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Abstract
To tackle the lack of efficiency of passive sound

absorbing treatments in the low frequency range, a
specific arrangement of a poroelastic material is pro-
posed. Compared with the usual uniform layout, giv-
ing a lamella network structure to a material provides
additional sound absorption below the quarter wave-
length resonance frequency at oblique incidence. This
is demonstrated experimentally on a sample made
of melamine foam lamellas. A numerical approach
that incorporates geometric periodicity highlights the
mechanisms involved in this additional dissipation,
achieved by combining structural and viscous dissi-
pation within the lamellas. The shear and bending
resonances of the lamellas can be excited at oblique
incidence. The frequency of the shear resonance is
related to the thickness of the sample, whereas the
bending resonance is also a function of the width of
the lamellas. These simple dimensional parameters al-
low adjustable tuning of the associated frequencies at
which additional sound absorption can be obtained.

1 Introduction
Passive sound absorbing materials like foam, wool and
microperforated panels are generally efficient at frequen-
cies for which the acoustic wavelength is in the order
of magnitude of the material’s thickness. There is still
a need for compact, light but also effective sound ab-
sorbing materials, though their configuration presents a
challenge, especially at low frequencies. This topic has
received considerable attention and metamaterial and
metasurface approaches have recently given new impe-
tus to the design of such materials [1, 2].

Indeed, in addition to the viscothermal losses present
in porous materials, several other mechanisms have been

used to increase dissipation efficiency. For instance, dou-
ble porosity materials that use the pressure diffusion ef-
fect between the micro and the macro pore networks have
been proposed [3, 4, 5, 6]. Another approach is to ex-
cite trapped modes between a rigid inclusion and a rigid
wall [7, 8].

In order to enhance low frequency sound absorption,
quarter wavelength [9, 10] (eventually coiled [11]), split
ring and Helmholtz resonators [12, 13, 14, 15, 6] have
been embedded in porous materials. Such resonators can
dramatically boost sound absorption provided that the
resonator frequency is above the Biot frequency (i.e.,
transition from a viscous to an inertial regime). They
can also be combined to create a slow sound chan-
nel [16, 10, 17, 18].

Instead of fluid resonators, membranes [19], thin
plates [20] and shell resonances [21, 6] have also been
considered. These elastic resonators usually resonate at
lower frequencies than their fluid counterparts, and avoid
the boundary layer thickness constraint that can typically
limit the Helmholtz resonator neck diameter.

Recent works have provided interesting ways of tun-
ing the resonators to theoretically obtain total sound ab-
sorption at prescribed frequencies, based on the critical
coupling phenomenon [20], i.e., by balancing the energy
leakage and the internal losses in the resonator. Follow-
ing this approach, nearly perfect sound absorption was
obtained for a material thickness of 1/88-wavelength [18],
while considerable sound absorption was obtained with a
viscoelastic plate [20].

The aim of this paper is to design multifunctional, light
and compact noise reducing treatments based on poroe-
lastic materials, like most of the previously cited stud-
ies, but the latter mainly focused on an equivalent fluid
model and ignored skeleton elasticity. Due to the cou-
pling between the fluid phase and the solid phase, the
wealth of physical properties of poroelastic materials can
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Figure 1: Geometry of the problem.

be used to couple fluid and elastic solid resonances in a
single material and thus enhance sound absorption for
various applications. To illustrate the different effects
of the skeleton, a simple configuration made of a peri-
odic arrangement of porolelastic lamellas and supported
by a rigid backing as in Ref. [22] was chosen. When
coupled with an acoustic excitation at oblique incidence,
additional absorption peaks were observed linked to the
bending resonance or shear resonance of the frame [23].
The lamella dimensions were chosen so that the absorp-
tion coefficient is boosted in the low frequency range by
the shear and bending resonances.

The present paper is organized as follows. After pre-
senting the material geometry and its numerical model
using the finite element method (FEM) in Sec. 2, a de-
scription of the experimental protocol chosen to perform
the oblique incidence measurements is described. Fi-
nally, numerical and experimental results are presented
in Sec. 4 to illustrate the contribution of shear and bend-
ing resonances to the absorption coefficient.

