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Abstract

Provided that one keeps in mind the Cramér-Rao bound (CRB) limitations, that is, to become an

overly optimistic lower bound when the observation conditions degrades, the CRB is a lower bound

of great interest for analysis and design of a system of measurement in the asymptotic region. As

a contribution, we introduce an original framework taking into account most (and possibly all) of

factors impacting the asymptotic estimation performance of the parameters of interest via equality

constraints, leading to direct algebraic computations of constrained CRB. Anyhow, for complex

systems, derivation of analytical expression of CRB is either impossible or inefficient. For application

to active systems of measurement such as radar, we provide the general form of the Fisher information

matrix (FIM) for multiple conditional models which generally precludes the derivation of an analytical

expression of the CRB for scenarios including interference and sensors modeling errors. We show

that the proposed framework can also be used efficiently to generate new closed-form expressions of

CRB, although this is not its main aim. Last, we examplify the proposed framework in the context

of a tracking radar facing different target types (in terms of parameters variability).

Key words: Deterministic parameter estimation, Cramér–Rao bound, Conditional model, Active

radar, Waveform diversity
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I. INTRODUCTION

Minimal performance bounds allow for calculation of the best performance that can be achieved

in the Mean Square Error (MSE) sense, when estimating parameters of a signal corrupted by noise.

There are two main categories of lower bounds [1]. Those that evaluate the ”locally best” behaviour

of the estimator and those that consider the ”globally best” performance. In the first case, the

parameters being estimated are considered to be deterministic, whereas the second category considers

the parameters as random variables with an a priori probability. This paper is concerned with the

first category of bounds concerning deterministic parameters (the case in which signal and/or noise

models involve some random parameters [2][3] is not taken into account). Historically the first MSE

lower bound for deterministic parameters to be derived was the Cramér-Rao Bound (CRB), which

was introduced to investigate fundamental limits of a parameter estimation problem or to assess the

relative performance of a specific estimator (efficiency) [1]. It has since become the most popular

lower bound due to its simplicity of calculation and the fact that in many cases it can be achieved

asymptotically (high signal-to-noise ratio (SNR) and/or large number of snapshots) by Maximum

Likelihood Estimators (MLE) [1]. However, numerous works (detailed in [4][5]) have shown that in

non-linear estimation problems three distinct regions of operation can be observed. In the asymptotic

region, the MSE is small and, in many cases, close to the CRB. In the a priori performance region

where the number of independent snapshots and/or the SNR are very low, the observations provide

little information and the MSE is close to that obtained from the prior knowledge about the problem.

Between these two extremes, there is the transition region where the MSE of MLEs usually deteriorates

rapidly with respect to CRB, and exhibits a threshold behaviour corresponding to a ”performance

breakdown” [1] revealed by Large-Error bounds [4][5] that can be used to predict the threshold value.

Unfortunately, the computational coast of Large-Error bounds is prohibitive in most applications when

the number of unknown parameters increases. Therefore, provided that one keeps in mind the CRB

limitations, that is, to become an overly optimistic lower bound when the observation conditions

degrades (low SNR and/or low number of snapshots), the CRB is still a lower bound of great interest

for system analysis and design in the asymptotic region.

As mentioned in the seminal paper [6], the standard form of the CRB is derived under the implicit

assumption that the parameter space is an open subset of Rn (if we consider unknown deterministic

real parameters). However, in many applications (see hereinafter), the vector of unknown parameters

is constrained to lie in a proper non-open subset of the original parameter space. In [6], authors

have shown that for constraint sets defined by a general smooth (differentiable) functional inequality

constraint, the constrained CRB is equivalent to the unconstrained CRB at all regular points of the

constraint set, e.g., at interior points. However at nonregular point, such as points governed by equality
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constraints, the constrained Fisher information matrix (FIM) consists of the orthogonal projection of

the unconstrained FIM onto the tangent hyperplanes of the constraint set.

Since then, numerous works have been devoted either to extend the theoretical results introduced

in [6] or to apply these results or its extensions. Thus, [7] presents a simple derivation of the

constrained CRB with equality constraints and a new necessary condition for an estimator to satisfy

the constrained CRB. Then [8] (and later [9]) provide useful extensions of the constrained CRB

with equality constraints where the FIM for the unconstrained problem is not of full rank and

the estimators may be biased [9], since for several signal processing problems the unconstrained

problem is unidentifiable. Regularization of an unidentifiable unconstrained problem via addition of

equality constraints is investigated in [10] for convolutive multi-input multi-output (MIMO) systems

and in [11] for the blind source separation (BSS) problem with constant modulus constraints on the

sources. [12] extends the formulation of the constrained CRB to complex equality constraints including

complex parameters vector for application in the context of a semiblind channel estimation problem.

[13] unifies the asymptotic constrained maximum likelihood (CML) theory with the constrained

CRB theory by showing that the CML estimate (CMLE) is asymptotically efficient with respect

to the constrained CRB. Convergence properties and examples verify the usefulness of the proposed

approach. [14] characterizes the best achievable MSE in estimating a sparse deterministic parameter

from measurements corrupted by Gaussian noise. To this end, an appropriate definition of bias in

the sparse setting is developed, and the associated constrained CRB is derived. [15] investigates the

behavior of the MSE of low-rank and sparse matrix decomposition, in particular the special case

of the robust principal component analysis (RPCA), and its generalization matrix completion and

correction (MCC). [15] derives a constrained CRB for any locally unbiased estimator of the low rank

matrix and of the sparse matrix, and analyzes the typical behavior of the constrained CRB for MCC

where a subset of entries of the underlying matrix are randomly observed, some of which are grossly

corrupted. Lately, [16] has introduced a simple derivation of the CRB, whatever the nature (real

or complex) of the unknown parameters, that avoids sophisticated matrix manipulations generally

used with complex parameters [12][17]. With this derivation based on the minimization of a norm

under a set of linear constraints, the study of FIM singularity, constrained CRB (also in [18] for real

parameters), regularity conditions become straightforward corollaries of the derivation, condensing

to a few lines previous works [6][7][8][9][12][19][20]. [16] also provides technical results useful for

system analysis and design in the asymptotic region: the general reparameterization inequality and

the equivalence between parameterization change and equality constraints (previously introduced in

[11] and [21] for real parameters). Indeed, a way to improve the estimation of a subset of unknown

parameters (parameters of interest for example) can be to introduce, by design choices, either a

parameterization change or equality constraints among the other parameters (nuisance parameters for
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example) [22]. Additionally, for system design it is also worth knowing if the parameters of interest

are identifiable, that is, if they can be estimated (with or without bias) whatever their values. And

if they are not identifiable, at least on which subset of the parameter space. In [16] it is shown

that the FIM is always singular on a subset of the parameter space deriving from a set of equality

constraints (m-dimensional manifold in Rn or Cn [23]). Therefore a possible regularization of a

singular unconstrained FIM can theoretically be obtained by adding or exploiting some equality

constraints on the parameter to be estimated [9][10][11][16][24].

Last, the computation of CRB by direct inversion techniques or other forms of matrix decompositions

are known for their high complexity in space and time when the number of parameters is large.

Moreover, one may be just interested in a portion of the covariance matrix. Pioneering work [25]

proved the tremendous savings in memory and computation by presenting several recursive algorithms

computing only submatrices of the CRB. [26] shows that the algorithms proposed in [25] are special

instances of a more general framework related to solving a quadratic matrix program which provides

methods for fast computation of the CRB, including the cases when the parameters are constrained

and when the FIM is singular.

The survey of the open literature dedicated to the constrained CRB paradigm as above, shows that

most of previous works in the field has been dedicated to study the CRB modified by constraints

either required by the model or required to solve identifiability issues. Apart from this main stream,

a few works [12][22] have proposed to investigate the use of parameters constraints from a differ-

ent perspective: the value of side information on estimation performance, in the sense that a side

information allows to treat some formerly unknown parameters as known (for instance, the use of a

known training sequence in communications).

Our concern is performance analysis and design of a system of measurement, that is to search for

or to check the requirements a given system of measurement must be compliant with to ensure

some operational or contractual estimation (measure) performance on some parameters of interest.

In this context, the first novel contribution of the present paper is tutorial in nature: all the previous

contributions can be gathered to introduce an original framework in order to assess and to analyze

the asymptotic estimation performance achievable by any system of measurement modelled as a set

of L parametric observation models (whatever they are identical or not and/or independent or not),

provided an analytical expression of the parameterized density probability function (p.d.f.) associated

with the L observations is available (as it is the case for Gaussian observations, whatever the model

is conditional or unconditional, circular or non circular). The main advantage of this framework is

to take into account most (and possibly all) of factors impacting the estimation performance of the

parameters of interest (see section V for examples) via equality constraints (or reparameterizations)

leading to direct numerical algebraic computations of constrained CRB from the expression of the
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unconstrained FIM. This framework offers a rational heuristic to assess and to analyze the design of a

system of measurement, where derivation of dedicated analytical or closed-form expressions of CRB

is superfluous. Anyhow, for complex systems of measurement, derivation of analytical expression

of CRB is either impossible or inefficient (see Sections IV-B for examples). Indeed, generally the

unknown parameters vector contains the parameters of interest to us as well as other unwanted

parameters. Then, the usual technique to obtain the portion of the CRB related to the parameters of

interests is to partition the FIM and use the formula for the inverse of block matrices to find the

analytical expression of the corresponding block. First, this step is normally a tour de force of linear

algebra which is seldom successful for complex observation models. Second, even when successful,

the complexity of the analytical expression obtained generally prevents from any insight without

resorting to oversimplified particular cases (one or two signals, one or two unknown parameters per

signal, ....) or to numerical computations.

The second novel contribution is an application to the case of L conditional models (whatever they

are identical or not, independent or not) often used to model active systems of measurement such

as radar [27][28]. Additionally, we exhibit some particular cases where the proposed framework can

be used efficiently to generate new closed-form expressions of CRB (useful to study the impact of

waveform diversity on asymptotic performance estimation), although this is not the main aim of this

framework. Last, we exemplify the proposed framework in the context of a tracking radar facing

different target types (in terms of parameters variability).

An outline of the paper is as follows. Section II introduces the algebraic notations used in the paper.

Section III recalls the useful background on constrained CRB for real and complex parameters. Section

IV is an introduction of the proposed framework for a system of measurement consisting of multiple

band-limited conditional models. This section first establishes the general expression of the FIM

for multiple conditional models, then shows how the proposed framework can be used efficiently

to generate new closed-forms expressions of CRB in some particular configurations (absence of

sensors modeling errors, independent models); expressions of questionable interest in the light of

their complexity. Then section (V) further elaborates on the proposed framework based on constrained

CRB by enumerating different varieties of constraints to highlight their potential use in estimation

performance analysis and design of a system of measurement. Last, Section VI exemplifies the

proposed framework in the context of a tracking radar facing different target types in terms of

parameters variability.

II. NOTATIONS

The notational convention adopted is as follows: italic indicates a scalar quantity, as in a; lower case

boldface indicates a column vector quantity, as in a; upper case boldface indicates a matrix quantity, as
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in A. The n-th row and m-th column element of the matrix A will be denoted by an,m or (A)n,m. The

n-th coordinate of the column vector a will be denoted by an or (a)n. Re {A} is the real part of A and

Im {A} is the imaginary part of A. The matrix/vector transpose is indicated by a superscript T as in

AT . The matrix/vector conjugate is indicated by a superscript ∗ as in A∗. The matrix/vector transpose

conjugate is indicated by a superscript as in AH . |A| is the determinant of the square matrix A.

