
HAL Id: hal-01726292
https://hal.science/hal-01726292v1

Submitted on 8 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soft-Cascade Learning with Explicit Computation Time
Considerations

Francisco Rodolfo Barbosa-Anda, Frédéric Lerasle, Cyril Briand, Alhayat Ali
Mekonnen

To cite this version:
Francisco Rodolfo Barbosa-Anda, Frédéric Lerasle, Cyril Briand, Alhayat Ali Mekonnen. Soft-Cascade
Learning with Explicit Computation Time Considerations. 2018 IEEE Winter Conference on Appli-
cations of Computer Vision, Mar 2018, Lake Tahoe, United States. �hal-01726292�

https://hal.science/hal-01726292v1
https://hal.archives-ouvertes.fr


Soft-Cascade Learning with Explicit Computation Time Considerations

Francisco Rodolfo Barbosa-Anda Frédéric Lerasle Cyril Briand Alhayat Ali Mekonnen
LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

{frbarbos,lerasle,briand,aamekonn}@laas.fr

Abstract

This paper presents a novel framework for learning
a soft-cascade detector with explicit computation time
considerations. Classically, training techniques for soft-
cascade detectors select a set of weak classifiers and their
respective thresholds, solely to achieve the desired detection
performance without any regard to the detector response
time. Nevertheless, since computation time performance
is of utmost importance in many time-constrained appli-
cations, this work divulges an optimization approach that
aims to minimize the mean cascade response time, given a
desired detection performance, fixed beforehand. The re-
sulting problem is NP-Hard, therefore finding an optimal
threshold vector can be very time-consuming, especially
when building a soft-cascade detector of long length. An
efficient local search procedure is presented that deals with
long-length detectors. Our evaluations on two challeng-
ing public datasets confirm that a faster cascade detector
can be learned while maintaining similar detection perfor-
mances.

1. Introduction
Person detection is one of the most important challenges

in the literature with a wide application range including
video surveillance [4], image indexing and retrieval [34],
intelligent robotic systems [14], and Advanced Driver As-
sistance Systems [17]. These issues are also illustrated by
well-known challenges, e.g., the PASCAL challenge [15]
and the MOT Challenge [21], which are very competitive in
the Computer Vision community.

Recent trends on visual person detection have moved to-
wards deep learning paradigms [19, 28, 24, 22]. Though
these paradigms are showing detection performance gains,
they induce specific, cumbersome, and expensive GPU ar-
chitectures. This limits drastically their use for embedded
applications. Such applications must favor conventional
(cheap) architectures and the CPU cost could then represent
a bottleneck for real time embedded applications. These in-
sights motivate numerous investigations on image feature

selection (thanks to boosting variants), and hard or soft cas-
cade arrangements initiated by [30, 13]. Soft-cascade based
detectors, especially, appear to be still competitive and even
slightly better both in terms of detection performance and
computation time than deep learning ones [35].

For both hard/soft cascade arrangement, the strategy is to
inspect the image exhaustively by the sliding window tech-
nique [2]. The key idea is to cover all positions in the image
and all sizes of the target person.

Cascade detectors computation time is mainly deter-
mined by two factors: the weak classifiers that compose the
cascade and the threshold values of each stage of the cas-
cade. For the first factor, selection methods have been pro-
posed that put faster weak classifiers first and let more effi-
cient ones for the end of the cascade, e.g., [23, 20]. For the
second factor, threshold tuning approaches search to detect
negative samples as fast as possible in the cascade, e.g., [32,
3, 1].

The cascade arrangement can be a hard-cascade, in
which each cascade stage aggregates the weighted score
of the several weak classifiers, and thresholds the result-
ing value to label each sample as positive (which is passed
to the next stage) or as negative (which is rejected). It can
also be a soft-cascade – instead of having separated cascade
stages, it has one stage, and then it thresholds each sample
response after each weighted weak classifier evaluation [32,
3]. In the literature, these types of cascades are predomi-
nantly constructed using AdaBoost, e.g., [30, 37, 32, 10].

Recently, soft-cascade variants have demonstrated much
superior detection performance [35, 36, 10, 13] and are
used in several applications, e.g., [27, 29, 18]. The soft-
cascade thresholds are learned after the complete training
of the strong classifier in a kind of calibration phase. They
are solely learned to fulfill detection performance require-
ments without any computation time consideration. How-
ever, in real-time systems, when using a sliding window de-
tection approach, it is worth to consider computation time
aspects explicitly. Hence, this work focuses on incorporat-
ing computation time considerations in the calibration of a
soft-cascade detector by determining the optimal thresholds
that minimize the expected time response.



This work relies on the Mean-Cascade Response-time
Minimization Problem (MSCRMP) presented by Barbosa-
Anda et al. [1] and the Binary Integer Programming (BIP)
optimization framework proposed to determine optimal re-
jection threshold values therein. The rejection thresh-
old values minimize the overall computation time while
keeping the detection performance unchanged. Their ap-
proach is actually quite efficient to train medium-length
soft-cascades with medium training sets with a maximal
size of 256 stages, but cannot deal with real-size instances
that have at least 2048 stages. In this paper, we propose
a novel local-search optimization procedure for tuning the
cascade thresholds which is able to cope with large-problem
instances efficiently. Finally, we demonstrate experimen-
tally and comparatively the viability of the framework on
a relevant application, namely pedestrian detection, using
publicly available real life datasets.

