExploreRandom by splitting it in two events: P erf ormAntsM oveExploreRandomRef and P erf ormAntsM oveExploreRandomConv.

The event P erf ormAntsM oveExploreRandomRef models an ant random movement that keeps the ant concerned throughout AntsM ovingRandom i.e. the next move of this ant will also be at random. The event P erf ormAntsM oveExploreRandomConv describes a random movement allowing the ant who made it to leave the set AntsM ovingRandom and so allowing it to carry on exploring the environment by following food or pheromone. Proving the convergence of theses two events needs to prove the formula P Q where P denotes a state describing the current cardinality of the set AntsM ovingRandon and Q denotes a state where this cardinality is decreased.

Using the strong fairness rule SF 1 of the TLA logic, it is possible to prove that formula. We consider: N =P erf ormAntsM oveExploreRandomRef ∨ P erf ormAntsM oveExploreRandomConv A M ovRandConv =P erf ormAntsM oveExploreRandomConv P =card(AntsM ovingRandom) = n + 1 Q =card(AntsM ovingRandom) = n where card(AntsM ovingRandom) denotes the cardinality of the set AntsM ovingRandom, the rule SF 1 can be rewritten as

The formula SF 1.1 states that the execution of one event among the events P erf ormAntsM oveExploreRandomRef and P erf ormAntsM oveExploreRandomConv from the P state, can either move the system to a state satisfying P ′ = card(AntsM ovingRandom) = n + 1, i.e. the cardinality of the set AntsM ovingRandom does not change, or move the system to the state Q ′ = card(AntsM ovingRandom) = n, i.e. the cardinality of the set AntsM ovingRandom is decreased. In the formula SF 1.2, the action A M ovRandConv allows to achieve the state Q ′ = card(AntsM ovingRandom) = n. The formula SF 1.3 indicates that the action A M ovRandConv is eventually enabled.

Strong fairness assumption of the action A M ovRandConv formulated by SF AntsM ovingRandom (A M ovRandConv ), allows to prove the formula P Q.