[A,B] denotes the matrix resulting from the horizontal concatenation of matrices A and B.
(
aT ,bT

)
denotes the row vector resulting from the horizontal concatenation of row vectors aT and bT . IM is

the identity matrix of order M . vec (A) is a column vector obtained from matrix A by stacking its

column vectors one below another. S = span {A} where A is a matrix denotes the linear span of the

set of its column vectors. S⊥ denotes the orthogonal complement of the subspace S. For two matrices

A and B, A ≥ B means that A−B is positive semi-definite. E [·] denotes the expectation operator

and ‖.‖ denotes a norm. o (.) and O (.) denotes respectively the small oh and big Oh notation. If

θ = (θ1, θ2, . . . , θP )T , then: ∂
∂θ =

(
∂
∂θ1
, ∂
∂θ2
, . . . , ∂

∂θP

)T
, ∂
∂θT

=
(

∂
∂θ1
, ∂
∂θ2
, . . . , ∂

∂θP

)
. MR (N,P )

denotes the vector space of real matrices with N rows and P columns. MC (N,P ) denotes the

vector space of complex matrices with N rows and P columns. � denotes the Hadamard product. ⊗

denotes the Kronecker product. 1 (x) denotes the constant real-valued function with value equal to

1. x denotes the following notation:

x :


x = x if x ∈ RQ

x =
(
xT ,xH

)T if x ∈ CQ and x /∈ RQ

x =
(
xTc ,x

H
c ,x

T
r

)T if x =
(
xTc ,x

T
r

)T
, xc ∈ CQ and xc /∈ RQ, xr ∈ RQ′

(1)

Additionally, regarding the definition of Hermitian product, we adopt the convention used in [16]

coming from books of mathematics including [29][30], where a sesquilinear form is a function in

two variables on a complex vector space U which is linear in the first variable and semi-linear in the

second. This convention allows to define the Gram matrix associated to 2 families of vectors of U,

{u}
[1,Q]

= {u1,u2, . . . ,uQ} and {c}
[1,P ]

= {c1, c2, . . . , cP } as [30]:

G
(
{u}

[1,Q]
, {c}

[1,P ]

)
∈MC (P,Q) /

(
G
(
{u}

[1,Q]
, {c}

[1,P ]

))
p,q

= 〈uq | cp〉 (2)

leading to:〈
Q∑
q=1

xquq |
P∑
p=1

ypcp

〉
= yHG

(
u

[1,Q]
, c

[1,P ]

)
x, x = (x1, . . . , xQ)T ,y = (y1, . . . , yP )T (3)

For notational convenience: G
(
{u}

[1,Q]

)
= G

(
{u}

[1,Q]
, {u}

[1,Q]

)
.

Beware that most reference signal processing books including [1, p1343][31][32] adopt the opposite

convention for sesquilinear form, that is to be semi-linear in the first variable and linear in the second.

As a consequence, the equivalent form in ”signal processing notation” of any equality/inequality

derived in the present paper is obtained by transposing equality/inequality terms. Thanks to the adopted
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convention, even in the case of complex parameters, the Fisher Information Matrix (see hereinafter)

appears to be both Gram matrix and correlation matrix derived from the canonical definition of the

MSE, i.e., a norm associated to an Hermitian product depending on the p.d.f. of the observation.

III. BACKGROUND ON CONSTRAINED CRB

A. (Unconstrained) CRB

Throughout the present paper, unless otherwise stated, x denotes the random observation vector

of dimension N , Ω denotes the observations space and L2 (Ω) denotes the complex Hilbert space of

square integrable functions over Ω. The probability density function (p.d.f.) of x is denoted p (x;θ)

and depends on a vector of P real parameters θ = (θ1, . . . , θP ) ∈ Θ, where Θ denotes the parameter

space. p (x;θ) is ”regular” in the following sense: ∀θ ∈ Θ,∀x ∈ Ω, p (x;θ) > 0 for almost every x

in the observation space Ω; ∀θ ∈ Θ, ∀x ∈ Ω, p (x;θ) is continuous and differentiable with respect

to θ; p (x;θ) does not incorporate any probability mass function. Additionally, we assume that the

observation vector x corresponds to a parametric observation model involving Pr ≥ 0 real unknown

parameters (delays, directions of arrival, ...) and Pc ≥ 0 complex unknown parameters (spatial transfer

functions components, complex amplitudes, ...) where 2Pc +Pr = P , leading to a p.d.f. of the form:

p (x;θ) , θ = (θ1, . . . , θP )T =
(
Re
{
θTc
}
, Im

{
θTc
}
,θTr

)T ∈ RP , θc ∈ CPc , θr ∈ RPr , 2Pc+Pr = P

Then the p.d.f. of x can be parameterized in a dual form [16]:

p (x;θ) , θ =
(
Re
{
θTc
}
, Im

{
θTc
}
,θTr

)T ∈ RP (4)

p (x;θ) , θ =
(
θTc , (θ

∗
c)
T ,θTr

)T
∈ C2Pc × RPr , 2Pc + Pr = P, Pc ≥ 0, Pr ≥ 0 (5)

In the following we will only consider the form (5) since it includes (4) when Pc = 0.

Let θ0 be a selected value of the parameter θ, and ĝ
(
θ0
)

(x) an estimator of g
(
θ0
)

where g (θ) =

(g1 (θ) , . . . , gQc (θ) , gQc+1 (θ) , . . . , gQc+Qr (θ))T is a vector of Qc + Qr functions of θ, the first

Qc ≥ 0 ones being complex-valued functions, the last Qr ≥ 0 being real-valued functions. For any

selected value θ0, ĝ
(
θ0
)

(x) stands for a mapping of the observation space Ω into an estimate of

g
(
θ0
)
, designed to have a low MSE at θ0 (possibly the lowest) and some relevant properties for

other values of θ, as unbiasedness for instance. Let us recall that ĝ
(
θ0
)

(x) is an unbiased estimator

of g
(
θ0
)

at the selected value θ0 if:

Eθ0

[
ĝ
(
θ0
)

(x)
]

= g
(
θ0
)

=

∫
Ω

ĝ
(
θ0
)

(x) p
(
x;θ0

)
dx, (6)

where Eθ [g (x)] is the statistical expectation of the vector of functions g ( ) with respect to x

parameterized by θ. Actually, if the exhaustive characterization - in the sense of statistical performance
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- of an estimator ĝ
(
θ0
)

(x) containing complex-valued components, is supposed to include the char-

acterization of all its individual components, that is real and imaginary parts, then the characterization

of ĝ
(
θ0
)

(x), where dim
{

ĝ
(
θ0
)

(x)
}

= 2Qc + Qr = Q, is necessary, which can be achieved by

the knowledge of Gθ0

({
ĝ
(
θ0
)

(x)− g
(
θ0
)})

where:

{h (x)} =
{

(h1 (x) , . . . , hQ (x))T
}

= {h1 (x) , . . . , hQ (x)} (7)

denotes a family of vectors whose elements are the vector components, and:(
Gθ0 ({g (x)} , {h (x)})

)
p,q

= 〈gq (x) | hp (x)〉θ0 (8)

is a Gram matrix associated to the Hermitian product 〈 | 〉θ0 depending on p
(
x;θ0

)
:

〈g (x) | h (x)〉θ0 = Eθ0 [g (x)h∗ (x)] =

∫
Ω

g (x)h∗ (x) p
(
x;θ0

)
dx. (9)

Then, if g (θ) is differentiable at θ0 (for both real and complex components [16, III.A]) the (uncon-

strained) CRB is given by:

Gθ0

({
ĝ
(
θ0
)

(x)− g
(
θ0
)})

≥ CRBg|θ
(
θ0
)

=
∂g∗

(
θ0
)

∂θH
F−1
θ0

∂gT
(
θ0
)

∂θ
(10)

Fθ0 = Gθ0

({
∂ ln p (x;θ)

∂θ

∗})
= Eθ0

[
∂ ln p (x;θ)

∂θ

∂ ln p (x;θ)

∂θ

H
]

(11)

(
ĝ
(
θ0
)

(x)− g
(
θ0
))T

eff
=
∂ ln p (x;θ)

∂θH
F−1
θ0

∂gT
(
θ0
)

∂θ
(12)

provided that the FIM Fθ0 is invertible, that is provided that
{
∂p(x;θ)
∂θ

}
is an independent family of

vectors.

B. Constrained CRB

The addition of K non redundant equality constraints on the unknown deterministic parameters :

f (θ) = 0 ∈ C2Kc × RKr , 2Kc +Kr = K, 1 ≤ K < P (13)

where the matrix ∂f(θ)
∂θT

∈ MC (K,P ) has full row rank (K), leads to the constrained FIM and

constrained CRB [6][7][8][9][12][16][18]:

Gθ0

({
ĝ
(
θ0
)

(x)− g
(
θ0
)})

≥ CRBc
g|θ
(
θ0
)

=
∂g∗

(
θ0
)

∂θH
U∗θ0

(
Fc
θ0

)−1
UT
θ0

∂gT
(
θ0
)

∂θ
(14)

Fc
θ0 = Gθ0

({
UH
θ0

∂ ln p (x;θ)

∂θ

∗})
= UT

θ0Fθ0U∗θ0 (15)

(
ĝ
(
θ0
)

(x)− g
(
θ0
))T

eff
=
∂ ln p (x;θ)

∂θH
U∗θ0

(
Fc
θ0

)−1
UT
θ0

∂gT
(
θ0
)

∂θ

where Uθ0 is a basis of ker
{
∂f(θ0)
∂θT

}
and Fc

θ0 denotes the constrained FIM. It is worth noticing that

the constrained CRB does not depend on the choice of the basis Uθ0 .
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Moreover, it has been shown [11][16][21] that, regarding the computation of the CRB, non redundant

equality constraints on parameters (13):

f (θ) = 0 ∈ CK , θ ∈ CP , 1 ≤ K < P,

restricts θ to a manifold, which amounts to a reparameterization of the unknown parameters θ =

θ (ω), dim {ω} = P −K [23, Theorem 5-2]. Then, the reparameterization inequality [16]:

CRBg|θ
(
θ
(
ω0
))
≥ CRBg(θ)|ω

(
ω0
)

(16)

where:

CRBg(θ)|ω
(
ω0
)

=
∂g∗

(
θ
(
ω0
))

∂θH
CRBθ|ω

(
ω0
) ∂gT

(
θ
(
ω0
))

∂θ
,

CRBθ|ω
(
ω0
)

=
∂θ∗

(
ω0
)

∂ωH

(
∂θT

(
ω0
)

∂ω
Fθ(ω0)

∂θ∗
(
ω0
)

∂ωH

)−1
∂θT

(
ω0
)

∂ω
,

holds provided that Uθ0 , ∂θ(ω0)
∂ωT , where Uθ0 ∈ MC (P, P −K) is a basis of ker

{
∂f(θ0)
∂θT

}
. Uθ0

can always be computed - after rearrangement of θ - as [16][21]:

Uθ0 =

 IP−K

−
(
∂f(θ0)
∂εT

)−1
∂f(θ0)
∂ωT

 , θ =

 ω

ε

 (17)

where ε is a subvector (subset) of K components of θ which K columns of partial derivatives -

columns of matrix ∂f(θ0)
∂θT

- are independent.

IV. ESTIMATION PERFORMANCE AND DESIGN OF A SYSTEM WITH CONSTRAINED CRB UNDER

THE CONDITIONAL MODEL

Our main interest is the design of system of measurement where the optimization criterion is the

system estimation performance for a set of parameters of interest. By way of illustration, we consider

the convenient (and quite standard) setting of a system of measurement generating L observations

where each observation consists of a signal of interest corrupted by another signal usually called noise

signal. In the following, for sake of legibility, the term ”signal” will implicitly refer to any signal

of interest and the term ”noise” will implicitly refer to any noise signal (whatever we consider an

”internal” noise source (thermal noise) or an ”external” noise source (interference)). Each observation

is modelled as a N l-dimensional random vector xl, function of a vector of P l+Ql ≥ 1 deterministic

parameters (real or complex) θl:

xl , xl
(
θl
)

= sl
(
θls, δ

l
s

)
+ nl

(
θln, δ

l
n

)
, 1 ≤ l ≤ L (18)(

θl
)T

=

((
θls

)T
,
(
δls

)T
,
(
θln

)T
,
(
δln

)T)
,
(
θls

)T
=

((
σls

)T
,
(
Ξl

s

)T)
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where :

• nl
(
θln, δ

l
n

)
is a noise vector depending both on a vector θln of P ln parameters associated with

sources of noise (thermal noise covariance matrix, interference DOAs, ...) and on a vector δln of

Qln parameters independent from noise (typically parameters of the system physical components

contributing to noise observations (thermal noise or interference )),

• sl
(
θls, δ

l
s

)
is signal vector depending both on a vector θls of P ls parameters associated with

sources of signal (DOAs, amplitudes, ....) and on a vector δls of Qls parameters independent from

signal (typically parameters of the system physical components contributing to signal observations

(waveforms generator, sensors on transmit and on receive, ...)),

• Ξl
s are the signal parameters of interest and σls are the signal nuisance parameters (as they are not

of interest but present [1][32][31]),

• P l = P ln + P ls, Ql = Qln +Qls.

