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We consider a two-spectra inverse problem for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz-Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.

Introduction and main result

The study of two-spectra inverse problems was initiated by Borg [START_REF] Borg | Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe[END_REF], who proved that the potential q of the one-dimensional Schrödinger equation -y ′′ (x) + q(x)y(x) = λy(x) (1.1) is uniquely determined by the spectra of the boundary value problems generated by this equation and the boundary conditions y ′ (0) = h 1 y(0), y ′ (π) = Hy(π) and y ′ (0) = h 2 y(0), y ′ (π) = Hy(π) respectively (with h 1 = h 2 ). Subsequent developments by Marchenko [START_REF] Marchenko | Some questions of the theory of one-dimensional linear differential operators of the second order. I (Russian)[END_REF], Krein [START_REF] Krein | Solution of the inverse Sturm-Liouville problem (Russian)[END_REF], Levitan and Gasymov [START_REF] Levitan | On the determination of a Sturm-Liouville equation by two spectra (Russian)[END_REF], [START_REF] Levitan | Determination of a differential equation by two of its spectra (Russian), Uspehi Mat. Nauk[END_REF] and others showed that not only the potential q but also the boundary coefficients h 1 , h 2 and H are uniquely determined by these spectra, and that any two interlacing sequences satisfying certain asymptotic conditions are indeed the spectra of boundary value problems of the above form (see also [START_REF] Freiling | Inverse Sturm-Liouville problems and their applications[END_REF], [START_REF] Marchenko | Sturm-Liouville operators and applications[END_REF]). These results were relatively recently generalized to problems with distributional potentials [START_REF] Eckhardt | Inverse spectral theory for Sturm-Liouville operators with distributional potentials[END_REF], [START_REF] Hryniv | Inverse spectral problems for Sturm-Liouville operators with singular potentials. II. Reconstruction by two spectra, Functional analysis and its applications[END_REF], [START_REF] Savchuk | Inverse problem for Sturm-Liouville operators with distribution potentials: reconstruction from two spectra[END_REF].

In this paper we are interested in two-spectra inverse problems for boundary value problems with boundary conditions dependent on the eigenvalue parameter. Such problems have also been considered in the literature. Some uniqueness results were obtained in [START_REF] Kh | Inverse problems for impulsive Sturm-Liouville operator with spectral parameter linearly contained in boundary conditions[END_REF], [START_REF] Benedek | On inverse eigenvalue problems for a second-order differential equation with parameter contained in the boundary conditions[END_REF], [START_REF] Binding | Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter[END_REF], [START_REF] Freiling | Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter[END_REF]. The papers [START_REF] Chugunova | Inverse spectral problem for the Sturm-Liouville operator with eigenvalue parameter dependent boundary conditions, Operator theory, system theory and related topics[END_REF], [START_REF] Mamedov | Determination of a second-order differential equation from two spectra with a spectral parameter entering into the boundary conditions (Russian)[END_REF] contain some existence results for problems with one eigenvalue-parameter-dependent boundary condition. In the case when only one of the boundary conditions depends linearly on the eigenvalue parameter, necessary and sufficient conditions for solvability of the two-spectra inverse problem were found in [START_REF] Dzh | Inverse problems for the Sturm-Liouville equation with a spectral parameter in the boundary condition (Russian)[END_REF], [START_REF] Guliyev | Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions[END_REF]. For problems with coupled boundary conditions dependent on the eigenvalue parameter, see [START_REF] Ch | Reconstruction of the Sturm-Liouville operator with nonseparated boundary conditions and a spectral parameter in the boundary condition (Russian)[END_REF] and the references therein.

