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ON TWO-SPECTRA INVERSE PROBLEMS

NAMIG J. GULIYEV

Abstract. We consider a two-spectra inverse problem for the one-dimensional
Schrödinger equation with boundary conditions containing rational Herglotz–
Nevanlinna functions of the eigenvalue parameter and provide a complete so-
lution of this problem.
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1. Introduction and main result

The study of two-spectra inverse problems was initiated by Borg [4], who proved
that the potential q of the one-dimensional Schrödinger equation

− y′′(x) + q(x)y(x) = λy(x) (1.1)

is uniquely determined by the spectra of the boundary value problems generated
by this equation and the boundary conditions y′(0) = h1y(0), y

′(π) = Hy(π) and
y′(0) = h2y(0), y

′(π) = Hy(π) respectively (with h1 6= h2). Subsequent develop-
ments by Marchenko [20], Krein [15], Levitan and Gasymov [17], [18] and others
showed that not only the potential q but also the boundary coefficients h1, h2 and
H are uniquely determined by these spectra, and that any two interlacing sequences
satisfying certain asymptotic conditions are indeed the spectra of boundary value
problems of the above form (see also [7], [21]). These results were relatively recently
generalized to problems with distributional potentials [6], [13], [23].

In this paper we are interested in two-spectra inverse problems for boundary
value problems with boundary conditions dependent on the eigenvalue parameter.
Such problems have also been considered in the literature. Some uniqueness results
were obtained in [1], [2], [3], [8]. The papers [5], [19] contain some existence results
for problems with one eigenvalue-parameter-dependent boundary condition. In the
case when only one of the boundary conditions depends linearly on the eigenvalue
parameter, necessary and sufficient conditions for solvability of the two-spectra
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inverse problem were found in [16], [9]. For problems with coupled boundary con-
ditions dependent on the eigenvalue parameter, see [14] and the references therein.

We consider two-spectra inverse problems for boundary value problems generated
by the equation (1.1) together with boundary conditions of the form

y′(0)

y(0)
= −f(λ), y′(π)

y(π)
= F (λ), (1.2)

where q ∈ L2(0, π) is real-valued and

f(λ) = h0λ+ h+

d∑

k=1

δk
hk − λ

, F (λ) = H0λ+H +

D∑

k=1

∆k

Hk − λ
(1.3)

are rational Herglotz–Nevanlinna functions with real coefficients, i.e., h0, H0 ≥ 0,
δk,∆k > 0, h1 < . . . < hd, H1 < . . . < HD. Using Darboux-type transformations
between such boundary value problems, we recently obtained in [11] various direct
and inverse spectral results for boundary value problems of the form (1.1), (1.2).
But these transformations are not applicable to two-spectra inverse problems be-
cause a pair of boundary value problems with a common boundary condition is
transformed to a pair of boundary value problems with no common boundary con-
ditions. Therefore we first reduce our two-spectra problem to an inverse problem
solved in [11] and then completely solve the two-spectra problem.

We denote the boundary value problem (1.1)-(1.2) by P(q, f, F ), and assume
that α 6= 0 and ind f ≥ 0 so that the problems P(q, f, F ) and P(q, f + α, F ) are
different. We use the notation

xn = yn + ℓ2

(
1

n

)

to mean
∑∞

n=0 |n(xn − yn)|2 <∞. We also assume that no eigenvalue of P(q, f, F )
is a pole of f or, which is the same, the spectra of the problems P(q, f, F ) and
P(q, f + α, F ) do not intersect. It turns out that the problems P(q, f, F ) and
P(q, f + α, F ) are not, in general, uniquely determined by their spectra. However,
we are able to describe all pairs of problems with the given two spectra. Our main
result reads as follows.

Theorem 1.1. Two sequences {λn}n≥0 and {µn}n≥0 are the eigenvalues of a pair

of problems of the form P(q, f, F ) and P(q, f + α, F ) if and only if they interlace

and satisfy asymptotics of the form

√
λn = n− L+

σ

πn
+ ℓ2

(
1

n

)
,

√
λn −

√
µn = (n− L)−2r−1

(
ν + ℓ2

(
1

n

))

for some integer or half-integer L ≥ −1/2, σ ∈ R, ν ∈ R \ {0} and r ∈ {0, 1},
with the exception of the case when L = −1/2 and r = 1. Moreover, there is a

one-to-one correspondence between such problems and sets of nonnegative integers

of cardinality not exceeding L+ (1− r)/2.

In particular, the proof of this theorem (Section 4) also yields the following
uniqueness result.

Corollary 1.2. The problems P(q, f, F ) and P(q, f+α, F ) are uniquely determined

by their spectra and the poles of f .
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So in a sense, the amount of spectral data required for the unique determination
in our case (two spectra and a finite number of indices) is between that of the
classical case (two spectra only) and of problems with coupled boundary conditions
(two spectra and an infinite sequence of signs); for the latter case see, e.g., [12] and
the references therein.