Therefore we look for the requirements on
{
sl
(
, δls
)
,nl
(
θln, δ

l
n

)}L
l=1

a given system of measurement

must be compliant with to ensure some operational or contractual estimation performance on (selected

values of) the parameters of interest
{
Ξl

s

}L
l=1

for given (selected values of) nuisance parameters{
σls
}L
l=1

. The metric chosen for estimation performance is the CRB. Therefore in the following,

unless otherwise stated, for sake of legibility and conciseness, the wording ”estimation performance”

alone always stands for the estimation performance provided by the CRB of the parameters of interest{
Ξl

s

}L
l=1

.

A first noteworthy feature of the (Gaussian) conditional model [33] is to be an observation model

for which the asymptotic Gaussianity and efficiency of MLEs has been proved [33][44]. A second

noteworthy feature is to be a suitable observation model for active systems of measurement such as

radar [40][42], which are our primary systems of interest. For a broader perspective, let us consider

the general problem of geographical localization (or positioning) which has received ever growing

attention by the signal processing community. In the localization/positioning paradigm a distinction

can be made between active localization and passive localization. Passive localization refers essentially

to military applications where we want to localize a passive transmitter that does not cooperate: the

transmitted waveform is unknown from the receiver. On the contrary, active localization usually refers

to the case where the transmitter and the receiver cooperate: the transmitted waveform is known from

the receiver. In an active localization system such a radar (or sonar or lidar), a known waveform is

transmitted and the signals scattered from the targets of interest are used to estimate their parameters.

Typically, the received signals are modelled as scaled, delayed, and Doppler-shifted versions of the

transmitted signal; see, e.g., [39]. Estimation of the time delay and Doppler shift provides information

about the range and radial velocity of the targets. The use of spatial diversity, i.e. antenna arrays,

compared with a single sensor, guarantees more accurate range and velocity estimation and allows
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estimation of the targets direction. Last, but no least, waveform diversity [43] may be used to improve

the estimation of all targets parameters. The same analysis apply for communication systems, except

that the wave transmission is designed to be direct and not via scatterers. In an active system of

measurement, as the waveform parametric model is known and deterministic (in opposition with a

passive system where a probabilistic modelling of the waveform is generally considered), the most

accurate statistical prediction for L observations is obtained when the scattered signal amplitudes are

modelled as deterministic (since it is well known that the complex Gaussian amplitude modelling

provide an average unconditional CRB higher that the corresponding conditional CRB [1][31][32]).

A. General expression of the FIM for L conditional models

Even though there are many FIM formulas on this topic since numerous works have been done in

this field (see references in [1][31][32][43]), each FIM formula is specific to some particular systems

modelling (narrow band arrays, narrow band transmitted signals, temporally white noise, Doppler

effect approximation, single observation model....). Therefore, to the best of our knowledge, what

is missing is a neat FIM formula able to take into account all possible diversities, i.e. valid for L

observations models independently of underlying approximations. It is the aim of this section to

provide such a general FIM formula for the conditional model.

1) FIM for a single band limited conditional model:

In many practical problems of interest (radar, sonar, communication, ...), the complex N -dimensional

observation vector x consists of a bandpass signal with bandwidth B
(
f ∈

[
−B

2 ,
B
2

])
observed for

a duration T (length of the time interval containing most (as much as desired) of the signal energy),

which is the output of an Hilbert filtering leading to an ”in-phase” real part associated to a ”quadrature”

imaginary part [1], i.e. a complex circular vector of the form:

x (t;θ) = s (t;θs, δ) + n (t;θn, δ) , θT =
(
θTs ,θ

T
n , δ

T
)
, t0 ≤ t ≤ t0 + T (19)

where s (t;θs, δ) is the signal and n (t;θn, δ) is the noise. θs denotes all the parameters involved

solely in the signal parametric model (signal DOAs, signal waveform parameters, signal amplitudes,

....). θn denotes all the parameters involved solely in the noise parametric model (interference DOAs,

interference powers, ....). δ denotes all the parameters involved both in the signal and the noise

parametric models (sensor locations, sensor modeling errors, ...).

Under the assumption of circular complex Gaussian centred noise n (t;θn, δ) and a deterministic

signal s (t;θs, δ), (19) belongs to the set of conditional models [1] which p.d.f. at time t is:

p (x;t,θ) =
e−(x(t;θ)−s(t;θs,δ))HC−1

n (t;θn,δ)(x(t;θ)−s(t;θs,δ))

πN |Cn (t;θn, δ)|

Cn (t;θn, δ) = Rn (t;θn, δ) = Eθ

[
n (t;θn, δ) n (t;θn, δ)H

]
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Additionally, if n (t;θn, δ) is a wide sense stationary (WSS) band limited process with spectral

density matrix Rn (f ;θn, δ) and autocovariance matrix Rn (t;θn, δ), then:

Rn (f ;θn, δ) =

+∞∫
−∞

Rn (t;θn, δ) e−j2πftdt =

+∞∑
k=−∞

Rn

(
k

B
;θn, δ

)
e−j2π

f

B
k

B
,

and using previously released results such as:

• the FIM for temporally white noise [1][27][43],

• the property of the FIM to be invariant to reversible operations on observations [45],

• a theorem due to Whittle [46][47, th. 9],

it can be shown [48] that the FIM associated to (19) observed during the finite duration T is given

by (generalization of [42, (13)]):

Fθ = Fθ,θ∗ =


Fθs,θ

∗
s

FH
θn,θ

∗
s

FH
δ,θ∗s

Fθn,θ
∗
s

Fθn,θ
∗
n

FH
δ,θ∗n

Fδ,θ∗s Fδ,θ∗n Fδ,δ∗

 =


Fθs,θ

∗
s

0 FH
δ,θ∗s

0 Fθn,θ
∗
n

FH
δ,θ∗n

Fδ,θ∗s Fδ,θ∗n Fδ,δ∗

 (20)

where:

(
Fθs,θ

∗
s

)
k,l

=

B

2∫
−B

2

∂sH(f ;θs,δ)
∂(θs)k

R−1
n (f ;θn, δ)

∂s(f ;θs,δ)
∂(θ∗s )

l

df+

B

2∫
−B

2

∂sH(f ;θs,δ)
∂(θ∗s )

l

R−1
n (f ;θn, δ)

∂s(f ;θs,δ)
∂(θs)k

df

(21a)

(
Fθn,θ

∗
n

)
k,l

= T

B

2∫
−B

2

R−1
n (f ;θn, δ)

∂R−1
n (f ;θn, δ)

∂ (θn)k
R−1

n (f ;θn, δ)
∂R−1

n (f ;θn, δ)

∂ (θ∗n)l
df (21b)

(
Fδ,δ∗

)
k,l

=

T

B

2∫
−B

2

R−1
n (f ;θn, δ)

∂R−1
n (f ;θn,δ)
∂(δ)k

R−1
n (f ;θn, δ)

∂R−1
n (f ;θn,δ)
∂(δ∗)l

df+

B

2∫
−B

2

∂sH(f ;θs,δ)
∂(δ)k

R−1
n (f ;θn, δ)

∂s(f ;θs,δ)
∂(δ∗)l

df +

B

2∫
−B

2

∂sH(f ;θs,δ)
∂(δ∗)l

R−1
n (f ;θn, δ)

∂s(f ;θs,δ)
∂(δ)k

df

(21c)

(
Fδ,θ∗s

)
k,l

=

B

2∫
−B

2

∂sH(f ;θs,δ)
∂(δ)

k

R−1
n (f ;θn, δ)

∂s(f ;θs,δ)
∂(θ∗s )

l

df+

B

2∫
−B

2

∂sH(f ;θs,δ)
∂(θ∗s )

l

R−1
n (f ;θn, δ)

∂s(f ;θs,δ)
∂(δ)k

df

(21d)

(
Fδ,θ∗n

)
k,l

= T

B

2∫
−B

2

R−1
n (f ;θn, δ)

∂R−1
n (f ;θn, δ)

∂ (δ)k
R−1

n (f ;θn, δ)
∂R−1

n (f ;θn, δ)

∂ (θ∗n)l
df (21e)
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First of all, to the best of our knowledge, (20) and (21a-21e) have never been released neither in

papers [17][22][27][28][49] nor text books [1][39][43]. They encompass all previously released results

on this topic, including:

• the standard narrow band case at a single frequency f0 and a single observation time (BT = 1),

where (19) becomes [1][17]:

x (f0,θ) = s (f0;θs, δ) + n (f0;θn, δ) , Rn (f ;θn, δ) = R (θn, δ) δ (f − f0)

• the temporally white noise case [17][22][27] where (19) becomes [43]:

x (t;θ) = s (t;θs, δ) + n (t;θn, δ) , Rn (f ;θn, δ) = Rn (0;θn, δ) Π[−B2 ,
B

2 ] (f)

2) FIM for multiple band limited conditional models:

Results released in the previous paragraph can be extended to the observation of L mutually Gaussian

band limited N l-dimensional observation models with band Bl :

xl
(
t;θl

)
= sl

(
t;θls, δ

l
)

+ nl
(
t;θln, δ

l
)
,
(
θl
)T

=

((
θls

)T
,
(
θln

)T
,
(
δl
)T)

,
t− tl0 ∈

[
0, T l

]
1 ≤ l ≤ L

(22)

Let OT
s =

((
θ1

s

)T
, . . . ,

(
θLs
)T)

, OT
n =

((
θ1

n

)T
, . . . ,

(
θLn
)T)

, ∆T =
((
δ1
)T
, . . . ,

(
δL
)T)

and

OT =
(
OT

s ,O
T
n ,∆

T
)
. Then X (t; O)T =

(
x1
(
t;θ1

)T
, . . . ,xL

(
t;θL

)T)
is a N -dimensional

(
N =

∑L
l=1N

l
)

band limited conditional model with bandwidth B = max
1≤l≤L

{
Bl
}

and observed for a duration T

(length of the time interval containing most (as much as desired) of the energy of all sl
(
t;θls, δ

l
)
) :

X (t; O) = S (t; Os,∆) + N (t; On,∆) , t− t0 ∈ [0, T ] (23)

where t0 = min
1≤l≤L

{
tl0
}

, T ≤
∑L

l=1 T
l, S (t; Os,∆)T =

(
s1
(
t;θ1

s, δ
1
)T
, . . . , sL

(
t;θLs , δ

L
)T)

and

N (t; Os,∆)T =
(
n1
(
t;θ1

n, δ
1
)T
, . . . ,nL

(
t;θLn, δ

L
)T)

. The FIM associated to (23) is an updated

form of (20):

FO = FO,O∗ =


FOs,O

∗
s

0 FH
∆,O∗s

0 FOn,O
∗
n

FH
∆,O∗n

F∆,O∗s F∆,O∗n F∆,∆∗

 (24)

where (21a-21e) are updated by making the following substitutions : θs → Os, θn → On, δ → ∆,

Rn (f ;θn, δ)→ RN (f ; On,∆), s (f ;θs, δ)→ S (t; Os,∆).

B. Estimation performance with constrained CRB: ideal conditional model of L independent obser-

vations

This section is dedicated to apply the proposed framework in the case of the standard (restricted)

conditional model of the open literature (30), for which we exhibit some particular cases where
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constraints can be used efficiently to generate extension of existing closed-form expressions of CRB

of parameters of interest.