The rest of this paper is structured as follows: Section 2
briefly presents related work in threshold tuning strategies
(already mentioned in this introduction). Then, the pro-
posed novel local search approach is presented in Section 3.
Relevant experimental evaluations, results, and associated
discussions are detailed in Section 4. Finally, concluding
remarks are provided in Section 5.

2. Existing threshold tuning strategies
In a soft-cascade, the main interest is to reject as many of

the negative windows at the earliest possible level, thereby
(1) decreasing the computation time, and (2) decreasing the
False Positive Rate (FPR). Let us consider a strong classi-
fier in the form H(x) =

∑L
l=1 αlhl(x). x corresponds to a

test sample which can be positive (y = 1) or negative (y =
−1), hl(x) is the lth weak classifier, and sign(H(x)− θL)
determines the final class label. The intermediate cumula-
tive score of a sample at the lth weak classifier is defined by
Sl =

∑l
u=1 αuhu(x). A soft-cascade algorithm deals with

determining the rejection thresholds θl that reject the sam-
ple whenever Sl < θl at each weak classifier evaluation (or
otherwise pass it to the next stage). The most notably works
that propose different strategies to set these thresholds are
the BIP-based approach of Barbosa-Anda et al. [1], the Di-
rect Backward Pruning (DBP) of Zhang and Viola [32], the
WaldBoost of Sochman and Matas [26], the “soft-cascade”
of Bourdev and Brandt [3], and the boosting chain of Xiao
et al. [31]. Even though it is not very important here, the
specific weak classifier to use at each iteration of a soft-
cascade, hl, and the associated weighting coefficients, αl,
can be derived by minimizing the exponential loss (as in the
case of AdaBoost), which provides an upper bound on the
actual 1/0 loss classification [25].

Bourdev and Brandt [3] set the rejection thresholds based
on a rejection distribution vector – an ad hoc detection rate
target, which is arbitrary and non-optimal [32]. Sochman

and Matas [26] use a ratio test to determine rejection thresh-
olds. On the other hand, DBP [32] – which outperforms
WaldBoost, “soft-cascade”, and boosting chain – sets the
thresholds to the minimum score Sl registered by any of
the positive samples that have a final score SL above the
final threshold θL. Although DBP has been successfully
used in several detection applications, e.g., [32, 13], it does
not explicitly consider the computation time incurred when
applying the detector on an image. To address this issue,
Barbosa-Anda et al. [1] proposed a BIP-based approach that
leads to a faster cascade over DBP under similar detection
performances.

2.1. Direct Backward Pruning

Zhang and Viola [32] proposed the so-called Direct
Backward Pruning (DBP) procedure that uses the interme-
diate cumulative score of a sample xn at each lth weak clas-
sifier that equals Sn,l =

∑l
u=1 αuhn,u, where αl is the

positive weight associated to the weak classifier and hn,l
is its known response (hn,l = 1 if xn is a positive sample,
hn,l = −1 otherwise). At each level l, a threshold θl is de-
fined, according to (1), such that any sample having its score
Sn,l < θl is rejected. As it can be observed, the definition
of θl itself depends on θL, which is the final desired thresh-
old that allows to provide the desired minimum number of
true positive samples TPR.

θl = min
{n|Sn,L>θL,yn=1}

Sn,l (1)

2.2. Mean Soft-Cascade Response-time Minimiza-
tion Problem (MSCRMP)

We recall now the definition of MSCRMP as given in [1].
A soft-cascade with L weak classifiers trained on a con-
figuration set of N samples is considered, composed of J
positive and K negative samples (i.e., N = J ∪ K). The
indexes n, j and k are further used for designating a sample
(either positive or negative), a positive one and a negative
one, respectively. Each weak classifier at level l has a posi-
tive cost cl, which represents the time it requires to check a
single sample. Sn,l and θl still refers to the intermediate cu-
mulative score and the threshold at level l, respectively (see
Section 2.1) such that any sample xn with Sn,l < θl is re-
jected. Note that, as a consequence of a rejection at level l, a
computational time saving is made that equals

∑L
u=l+1 cu.

In MSCRMP, unlike for DBP procedure, vector Θ =
{θ1, . . . , θL} results from an optimization stage that aims
at minimizing the total computation time required to ana-
lyze the configuration set or, equivalently, maximizing the
saved computation time. Indeed, as this configuration set is
assumed to be representative of any real-world sample set,
this objective function can be seen equivalent to minimizing
the mean computation time response of the detector.



1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Sc

or
e

Weak Classifier

Figure 1. A score tree.

MSCRMP computational complexity is proved to be NP-
Hard in [1], the proof being based on a reduction from
Subset-Sum Problem (SSP) [16].

Barbosa-Anda et al. [1] define a score tree such that
each node (l, s) represents a specific possible score s
that can be reached at level l: (l, s) has two children
(l + 1, s − αl+1) and (l + 1, s + αl+1). Figure 1
shows the score tree obtained for an instance having four
weak classifiers (trained by AdaBoost) with weights A =
{0.5253, 0.4443, 0.3753, 0.4081}. This score tree allows
the definition of a threshold graph T (V,E) with the same
node set V such that an arc e ∈ E is set between (l, s) and
(l + 1, s′) if and only if s′ ≥ s − αl+1. Such a threshold
graph is displayed in Figure 2 for the example of Figure 1.