2 Problem statement
Let us consider the time-harmonic (with the time con-
vention e−iωt) scattering problem depicted in Figure 1.
The configuration consists of a periodic array of poroe-
lastic strips. The foam Ωp is clamped on a rigid wall and
embedded in an unbounded fluid domain Ωa on the top
and on the lateral faces. In direction e1, the configura-
tion has a period d1, whereas in direction e2 the system
is assumed infinite and modeled by an arbitrary period.

The acoustic wave propagation in the poroelastic do-
main Ωp is governed by the Biot equation [24, Chap. 6].
The foam strips are clamped on Γw and surrounded by
lateral air gaps. Classical coupling conditions apply at
the air-foam interface Γ [24, Chap. 13].
The total pressure must satisfy the Helmholtz equation

in the surrounding fluid domain Ωa and in the air gaps

∆p+ k2
ap = 0 (1)

where ka, denotes the air wavenumber. The fluid has a
density ρa and a sound speed ca.

The incident pressure field is a plane wave pi = Aieiki·x

impinging on the material with the wavenumber ki =
−ka (sin θ · cosφ, sin θ · sinφ, cos θ). Its direction is de-
fined by the inclination θ and azimuth φ of the spherical
coordinate system. Due to the periodicity of the geome-
try, both the incident and the scattered fields are pseudo-
periodic (i.e. d-periodic with a phase shift). Indeed, each
physical variable (called X) satisfies the relation

X(x + d, ω) = X(x, ω)eiki
⊥·d, (2)

with d = (d1, d2, 0) and the in-plane component of the
incident wavenumber ki

⊥. This property allows substan-
tial simplifications because only one elementary cell has
to be meshed.

The radiation condition of the scattered field in the
upper air domain is implemented with a ‘Dirichlet to
Newman’ map based on the Floquet decomposition on
the plane boundary Γ∞ at height h∞. Here, the total
pressure reads p = pi + pr and the reflected pressure can
be expanded as

pr(x, ω)|Γ∞ =
∑

m,n∈Z2

Amnφm,n(x)eik3mnh∞ , (3)

with
φm,n(x) = 1√

S
ei(k1mx1+k2nx2), (4)

where Amn are the amplitudes of the Floquet mode
(n,m), k1m = ki

1 + m 2π
d1
, k2n = ki

2 + n 2π
d2
, k3mn =√

k2
a − k2

1m − k2
2n, and S = d1×d2 is the surface of the el-

ementary cell. To satisfy the radiation condition, i.e. the
field remains bounded when x3 →∞, the values of k3mn
are chosen to consider both propagative and evanescent
waves in Ωa. The highest Floquet mode index taken into
account in each direction is chosen as the number of cut-
on Floquet modes + 2. This approach was preferred here
as the use of the Perfect Matching Layer (PML) [25] tech-
nique is not efficient for “low-frequency” applications, i.e.
when the wavelength is large compared to the size of the
computational domain.

The integration of the acoustic intensity relation over
the unit cell using the orthogonality of the Floquet modes
leads to the power balance. The power reflection coeffi-
cient R is defined as the ratio of the scattered power in
the e3 direction

Pr =
∑

m,n∈Z2

Re (k3mn) |Amn|2 /(ρaω), (5)

to the incident power

Pi = S
∣∣Ai∣∣2 ki

3/(ρaω). (6)

The absorption coefficient α is then defined as the ratio
of the absorbed power to the incident power

α = 1−R. (7)
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The problem is solved by FEM using Lagrange
quadratic tetrahedral finite elements. The (u, p) formu-
lation [26] is used In the poroelastic domain Ωp. Coin-
cident meshes on each opposite lateral boundary of the
periodic cell are used [27] to facilitate the use of the peri-
odicity condition recalled in equation (2). Unstructured
meshes are employed in the remainder of the computa-
tional domain. This results in a model with approxima-
tively 25 000 degrees of freedom.

3 Experimental methods
Measurements at oblique incidence are necessary to il-
lustrate the contribution of the shear and bending reso-
nances of the porous lamella network. This section de-
scribes the experimental protocol chosen and the proper-
ties of the sample tested.