1) FIM for the ideal conditional model of L independent observations:

To start with, (20) clearly reveals the little-known correlation between signal and noise parameters (in

the sense that asymptotic estimation performance of θs is dependent of the state - known or unknown

- of θn, and vice versa) in the general operational case, i.e. when the observation model attempt to

take into account an actual observation where noise occurs in the presence of sensors modeling errors

(δ), since then Fδ,θ∗s 6= 0 a priori.

In this case, the form of (24) generally precludes the derivation of a closed-form expression of the

CRB for Os. It is the reason why most papers or reference books, following the historical approach

of deriving closed-form expressions of CRB, restrict the observation model (19) to the case where

∆ = ∅, since this simplification allows to analyze signal estimation performance from FOs,O
∗
s

only.

Under this assumption (24) simply reduces to:

FO = FO,O∗ =

 FOs,O
∗
s

0

0 FOn,O
∗
n

 , OT =
(
OT

s ,O
T
n

)
(25)

From a system design point of view, the hypothesis ∆ = ∅ means:

• either that all the parameters of the system components (sensors location and radiation patterns,

transmitters and receiver electronics, ....) yielding the L observations are known (perfect calibration

of the system components),

• or that matrices Rl
n

(
f,θln, δ

l
)

= Rl
n

(
f,θln

)
, that is are known up to parameters not part of

sl
(
t;θls

)
parametric model. For instance this may happen in absence of interference where Rl

n

(
f,θln

)
reduces to the thermal noise correlation matrix and the receiver electronics is perfectly known (from

sensors output up to Hilbert filters); or if Rl
n

(
f,θln

)
has been estimated (measured accurately), for

instance from a secondary set of data consisting of noise samples only.

An alternative expression of (25) can be obtained by resorting to constrained CRB with constraints

related with the state - known or unknown - of ∆. Indeed, the vector of parameters ∆ is known if

it verifies the following set of constraints:

∆ = ∆0 ⇔ f (O) = ∆−∆0 = 0 (26)

Then:
∂f (O)

∂OT
=
∂ (∆−∆0)

∂OT
=
[

0 0 I
]
∈M (dim (∆) ,dim (O)) ,

and:

UO =


I 0

0 I

0 0

 ∈M (dim (O) ,dim (Os) + dim (On)) is a basis of ker

{
∂f (O)

∂OT

}
, (27)
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what leads to the constrained FIM (15):

Fc
O = UT

OFOU∗O =

 FOs,O
∗
s

0

0 FOn,O
∗
n

 (28)

and constrained CRB (14):

CRBc
O|O (O) = U∗O

(
Fc

O

)−1
UT

O =


F−1

Os,O
∗
s

0 0

0 F−1
On,O

∗
n

0

0 0 0

 (29)

where Os and On are decorrelated parameters. The all-zero rows of UO act to remove the corre-

sponding rows and columns from FO via matrix multiplication. Thus, the contribution of the known

parameters to the constrained FIM is removed. Then, the outer transformation acts to restore the CRB

matrix to its original size by inserting all-zero rows and columns for all values of that are constrained

to be known.

To keep on following the historical approach of deriving closed-form expressions of CRB, we consider

the most studied realization of (22) in signal processing, that is the problem of fitting a model

composed of a number M of superimposed signals to noisy data when L independent observations

are available and (26) is verified (i.e. ∆ is known which amounts to drop ∆ from the set of unknown

parameters for sake of legibility):

xl
(
t;θl

)
= sl

(
t;θls

)
+ nl

(
t;θln

)
, sl

(
t;θls

)
= Bl

s

(
t; Ξl

s

)
σls (30)(

θl
)T

=

((
θls

)T
,
(
θln

)T)
,
(
θls

)T
=

((
σls

)T
,
(
Ξl

s

)T)
,
(
Ξl

s

)T
=

((
εl1

)T
, . . . ,

(
εlM

)T)
where:

• Bl
s

(
t; Ξl

s

)
=
[
bls
(
t; εl1

)
, . . . ,bls

(
t; εlM

)]
and bls

(
t; εl

)
is a vector of N parametric functions

(spatial, temporal, ... transfer function) depending on a vector εl of P real parameters of interest

associated with a given signal (DOAs, delay, velocity, ...),

• σls =
((
σls
)

1
, . . . ,

(
σls
)
M

)T is the vector of complex amplitudes of the M signals for the lth

observation model (nuisance parameters),

• nl
(
θln
)

is a noise vector depending on a vector θln of parameters (DOAs, correlation matrices, ....),

which is clearly an ideal conditional model since all functions bls
(
t; εl

)
are assumed to be perfectly

known.

Since we consider independent observation models, the associated FIM is given by (25) where:

FOs
=


Fθ1

s
0 0

0
. . . 0

0 0 FθLs

 , FOs
(O) =


Fθ1

s

(
θ1
)

0 0

0
. . . 0

0 0 FθLs

(
θL
)
 , FOs,O

∗
s

(O) . (31)
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Then it is worth considering the following dedicated formalism [48][42] to obtain closed-form

expression of Fθls

(
θl
)
.

First, the dependency of vectors and matrices on frequency f , e.g. sl
(
f ;θls

)

 sl

(
t;θls

)
, bls

(
f ; εl

)



bls
(
t; εl

)
, Bl

s

(
f ; Ξl

s

)

 Bl

s

(
t; Ξl

s

)
..., where 
 denotes the Fourier transform, is omitted wherever

this omission is unambiguous. Second, let notation {A (f)} be the generalization of (7) denoting the

family of column vectors of matrix A (f):

{A (f)} = {[a1 (f) . . .aQ (f)]} = {a1 (f) , . . . ,aQ (f)} (32)

Then, if A (f) = [a1 (f) . . .aQ (f)] and C (f) = [c1 (f) . . . cP (f)], Gθn
({A} , {C}) is the P ×Q

complex matrix defined by:

Gθn
({A} , {C})p,q = 〈aq | cp〉θn

= 〈aq (f) | cp (f)〉θn
=

B

2∫
−B

2

cHp (f) R−1
n (f ;θn) aq (f) df (33)

Let Π{B(Ξ)} denote the orthonormal projector on span {B (f ; Ξ)}, i.e. the span of the vector columns

of matrix B (f ; Ξ):

Π{B(Ξ)} (a) = Π{B(f ;Ξ)} (a (f)) = B (f ; Ξ) G−1
θn

({B (Ξ)}) Gθn
(a, {B (Ξ)})

and let Π⊥{B(Ξ)} denote the orthonormal projector on the orthogonal complement of span {B (f ; Ξ)}:

Π{B(Ξ)} (a) + Π⊥{B(Ξ)} (a) = a (34)

Let us define:

Π{B(Ξ)} ({A}) =
{

Π{B(Ξ)} (a1) , . . . ,Π{B(Ξ)} (aQ)
}

(35)

then:

Gθn

(
Π⊥{B(Ξ)} ({A}) ,Π⊥{B(Ξ)} ({C})

)
p,q

= Gθn

(
Π⊥{B(Ξ)} (aq) ,Π

⊥
{B(Ξ)} (cp)

)
= Gθn

(aq, cp)−GH
θn

(cp, {B (Ξ)}) G−1
θn

({B (Ξ)}) Gθn
(aq, {B (Ξ)})

and [42][48]:

Fθls =


Fσls,(σls)

∗ 0 Fσls,Ξl
s

0 F∗σls,(σls)
∗ F∗σls,Ξl

s

FH
σls,Ξ

l
s

FT
σls,Ξ

l
s

FΞl
s,Ξ

l
s

 ,
Fσls,(σls)

∗ = Gθln

({
Bl

s

(
Ξl

s

)}
,
{
Bl

s

(
Ξl

s

)})
Fσls,Ξl

s
= Gθln

({
∂sl(θls)
∂(Ξl

s)
T

}
,
{
Bl

s

(
Ξl

s

)})
FΞl

s,Ξ
l
s

= 2 Re

{
Gθln

({
∂sl(θls)
∂(Ξl

s)
T

}
,

{
∂sl(θls)
∂(Ξl

s)
T

})}
(36)
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where:

Fσls,Ξl
s

= Dl
Ξs

(
θl
)
�
((
σls
)T ⊗ 11×P

)
, FΞl

s,Ξ
l
s

= 2 Re

{
Cl

Ξl
s

(
θl
)
�
((
σls
(
σls
)H)T ⊗ 1P×P

)}
,

Dl
Ξl

s

(
θl
)

=
[

Dl
Ξl

s

(
θl
)

1
. . . Dl

Ξl
s

(
θl
)
M

]
, Dl

Ξl
s

(
θl
)
m

= Gθln

({
∂bls(ε

l
m)

∂(εl)T

}
,
{
Bl

s

(
Ξl

s

)})
,

Cl
Ξl

s

(
θl
)

=


Cl

Ξl
s

(
θl
)

1,1
. . . Cl

Ξl
s

(
θl
)

1,M
...

. . .
...

Cl
Ξl

s

(
θl
)
M,1

· · · Cl
Ξl

s

(
θl
)
M,M

 , Cl
Ξl

s

(
θl
)
m1,m2

= Gθln

({
∂bls(εlm2

)
∂(εl)T

}
,

{
∂bls(εlm1

)
∂(εl)T

})
.

2) Derivation of analytical expressions with constrained CRB :

We consider separable constraints: individual constraints are functions of Os or On only. We note that

this does not preclude mixing constraints on both Os and On: only that each individual constraint is

a function of one or the other. A first consequence is that mixing separable subsets of non redundant

constraints on Os and On (f s (Os) = 0, fn (On) = 0) always yields a global set (f (O) = 0) of non

redundant constraints (provided the total number of constraints does not exceed dim (O)). Additionally

the block diagonal structure of FO (25) combined with the separable constraints assumption leads to

(see [21, Subsection II.A][48]):

CRBOs|O = F−1
Os
, CRBc

Os|O
= U∗Os

(
UT

Os
FOs

U∗Os

)−1
UT

Os
(37)

where UOs
is a basis of ker

{
∂f s(Os)
∂OT

}
.

Whatever the constraints f s (Os) = 0 considered, once derived a basis UOs
of ker

{
∂f s(Os)
∂OT

}
,

the analytical expression of the associated constrained CRB (37) for the parameters of interest((
Ξ1

s

)T
, . . . ,

(
ΞL

s

)T) of the M signals simply results from combination of three algebraic op-

erations: multiplication of partitioned matrices
(
UT

Os
FOs

U∗Os

)
, inversion of a partitioned matrix((

UT
Os

FOs
U∗Os

)−1
)

, multiplication of partitioned matrices
(

U∗Os

(
UT

Os
FOs

U∗Os

)−1
UT

Os

)
. There-

fore we do not provide intermediate results as they are easily reproducible.

Last, derivation of analytical expressions by application of (37) is facilitated if Os is rearranged as

OT
s =

((
σ1

s

)T
, . . . ,

(
σLs
)T
,
(
σ1

s

)H
, . . . ,

(
σLs
)H

,
(
Ξ1

s

)T
, . . . ,

(
ΞL

s

)T).

The most general approach (that is valid for any type of signal source) consists in assuming that Ξl
s
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and σls may vary during the L observations; then estimation performance is given by [42][48]:

CRBΞl
s|O (O) =

(
2 Re

{
Hl

Ξl
s

(
θl
)
�

((
σls

(
σls

)H)T
⊗ 1P×P

)})−1

(38)

Hl
Ξl

s

(
θl
)

=


Hl

Ξl
s

(
θl
)

1,1
. . . Hl

Ξl
s

(
θl
)

1,M
...

. . .
...

Hl
Ξl

s

(
θl
)
M,1

· · · Hl
Ξl

s

(
θl
)
M,M


Hl

Ξl
s

(
θl
)
m1,m2

= Gθln

(
Π⊥{Bl

s(Ξ
l
s)}

({
∂bls

(
εlm2

)
∂ (εl)

T

})
,Π⊥{Bl

s(Ξ
l
s)}

({
∂bls

(
εlm1

)
∂ (εl)

T

}))

〈x (f) | y (f)〉θln =

Bl

2∫
−Bl

2

y (f)H Rl
n

(
f,θln

)−1
x (f) df.