Barbosa-Anda et al. [1] proved that any optimal solution
of MSCRMP (i.e., a threshold vector Θ) can be associated
with a specific path from virtual node (0, 0) to a node of
level L in T such that if node (l, s) is traversed then θl = s.
The number of different paths being clearly exponential, the
authors also put dominance conditions into evidence such
that T (V,E) can be pruned, which drastically reduces the
solution space. On the basis of this property, a binary inte-
ger program (BIP) is proposed that finds an optimal path in
T . This formulation is detailed below as it is integrated as
a basic component of our method. It involves binary vari-
ables xn,l and ψs,t,l. xn,l = 1 implies that sample n is such
that Sn,l < θl for the first time. ψs,t,l = 1 if the arc e ∈ E
linking nodes (l, s) ∈ V and (l+1, t) ∈ V is selected in the
solution path. Objective function (2) measures the compu-
tational time saving. Constraints (3) enforce the detector to
reach the true positive rate TPR (provided that xn,L+1 = 1
when the sample n has never been rejected before). Flow
constraints (4)-(5) make sure that the selected arcs form a
(unique) path in T (σ−1

(l,s) and σ(l,s) being the set of incom-
ing and out coming arcs of node (l, s), respectively). Con-

1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

T
hr

es
ho

ld

Weak Classifier

Figure 2. A threshold graph for the example of Figure 1.

straints (6) and (7) couple xn,l and ψs,t,l variables together
enforcing the solution path to pass at a score greater than
Sn,l at level l whenever xn,l = 1, on the one hand, and im-
posing that sample n is rejected at a level lower or equal to l
whenever the path passes through a score greater than Sn,l,
on the other hand.

Maximize

L∑
l=1

N∑
n=1

[
xn,l

(
L∑

u=l+1

cu

)]
(2)

Subject to ∑
n∈J

xn,L+1 ≥ TPR (3)∑
(l−1,t)∈σ−1

(l,s)

ψt,s,l−1 =
∑

(l+1,t)∈σ(l,s)

ψs,t,l ∀ (s, l) (4)

ψ0,0,1 + ψ0,1,1 = 1 (5)

xn,l ≤
∑

{t|Sn,l<t}

∑
{s|(l+1,t)∈σ(l,s)}

ψs,t,l ∀ (n, l) (6)

∑
{t|Sn,l<t}

∑
{s|(l+1,t)∈σ(l,s)}

ψs,t,l ≤
l∑
i=1

xn,i ∀ (n, l) (7)

xn,l ∈ {0, 1} ∀ (n, l) (8)
ψs,t,l ∈ {0, 1} ∀ (s, t, l) ∈ T

(9)

3. A novel iterative search procedure for large
scale problems

The previous approach has proved to be effective on
small and medium size instances. Nevertheless, as the num-
ber of constraints (6) and (7) depends on the product of the



1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
T

hr
es

ho
ld

Weak Classifier

Figure 3. A neighborhood in a threshold graph.

cascade size L and the training set size N , it cannot be ap-
plied directly for large scale soft-cascades as the model be-
comes too huge to be solved in finite time even using the
best outstanding commercial BIP solvers.

Hereafter, an iterative search procedure that allows over-
coming the previous drawbacks is detailed. Even though
it does not guarantee optimality anymore, it does allow
to solve real size instances and provides good-quality so-
lutions regarding both the classification performance and
computation cost criteria. Two complementary techniques
are used: (1) an iterative local search procedure which con-
siders a specific neighborhood structure defined as an enve-
lope of a path in T , and (2) a cascade reduction procedure.

3.1. A Graph Local Search (GLS) method

Considering a solution path Θα of T found at it-
eration α, we define an envelope as a sub graph
TΘα,∆(VΘα,∆, EΘα,∆) ⊂ T (V,E) using a frontier vec-
tor ∆ = {δ1, . . . , δL}. We refer to (l, s0) as the
node of T selected in Θα at level l. The nodes of
VΘα,∆ are such that VΘα,∆ =

⋃L
l=0{(l, s−δl), (l, s−δl+1),

. . . , (l, s−1), (l, s0), (l, s1), . . . , (l, sδl−1), (l, sδl)}}, where
(l, su) ((l, s−u), resp.) is the uth score value greater (lower,
resp.) than (l, s0). EΘα,∆ ⊆ E are all the arcs in E that
connect nodes in VΘα,∆, so that TΘα,∆(VΘα,∆, EΘα,∆) ⊆
T (V,E), as illustrated in Figure 3 where the initial so-
lution Θα = { − 0.5253,−0.9693,−0.5943,−1.0023} is
presented in red, the neighborhood TΘα,∆(VΘα,∆, EΘα,∆)
with δl = 1 is presented in black and the non-explored
threshold space T (V,E)\TΘα,∆(VΘα,∆, EΘα,∆) is in gray.
Note that ∆ allows a fine control of the shape of the en-
velope. Obviously, TΘα,∆(VΘα,∆, EΘα,∆) = T (V,E) for
large δl values.

Barbosa-Anda et al. [1]’s model can be applied effi-
ciently on sub graph TΘα,∆(VΘα,∆, EΘα,∆) finding another

path Θα+1 strictly better than Θα. In that case, a new enve-
lope can be defined from Θα+1 and the solving process can
be repeated until there is no more improvement. Otherwise,
the envelope can be expanded progressively around Θα un-
til a better solution is found or a given maximum value is
reached.