3.1 Methods for measuring sound ab-
sorption at oblique incidence

Measurements of the properties of sound absorbing ma-
terials at oblique incidence are not trivial and have
been studied extensively. The impedance tube method
is mainly intended for measurements under an acoustic
plane wave at normal incidence. Improvements of this
method so that it can measure absorption coefficients
and impedance at oblique incidence were proposed, in-
cluding an apparatus for prescribed incidence angles that
had been suggested many years ago [28] and the more re-
cent multi-modal decomposition method [29]. An impor-
tant limitation of the impedance tube method is that the
dimensions of the sample are generally small, and even
if the minimum size of samples in the impedance tube
have been shown to be slightly expanded [30], out-of-tube
methods are generally preferred since they generally al-
low simpler setups and testing large samples.

Temporal separation and acoustic field approaches can
mainly be distinguished (see a review paper in [31]), the
latter mostly having been applied following the trans-
fer function method using two microphones, a sound
source and different field assumptions (plane or spherical
waves, with fixed [32] or rotating samples [22] in anechoic
rooms). The first alternative approach of which mention
can be made is the increasingly common use of spherical
microphone arrays [33]. Another interesting method is
that used by Tamura [34] who proposed a measurement
procedure using the spatial Fourier transform for the de-
composition of sound pressures measured in two planes
above a sample into the incident and reflected sound pres-
sures (with a fixed sound source). This method is gener-
ally considered complex and very time consuming [31].

In the present work, the approach taken uses two fixed
microphones and a mobile source [35]. It was first applied
to the measurement of the sound absorption coefficient
of a material under a synthesized diffuse acoustic field
excitation at the material surface, by using a synthetic

array of acoustic monopoles facing the material. Here, it
is extended to measurements under acoustic plane waves
with prescribed incidence angles.

3.2 Description of the method applied
The classical two-microphone approach and a source-
image model [32] is used to build a reflection coefficient
database by translating a point source over a plane par-
allel to the material surface (see Figure 2). The sound
absorption coefficient under a synthetic pressure field is
then calculated during a post-processing phase.

Under the assumption of an ideal point source placed
at a given position xi (i = 1, I) at a height z = z3 above
a layer of porous material, the acoustic pressure field at
microphoneMj at height z = zj (j = 1, 2) can be written
(spherical decoupling hypothesis) as:

p̃ij(xi, ω) = ρaqi(ω)
(

eikarij

rij
+R(xi, ω)eikar

′
ij

r′ij

)
, (8)

where qi(ω) is the source volume acceleration, rij and r′ij
are the distances between the microphone Mj and the
source or the image source at the i-th position, and finally
R(xi, ω) is the reflection coefficient of the material surface
corresponding to the i-th position of the point source.
The measurement of H(xi, ω) = p̃i2(xi, ω)/p̃i1(xi, ω) al-
lows calculating the pressure reflection coefficient for a
given incidence angle using the classical relation [32]

R(xi, ω) =

eikari2

ri2
−H(xi, ω)

eikari1

ri1

H(xi, ω)
eikar

′
i1

r′i1
−

eikar
′
i2

r′i2

. (9)

In practice, a square sample of porous material of side-
length L and thickness h is placed on a rigid impervious
backing. The synthetic source array and the two micro-
phonesM1 andM2 are centered on the material’s surface.
Using the two-microphone method described previously,
the reflection coefficient can be measured under various
incidence angles corresponding to successive source posi-
tions i of point sources, thus creating a virtual array of
monopoles in front of the material surface.

It can be shown (details can be found in [35]) that with
a database of measured reflection coefficients R(xi, ω)
and a calculated cross spectral density (CSD) matrix of
source volume accelerations SQQ, the power reflection co-
efficientRs(ω) under a synthesized pressure field during a
post-processing phase is obtained according to: Eq. (10)
below

Rs = h1
HSQQh1

g′1
HSQQg′1

, (10)

where g′1 = [g′11, . . . , g
′
i1, . . . , g

′
I1]T , h1 =

[R(x1, ω)g′11, . . . , R(xi, ω)g′i1, . . . , R(xI , ω)g′I1]H with
the source positions ranging in (i = 1, I) and T and
H denote the transpose and Hermitian transpose,
respectively, the Green’s functions corresponding to
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Figure 2: (a) Description of the problem and coordinate
system for a spherical wave model using a single point
source – (b) Description of the problem using a i-source
array (the side-length of the virtual array is Larray, with
uniformly distributed sources positioned with the same
source separation ∆s) [Adapted from [35]].