We consider two-spectra inverse problems for boundary value problems generated by the equation (1.1) together with boundary conditions of the form

y ′ (0) y(0) = -f (λ), y ′ (π) y(π) = F (λ), (1.2) 
where q ∈ L 2 (0, π) is real-valued and

f (λ) = h 0 λ + h + d k=1 δ k h k -λ , F (λ) = H 0 λ + H + D k=1 ∆ k H k -λ (1.3)
are rational Herglotz-Nevanlinna functions with real coefficients, i.e., h 0 , H 0 ≥ 0,

δ k , ∆ k > 0, h 1 < . . . < h d , H 1 < . . . < H D .
Using Darboux-type transformations between such boundary value problems, we recently obtained in [START_REF] Guliyev | Essentially isospectral transformations and their applications[END_REF] various direct and inverse spectral results for boundary value problems of the form (1.1), (1.2). But these transformations are not applicable to two-spectra inverse problems because a pair of boundary value problems with a common boundary condition is transformed to a pair of boundary value problems with no common boundary conditions. Therefore we first reduce our two-spectra problem to an inverse problem solved in [START_REF] Guliyev | Essentially isospectral transformations and their applications[END_REF] and then completely solve the two-spectra problem. We denote the boundary value problem (1.1)-(1.2) by P(q, f, F ), and assume that α = 0 and ind f ≥ 0 so that the problems P(q, f, F ) and P(q, f + α, F ) are different. We use the notation

x n = y n + ℓ 2 1 n to mean ∞ n=0 |n(x n -y n )| 2 < ∞.
We also assume that no eigenvalue of P(q, f, F ) is a pole of f or, which is the same, the spectra of the problems P(q, f, F ) and P(q, f + α, F ) do not intersect. It turns out that the problems P(q, f, F ) and P(q, f + α, F ) are not, in general, uniquely determined by their spectra. However, we are able to describe all pairs of problems with the given two spectra. Our main result reads as follows.

Theorem 1.1. Two sequences {λ n } n≥0 and {µ n } n≥0 are the eigenvalues of a pair of problems of the form P(q, f, F ) and P(q, f + α, F ) if and only if they interlace and satisfy asymptotics of the form

λ n = n -L + σ πn + ℓ 2 1 n , λ n -µ n = (n -L) -2r-1 ν + ℓ 2 1 n
for some integer or half-integer L ≥ -1/2, σ ∈ R, ν ∈ R \ {0} and r ∈ {0, 1}, with the exception of the case when L = -1/2 and r = 1. Moreover, there is a one-to-one correspondence between such problems and sets of nonnegative integers of cardinality not exceeding L + (1 -r)/2.

In particular, the proof of this theorem (Section 4) also yields the following uniqueness result.

Corollary 1.2. The problems P(q, f, F ) and P(q, f +α, F ) are uniquely determined by their spectra and the poles of f . So in a sense, the amount of spectral data required for the unique determination in our case (two spectra and a finite number of indices) is between that of the classical case (two spectra only) and of problems with coupled boundary conditions (two spectra and an infinite sequence of signs); for the latter case see, e.g., [START_REF] Guseinov | Solution of a class of inverse Sturm-Liouville boundary value problems (Russian)[END_REF] and the references therein.

The paper is organized as follows. In Section 2 we introduce the necessary notation and obtain some useful identities. In Section 3 we find some conditions for the eigenvalues of the problems P(q, f, F ) and P(q, f + α, F ). Section 4 is devoted to the proof of our main result, Theorem 1.1. Finally, in the appendix we prove two auxiliary lemmas used in the main text.

Preliminaries

First we introduce some further notation. We assign to each function f of the form (1.3) two polynomials f ↑ and f ↓ by writing this function as

f (λ) = f ↑ (λ) f ↓ (λ) ,
where

f ↓ (λ) := h ′ 0 d k=1 (h k -λ), h ′ 0 := 1/h 0 , h 0 > 0, 1, h 0 = 0.
We define the index of f as

ind f := deg f ↑ + deg f ↓ . If f = ∞ then we just set f ↑ (λ) := -1, f ↓ (λ) := 0, ind f := -1.
It can easily be verified that each nonconstant function f of the form (1.3) is strictly increasing on any interval not containing any of its poles, and f (λ) → ±∞ (respectively, f (λ) → h) as λ → ±∞ if its index is odd (respectively, even). Let ϕ(x, λ), ψ(x, λ) and χ(x, λ) be the solutions of (1.1) satisfying the initial conditions