The first set of constraints of interest are the (L− 1) (MP ) constraints implicitly considered in the

standard signal processing literature relative to the invariability of Ξl
s:

Ξl
s = Ξ1

s, 2 ≤ l ≤ L (39)

An easy way to get the associated UOs
is to use (17):

UOs
=


I(LM,LM) 0 0

0 I(LM,LM) 0

0 0 1(L,1) ⊗ I(MP,MP )

 ∈M (LM (P + 2) ,M (2L+ P )) (40)

what leads to (after substitution of Ξs for Ξ1
s):

CRBc
Ξs|O (O) =

(
2

L∑
l=1

Re

{
Hl

Ξs

(
θl
)
�

((
σls

(
σls

)H)T
⊗ 1P×P

)})−1

(41)

Hl
Ξs

(
θl
)

=


Hl

Ξs

(
θl
)

1,1
. . . Hl

Ξs

(
θl
)

1,M
...

. . .
...

Hl
Ξs

(
θl
)
M,1

· · · Hl
Ξs

(
θl
)
M,M


Hl

Ξs

(
θl
)
m1,m2

= Gθln

(
Π⊥{Bl

s(Ξs)}

({
∂bls (εm2

)

∂εT

})
,Π⊥{Bl

s(Ξs)}

({
∂bls (εm1

)

∂εT

}))
,

〈x (f) | y (f)〉θln =

Bl

2∫
−Bl

2

y (f)H Rl
n

(
f,θln

)−1
x (f) df.

Note that (41) is a new (to the best of our knowledge) generalization of expressions available in

the open literature [1][17][27] where bls (t; ε) = b1
s (t; ε) = bs (t; ε), Rl

n

(
f,θln

)
= R1

n

(
f,θ1

n

)
=
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Rn (f,θn), Hl
Ξs

(
θl
)

= H1
Ξs

(
θ1
)

= HΞs
(θ), and (41) reduces to:

CRBc
Ξs|O (O) =

(
2LRe

{
HΞs

(θ)�
(
RT
σs
⊗ 1P×P

)})−1
, Rσs

=
1

L

L∑
l=1

σls

(
σls

)H
,

HΞs
(θ)m1,m2

= Gθn

(
Π⊥{Bs(Ξs)}

({
∂bs (εm2

)

∂εT

})
,Π⊥{Bs(Ξs)}

({
∂bs (εm1

)

∂εT

}))

〈x (f) | y (f)〉θn
=

B

2∫
−B

2

y (f)H Rn (f,θn)−1 x (f) df.

A second set of additional 2LM constraints of interest can be relative to the invariability of σls:

Ξl
s = Ξ1

s, σls = σ1
s, 2 ≤ l ≤ L (42)

then UOs
(40) becomes :

UOs
=


1(L,1) ⊗ I(M,M) 0 0

0 1(L,1) ⊗ I(M,M) 0

0 0 1(L,1) ⊗ I(MP,MP )

 ∈M (LM (P + 2) ,M (2 + P ))

(43)

what leads to (after substitution of Ξs for Ξ1
s and σs for σ1

s):

CRBc
Ξs|O (O) =

(
2 Re

{(
C (O)−DH (O) E (O)−1 D (O)

)
�
((
σsσ

H
s

)T ⊗ 1P×P

)})−1
(44)

C (O) =

L∑
l=1

Cl
Ξs

(
θl
)
, D (O) =

L∑
l=1

Dl
Ξs

(
θl
)
, E (O) =

L∑
l=1

Gθln

({
Bl

s (Ξs)
}
,
{

Bl
s (Ξs)

})

Cl
Ξs

(
θl
)

=


Cl

Ξs

(
θl
)

1,1
. . . Cl

Ξs

(
θl
)

1,M
...

. . .
...

Cl
Ξs

(
θl
)
M,1

· · · Cl
Ξs

(
θl
)
M,M

 , Cl
Ξs

(
θl
)
m1,m2

= Gθln

({
∂bls (εm2

)

∂εT

}
,

{
∂bls (εm1

)

∂εT

})

Dl
Ξs

(
θl
)

=
[

Dl
Ξs

(
θl
)

1
. . . Dl

Ξs

(
θl
)
M

]
, Dl

Ξs

(
θl
)
m

= Gθln

({
∂bls (εm)

∂εT

}
,
{

Bl
s (Ξs)

})

〈x (f) | y (f)〉θln =

Bl
2∫
−Bl

2

y (f)H Rl
n

(
f,θln

)−1
x (f) df.

Note that (44) is another new (to the best of our knowledge) generalization of expressions available

in the open literature [1][17][27] where bls (t; ε) = b1
s (t; ε) = bs (t; ε), Rl

n

(
f,θln

)
= R1

n

(
f,θ1

n

)
=

Rn (f,θn), Cl
Ξs

(
θl
)

= C1
Ξs

(
θ1
)

= CΞs
(O), Dl

Ξs

(
θl
)

= D1
Ξs

(
θ1
)

= DΞs
(O), and (44) reduces
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to:

CRBc
Ξs|O (O) =

(
2LRe

{
HΞs

(θ)�
((
σsσ

H
s

)T ⊗ 1P×P

)})−1

HΞs
(θ) =


HΞs

(θ)1,1 . . . HΞs
(θ)1,M

...
. . .

...

HΞs
(θ)M,1 · · · HΞs

(θ)M,M


HΞs

(θ)m1,m2
= Gθn

(
Π⊥{Bs(Ξs)}

({
∂bs (εm2

)

∂εT

})
,Π⊥{Bs(Ξs)}

({
∂bs (εm1

)

∂εT

}))

〈x (f) | y (f)〉θn
=

B

2∫
−B

2

y (f)H Rn (f,θn)−1 x (f) df.

Many others combinations of constraints on Ξl
s and σls are possible and the use of the computation

scheme as above may lead or not to closed-form expressions. Any reader may feel free to use the

proposed framework to derive new closed-form expressions, but as far we are concerned, we will not

put any additional effort in that perspective, since closed-form expressions are not at all a preliminary

requirement to perform a relevant analysis of estimation performance with the proposed framework

(see next paragraph).

3) Example of analysis and design of a system with constrained CRB:

For example, let us assume that Ξl
s, 2 ≤ l ≤ L, reduce to kinematic parameters of interest (delays,

velocities, DOAs, ...) in the context of an active tracking radar (or tracking mode of a multifunction

active radar). Then (38)(41)(44) are estimation performance according to targets manoeuvrability

(fast or slow manoeuvring targets) and targets amplitude fluctuation (which can be caused either by

manoeuvres or by radar carrier frequency changes or by both): from an highly manoeuvring (non

stationary) set of targets to a steady (stationary) set of targets. From an operational point of view,

this parameters variability can be modelled in terms of 3 ”canonical” scenarios {S1,S2,S3}, each

scenario consisting of single target and a set of parameters associated with a number of realizations:

S1 ,
{{

Ξl
1, σ

l
1

}L
l=1

}I1
i=1

, S2 ,
{

Ξ2,
{
σl2
}L
l=1

}I2
i=1

, S3 , {Ξ3, σ3}I3i=1. And we are interested in

average estimation performance, that is in Ξ1 = 1
L

∑L
l=1 Ξl

1, Ξ2 and Ξ3.

Then (38)(41)(44) allows for assessment of estimation performance of a given radar system
{
bls (t, ε)

}L
l=1

in presence of a given noise environment
{
Rl

n

(
f,θln

)}L
l=1

. The performance assessment can be based

on average performance or on the worst performance over all the realizations of the 3 given scenarios.

Contrariwise, (38)(41)(44) can be used to look for the optimal radar system
{
bls (t, ε)

}L
l=1

in presence

of a given noise environment
{
Rl

n

(
f,θln

)}L
l=1

and the given 3 scenarios {S1,S2,S3}. Off course, at

least in theory, this design principle can be extended to more stringent scenarios, like several targets

on patrols leading to the taking into account of high resolution scenarios.
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However, from a practical point of view, the complexity of expressions (38)(41)(44) in the general

case prevents from any insight without resorting to oversimplified particular cases (one or two signals,

one or two unknown parameters per signal, ....). Additionally, even in the canonical case of a single

target per scenario, (38)(41)(44) are rather analytical expressions than closed-form expressions as soon

as the transmitted base band signals are band-limited with a non constant amplitude or phase (linear

or non-linear frequency modulation, ofdm, ....), since then (38)(41)(44) contain some defined integrals

which must be computed by numerical integration. Actually this kind of optimization approach for

tracking mode is generally reduced to waveform optimization (design) for a single target per scenario,

once the radar hardware design has been set (which may also depends on requirement on detection

performance of the surveillance mode for a multifunction radar).

The major drawback of the ”analytical” approach leading to the derivation of analytical expressions

like (38)(41)(44) is not to allow for assessment of estimation performance of scenarios combination

(that is targets type combination) as : {S1 ∪ S2}, {S1 ∪ S3}, {S2 ∪ S3}, {S1 ∪ S2 ∪ S3}. Indeed, each

scenario combination requires a new FIM/CRB analytical computation. And this issue highlights the

major advantage of the proposed framework based on exploitation of constraints, since any scenario

combination amounts simply in constraints combination leading to a constrained CRB accessible via

a simple algebraic computation (37):

{S1 ∪ S2} : Ξl
2 = Ξl

2, 2 ≤ l ≤ L

{S1 ∪ S3} : Ξl
3 = Ξl

3, σl3 = σ1
3, 2 ≤ l ≤ L

{S2 ∪ S3} : Ξl
2 = Ξl

2, Ξl
3 = Ξl

3, σl3 = σ1
3, 2 ≤ l ≤ L

{S1 ∪ S2 ∪ S3} : Ξl
2 = Ξl

2, Ξl
3 = Ξl

3, σl3 = σ1
3, 2 ≤ l ≤ L

C. Estimation performance and design of a system with constrained CRB

From a more general perspective, closed-form or analytical expressions of CRBc
Os|O

(O) like

(38)(41)(44) do not exist (to the best of our knowledge) in the open literature when ∆ is known

for dependent multiple conditional models (even for the narrow-band formulation) or when ∆ is

unknown whatever the multiple conditional models are dependent or independent. Nevertheless, it is

still possible to compute algebraically CRBOs|O (O) whatever the scenario considered by:

• identifying the vector of unknown parameters O,

• building the associated unconstrained FIM FO (24) from components (21a-21e),

• inverting the FIM FO.

Even if the above computation principle may seem simple from a theoretical point of view, in practice

it is not that simple to build the correct FIM FO (24) for L observations under different hypoth-

esis of variability for different parameters (as illustrated in the previous paragraph with scenarios

{S1,S2,S3}). Moreover, any change in the variability of any parameter will lead to a new vector of
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unknown parameters O and the building a new FIM FO.

The proposed framework is precisely an elegant and versatile solution for this practical issue. Indeed,

with the proposed framework it suffices:

• to list once all the parameters θl involved in each parametric observation model (22) which may

be unknown according to some scenarios,

• to build the unconstrained FIM (24) associated to the vector of all possible unknown parameters

for the L observations OT =
((
θ1
)T
, . . . ,

(
θ1
)T),

then, for any given parameters scenario (in terms of parameter variability, parameter status known

or unknown, ...), it suffices to express the associated set of equality constraints f (O) = 0 and to

compute a basis of ker {f (O)} (17) Uθ0 in order to get the looked-for constrained FIM Fc
O (15)

and constrained CRB CRBc
O|O (O) (14).

Note that both the vectors of all unknown parameters O and its associated unconstrained FIM do

not change whatever the parameters scenario. Thus it is a very safe and systematic framework to

analyze the estimation performance of a system provided computation power (matrix multiplication

and inversion) is available.

Therefore, if estimation performance is taken as a metric in order to optimize the design of the system,

the proposed framework is a versatile and reliable ”brute force” method to design a system compliant

with some estimation performance requirements.

An additional illustrative example is easily derived from the previous paragraphs: any subset of

constraints (26) may allow to explore the sensitivity of estimation performance to modeling errors

configurations: sensitivity to a given modeling error occurring in all observation models
(
δ1
q , . . . , δ

L
q

)
,

sensitivity to all the modeling errors occurring in a given observation model δl, .... In practice,

modeling errors management is handled via sub-assemblies calibration requirements which is a part

of the sub-assemblies design specification.