The paper is organized as follows. In Section 2 we introduce the necessary
notation and obtain some useful identities. In Section 3 we find some conditions for
the eigenvalues of the problems P(q, f, F ) and P(q, f + α, F ). Section 4 is devoted
to the proof of our main result, Theorem 1.1. Finally, in the appendix we prove
two auxiliary lemmas used in the main text.

2. Preliminaries

First we introduce some further notation. We assign to each function f of the
form (1.3) two polynomials f↑ and f↓ by writing this function as

f(λ) =
f↑(λ)

f↓(λ)
,

where

f↓(λ) := h′0

d∏

k=1

(hk − λ), h′0 :=

{
1/h0, h0 > 0,

1, h0 = 0.

We define the index of f as

ind f := deg f↑ + deg f↓.

If f = ∞ then we just set

f↑(λ) := −1, f↓(λ) := 0, ind f := −1.

It can easily be verified that each nonconstant function f of the form (1.3) is
strictly increasing on any interval not containing any of its poles, and f(λ) → ±∞
(respectively, f(λ) → h) as λ→ ±∞ if its index is odd (respectively, even).

Let ϕ(x, λ), ψ(x, λ) and χ(x, λ) be the solutions of (1.1) satisfying the initial
conditions

ϕ(0, λ) = f↓(λ), ψ(0, λ) = f↓(λ), χ(π, λ) = F↓(λ),

ϕ′(0, λ) = −f↑(λ), ψ′(0, λ) = −f↑(λ)− αf↓(λ), χ′(π, λ) = F↑(λ).
(2.1)

Then the eigenvalues of the boundary value problems P(q, f, F ) and P(q, f + α, F )
coincide with the zeros of (their characteristic functions)

Φ(λ) := F↑(λ)ϕ(π, λ) − F↓(λ)ϕ
′(π, λ) = f↓(λ)χ

′(0, λ) + f↑(λ)χ(0, λ)

and

Ψ(λ) := F↑(λ)ψ(π, λ) − F↓(λ)ψ
′(π, λ) = f↓(λ)χ

′(0, λ) + (f↑(λ) + αf↓(λ))χ(0, λ)

respectively. These eigenvalues have the asymptotics (see [11, Theorem 4.1] for
details)

√
λn = n− ind f + indF

2
+

σ

πn
+ ℓ2

(
1

n

)
(2.2)

and
√
µn = n− ind f + indF

2
+
σ′

πn
+ ℓ2

(
1

n

)
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with

σ − σ′ =

{
α, ind f is even

0, ind f is odd.

In the next section we will obtain more refined asymptotics for the difference of the
square roots of the eigenvalues λn and µn.

Since for each eigenvalue λn of P(q, f, F ) the solutions ϕ(x, λn) and χ(x, λn) are
linearly dependent, there exists a unique number βn 6= 0 such that

χ(x, λn) = βnϕ(x, λn). (2.3)

The norming constants of the problem P(q, f, F ) are defined as

γn :=

∫ π

0

ϕ2(x, λn) dx+ f ′(λn)f
2
↓ (λn) +

F ′
↑(λn)F↓(λn)− F↑(λn)F ′

↓(λn)

β2
n

.

They have the asymptotics ([11, Theorem 4.1])

γn =
π

2

(
n− ind f + indF

2

)2 ind f (
1 + ℓ2

(
1

n

))
. (2.4)

The sequences {λn}n≥0, {βn}n≥0 and {γn}n≥0 are related by the identity ([11,
Lemma 2.1])

Φ′(λn) = βnγn. (2.5)

In the remaining part of this section, we are going to show that the coefficients
of the polynomial f↓(λ) satisfy a nonsingular system of linear equations whose
coefficients are expressed in terms of the sequences {λn}n≥0 and {γn}n≥0. Thus
any polynomial whose coefficients satisfy this system must necessarily coincide with
f↓(λ). We will need this result in Section 4.

We start with some identities for the eigenvalues and the norming constants of
the problem P(q, f, F ). Such identities are characteristic to problems with boundary
conditions dependent on the eigenvalue parameter; they were used in [10] to obtain
explicit expressions for all the coefficients of the boundary conditions in the case
of linear dependence on the eigenvalue parameter (i.e., ind f = indF = 2 in our
notation).

Lemma 2.1. The following identities hold:

∞∑

n=0

λknf↓(λn)

γn
= 0, k = 0, . . . , d− 1.

Proof. From (2.1) and (2.3) we have

f↓(λn) = ϕ(0, λn) =
χ(0, λn)

βn
.