ϕ(0, λ) = f ↓ (λ), ψ(0, λ) = f ↓ (λ), χ(π, λ) = F ↓ (λ), ϕ ′ (0, λ) = -f ↑ (λ), ψ ′ (0, λ) = -f ↑ (λ) -αf ↓ (λ), χ ′ (π, λ) = F ↑ (λ). (2.1)
Then the eigenvalues of the boundary value problems P(q, f, F ) and P(q, f + α, F ) coincide with the zeros of (their characteristic functions)

Φ(λ) := F ↑ (λ)ϕ(π, λ) -F ↓ (λ)ϕ ′ (π, λ) = f ↓ (λ)χ ′ (0, λ) + f ↑ (λ)χ(0, λ) and Ψ(λ) := F ↑ (λ)ψ(π, λ) -F ↓ (λ)ψ ′ (π, λ) = f ↓ (λ)χ ′ (0, λ) + (f ↑ (λ) + αf ↓ (λ)) χ(0, λ)
respectively. These eigenvalues have the asymptotics (see [START_REF] Guliyev | Essentially isospectral transformations and their applications[END_REF]Theorem 4.1] for details)

λ n = n - ind f + ind F 2 + σ πn + ℓ 2 1 n (2.2) and √ µ n = n - ind f + ind F 2 + σ ′ πn + ℓ 2 1 n with σ -σ ′ = α, ind f is even 0, ind f is odd.
In the next section we will obtain more refined asymptotics for the difference of the square roots of the eigenvalues λ n and µ n . Since for each eigenvalue λ n of P(q, f, F ) the solutions ϕ(x, λ n ) and χ(x, λ n ) are linearly dependent, there exists a unique number β n = 0 such that

χ(x, λ n ) = β n ϕ(x, λ n ).
(2.

3)

The norming constants of the problem P(q, f, F ) are defined as

γ n := π 0 ϕ 2 (x, λ n ) dx + f ′ (λ n )f 2 ↓ (λ n ) + F ′ ↑ (λ n )F ↓ (λ n ) -F ↑ (λ n )F ′ ↓ (λ n ) β 2 n .
They have the asymptotics ([11, Theorem 4.1])

γ n = π 2 n - ind f + ind F 2 2 ind f 1 + ℓ 2 1 n . (2.4)
The sequences {λ n } n≥0 , {β n } n≥0 and {γ n } n≥0 are related by the identity

([11, Lemma 2.1]) Φ ′ (λ n ) = β n γ n . (2.5) 
In the remaining part of this section, we are going to show that the coefficients of the polynomial f ↓ (λ) satisfy a nonsingular system of linear equations whose coefficients are expressed in terms of the sequences {λ n } n≥0 and {γ n } n≥0 . Thus any polynomial whose coefficients satisfy this system must necessarily coincide with f ↓ (λ). We will need this result in Section 4.

We start with some identities for the eigenvalues and the norming constants of the problem P(q, f, F ). Such identities are characteristic to problems with boundary conditions dependent on the eigenvalue parameter; they were used in [START_REF] Guliyev | A uniqueness theorem for Sturm-Liouville equations with a spectral parameter linearly contained in the boundary conditions[END_REF] to obtain explicit expressions for all the coefficients of the boundary conditions in the case of linear dependence on the eigenvalue parameter (i.e., ind f = ind F = 2 in our notation).