V. ON THE VERSATILITY OF CONSTRAINED CRB FOR ESTIMATION PERFORMANCE ANALYSIS

AND DESIGN OF A SYSTEM

As exemplified in the previous section, most of closed-form or analytical expressions of CRB

dedicated to a system of L observations are in the general case complicated enough (see (38)(41)(44))

that they do not provide much insight into estimation performance without resorting to oversimplified

particular cases or to numerical computations. Therefore the classical approach of deriving CRB in

terms of closed-form or analytical expression may be regarded as superfluous from the view point of

the relevance of the information these expressions provide. Last, each CRB derivation is valid for a

given vector of vector of unknown parameters O: any change in the variability of any parameter or
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in its status (known or unknown) leads to a new vector of unknown parameters O and the building

a new FIM FO which may not allow for derivation of closed-form or analytical expression of the

looked-for CRB.

Contrarily, the propose framework offers a reliable ”brute force” heuristic to assess estimation per-

formance of systems in order to analyze or to optimize their design, where no derivation of dedicated

closed-form or analytical expressions of CRB is needed. The simplicity, the generality and the

versatility of the proposed framework are clearly its major values.

Simplicity: provided that the unconstrained FIM is computable (as it is the case for Gaussian ob-

servations involving deterministic parameters, whatever the model is conditional or unconditional,

circular or non circular), any factor impacting the estimation performance of system that can be taken

into account via equality constraints leads to a constrained CRB accessible via a simple algebraic

computation.

Generality: it is the aim of this section to provide an extended (but not exhaustive) set of equality

constraints (arbitrarily divided in different varieties) to highlight their potential use in estimation

performance analysis and design of a system.

Versatility: any combination of equality constraints from different varieties is possible (indeed sug-

gested), provided that the whole set of equality constraints is not redundant (see section III-B).

By way of illustration of the proposed framework under a more general scope, we still consider the

setting of a system generating L observations of a signal corrupted by noise (18) where the signal is

composed of M sources:

xl
(
θl
)

= sl
(
θls, δ

l
s

)
+ nl

(
θln, δ

l
n

)
, sl

(
θls, δ

l
s

)
= Bl

s

(
Ξl

s, δ
l
s

)
σls (45)(

θl
)T

=

((
θls

)T
,
(
δls

)T
,
(
θln

)T
,
(
δln

)T)
,
(
θls

)T
=

((
σls

)T
,Ξl

s

)
,
(
Ξl

s

)T
=

((
εl1

)T
, . . . ,

(
εlM

)T)
where :

• nl
(
θln, δ

l
n

)
is a noise vector depending both on a vector θln of P ln parameters associated with

sources of noise (thermal noise covariance matrix, interference DOAs, ...) and on a vector δln of

Qln parameters independent from noise (typically parameters of the system physical components

contributing to noise observations (thermal noise or interference )),

• Bl
s

(
Ξl

s, δ
l
s

)
=
[
bls
(
εl1, δ

l
s

)
, . . . ,bls

(
εlM , δ

l
s

)]
where bls

(
εl, δl

)
is a vector of N l parametric func-

tions (spatial, temporal, ... transfer function) depending both on a vector εl of P ls parameters associated

with a given signal (DOAs, amplitudes, ....) and on a vector δl of Qls parameters independent from

signal (typically parameters of the system physical components contributing to signal observations

(waveforms generator, sensors on transmit and on receive, ...)),

• Ξl
s are the signal parameters of interest and σls are the signal nuisance parameters.

In the standard signal processing framework available in open literature [1][31][32] to model systems,
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mostly two different instances of (45) based on Gaussian complex circular observation are considered:

the conditional signal model and the unconditional signal model [33]. The discussed signal models

are Gaussian and the parameter of interest dependency is given by parameters which are connected

with the expectation value in the conditional case (see Section IV) and with the covariance matrix

in the unconditional one. Therefore, in the following we will frequently refer to these observations

models for illustration purposes since they are supposed to be known references.

A first conceptual partition of the P l parameters can be defined as follows: the first subset consists of

the vector θli
((
θli
)T
,
((

Ξ1
s

)T
, . . . ,

(
ΞL

s

)T))
of parameters of interest, that is the signal parameters

we want to estimate (directions of arrivals, propagation delays, ...) although the second subset consists

of the vector θlr of all remaining unknown parameters: nuisance parameters, noise parameters, system

components parameters. It is the partition implicitly used in the previous sections.

A second conceptual partition of the P l parameters can be defined as follows: the first subset consists

of the vector θlu of parameters which are always unknown whatever the experimental conditions

(directions of arrivals, propagation delays, signal and noise amplitude or power,....) although the

second subset consists of the vector θlu/k of parameters which can be either known or unknown

according to the experimental conditions (typically system components parameters such as sensors

parameters (location, complex amplitude gain, ....), receivers parameters (delays, losses, ... introduced

by electronics), ..., known or unknown according to the availability of calibration data).

Let XT =
((

x1
)T
, . . . ,

(
xL
)T) be the N -dimensional

(
N =

∑L
l=1N

l
)

random vector resulting

from the L available observations and let ΘT =
((
θ1
)T
, . . . ,

(
θL
)T)

be the P + Q-dimensional(
P +Q =

∑L
l=1

(
P l +Ql

))
vector containing all the models parameters (whatever they are known

or unknown during the experimentation).

We assume that an analytical expression of the p.d.f. p (X; Θ) is available such that the (unconstrained)

FIM (11):

FΘ = GΘ

({
∂ ln p (X; Θ)

∂Θ

∗})
= EΘ

[
∂ ln p (X; Θ)

∂Θ

∂ ln p (X; Θ)

∂Θ

H
]

(46)

can be computed analytically of numerically (see Section IV for the conditional model).

Additionally, let ΘT
s =

((
θ1

s

)T
, . . . ,

(
θLs
)T)

, ΘT
n =

((
θ1

n

)T
, . . . ,

(
θLn
)T)

, ∆T
s =

((
δ1

s

)T
, . . . ,

(
δLs
)T)

,

∆T
n =

((
δ1

n

)T
, . . . ,

(
δLn
)T)

, ΘT
u =

((
θ1
u

)T
, . . . ,

(
θLu
)T)

, ΘT
u/k =

((
θ1
u/k

)T
, . . . ,

(
θLu/k

)T)
,

ΘT
i =

((
θ1
i

)T
, . . . ,

(
θLi
)T)

, ΘT
r =

((
θ1
r

)T
, . . . ,

(
θLr
)T)

. Then ΘT =
(
ΘT

s ,Θ
T
n ,∆

T
s ,∆

T
n

)
=(

ΘT
u ,Θ

T
u/k

)
=
(
ΘT
i ,Θ

T
r

)
.

A. Influence of parameters state - known or unknown

In many parametric observation models (systems) some parameters can be either known or un-

known according to the experimental conditions. When the value of a parameter is known during an
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observation, then its value can be incorporated into any expression involving the parametric model,

such as MLEs, lower bounds, etc... Otherwise it must be estimated.

Actually, this issue is inherent to parametric estimation since the relevance of the performance

computed or estimated clearly depends on the accuracy of the parameterized observation model. By

way of illustration, computer simulations have demonstrated for several decades that in certain cases,

advanced estimation techniques as ML, MUSIC, and related algorithms have superior performance

compared with conventional processing technique [1]. Nevertheless, in spite of potential advantages

of the ”high-resolution” techniques, their application to real systems has been rather limited so far.

One of the main reasons given for this situation is the relatively high sensitivity of these methods

to various system errors. In the deterministic parameters paradigm, these system uncertainties can

be modelled conceptually either as pure deterministic values or as random values which p.d.f are

parameterized by deterministic parameters. For instance, imprecise knowledge of the sensors location

of an antenna system or of their gain and phase characteristics can seriously degrade the antenna

system performance [1, 8.11][34][35]. A sensor coordinate x may be, at experimentation time, totally

unknown: x = x0 , θq, or partially unknown: x = x0 +dx , θq +dx (θq+1, . . . , θq+∆q) where x0 is

an initially calibrated value and dx (θq+1, . . . , θq+∆q) is a random discrepancy which p.d.f. depends on

parameters (θq+1, . . . , θq+∆q) [2]. Experimental systems attempt to eliminate or minimize these errors

by careful calibration of the system. Such calibration is sometimes difficult or impossible to carry

out in an operational system. Even when initial calibration is possible
(
x , x0

)
, system parameters

may change over time
(
x , x0 + dx

)
due to factors such as: gradual changes in the behavior of

the sensor itself and of the electronic circuitry between the sensor and the output of the digitizer

(due to thermal effects, aging of components, etc.), changes in the location of the sensors (e.g.,

an antenna array located on the vibrating wing of an aircraft or a hydrophone array towed behind

a ship). Due to these changes it may be impossible to maintain array calibration to the required

accuracy. A possible solution is self-calibration [36][37][38] where unknown signal parameters and

uncertainties are estimated simultaneously. Then, there are generally many more unknowns than

equations, and a cost function is typically optimized to solve this problem, which is highly nonlinear

making traditional gradient based approaches unsuitable and requesting optimization algorithm prone

to rapid and robust convergence. Therefore it is of first importance to be able to quantify the sensitivity

of asymptotic performance of the ML and related algorithms to an inadequacy of the reception model

[1, 8.11][34][35] in order to assess whether a calibration of the inadequacy (an initial calibration or a

self-calibration step) is needed to obtain the requested estimation performance. The sensitivity to an

uncertainty parameter θq can be assessed by measuring the effect of its state change from unknown

to known (or vice versa) on the CRB of parameters of interest, which simply amounts to introduce
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an equality constraint:

θq = θ0
q ⇔

(
Θu/k

)
q

=
(
Θu/k

)0

q
⇔

(
Θu/k

)
q
−
(
Θu/k

)0

q
= 0 (47)

If the model calibration problem is the most general application case of (47) (see Section IV-B), they

are many other possible applications of constraint (47) according to the problem under consideration.

A first example is the case where a (or several) subset of the components of Θ consists of a (or

several) correlation matrix, as in the unconditional model [33]: then (47) can be used to assess the

sensitivity of estimation performance to correlation or uncorrelation (all off-diagonal elements are

known and nil) hypothesis. A second example is the sensitivity of estimation performance (e.g.,

bearing, symbol, and channel estimation as in [22]) in communications scenarios to the use of side

information, i.e. the use of training data, which amounts to treat some unknown parameters (code

symbols) as known deterministic constants.

B. Influence of parameters variability

In some application, a given parameter
(
θl
)
p

may be present in the L observation models. According

to experimental conditions, its L unknown values
(
θl
)
p
, 1 ≤ l ≤ L, may vary independently or

remain unchanged. The effect of the parameter variability during the L observations on the CRB of

parameters of interest can be assessed by introducing (L− 1) equality constraints:(
θl
)
p
−
(
θ1
)
p

= 0, 2 ≤ l ≤ L (48)

leading to the direct algebraic computation of a constrained CRB (14) from the expression of the

(unconstrained) FIM (46). A first well known example is the particular case where the a priori p.d.f. of

amplitude vectors σls in (45) are unknown: then vectors σls are treated as deterministic but unknown

parameter vectors. In some applications of this particular case, the variability or invariability of σls

may be a priori stated according to consideration from physics, such as signal kinematics or signal

physical properties (as in radar if σls stands for complex backscattering amplitudes, see Section IV-B),

or from signal transmission properties (as in telecoms if σls stands for complex transmitted symbols).

If we consider a tracking radar, then it is worth knowing the sensitivity of estimation performance of

the system to these a priori hypotheses which represent different types of target scenarios {S1,S2,S3},

as illustrated in Sections IV-B2 and IV-B3 when
{
Ξl

s

}L
l=1

reduce to kinematic parameters (delays,

DOAs,...). This analysis can be further refined if we consider that target scenarios have different

probability of occurrence: the targets kinematics parameters
{
Ξl

s

}L
l=1

are expected to be invariable at

experimentation time (scenarios {S2,S3}) but may be slightly variable occasionally (scenario {S1}).