Algorithm 1 Graph local search
Require: tpr (Θ0) ≥ TPR and δmax ≥ 1
α← 1
better1← true
while better1 do
δ ← 1
better2← false
Θα,0 ← Θα−1

while not better2 and δ ≤ δmax do
Θα,δ ← BIP (TΘα,δ−1, TPR)
better2← objfunc (Θα,δ) < objfunc (Θα,δ−1)
δ ← δ + 1

end while
Θα ← Θα,δ−1

better2← objfunc (Θα) < objfunc (Θα−1)
α← α+ 1

end while
return Θα−1

3.2. A cascade reduction procedure

Given a feasible solution Θ, if the mandatory TPR tar-
get is first reached at stage lTPR < L, then threshold val-
ues for stages lTPR + 1 to L are imposed: they equal the
minimum score of the true positive samples in stage lTPR.
Indeed, as the mandatory TPR target is reached at stage
lTPR, the detector is not allowed to classify as negative any
of the remaining true positives samples until the end of the
cascade.

On the basis of this property and given an initial solution
Θ0, we only focus on determining a partial solution ΘL′ for
the first L′ = lTPR stages. We set the complete solution
Θ according to Equation (10) – i.e, for all stages l ≤ L′

the threshold values θl are those of the partial solution ΘL′ ,
while for all other stages, the threshold values θl are set to
the minimum score Sn,l registered by the positive samples
that have a final partial score Sn,L′ greater than θL

′

L′ .

θl =

 θL
′

l l ≤ L′
min

{n|Sn,L′>θL
′

L′ ,yn=1}
Sn,l otherwise (10)

The complete solution Θ could be used as a new ini-
tial solution Θβ repeating the procedure until the new lTPR
is equal to the actual cascade length L′, as presented in



Algorithm 2. This procedure shortens the cascade length,
thereby reducing the threshold graph to be explored and
hence the computational effort.

Algorithm 2 Cascade reduction procedure
Require: tpr (Θ0) ≥ TPR
better ← true
β ← 1
L′ ← L
while better and lTPR < L′ do
L′ ← lTPR
ΘL′

β−1 ← {θ1, . . . , θL′} ∈ Θβ−1

ΘL′

β ← BIP
(
TΘL

′
β−1

, TPR
)

for all l|1 ≤ l ≤ L do
if l ≤ L′ then
θl ∈ Θβ ← θL

′

l ∈ ΘL′

β

else
θl ∈ Θβ ← min{n|Sn,L′>θL

′
L′∈ΘL

′
β ,yn=1} Sn,l

end if
end for
better ← objfunc (Θβ) < objfunc (Θβ−1)
β ← β + 1

end while
return Θβ−1

3.3. Mixed method

We mix both previous procedures. The soft cascade is
truncated as explained in Section 3.2. Instead of using the
BIP as in Algorithm 2, the GLS is applied with respect to
Algorithm 1, using as input the initial solution Θβ (with per-
formance TPR). The final procedure is as in Algorithm 3.

4. Evaluations and discussion
To validate our contributions, two soft-cascades were

trained and tested: (1) using images taken from the public
INRIA Person dataset [8]; and (2) another one using images
taken from the public Caltech Pedestrian dataset [12, 13].
The training is carried out using Piotr’s Computer Vision
Matlab Toolbox [9] that provides an implementation of the
Aggregate Channel Features (ACF) soft-cascade from [10].
Here we chose to use ACF as a benchmark as it is one of
the best detectors in the literature taking both speed and de-
tection performance into account. ACF based on the notion
of channel features that has outperformed several detectors
on various benchmarking datasets [10]. It is based on ag-
gregates of features represented as channels. A channel is a
per-pixel feature map computed from a corresponding patch
of input pixels. It can, for example, be the L component
of the LUV color transformed input image, or even a his-
togram of each quantified gradient orientation (one channel

Algorithm 3 Iterative search procedure
Require: tpr (Θ0) ≥ TPR and δmax ≥ 1
better ← true
β ← 1
L′ ← L
while better and lTPR < L′ do
L′ ← lTPR
ΘL′

β−1 ← {θ1, . . . , θL′} ∈ Θβ−1

ΘL′

β ← GLS
(

ΘL′

β−1, TPR, δmax

)
for all l|1 ≤ l ≤ L do

if l ≤ L′ then
θl ∈ Θβ ← θL

′

l ∈ ΘL′

β

else
θl ∈ Θβ ← min{n|Sn,L′>θL

′
L′∈ΘL

′
β ,yn=1} Sn,l

end if
end for
better ← objfunc (Θβ) < objfunc (Θβ−1)
β ← β + 1

end while
return Θβ−1

per orientation) of the input image. ACF uses ten channels
– gradient magnitude, HOG (6 channels), and LUV color
channels. Each channel is aggregated over blocks to cre-
ate lower resolution channels. The final classifier is learned
by using AdaBoost and depth two decision trees over these
channel features.

The implementation of ACF soft-cascade from [10], sets
the threshold vector Θ to a fixed linear set of values, i.e.,
to −1 plus l times a calibration parameter fixed for each
dataset. We set cl to 1 at any cascade level l and refer to cl
as the processing unit for the remaining of this paper. Using
the DBP algorithm [32, 13] and the ACF cascade, another
cascade variant has been built. We built up two additional
soft-cascade variants by using our GLS procedure applied
on the two previous variants, using δmax = 4. This gives
a total of four soft-cascade variants for each dataset. We
summarize each method below with used labels:

- ACF: The ACF detector as described in [10].