Lemma 2.1. The following identities hold:

∞ n=0 λ k n f ↓ (λ n ) γ n = 0, k = 0, . . . , d -1.
Proof. From (2.1) and (2.3) we have

f ↓ (λ n ) = ϕ(0, λ n ) = χ(0, λ n ) β n .
Together with (2.5) this implies (for sufficiently large N )

N n=0 λ k n f ↓ (λ n ) γ n = N n=0
Res λ=λn λ k χ(0, λ)

Φ(λ) = 1 2πi CN λ k χ(0, λ) Φ(λ) dλ,
where C N is the circle of radius 

N - ind f + ind F - 1 
1 Φ(λ) = O √ λ -(ind f +ind F +1) e -| Im √ λπ| , λ ∈ N C N ,
and thus

λ k χ(0, λ) Φ(λ) = O 1 N ind f -2k+1 , λ ∈ N C N with ind f -2k + 1 ≥ 3. Hence lim N →∞ CN λ k χ(0, λ) Φ(λ) dλ = 0,
which proves the lemma.

Denote by p d-1 , . . ., p 0 the non-leading coefficients of the polynomial f ↓ (λ) after dividing it by its leading coefficient:

(-1) d h ′ 0 f ↓ (λ) = d k=1 (λ -h k ) = λ d + p d-1 λ d-1 + . . . + p 1 λ + p 0 .
It is easy to see from the asymptotics of the eigenvalues and the norming constants that for each k = 0, . . ., d -1 the series

s k := ∞ n=0 λ k n γ n
converges absolutely. Lemma 2.1 implies the following identities between the numbers p i and s j :

d-1 i=0 p i s i+k = -s d+k , k = 0, 1, . . . , d -1. (2.6) 
We consider them as a system of linear equations (with respect to the numbers p i ), the matrix of which is the following Hankel matrix:

     s 0 s 1 . . . s d-1 s 1 s 2 . . . s d . . . . . . . . . . . . s d-1 s d . . . s 2d-2     
The quadratic form corresponding to this matrix is positive definite:

d-1 i,j=0 s i+j ξ i ξ j = d-1 i,j=0 ∞ n=0 λ i+j n ξ i ξ j γ n = ∞ n=0 d-1 i,j=0 λ i+j n ξ i ξ j γ n = ∞ n=0 1 γ n d-1 i=0 λ i n ξ i 2 ≥ 0
with equality if and only if d-1 i=0 λ i n ξ i = 0 for all n, i.e. ξ 0 = . . . = ξ d-1 = 0. Thus the determinant of the above matrix is strictly positive and hence the system (2.6) has a unique solution.

Properties of two problems with a common boundary condition

We are now going to study further properties of the sequences {λ n } n≥0 and {µ n } n≥0 . We will first show that these two sequences interlace and then find more refined asymptotics for the difference of their square roots. As we will see in the next section, any two sequences with these two properties are indeed the eigenvalues of a pair of boundary value problems with a common boundary condition.

The function

m(λ) := - Ψ(λ) Φ(λ)
satisfies the identity m(λ) = m(λ) and is a meromorphic function with poles at λ n and zeros at µ n . For nonreal values of λ the solution

y(x, λ) := ψ(x, λ) + m(λ)ϕ(x, λ)
satisfies the boundary condition

F ↑ (λ)y(π, λ) -F ↓ (λ)y ′ (π, λ) = 0. Using (2.1) we calculate (λ -µ) π 0 y(x, λ)y(x, µ) dx = (y(x, λ)y ′ (x, µ) -y ′ (x, λ)y(x, µ)) π 0 = (F (µ) -F (λ)) y(π, λ)y(π, µ) + αf ↓ (λ)f ↓ (µ) (m(λ) -m(µ)) + (f ↓ (λ)f ↑ (µ) -f ↓ (µ)f ↑ (λ)) (1 + m(λ)) (1 + m(µ)) .
For µ = λ this yields