In that case, one would probably want to know, at least from a computational coast point of view,

if it worth taking into account the possible but unlikely variability of kinematics parameters (low

April 4, 2014 DRAFT



27

probability of occurrence of scenario {S1}). One possible criterion for decision is the loss of perfor-

mance (see reparameterization inequality (16)) when Ξl
s is actually invariable at experimentation time

although it has been modelled as variable. The performance comparison can be done by comparing

the (unconstrained) CRB of the mean g (Θ) = 1
L

∑L
l=1 Ξl

s obtained by application of (10) (with the

unconstrained FIM given by (46)) with the (constrained) CRB of Ξs , Ξ1
s obtained by application

of (14) with constraints Ξl
s −Ξ1

s = 0, 2 ≤ l ≤ L. If the difference is negligible from an operational

point of view and the additional computational coast of the associated ML (or related) estimator is

affordable, then it is worth implementing estimators taking into account the parameters variability. In

the other hand, mainly if the difference is important from an operational point of view, it is rather

preferable to force the parameters invariability hypothesis and to endure a non minimum estimation

error occasionally. This type of analysis is typically an example of how performance estimation may

influence the design of system processing as well.

C. Influence of parameters constraints/reparameterization

As recalled in section III-B, the assumption that the parameters satisfy functional constraints can be

approached from the alternative, yet equivalent, perspective of a global injective reparameterization

[16] or at least from a perspective where the parameters locally fit a reduced parametric model

[11][21]. Whatever the approach considered (constraints or reparameterization), the parameters are

fitted to a lower-dimensional parametric model , i.e., the parameters are assumed to be functions of a

distinct reduced parameter vector. Then, the reparamaterization inequality (16) expresses analytically

a quite intuitive estimation principle: when the total number of unknown parameters decreases in

an observation model, the asymptotic quality of estimation increases (or remain unchanged), in the

sense that the CRB decreases (or remain equal), whatever the function of the unknown parameters

considered. A consequence of first importance is that the asymptotic quality of estimation increases

for all parameters whatever the subset of parameters subject to constraints or reparameterization.

Therefore, a first way to improve the estimation of a subset of unknown parameters (parameters of

interest for example) can be to introduce, by design choices, either a parameterization change or

equality constraints among the other remaining parameters.

As a first illustration, let us consider the case where (45) models multiple observations of an ac-

tive system, such as a wave transmitter device (radar, sonar, communication device, ....) where the

transmitted signal model (base band signal, carrier frequency) is under control, what may allow to

introduce some constraints (or a reparameterization) on the amplitudes σls, 1 ≤ l ≤ L. For example in

active radar, it is well known that under some conditions on radar target (scatterers) kinematics and

waveform design [39], it is possible to introduce a Doppler effect from observation to observation
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which can be modelled as:(
σls

)
m

=
(
σ1

s

)
m
ej2πωm(tl−t1), 1 ≤ m ≤M, 2 ≤ l ≤ L (49)

where t1, . . . , tL are the observation times, ωT = (ω1, . . . , ωM ) is the vector of unknown Doppler fre-

quencies and σ1
s is the vector of the unknown targets amplitude (backscattering complex coefficient),

constant during the L observations. Therefore, the introduction of a Doppler effect is equivalent to an

injective reparameterization σls = σls
(
σ1

s,ω
)

(49), or to the introduction of the following (L− 1)×M

equality constraints:(
σls

)
m
−
(
σ1

s

)
m
ej2πωm(tl−t1) = 0, 1 ≤ m ≤M, 2 ≤ l ≤ L.

Then, as detailed in [40], for an active radar system consisting of a 1-element antenna array re-

ceiving scaled, timedelayed, and Doppler-shifted echoes of a known complex bandpass signal, the

reparameterization inequality leads to the following design principles for delay estimation: if your

main requirement is performance estimation, then the Doppler information must always be taken into

account when you estimate delay, at the expense of a more complex ML algorithm.

A second illustration is given by the case where a (or several) subset of the components of Θ consists

of a (or several) correlation matrix, as in the unconditional model where all the unknown parameters(
ΘT

s ,Θ
T
n ,∆

T
s ,∆

T
n

)
are connected with the covariance matrix. Then, the array geometry can be used

to constrain some of these correlation matrices or some of their components (for instance, the noise

correlation matrix function of ΘT
n ) to belong to particular matrix subsets such as Toeplitz matrices,

persymmetric matrices, centrohermittian matrices .... [1], which amount to introduce constraints on

some of the unknown parameters not of primary interest. Although this approach is not mentioned in

reference books [1][31][32], it is therefore possible to assess the sensitivity of estimation performance

to the type of array geometry with the proposed framework (see also [12] for another constrained

matrix estimation example).

A second way to improve the estimation of a subset of unknown parameters can be to introduce, by

design choices, either a parameterization change or equality constraints among them.

A first well known example is given by target tracking where the track before detect (TBD) tech-

niques [41, §17] amount to introduce a reparameterization of the targets kinematics parameters(
Ξl

s, 1 ≤ l ≤ L
)

measurable by a radar system (radial range, radial velocity, radial acceleration, direc-

tion of arrival, ...) at each radar observation. In these techniques, the set of parameters
(
Ξl

s, 1 ≤ l ≤ L
)

is reparameterized as a function of a reduced set of parameters Ψs

(
Ξl

s = Ξl
s (Ψs)

)
parameterizing

a kinematic model valid during the L observations (for example, an uniformly accelerated motion

in the Cartesian coordinate frame where both the radar and the sources are located, for which the

unknown parameters consist of 3 vectors (acceleration, initial velocity, initial location) whatever the
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number of radar observations L).

A second well known example is given by communications applications based on phase-modulated

signals sources with constant modulus (CM) [11][22], which is a constraint on each unknown symbol

to be estimated. In [22], it is shown that the CM property combined with training signals improve

the accuracy in estimating the channel and the signal waveform.

D. Influence of parameters constraints on the identifiability

Let us recall that an unconstrained singular FIM is always singular on a manifold C of the parameter

space (subset of the parameter space deriving from a set of equality constraints) [16]. The singularity

of the FIM over C is equivalent to the unidentifiability of Θ over C, what leads to the inexistence

of the CRB for unbiased estimates over C resulting in an unbounded CRB at the vicinity of any

Θ ∈ C (see also [3] for identifiability in the presence of random nuisance parameters). Theoretically

[9][16][24], it is possible to regularize an unidentifiable observation model (system), in the sense

that it is possible to find the greatest subset - with respect to inclusion - of the parameter space Θ

where an unbiased estimate exist for any function of the unknown parameters. It appears that this

greatest subset is a manifold as well but which definition depends on the analytical expression for

eigenvectors of the FIM, which does not exists in most cases. Thus so far, regularization constraints

have rather been investigated under mainly two perspectives:

• the first one consists in noticing in the observation models xl
(
θl
)

the obvious ambiguity relations

between some parameters [22][24] and to introduce some straightforward appropriate constraints that

prevent the ambiguity relations from happening,

• the second one consists in the derivation of additional sufficient and/or necessary conditions [10][11]

required for local identifiability for particular observation models for which the unconstrained FIM

has an analytical expression allowing a rank analysis. For example, results from [10] provide sufficient

conditions in MIMO systems for reducing the rank deficiency of the FIM to be as small as possible.

Once this is achieved, the remaining degrees of uncertainty may be resolved with the addition of

constraints. However, the value of the constrained CRB depends on the choice of the constraint

function. Therefore different constraint functions lead to different values of the CRB and there is

no rationale yet allowing to predict the efficiency of regularization constraints, in the sense of their

ability not only to regularize the unconstrained FIM but also to provide a constrained CRB (14) with

variances as low as possible. And this is a problem of practical importance since, if it is possible to

know if operational target values for MSEs are lower bounded by the minimum attainable variances

given by the Moore-Penrose generalized inverse of the singular unconstrained FIM [9][16][24]), it is

not possible to ”guess” which constraints (and the associated constrained MLE [13]) will provide a

constrained CRB (14) reaching the target values.
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The proposed framework allows to introduce a third heuristic perspective: with the help of the

appropriate computation power, an efficient regularization of an unidentifiable observation model

may simply result from the computation of all the constrained CRB (14) associated with a library of

admissible sets of constraints (compatible with operational conditions), the most efficient set being

kept.

VI. APPLICATION EXAMPLE

We consider the tracking mode of a multifunction ground based SIMO (Single Input-Multiple

OutPut) radar which operates both surveillance and tracking mode. The radar receiving antenna

consists of a uniform planar array (UPA) of NRx isotropic sensors and the transmitting antenna

consists of a single isotropic antenna located at the radar phase-centre, which is also the origin of

the coordinate frame. Each observation consists of the reception of a transmitted based band burst

elT (t) of N l
pri pulses:

elT (t) =

N l
pri∑
i=1

el0
(
t− ti0

)
,

T l0∫
0

∣∣∣el0 (t)
∣∣∣2 dt = T l0,

after backscattering by M point scatterers. During each observation, each point scatterer has an uni-

form radial motion plm (t) = ulm
(
rlm + vlmt

)
and a constant backscattering coefficient σlm. Then under

the usual assumptions of a single polarization on transmit, a quasi-monostatic radar configuration, a

narrow-band receiving array and a spatially and temporally white noise (independent observations),

the observations after Hilbert filtering can be modelled as [48]:

xl
(
t,θl

)
=

M∑
m=1

a
(
ulm, λc

)
e
−j4π

(
rlm+vlmt

λc

)√
P lT eT

(
αlm

(
t− 2rlm

c

))
(rlm + vlmt)

2

λcσ
l
m

(4π)
3

2

+ nl (t) , αlm = 1− 2vlm
c
,

(50)

an (u, λc) = ej
2π

λc
u·pRn , Rl

n (τ) =
(
σ2

n

)l
Iδ (τ) , u (θ, φ)T = (cos (φ) sin (θ) , cos (φ) cos (θ) , sin (φ)) ,

where P lT is the transmitter (peak) power, pRn is the location of the nth receiving sensor and λc

is the radar wavelength. For ground based radar the coordinate frame is implicitly of ENU type

(East-North-Up) and the associated angles are azimuth θ and elevation φ as defined above. Therefore(
Ξl

s

)T
=
((
εl1
)T
, . . . ,

(
εlM
)T) where εlm =

(
rlm, v

l
m, θ

l
m, φ

l
m

)
.

We are primarily interested by radial range and velocity, since most of multifunction radar are not

able to perform an high resolution analysis in the angle domain. Therefore most of multifunction

radar simply steers a beam in the direction designated by the surveillance mode, which amounts to

consider that the angles of each target is known and equal to the steered beam angles:{(
θlm, φ

l
m

)
=
(
θlsteer, φ

l
steer

)}M
m=1

, 1 ≤ l ≤ L, (51)
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and (50) becomes:

xl
(
t,θl

)
=

M∑
m=1

e
−j4π

(
rlm+vlmt

λc

)√
NRxP

l
T eT

(
αlm

(
t− 2rlm

c

))
(rlm + vlmt)

2

λcσ
l
m

(4π)
3

2

+ nl (t) , εlm =
(
rlm, v

l
m

)
The scenario we want to investigate from a performance analysis and system design is the following

operational one: a patrol of two fighters is incoming when one fighter fires a missile. At that moment,

the radar scene consists of 3 types of target {S1,S2,S3}: the first target (the missile) accelerates and

its backscattering amplitude fluctuates, the second target (the fighter firing the missile) keeps an

uniform motion and its backscattering amplitude fluctuates, the third target (the second fighter) keeps

an uniform motion and its backscattering amplitude do not fluctuate. The behaviour of each target

contains an a priori information that can be formulated in terms of parameters constraints:(
rl2, v

l
2

)
=
(
r1

2, v
1
2

)
,
(
rl3, v

l
3

)
=
(
r1

3, v
1
3

)
, σl3 = σ1

3, 2 ≤ l ≤ L (52)

which is clearly an ”asymmetric” set of constraints in opposition with ”symmetric” sets of constraints

such as (39) or (42): {(
rlm, v

l
m

)
=
(
r1
m, v

1
m

)}M
m=1

, σls = σ1
s, 2 ≤ l ≤ L.