the propagation from the real (image) point source
to the microphone Mj are denoted gij(ω) = eikarij

rij

(g′ij(ω) = eikar′
ij

r′
ij

, respectively).
Note that the CSD matrix of the source volume accel-

eration SQQ can be calculated using a Wave Field Syn-
thesis [36], a Planar Nearfield Acoustical Holography [37]
or a Least-Squares [38] approach. The target pressure
field is defined here by the CSD of a unitary propagating
plane wave.

p̃(x, ω)i = exp(iki · x) (11)

as defined in sec. 2.
The corresponding absorption coefficient for the syn-

thetized incident pressure field is αs(ω) = 1−Rs, and is
a function of θ and φ as defined in Figure 1.

3.3 Measurement setup
A melamine foam of thickness h = 25.4 mm (1 inch)
was used to prepare the specimen of approximately

1.2 × 1.2 m2 area, mounted on a rigid laminated chip-
board. Lamellas were cut out from a large sample using
a band saw with a razor-edge band knife. The network
was composed of 65 lamellas of w = 15 mm width glued
one after the other on a rigid laminated chipboard, each
being separated by a distance of d1 −w = 3.6 mm. Care
was taken to ensure regular gluing at the bottom of the
lamellas (spray adhesive) and regular spacing. Compared
with a homogeneous layer of a similar area, the lamella
network is finally composed of nearly 20 % less sound ab-
sorbing material (see Figure 3(c)). It is noteworthy that
due to the period d1 = 18.6 mm, only the fundamental
Floquet mode k3 00 propagates up to 18kHz. In the fre-
quency band measured the lamella specimen behaves like
a homogenized material where only specular reflection is
present.

The specimen tested was laid directly on the floor of
the hemi-anechoic room (see Figures 3(a-b)). A small
loudspeaker (Gallo Nucleus 3 in.) was translated manu-
ally using a rigid aluminum frame on a mesh with 7× 7
positions at a height z3 = 0.27 m above the material sur-
face, the center source position corresponding to the nor-
mal incidence case. Each source position was separated
by ∆s = 0.15 m in both x and y directions, leading to an
array side-length of Larray = 0.9 m. Two microphones
(PCB 1/4 in.) were positioned at the center of the sam-
ples at heights z1 = 6 mm and z2 = 56 mm, respectively,
and were calibrated for amplitude. The maximum inci-
dence angle θmax that can be included in the database
of the measured reflection coefficients R(xi, ω) was de-
fined by the source to reproduction plane separation zs
and the longest source to microphone distance, in this
case θmax ≈ 67◦. For each source position, a logarith-
mic swept sine (200 Hz to 2000 Hz, in one second) was
used to drive the loudspeaker, and the transfer function
H between the two microphones was estimated using 10
consecutive averages.

The properties of the foam are provided in Table 1.
The porosity is measured by using the pressure/mass
method. The resistivity is determined according to the
ASTM C522 standard. The tortuosity is measured by an
ultrasonic method. The two characteristic lengths are ob-
tained by analytical inversion based on the 3 microphone
in-duct technique.

To ensure the reliability of the viscoelastic proper-
ties, they were determined from the bending vibratory
response of several lamellas within the network. Con-
tactless vibration measurements were performed using a
scanning laser vibrometer. Small patches of reflective
material were applied to the top of one lamella in order
to capture the vibration response to an impact (see Fig-
ure 4). A soft impactor (laboratory tip applicator) was
used to excite the bending motion at several points, and
the vibratory measurement was triggered on the vibrom-
eter signal. Two examples of typically acquired signals
are provided in Figure 4, clearly showing the impulse re-
sponse of a single damped mode after the shock. From
these signals, the loss factor and the bending resonance
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Table 1: Measured material parameters.
Tortuosity Porosity Resistivity Viscous Thermal Foam mass Young’s Poisson Loss