α Im m(λ) Im λ = 1 |f ↓ (λ)| 2 π 0 |y(x, λ)| 2 dx + y(π, λ) f ↓ (λ) 2 Im F (λ) Im λ + |1 + m(λ)| 2 Im f (λ) Im λ > 0.
Thus αm(λ) is a Herglotz-Nevanlinna function, and hence its zeros µ n and poles λ n interlace. Using (2.1), (2.3) and the constancy of the Wronskian we obtain

Ψ(λ n ) = F ↑ (λ n )ψ(π, λ n ) -F ↓ (λ n )ψ ′ (π, λ n ) = β n (ϕ ′ (π, λ n )ψ(π, λ n ) -ϕ(π, λ n )ψ ′ (π, λ n )) = β n (ϕ ′ (0, λ n )ψ(0, λ n ) -ϕ(0, λ n )ψ ′ (0, λ n )) = αβ n f 2 ↓ (λ n ).
Together with (2.5) this implies

γ n = αf 2 ↓ (λ n )Φ ′ (λ n ) Ψ(λ n ) .
We will need this formula in the next section in order to transform our two-spectra inverse problem to an inverse problem solved in [START_REF] Guliyev | Essentially isospectral transformations and their applications[END_REF], but for now we will use it to obtain more refined asymptotics for the difference √ λ n -√ µ n . The mean value theorem yields

Ψ(λ n ) = Ψ(λ n ) -Ψ(µ n ) = λ n -µ n λ n + µ n Ψ ′ (ζ n ) (3.1) for ζ n ∈ [λ n , µ n ] with √ ζ n = n -(ind f + ind F )/2 + O 1 n . Thus λ n -µ n = αf 2 ↓ (λ n )Φ ′ (λ n ) √ λ n + √ µ n γ n Ψ ′ (ζ n ) .
Applying Lemma A.1 to the problems P(q, f, F ) and P(q, f +α, F ), and then applying Lemma A.3 to the functions Φ and Ψ and using (2.4), we obtain the asymptotics

λ n -µ n = n - ind f + ind F 2 -2r-1 α (h ′ 0 ) 2 π + ℓ 2 1 n ,
where

r := ind f -2d = 1, ind f is odd, 0, ind f is even.

Inverse problem

In this section, we will prove Theorem 1.1. The results of the previous section shows that if two sequences {λ n } n≥0 and {µ n } n≥0 are the eigenvalues of the problems P(q, f, F ) and P(q, f + α, F ), then they interlace and satisfy asymptotics of the form

λ n = n -L + σ πn + ℓ 2 1 n , λ n -µ n = (n -L) -2r-1 ν + ℓ 2 1 n (4.1) where 
L := ind f + ind F 2 ≥ d - 1 -r 2 ≥ - 1 2 , ν := α (h ′ 0 ) 2 π = 0.
Note also that if L = -1/2 then ind f = 0, and consequently r = 0. We are now going to prove that these conditions are also sufficient for two sequences to be the eigenvalues of two such problems. However, unlike the case of constant boundary conditions, in order to determine these problems uniquely, we need some additional data. The identity Ψ(λ) -Φ(λ) = αf ↓ (λ)χ(0, λ) (see Section 2) shows that the zeros of f ↓ are also zeros of Ψ -Φ. As we will see shortly, they can be chosen arbitrarily among the zeros of Ψ -Φ. Let now {λ n } n≥0 and {µ n } n≥0 be any two sequences such that they interlace and satisfy asymptotics of the form (4.1) for some integer or half-integer L ≥ -1/2, real ν = 0 and σ, and r ∈ {0, 1}. Define the functions

Φ(λ) := - n<L (λ n -λ) n=L π(λ n -λ) n>L λ n -λ (n -L) 2 and Ψ(λ) := - n<L (µ n -λ) n=L π(µ n -λ) n>L µ n -λ (n -L) 2 .
Let d be an integer with

0 ≤ d ≤ L + 1 -r 2 ,
and let i 1 , i 2 , . . ., i d be integers (indices) with 0 ≤ i 1 < i 2 < . . . < i d . Define the polynomial

p(λ) := d k=1 (τ i k -λ),
where τ 0 < τ 1 < . . . are the zeros of the function Φ(λ) -Ψ(λ). Lemma A.3 implies