We want to asses the benefit of taking into account the additional ”symmetric” constraints (39)(42)

or ”asymmetric” constraints (52) when estimating the average value of parameters of interest rm =

1
L

∑L
l=1 r

l
m and vm = 1

L

∑L
l=1 v

l
m.

A. Illustration of the versatility of constrained CRB

In this section we show how the constrained approach allows easily to take into account both

design constraint (51) and target features (39)(42)(52). For sake of legibility, we assume that L = 3

and M = 3 (three bursts sent and three targets). Let consider the vector of all the targets parameters:

OT
s =

(
σ1

1, σ
2
1, σ

3
1, . . . , σ

1
3, σ

2
3, σ

3
3,
(
σ1

1

)∗
,
(
σ2

1

)∗
,
(
σ3

1

)∗
. . . ,

(
σ1

3

)∗
,
(
σ2

3

)∗
,
(
σ3

3

)∗
,

r1
1, v

1
1, θ

1
1, φ

1
1, . . . , r

3
1, v

3
1, θ

3
1, φ

3
1, . . . , r

1
3, v

1
3, θ

1
3, φ

1
3, . . . , r

3
3, v

3
3, θ

3
3, φ

3
3

) (53)

and the associated FIM FOs
for L independent conditional models (31)(36). As mentioned above, a

beam steering architecture of the radar can be taken into account with constraints (51). The matrix

U0
Os

(17) associated to constraint (51) can be easily computed when parameters are gathered in two

sets: known and unknown parameters, which amount to a permutation P0:

(P0Os)
T =

(
σ1

1, σ
2
1, σ

3
1, . . . , σ

1
3, σ

2
3, σ

3
3,
(
σ1

1

)∗
,
(
σ2

1

)∗
,
(
σ3

1

)∗
. . . ,

(
σ1

3

)∗
,
(
σ2

3

)∗
,
(
σ3

3

)∗
,

r1
1, v

1
1, . . . , r

3
1, v

3
1, . . . , r

1
3, v

1
3, . . . , r

3
3, v

3
3, θ

1
1, φ

1
1, . . . , θ

3
1, φ

3
1, θ

1
3, φ

1
3, . . . θ

3
3, φ

3
3

)
Then [16, Section V.A]:

U0
P0Os

=

 I36×36

018×36

 ∈MR (54, 36)
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As:

Fc
Os

= UT
Os

FOs
U∗Os

=
(
P0UOs

)T (
P0FOs

PT
0

) (
P0UOs

)∗
=
(
PT

0 U0
P0Os

)T
FOs

(
PT

0 U0
P0Os

)∗
therefore:

U0
Os

= PT
0 U0

P0Os
(54)

When (51) is satisfied (beam steering mode), any additional constraint is expressed more concisely

when expressed from the constrained FIM
(
U0

Os

)T
FOs

(
U0

Os

)∗
. Indeed the constrained CRB taking

into account (51) and the additional ”symmetric” constraints (39) is:{
Ξl

s = Ξ1
s

}L
l=2
→ CRBc

1 (Os) =
(
U1

Os

)∗((
U1

Os

)T ((
U0

Os

)T
FOs

(
U0

Os

)∗)(
U1

Os

)∗)−1 (
U1

Os

)T
(55)

where:

U1
Os

=



I9×9 0 0 0 0

0 I9×9 0 0 0

0 0 13×1 ⊗ I(2×2) 0 0

0 0 0 13×1 ⊗ I(2×2) 0

0 0 0 0 13×1 ⊗ I(2×2)


(56)

The constrained CRB taking into account (51) and the additional ”symmetric” constraints (42) is:{
Ξl

s = Ξ1
s

}L
l=2{

σls = σ1
s

}L
l=2

∣∣∣∣∣∣→ CRBc
2 (Os) =

(
U2

Os

)∗((
U2

Os

)T ((
U0

Os

)T
FOs

(
U0

Os

)∗)(
U2

Os

)∗)−1 (
U2

Os

)T
,

(57)

where:

U2
Os

=



13×1 ⊗ I(3×3) 0 0 0 0

0 13×1 ⊗ I(3×3) 0 0 0

0 0 13×1 ⊗ I(2×2) 0 0

0 0 0 13×1 ⊗ I(2×2) 0

0 0 0 0 13×1 ⊗ I(2×2)


(58)

Last, the constrained CRB taking into account (51) and the additional ”asymmetric” constraints (52)

is:{
εl2 = ε1

2

}L
l=2{

εl3 = ε1
3

}L
l=2{

σl3 = σ1
3

}L
l=2

∣∣∣∣∣∣∣∣∣→ CRBc
3 (Os) =

(
U3

Os

)∗((
U3

Os

)T ((
U0

Os

)T
FOs

(
U0

Os

)∗)(
U3

Os

)∗)−1 (
U3

Os

)T
,

(59)
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where:

U3
Os

=



I6×6 0 0 0 0 0 0

0 13×1 0 0 0 0 0

0 0 I6×6 0 0 0 0

0 0 0 13×1 0 0 0

0 0 0 0 I(6×6) 0 0

0 0 0 0 0 13×1 ⊗ I(2×2) 0

0 0 0 0 0 0 13×1 ⊗ I(2×2)

0 0 0 0 0 0 0



(60)

Actually, U1
Os

(56), U2
Os

(58) and U3
Os

(60) are easy to program in any computing language whatever

the constraint (51) is satisfied or not, whatever the number of targets M or the number of observations

L. Therefore there is no additional value in expressing (56)(58) and (60) when (51) is not satisfied

whatever M or L.

B. numerical results

For sake of simplicity, the 3 bursts waveforms are identical. The 3 bursts are transmitted at time

(0.01, 0.11, 0.21)(s). The first target has a radial acceleration of −50ms−2. The two cases of correlated

and uncorrelated backscattering amplitudes are considered. The SNR at output of coherent matched

filter is 30dB for all targets and all bursts. The main features of targets and bursts are gathered below:

Burst features

Modulation Type LFM

Range Ambiguity 20 Km

Range Resolution 15 m

Blind Range 1155 m

Velocity Ambiguity 600 m/s

Velocity Resolution 20 m/s

Beam Width 5◦

Wave Length 0.16 m

Targets features(
r1

1, r
2
1, r

3
1

)(
r1

2, r
2
2, r

3
2

)(
r1

3, r
2
3, r

3
3

)
104 − (2, 22, 43)

104 + (0, 0, 0)

104 + (8, 8, 8)

(m)

(m)

(m)(
v1

1, v
2
1, v

3
1

)(
v1

2, v
2
2, v

3
2

)(
v1

3, v
2
3, v

3
3

)
−200− (0.5, 5, 10)

−200 + (0, 0, 0)

−200 + (10, 10, 10)

(m/s)

(m/s)

(m/s)(
θ1
m, θ

2
m, θ

3
m

)
(0, 0, 0) (deg)(

φ1
m, φ

2
m, φ

3
m

)
(0, 0, 0) (deg)(

σ1
1, σ

2
1, σ

3
1

)
Cor(

σ1
2, σ

2
2, σ

3
2

)
Cor(

σ1
3, σ

2
3, σ

3
3

)
Cor

(1, 1, 1)

(1, 1, 1)

(1, 1, 1)

(m)

(m)
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The computation of the unconstrained FOs
(31) for L independent conditional models (36) has been

obtained with a software developed in [48] and cross-checked with results released in [27] for a single

target.

As the influence of ”symmetric” constraints (39)(42) on estimation performance is well known in the

open literature, we only focus on the influence of ”asymmetric” constraints (52).

First we address the beam steering mode. The CRB values are expressed in dB relatively to the

waveform resolution:

Scenario Target 1 Target 2 Target 3

Ξs

correlated amplitudes

CRBr = −38.9

CRBv = −40.2

CRBr = −32.9

CRBv = −33.5

CRBr = −37.1

CRBv = −37.2

Ξs under (52)

correlated amplitudes

CRBr = −42.6

CRBv = −43.2

CRBr = −42.5

CRBv = −42.9

CRBr = −42.1

CRBv = −42.6

Ξs

uncorrelated amplitudes

CRBr = −38.9

CRBv = −40.3

CRBr = −33.1

CRBv = −33.7

CRBr = −37.6

CRBv = −37.6

Ξs under (52)

uncorrelated amplitudes

CRBr = −42.7

CRBv = −43.2

CRBr = −41.6

CRBv = −41.5

CRBr = −41.5

CRBv = −41.6

(62)

Second we have checked numerically that the above results do not change when
(
θlm, φ

l
m

)
status

change from known to unknown, which would be the configuration for a radar able to implement

angular high resolution technique. This decorrelation between (range,velocity) and angles is not

surprising since it is present in all Fθls (36) [27].

The main surprising results (to be confirmed with more scenarios) are the insensitivity of the gain on

performance estimation to amplitude correlation and the averaging on performance estimation (same

performance for all targets) when (52) is taken into account.

VII. CONCLUSION

The present paper introduces an original framework in order to assess and to analyze the estimation

performance and the design of a system of measurement modelled as a set of L parametric observation

models. Its main advantage is to take into account most (and possibly all) of factors impacting

the estimation performance of the parameters of interest via equality constraints leading to direct

numerical algebraic computations of constrained CRB from the expression of the unconstrained FIM.

This framework offers a rational heuristic to assess and to analyze performance estimation where

derivation of dedicated analytical expressions of CRB is superfluous. Anyhow, for complex systems,

derivation of analytical expression of CRB is either impossible or inefficient. For application, we have

provided the general form of the FIM for conditional models (often used to model active system of

measurement such radar or sonar systems) which generally precludes the derivation of an analytical
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expression of the CRB for the parameters of interest for a realistic scenario where interference occurs

in the presence of sensors modeling errors. Last, we have shown that the proposed framework can

also be used efficiently to generate new closed-form expressions of CRB, although this is not the

main aim of this framework.
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[38] Z. Li, S. Chen , H. Leung, E. Bossé, ”Joint Data Association, Registration, and Fusion using EM-KF”, IEEE Trans.

on AES, 46(2): 496-507, 2010

[39] N Levanon, E. Mozeson, Radar Signals, Wiley-Interscience 2004

[40] T. Menni, E. Chaumette and P. Larzabal, ”Reparameterization and Constraints for CRB: duality and a major inequality

for system analysis and design in the asymptotic region”, ICASSP 2012, Kyoto Japan

[41] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, 1999

[42] T. Menni, E. Chaumette, P. Larzabal and J. P. Barbot, ”Crb for Active Radar”, EUSIPCO 2011, Barcelona Spain

[43] M.C. Wicks, E.L. Mokole, S.D. Blunt, R.S. Schneible, V.J. Amuso , Principles of Waveform Diversity and Design,

SciTech Publishing 2010

[44] A. Renaux, P. Forster, E. Chaumette, P. Larzabal, ”On the High RSB CML Estimator Full Statistical Characterization”,

IEEE Trans. on SP, vol 54(12): 4840-4843, 2006

[45] M. Wax, “The joint estimation of differential delay, Doppler, and phase”, IEEE Trans. on IT, 28(5): 817-820, 1982.

[46] B. Friedlander, ”On the Cramer-Rao Bound for Time Delay and Doppler Estimation”, IEEE Trans. on IT, 30(3):

575-580, 1984.

April 4, 2014 DRAFT



37

[47] P. Whittle, “The analysis of multiple stationary time series”, J. Royal Statist. Sot., 15: 125-139, 1953

[48] T. Menni, ”Deterministic Cramér-Rao Bounds for the analysis of the asymptotic estimation performance of an active

radar”, PhD Thesis, Ecole Normale Supérieure de Cachan, France, 2012

[49] A. Dogandzic and A. Nehorai, ”Space-time fading channel estimation and symbol detection in unknown spatially

correlated noise, IEEE Trans. on SP, 50(3): 457-474, 2002

April 4, 2014 DRAFT

View publication statsView publication stats

https://www.researchgate.net/publication/261223487