- ACF+GLS: The ACF detector tuned with GLS method
with the default threshold vector as initial solution.

- ACF+DBP: The ACF detector tuned with the DBP al-
gorithm.

- ACF+DBP+GLS: The ACF detector tuned with GLS
method with the DBP output as initial solution.

All the experimental tests are carried out on an Intel R©
CoreTM i5-4670 CPU 3.4 GHz processor machine with
16GB DDR3 1600MHz RAM memory. No GPU was used.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

True Negative Rate

Tr
ue

Po
si

tiv
e

R
at

e

Receiver Operating Characteristic

97% ACF
97% ACF+GLS
96% ACF+DBP
97% ACF+DBP+GLS

Figure 4. INRIA Dataset Evaluations: Receiver Operating Char-
acteristic Curve in configuration set.

ACF ACF+GLS ACF+DBP ACF+DBP+GLS

160

180

200

220

240

210.101
204.2482

214.697
207.5717

Pr
oc

es
si

ng
U

ni
ts

Mean Computing Cost per Sample

Figure 5. INRIA Dataset Evaluations: Objective Function: Mean
Response Time by sample in configuration set.

4.1. INRIA Dataset Evaluations

For the INRIA Person Dataset, the soft-cascades have
2048 stages. The training set is composed of 2474 posi-
tive samples and 15710 negative samples extracted from the
training images. The configuration set used is composed
of 1178 positive samples and 10947 negative samples ex-
tracted from test images. This configuration set was used
to run the DBP algorithm and the GLS method to generate
the four soft-cascade variants: ACF, ACF+GLS, ACF+DBP
and ACF+DBP+GLS. In our experiments, we experienced a
mean computation time of GLS that equals 1.5 hours during
the post-training tuning of the thresholds.

Once the detectors built, per samples evaluations were
made in the configuration set. The Receiver Operating
Characteristic (ROC) curve in Figure 4 shows the perfor-
mances of the four soft-cascade variants in the configuration
set, which is almost similar for all variants with slightly bet-
ter performance for ACF detector. Figure 5 details the mean
response time evaluations. We observe that, in both cases,
GLS variants have a better mean response time than their
original counterparts (ACF and ACF+DBP), about 3.06%.

Likewise, per image evaluations [13] were made in the
288 test images from the INRIA Person dataset. The Miss
Rate vs. False Positives per Image (FPPI) curve in Fig-
ure 6 shows the performances of the four soft-cascade vari-
ants in the test set images. These evaluations are consistent
with those of Figure 4, showing that our cascade variants
have similar classification performance as the ACF cascade

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

False Positives per Image

M
is

s
R

at
e

17% ACF
17% ACF+GLS
17% ACF+DBP+GLS
17% ACF+DBP

Figure 6. INRIA Dataset Evaluations: Miss Rate vs. FPPI Curve
in test set.

Detector Frames per Second Log-average Miss Rate
ACF 30.71 16.83%
ACF+GLS 31.86 17.03%
ACF+DBP 27.10 17.28%
ACF+DBP+GLS 29.42 17.06%

Table 1. INRIA Dataset Evaluations: Log-average Miss Rate vs.
Frames per Second in test set.

which is slightly better. Table 1 details the frames per sec-
ond and per variant. These results are also consistent with
those of Figure 5. We observe that ACF+GLS processes
1.15 more frames per second than the original ACF cascade.

We compare our results with the one reported by Cao et
al. [5] in Figure 7. It is necessary to remark that the two set
of evaluations have been made in different computer config-
urations, which can be seen in the differences between their
and ours ACF detector results. We can observe that our de-
tectors are comparable with the results reported by Cao et
al. [5]. Crosstalk detector has better computation time of
45.40 frames per second followed by our ACF+GLS with
31.86 fps and ACF with a mean of 31.305 fps. The detec-
tors with the best compromise between computation time
and detection performance are: Crosstalk, ACF+GLS, ACF,
NNNF and SpatialPooling.

4.2. Caltech Dataset Evaluations

For the Caltech Pedestrian Dataset, the soft-cascades
have 4096 stages. The ACF soft-cascade variant for Cal-
tech dataset use continuous Adaboost in its learning, which
results in weak classifiers that do not return a binary re-
sponse. Consequently, as the BIP model of Barbosa-Anda
et al. [1] requires a binary weak classifier response. It
cannot be applied directly, neither our procedure that uses
that BIP. Therefore, we train a variant of Caltech soft-



1/161/81/41/212 4 8 16 32 64
.10

.20

.30

Frames per Second

L
og

-A
ve

ra
ge

M
is

s
R

at
e

[45.40fps/20.10%] Crosstalk [5]
[31.90fps/17.28%] ACF [5]
[31.86fps/17.03%] ACF+GLS
[30.71fps/16.83%] ACF
[29.42fps/17.06%] ACF+DBP+GLS
[27.10fps/17.28%] ACF+DBP
[7.82fps/12.25%] NNNF [5]
[4.70fps/13.79%] LDCF [5]
[0.16fps/19.96%] LatSVM-L2 [5]
[0.14fps/11.22%] SpatialPooling [5]

Figure 7. INRIA Dataset Evaluations: Log-average Miss Rate vs
Frames per Second comparison with results from [5].