Φ ′ (λ n ) = (-1) n (n -L) 2L π 2 + ℓ 2 1 n .
Using (3.1) and Lemma A.3 again we also have

Ψ(λ n ) = (-1) n (n -L) 2L-2r πν + ℓ 2 1 n .
From the asymptotics of √ λ n -√ µ n and the fact that λ n and µ n interlace it follows that if ν > 0 (respectively, ν < 0) then µ n < λ n < µ n+1 (respectively, λ n < µ n < λ n+1 ) for each n ≥ 0. Thus the numbers γ n defined by

γ n := πνp 2 (λ n )Φ ′ (λ n ) Ψ(λ n )
are all positive and have the asymptotics

γ n = (n -L) 4d+2r π 2 + ℓ 2 1 n .
By [START_REF] Guliyev | Essentially isospectral transformations and their applications[END_REF]Theorem 4.4], there exists a boundary value problem P(q, f, F ) having the eigenvalues {λ n } n≥0 and the norming constants {γ n } n≥0 . Moreover, ind f = 2d + r ≥ 0 and ind F = 2L -2d -r ≥ -1. Denote α := πν/ (h ′ 0 ) 2 with h ′ 0 defined as at the beginning of Section 2. It only remains to show that the problem P(q, f + α, F ) has the eigenvalues µ n . But first we show that the polynomials f ↓ (λ) and p(λ) coincide up to a constant factor. Arguing as in the proof of Lemma 2.1 we have

∞ n=0 λ k n p(λ n ) γ n = ∞ n=0 λ k n Ψ(λ n ) πνp(λ n )Φ ′ (λ n ) = 1 2π 2 νi lim N →∞ CN λ k (Ψ(λ) -Φ(λ)) p(λ)Φ(λ) dλ = 0,
where C N is the same as in that proof. Now arguing as after Lemma 2.1 we obtain that the non-leading coefficients of the polynomial (-1) d p(λ) satisfy the system (2.6). Therefore f ↓ (λ) = h ′ 0 p(λ). Denote the eigenvalues of the boundary value problem P(q, f + α, F ) by µ n . They coincide with the zeros of the function

Ψ(λ) := F ↑ (λ)ψ(π, λ) -F ↓ (λ)ψ ′ (π, λ),
where ψ(x, λ) is defined as in (2.1). Using the results of Section 3, we obtain

Ψ(λ n ) = αf 2 ↓ (λ n )Φ ′ (λ n ) γ n = πνp 2 (λ n )Φ ′ (λ n ) γ n = Ψ(λ n ), n ≥ 0.
This and the proofs of Lemmas 2.1, A.1 and A.3 show that Ψ(λ) -Ψ(λ) /Φ(λ) is an entire function satisfying the estimate

Ψ(λ) -Ψ(λ) Φ(λ) = O 1 √ λ
on N C N and hence by the maximum principle on the whole plane. Then the Liouville theorem implies that this function is identically zero. Thus Ψ(λ) ≡ Ψ(λ) and hence µ n = µ n , n ≥ 0.

Appendix A. Auxiliary results

In this appendix we prove two auxiliary lemmas used in the main body of the paper.