α∞ Φ σ length Λ length Λ′ density ρ1 modulus E ratio ν factor η
[-] [-] [Nm−4s] [µm] [µm] [kg.m−3] [kPa] [-] [-]

1 0.98 7920 132 149 6.1 120 0 0.075

(a)

(b)

(c)

Figure 3: Experimental set-up for the case of the lamella
network (a); Zoom on the source and microphones (b);
Zoom on the poroelastic lamella network (c).

frequency were both estimated, with mean values of 0.075
and 500 Hz, respectively. A null value was assumed for
this parameter since numerical simulation showed that
the Poisson ratio had no significant effect on the reso-
nance frequencies of the lamellas. Under this hypothesis,
the Young’s modulus can be easily determined.

Here the dimensions of the lamellas were chosen to en-
sure a bending resonance frequency above 400 Hz because
of experimental limitations (see Sec. 4.2). Changing the
aspect ratio made it possible to shift this frequency up
or down for practical applications.

4 Results and discussion
4.1 Numerical results
The numerical results were computed with the material
properties given in Table 1, while the dimensions are
given in section 3.3 for several incidence angles. As seen
in Figure 1, θ is the angle defined with respect to the ver-
tical axis e3: θ = 0◦ states for a normal incidence. This
is usually referred to as the inclination angle. θ = 90◦
states for a grazing incidence. In the experimental con-
figuration, the maximum angle available is 67◦. The az-
imuthal angle φ defined with respect to the horizontal
axis e1 is related to the orientation of the lamellas. Here,
φ = 0◦ states for an incidence normal to the lamellas axis
oriented by e2, whereas φ = 90◦ states for an incidence
parallel to the axis of the lamellas.

Figure 5 shows the numerical results for several inci-
dence angles on the lamella network. When θ = 0◦, the
angle φ has no effect: the bottom curve in figures 5(a-c)
is always the same. A dip can be noticed around a fre-
quency of 1400 Hz, due to the quarter wavelength mode
related to the longitudinal solid borne wave whose fre-
quency can be approximated by fl = 1

2π

√
E/ρ1
4h , which

gives 1380 Hz.
A comparison with the double porosity (DP) model

for slits [4] which assumes no motion of the skeleton is
presented in Figure 5(a) and provides another validation
of the numerical model. It can be seen that the DP and
FEM models are the same below the frequency fl. The
elasticity of the skeleton seems to lower the absorption
coefficient above this frequency. In comparison with the
homogeneous layer at normal incidence (see Figure 6),
the sound absorption coefficient is slightly lower for the
lamella network since the fraction of porous material is
smaller. It is noteworthy that this can be avoided by tun-
ing the resistivity, as in [5, 39] to obtain the DP pressure
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Figure 4: Experimental measurement of the vibratory
response to an impact of a lamella: (top) tested sample,
(bottom) free response versus time at two locations (A:
beam-like sample; B: continuous lamella).

diffusion effect[4].
Figure 5(a) shows the effect of the inclination angle θ

for an azimuthal angle φ of 0 degrees. It shows that a
peak appears just before 500 Hz as long as θ increases. In
these conditions (incidence normal to the lamella axis),
the bending mode of the lamellas is considerably excited.
Its frequency can be approximated by considering the
first bending mode of the uniform clamped-free beam [40]
by

fb = 1.8752

2πh2 w

√
E

12ρ1
, (12)

which gives 526 Hz. This frequency is slightly overesti-
mated since shear effects are not accounted for in this
approximation. This difference becomes smaller when
the ratio h/w increases.

Figure 5(b) shows that when φ = 45◦, another peak
appears around 1000 Hz, whereas the first peak is less
pronounced. This second peak is related to the shear
mode of the lamellas whose frequency can be approxi-
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Figure 5: Numerical results for lamellas network ac-
cording to the frequency and the inclination angle θ ∈
[0, 30, 45, 67]◦ for a) φ = 0◦ and double porosity results
at normal incidence ( ), b) φ = 45◦ and c) φ = 90◦.
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Figure 6: Numerical results for homogeneous porous ma-
terial according to the frequency and the inclination angle
θ ∈ [0; 30; 45; 67]◦.

mated by fs = 1
2π

√
E/2ρ1
4h , which gives 976 Hz. Finally,

Figure 5(c) shows that when φ = 90◦, the bending mode
resonance disappears, and only the shear mode peak is
present. In that case, the incident waves oriented along
the lamellas axis cannot excite the bending mode. Note
that these results are close to those given in Figure 6 for
a homogeneous layer.