cascade using discrete AdaBoost instead, further referred
to as ACF DISC. The training set for the weak classifiers is
composed of 24498 positive samples and 100000 negative
samples extracted from the training images. The configu-
ration set for thresholds tuning is composed of 1996 pos-
itive samples and 54413 negative samples extracted from
the test images. The number of samples being too big
for applying directly our proposed approach, we perform
beforehand a k-mean clustering of the negative samples
with k = 16120. This allows us to remove redundant
negative samples. The DBP algorithm has been run on
the initial configuration set, while the clustered configu-
ration set is used for our GLS approach. This way, four
soft cascade variants were generated, further referred to
as ACF DISC, ACF DISC+CLUS+GLS, ACF DISC+DBP
and ACF DISC+CLUS+DBP+GLS. For this case, we ex-
perienced a GLS mean computation time that approxi-
mately equals 10 hours during the post-training tuning of
the thresholds.

Given these detectors, per samples evaluations were
made on the full configuration set. The Receiver Operat-
ing Characteristic (ROC) curve in Figure 8 shows the per-
formances of the four soft-cascade variants in the configura-
tion set, which is again similar for all four variants. Figure 9
details the mean response time evaluations. We observe
that the GLS variants have a much better mean response
time than their respective original variants (ACF DISC and
ACF DISC+DBP), about 13.54%.

Likewise, per image evaluations were made in the 4024
test images from the Caltech Pedestrian dataset. The Miss
Rate vs. False Positives per Image (FPPI) curve in Fig-
ure 10 shows the performances of the four soft-cascade vari-
ants in the test set images. These evaluations are consis-
tent with those of Figure 8, showing that our cascade vari-
ants have the same performance that the ACF DISC cas-
cade. It is known that original ACF cascade for Caltech

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

True Negative Rate

Tr
ue

Po
si

tiv
e

R
at

e

Receiver Operating Characteristic

95% ACF DISC
96% ACF DISC+CLUS+GLS
96% ACF DISC+DBP
96% ACF DISC+CLUS+DBP+GLS

Figure 8. Caltech Dataset Evaluations: Receiver Operating Char-
acteristic Curve in configuration set.

ACF
DIS

C

ACF
DIS

C+CLUS+GLS

ACF
DIS

C+DBP

ACF
DIS

C+CLUS+DBP+GLS
200

300

400

500

600

700

606.2967

472.8455

348.4699
330.7657

Pr
oc

es
si

ng
U

ni
ts

Mean Computing Cost per Sample

Figure 9. Caltech Dataset Evaluations: Objective Function: Mean
Response Time by sample in configuration set.

Detector Frames per Second Log-average Miss Rate
ACF DISC 6.85 32.50%
ACF DISC+CLUS+GLS 9.88 32.52%
ACF DISC+DBP 7.92 32.99%
ACF DISC+CLUS+DBP+GLS 9.85 32.84%

Table 2. Caltech Dataset Evaluations: Log-average Miss Rate vs
Frames per Second in test set.

Dataset, which is trained using continuous AdaBoost, has
a slightly better performance. Table 2 details the frames
per second per variant. One more time, we observe that
ACF DISC+CLUS+GLS process 3.03 more frames per sec-
ond that the ACF DISC cascade.

We compare our results with the ones reported by Cao
et al. [5] and Zhang et al. [33] in Figure 11. Let us high-
light that these evaluations were conducted in more pow-
erful computer architectures than our, some of them (CCF,
CompACT-Deep and RPN+BF [33]) even using GPU ar-
chitecture. Nonetheless, we observe that our detectors
are competitive with the most powerful ones (according
to the literature). Crosstalk detector has better compu-
tation time of 14.10 frames per second followed by our
ACF DISC+CLUS+GLS with 9.88 fps and ACF with a
mean of 9.49 fps. The detectors with the best compromise



10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

False Positives per Image

M
is

s
R

at
e

33% ACF DISC
33% ACF DISC+CLUS+GLS
33% ACF DISC+CLUS+DBP+GLS
33% ACF DISC+DBP

Figure 10. Caltech Dataset Evaluations: Miss Rate vs FPPI in test
set.

1/161/81/41/21 2 4 8 16
.5

.10

.20

.30

.40

.50

.64

Frames per Second

L
og

-A
ve

ra
ge

M
is

s
R

at
e

[14.10fps/53.90%] Crosstalk [5]
[9.88fps/32.52%] ACF DISC+CLUS+GLS
[9.85fps/32.84%] ACF DISC+CLUS+DBP+GLS
[9.49fps/44.20%] ACF [5]
[7.92fps/32.99%] ACF DISC+DBP
[6.85fps/32.50%] ACF DISC
[3.62fps/24.80%] LDCF [5]
[2fps/9.60%] RPN+BF [33]
[2fps/11.70%] CompACT-Deep [33]
[1.67fps/24.80%] LDCF [33]
[1.62fps/23.06%] NNNF-L2 [5]
[1.14fps/16.84%] NNNF-L4 [5]
[0.63fps/34.60%] InformedHaar [5]
[0.50fps/18.47%] Checkerboards [5]
[0.16fps/21.90%] LatSvm-L2 [5]
[0.12fps/21.90%] SpatialPooling+ [5]
[0.12fps/29.20%] SpatialPooling [5]
[0.08fps/17.30%] CCF [33]

Figure 11. Caltech Dataset Evaluations: Log-average Miss Rate vs
Frames per Second comparison with results from [5] and [33].

between computation time and detection performance are:
Crosstalk, ACF DISC+CLUS+GLS, LDCF and RPN+BF.