Lemma A.1. The characteristic function Φ(λ) of P(q, f, F ) with ind f ≥ 0 has the infinite product representation

Φ(λ) = - n<L (λ n -λ) n=L π(λ n -λ) n>L λ n -λ (n -L) 2 with L := ind f + ind F 2 .
Proof. The first-order asymptotics

Φ(λ) = λ L+1/2 sin √ λ + L π + O λ L e | Im √ λπ| (A.1)
was obtained in [START_REF] Guliyev | Essentially isospectral transformations and their applications[END_REF] (see the proof of Lemma 2.2 therein). From Hadamard's theorem we obtain

Φ(λ) = C ∞ n=0 1 - λ λ n = C n<L 1 - λ λ n n=L 1 - λ λ n n>L 1 - λ λ n .
According to our assumption, L is an integer or half-integer with L ≥ -1/2. Then we can combine infinite product representations for the sine and cosine functions into

sin √ λ + L π = (-1) ⌊L⌋ n=L π √ λ n>L 1 - λ (n -L) 2 .
The use of the identities

(-1) ⌊L⌋ = - n<L (-1) n=L (-1), λ L+1/2 = n<L λ n=L √ λ yields λ L+1/2 sin √ λ + L π = - n<L (-λ) n=L (-πλ) n>L 1 - λ (n -L) 2 . Thus Φ(λ) λ L+1/2 sin √ λ + L π = -C n<L 1 λ n - 1 λ n=L 1 πλ n - 1 πλ × n>L (n -L) 2 λ n n>L 1 + λ n -(n -L) 2 (n -L) 2 -λ .
Taking the limit as λ → -∞ and using (A.1) and (2.2) we obtain

C = - n<L λ n n=L πλ n n>L λ n (n -L) 2 ,
which proves the lemma.

To prove our next result we need a lemma of Marchenko and Ostrovskii. where g 1 (z) = π 0 g 1 (t) cos zt dt and g 2 (z) = π 0 g 2 (t) sin zt dt with g 1 , g 2 ∈ L 2 [0, π] and π 0 g 1 (t) dt = 0, it is necessary and sufficient to have the form Proof. Using the asymptotics of η n and Lemma A.2 we obtain the representations

u(z) = πz ∞ n=1 n -2 (u 2 n -z 2 ), u n = n - A n + ℓ 2 1 n , v(z) = ∞ n=1 n - 1 2 -2 (v 2 n -z 2 ), v n = n - 1 2 - B n + ℓ 2 1 n .

Now we can prove

G(λ) = λ L+1/2 sin √ λ + L π -σλ L cos √ λ + L π + G 1 (λ)
and

G ′ (λ) = π 2 λ L cos √ λ + L π + L + σπ + 1 2 λ L-1/2 sin √ λ + L π + G 2 (λ),
where G 1 (λ) and G 2 (λ) are of the form 

2 centered

 2 at the origin. Expressing χ(x, λ) as a linear combination of the cosineand sine-type solutions we obtain χ(x, λ) = O √ λ ind F e | Im √ λπ| . On the other hand, from (A.1) we get (see, e.g., the proof of [7, Theorem 1.1.3] for details)

Lemma A. 2 ([ 22 ,

 222 Lemma 3.3],[START_REF] Marchenko | Sturm-Liouville operators and applications[END_REF] Lemma 3.4.2]). For functions u(z) and v(z) to admit representations of the formu(z) = sin πz + Aπ 4z 4z 2 -1 cos πz + g 1 (z) z , v(z) = cos πz -Bπ sin πz z + g 2 (z) z ,

Lemma A. 3 .

 3 Let {η n } n≥0 and {ζ n } n≥0 be sequences of real numbers having the asymptotics√ η n = n -L + σ πn + ℓ 2 1 n , ζ n = n -L + O 1 n ,with an integer or half-integer L ≥ -1/2 and a real σ, and letG(λ) := -n<L (η n -λ) n=L π(η n -λ) n>L η n -λ (n -L) 2 .Then G ′ (ζ n ) = (-1) n (n -L)

G 1 (λ) = λ L π 0 G 1 2 π 0 G 1

 101201 (t) cos √ λt + Lπ dt + O λ L-1/2 e | Im √ λπ| and G 2 (λ) = λ L-1/(t) sin √ λt + Lπ dt + O λ L-1 e | Im √ λπ| with G 1 ∈ L 2 [0, π].The statement of the theorem now follows from the asymptotics of ζ n .