To better analyze the dissipation of mechanisms re-
lated to each peak, the absorption coefficient frac-
tions [41] related to the viscous, thermal and structural
dissipation are presented in Figure 7. A clear peak of the
structural and viscous dissipation fractions can be seen
around each mode, the latter being related to the relative
velocity between both phases. In contrast, the thermal
dissipation is hardly affected by the skeleton motion.

4.2 Experimental results
Figure 8 shows the experimental results for the lamella
network for three azimuthal angles φ = [0, 45, 90]◦ and
for the inclination angle θ = 45◦ and θ = 67◦. The es-
timated sound absorption coefficients are averaged over
1/12 octave bands. Although the sample necessarily in-
cludes some manufacturing imperfections, the trends ob-
served are similar to those identified with the numerical
results (see Figure 5: dashed lines for θ = 45◦ and con-
tinuous black lines for θ = 67◦). A peak before 1000
Hz (related to the shear mode) can be seen except when
the incidence is normal to the axis of the lamellas. Con-
versely, a peak around 500 Hz can be seen clearly except
when the incidence is along the lamellas axis. Using laser
vibrometer measurements, this peak was experimentally
identified as being linked to the bending mode of the
lamellas (as presented in section 3.3).

It can also be noticed that the absorption coefficient
can be negative below 500 Hz. Indeed, the reflection co-
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Figure 7: Absorption fraction for each dissipation mech-
anism (viscous, thermal and structural) for θ = 45◦ and
a) φ = 0◦, b) φ = 90◦.

efficient measured can differ from that provided with the
plane-wave hypothesis when the sound source is close to
the porous material surface. This can be attributed to
the fact that spherical waves do not reflect only specu-
larly when the distance between the sound source and the
material surface is small compared to the wavelength [42].

5 Conclusion
In this paper, the sound absorption of a poroelastic
lamella network was studied. It was shown that this ar-
rangement provides additional sound absorption below
the quarter wavelength resonance within the thickness of
the sample, compared with a uniform material arrange-
ment.

A sample of 1.2 m by 1.2 m made of 65 melamine foam
lamellas was tested using a technique based on acoustic
field synthesis. This method allows measuring the ab-
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Figure 8: Measured absorption coefficient for the lamella
network according to the frequency and the azimuthal
angle φ = [0, 45, 90]◦ for an inclination angle a) θ = 45◦,
b) θ = 67◦.

sorption coefficient under acoustic plane waves at oblique
incidence in free field conditions. The results were in
good agreement with the periodic numerical model.

The simulations showed that this additional dissipa-
tion is a combination of structural and viscous dissipa-
tion within the lamellas. Indeed, at oblique incidence, the
lamellas exhibited both a shear and a bending resonance.
The frequency of the former was linked to the thickness
of the sample, whereas the second was a function of both
the width and the thickness of the sample. The two phys-
ical dimensions of the lamellas could be used to facilitate
the adjustment of additional absorption frequencies ap-
pearing below the classical quarter wavelength resonance.

Future works will be devoted to alternative geometries.
For instance, rigid splitters [17] can be replaced by air
gaps, leading to a horizontal lamella network of different
sizes that can be excited at all incidence angles and be

tuned at different frequencies to enlarge the frequency
range of the additional absorption. The network should
also be designed by optimizing its properties involved in
double porosity dissipation [39] with air gap size, peri-
odicity and material resistivity or by applying critical
coupling [20] to the bending mode to obtain maximum
sound absorption.

Finally, the experimental technique used to obtain the
absorption coefficient at oblique incidence will be en-
hanced in the low frequency range by optimizing the
post-processing step or using a more precise model of
the sound reflection. The capacity to evaluate non spec-
ular reflection, which can occur with metamaterials or
metasurfaces, will also be tested.
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