Evaluations in Caltech Dataset also show that the clus-
tering performed on the configuration set doesn’t reduce the
final detection performances and allows to apply our algo-
rithm without loss of information. As expected, the cluster-
ing concentrates the diversity of the sample set.

The evaluation presented in Sections 4.1 and 4.2 shows
that we can improve the computation time of a soft-cascade
without decreasing the detection performance. An aver-
age computation time of several hours remains acceptable
during the post-training tuning stage. The mean improve-
ment in frames per second is 6.15% for INRIA dataset and
34.32% for Caltech dataset. We attribute the variations be-
tween the results of INRIA and Caltech datasets to the fol-
lowing differences. Sliding windows in INRIA dataset has
a 128 × 64 size and the cascade length is 2048. In Caltech

dataset the window size equals 64×32 and the soft-cascade
length is 4096. Consequently, sliding windows technique
provides much more samples for the Caltech dataset case
than for the INRIA one, which, in combination with the
cascade length, tends to decrease the FPS. Therefore, in the
case of long size soft-cascades, the soft cascade has a richer
search space allowing exploring for best solutions. Our de-
tectors are a good option to keep the computation time ac-
ceptable, especially because we overtake classical ACF cas-
cade that has one of the best computation times [5, 6]. Even
though we do not use any GPU, we are competitive with
some deep-learning based detectors of the literature that are
reported to offer an average of 2 frames per second in Cal-
tech dataset [33] with a Tesla K40 GPU architecture.

5. Conclusion
In this paper, a soft-cascade detector approach which ex-

plicitly considers the computation time is presented. The
new training method uses a novel local search procedure
for threshold tuning that considers a neighborhood struc-
ture defines as an envelope around a path. This approach
allows to consider long length detector and to deal with
large-size training set contrarily to [1]. It can also be used
as a post processing phase, when designing traditional soft-
cascade detectors, intending to improve their CPU perfor-
mance. Moreover, it is independent from the feature type
or the application context, the only restriction being to use
a soft-cascade classifier with binary weak classifiers. On
the considered data sets, our detector offers better perfor-
mances in comparison with other classic soft-cascade detec-
tors, from the point of view of the mean response time cri-
terion. In this work, separate analysis of the computational
complexity of the features is not necessary as they all the
considered feature sets have equal computation cost. Our
approach can be extended to heterogeneous features and so
heterogeneous computation time should be considered. An
approach similarly to Dollár et al. [11] can be adopted to de-
termine the computational complexity of the features. With
that information, it is still possible the proposed feature se-
lection algorithm, but for improved performance the order-
ing of the features will have to also be taken into account
like [7].

Acknowledgements
We thank the Mexican National Council of Science and

Technology (CONACYT) and the French National Center
for Scientific Research (CNRS) for their support.

References
[1] F. Barbosa-Anda, C. Briand, F. Lerasle, and A. Mekonnen.

Mean response-time minimization of a soft-cascade detec-
tor, In Int. Conf. on Operations Research and Enterprise



Systems (ICORES’16), Rome, Italy, Feb. 2016, pages 252–
260.

[2] R. Benenson, M. Omran, J. Hosang, and B. Schiele. Ten
years of pedestrian detection, what we have learnt? In
Workshop of Europ. Conf. on Computer Vision (ECCV’14),
Zurich, Switzerland, Sep. 2014.

[3] L. Bourdev and J. Brandt. Robust object detection via soft
cascade, In Int. Conf. on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, San Diego, USA, June
2005, pages 236–243.

[4] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and
L. Van Gool, Online multi-person tracking-by-detection
from a single, uncalibrated camera, IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI’11), 33(9):1820–
1833, 2011.

[5] J. Cao, Y. Pang, and X. Li. Pedestrian detection inspired by
appearance constancy and shape symmetry, In Int. Conf. on
Computer Vision and Pattern Recognition (CVPR’16), Las
Vegas, USA, June 2016, pages 1316–1324.

[6] J. Cao, Y. Pang, and X. Li, Pedestrian detection inspired by
appearance constancy and shape symmetry, IEEE Trans. on
Image Processing, 25(12):5538–5551, Dec 2016.

[7] C.-H. Chen, T.-Y. Chen, D.-J. Wang, and T.-J. Chen, A
cost-effective people-counter for a crowd of moving peo-
ple based on two-stage segmentation, Journal of Informa-
tion Hiding and Multimedia Signal Processing, 3(1):12–23,
Jan. 2012.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients
for human detection, In Int. Conf. on Computer Vision and
Pattern Recognition (CVPR’05), San Diego, USA, June
2005, pages 886–893.

[9] P. Dollár. Piotr’s Computer Vision Matlab Toolbox (PMT),
https://github.com/pdollar/toolbox.

[10] P. Dollár, R. Appel, S. Belongie, and P. Perona, Fast fea-
ture pyramids for object detection, IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI’14), 36(8):1532–
1545, 2014.

[11] P. Dollár, Z. Tu, H. Tao, and S. Belongie. Feature mining
for image classification, In Computer Vision and Pattern
Recognition (CVPR’07), Minneapolis, USA, June 2007.

[12] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: A benchmark, In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR’09), Miami, USA, June
2009, pages 304–311.

[13] P. Dollár, C. Wojek, B. Schiele, and P. Perona, Pedestrian
detection: An evaluation of the state of the art, IEEE Trans.
on Pattern Analysis and Machine Intelligence (PAMI’12),
34(4):743–761, 2012.

[14] A. Ess, K. Schindler, B. Leibe, and L. Van Gool, Object de-
tection and tracking for autonomous navigation in dynamic
environments, Int. Journal of Robotics Research (IJRR’10),
29(14):1707–1725, 2010.

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, The Pascal visual object classes (VOC)
challenge, Int. Journal of Computer Vision (IJCV’10),
88(2):303–338, 2010.

[16] M. Garey and D. Johnson. Computers and intractability:
A guide to the theory of np-completeness. New York, NY,
USA: W. H. Freeman & Co., 1979.

[17] D. Gerónimo, A. López, A. Sappa, and T. Graf, Survey
of pedestrian detection for advanced driver assistance sys-
tems, IEEE Trans. on Pattern Analysis and Machine Intel-
ligence (PAMI’10), 32(7):1239–1258, 2010.

[18] Han, Bing and Wang, Xiaoyu, Detection for power line in-
spection, MATEC Web Conf., 100:03010, 2017.

[19] J. Hosang, M. Omran, R. Benenson, and B. Schiele. Tak-
ing a deeper look at pedestrians, In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR’15), Boston, USA,
June 2015, pages 4073–4082.

[20] L. Jourdheuil, N. Allezard, T. Chateau, and T. Chesnais.
Heterogeneous Adaboost with real-time constraints - appli-
cation to the detection of pedestrians by stereovision, In Int.
Conf. on Computer Vision Theory and Applications, Rome,
Italy, Feb. 2012, pages 539–546.

[21] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler,
MOTChallenge 2015: Towards a benchmark for multi-
target tracking, ArXiv:1504.01942 [cs], April 2015, arXiv:
1504.01942.

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.
Fu, and A. Berg. Ssd: Single shot multibox detector, In
Europ. Conf. on Computer Vision (ECCV’16), Amsterdam,
The Netherlands, Oct. 2016.

[23] A. A. Mekonnen, F. Lerasle, A. Herbulot, and C. Briand.
People detection with heterogeneous features and explicit
optimization on computation time, In Int. Conf. on Pattern
Recognition (ICPR’14), Stockholm, Sweden, August 2014.

[24] S. Ren, K. He, R. Girshick, and S. Sun, Faster R-CNN: To-
wards real-time object detection with region proposal net-
works, IEEE Trans. on Pattern Analysis and Machine Intel-
ligence (PAMI’17), 39(6):1137–1149, June 2017.

[25] R. E. Schapire, The boosting approach to machine learning:
An overview, Lecture Notes in Statistics:149–172, 2003.

[26] J. Sochman and J. Matas. Waldboost - learning for time
constrained sequential detection, In Int Conf. on Computer
Vision and Pattern Recognition (CVPR’05), Boston, USA,
June 2005.

[27] M. Teutsch and W. Krüger. Robust and fast detection of
moving vehicles in aerial videos using sliding windows,
In Workshop in Computer Vision and Pattern Recognition
(CVPR’15), June 2015, pages 26–34.

[28] Y. Tian, P. Luo, X. Wang, and X. Tang. Pedestrian detection
aided by deep learning semantic tasks, In Int. Conf on Com-
puter Vision and Pattern Recognition (CVPR’15), Boston,
USA, June 2015, pages 5079–5087.



[29] R. Varga and S. Nedevschi. Robust pallet detection for au-
tomated logistics operations, In Int. Conf. on Computer Vi-
sion Theory and Applications (VISAPP’16), Rome, Italy,
Feb. 2016, pages 470–477.

[30] P. Viola and M. Jones, Robust real-time face detection,
Int. Journal of Computer Vision (IJCV’04), 57(2):137–154,
2004.

[31] R. Xiao, L. Zhu, and H. Zhang. Boosting chain learn-
ing for object detection, In Int. Conf. on Computer Vision
(ICCV’03), Nice, France, Oct. 2003.

[32] C. Zhang and P. Viola. Multiple-instance pruning for learn-
ing efficient cascade detectors, In Neural Information Pro-
cessing Systems (NIPS’08), Columbia, Canada, Dec 2008,
pages 1681–1688.

[33] L. Zhang, L. Lin, X. Liang, and K. He. Is faster R-CNN
doing well for pedestrian detection? In European Conf.
on Computer Vision (ECCV’16), Amsterdam, The Nether-
lands, Oct. 2016, pages 443–457.

[34] M. Zhang and R. Alhajj. Content-based image retrieval:
From the object detection/recognition point of view, In Ar-
tificial Intelligence for Maximizing Content Based Image
Retrieval, ser. PA: Information Science Reference, Z. Ma,
Ed., Hershey, 2009, pages 115–144.

[35] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B.
Schiele. How far are we from solving pedestrian detection?
In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR’16), Las Vegas, USA, June 2016, pages 1259–1267.

[36] S. Zhang, R. Benenson, and B. Schiele. Filtered channel
features for pedestrian detection, In Int. Conf. on Computer
Vision and Pattern Recognition (CVPR’15), Boston, USA,
June 2015, pages 1751–1760.

[37] Q. Zhu, M. Yeh, K. Cheng, and S. Avidan. Fast human de-
tection using a cascade of histograms of oriented gradients,
In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR’06), New York, USA, June 2006.