Together with (2.5) this implies (for sufficiently large N)

N∑

n=0

λknf↓(λn)

γn
=

N∑

n=0

Resλ=λn

λkχ(0, λ)

Φ(λ)
=

1

2πi

∫

CN

λkχ(0, λ)

Φ(λ)
dλ,

where CN is the circle of radius
(
N − ind f + indF − 1

2

)2
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centered at the origin. Expressing χ(x, λ) as a linear combination of the cosine-

and sine-type solutions we obtain χ(x, λ) = O

(∣∣∣
√
λ
∣∣∣
indF

e| Im
√
λπ|
)
. On the other

hand, from (A.1) we get (see, e.g., the proof of [7, Theorem 1.1.3] for details)

1

Φ(λ)
= O

(∣∣∣
√
λ
∣∣∣
−(ind f+indF+1)

e−| Im
√
λπ|
)
, λ ∈

⋃

N

CN ,

and thus
λkχ(0, λ)

Φ(λ)
= O

(
1

N ind f−2k+1

)
, λ ∈

⋃

N

CN

with ind f − 2k + 1 ≥ 3. Hence

lim
N→∞

∫

CN

λkχ(0, λ)

Φ(λ)
dλ = 0,

which proves the lemma. �

Denote by pd−1, . . ., p0 the non-leading coefficients of the polynomial f↓(λ) after
dividing it by its leading coefficient:

(−1)d

h′0
f↓(λ) =

d∏

k=1

(λ− hk) = λd + pd−1λ
d−1 + . . .+ p1λ+ p0.

It is easy to see from the asymptotics of the eigenvalues and the norming constants
that for each k = 0, . . ., d− 1 the series

sk :=

∞∑

n=0

λkn
γn

converges absolutely. Lemma 2.1 implies the following identities between the num-
bers pi and sj :

d−1∑

i=0

pisi+k = −sd+k, k = 0, 1, . . . , d− 1. (2.6)

We consider them as a system of linear equations (with respect to the numbers pi),
the matrix of which is the following Hankel matrix:




s0 s1 . . . sd−1

s1 s2 . . . sd
...

...
. . .

...
sd−1 sd . . . s2d−2




The quadratic form corresponding to this matrix is positive definite:

d−1∑

i,j=0

si+jξiξj =

d−1∑

i,j=0

∞∑

n=0

λi+j
n ξiξj
γn

=

∞∑

n=0

d−1∑

i,j=0

λi+j
n ξiξj
γn

=

∞∑

n=0

1

γn

(
d−1∑

i=0

λinξi

)2

≥ 0

with equality if and only if
∑d−1

i=0 λ
i
nξi = 0 for all n, i.e. ξ0 = . . . = ξd−1 = 0. Thus

the determinant of the above matrix is strictly positive and hence the system (2.6)
has a unique solution.
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3. Properties of two problems with a common boundary condition

We are now going to study further properties of the sequences {λn}n≥0 and
{µn}n≥0. We will first show that these two sequences interlace and then find more
refined asymptotics for the difference of their square roots. As we will see in the
next section, any two sequences with these two properties are indeed the eigenvalues
of a pair of boundary value problems with a common boundary condition.

The function

m(λ) := −Ψ(λ)

Φ(λ)

satisfies the identity m(λ) = m(λ) and is a meromorphic function with poles at λn
and zeros at µn. For nonreal values of λ the solution

y(x, λ) := ψ(x, λ) +m(λ)ϕ(x, λ)

satisfies the boundary condition

F↑(λ)y(π, λ) − F↓(λ)y
′(π, λ) = 0.

Using (2.1) we calculate

(λ − µ)

∫ π

0

y(x, λ)y(x, µ) dx = (y(x, λ)y′(x, µ)− y′(x, λ)y(x, µ))

∣∣∣∣
π

0

= (F (µ)− F (λ)) y(π, λ)y(π, µ) + αf↓(λ)f↓(µ) (m(λ) −m(µ))

+ (f↓(λ)f↑(µ)− f↓(µ)f↑(λ)) (1 +m(λ)) (1 +m(µ)) .

For µ = λ this yields

α
Imm(λ)

Imλ
=

1

|f↓(λ)|2
∫ π

0

|y(x, λ)|2 dx

+

∣∣∣∣
y(π, λ)

f↓(λ)

∣∣∣∣
2
ImF (λ)

Imλ
+ |1 +m(λ)|2 Im f(λ)

Imλ
> 0.

Thus αm(λ) is a Herglotz–Nevanlinna function, and hence its zeros µn and poles
λn interlace.

Using (2.1), (2.3) and the constancy of the Wronskian we obtain

Ψ(λn) = F↑(λn)ψ(π, λn)− F↓(λn)ψ
′(π, λn)

= βn (ϕ
′(π, λn)ψ(π, λn)− ϕ(π, λn)ψ

′(π, λn))

= βn (ϕ
′(0, λn)ψ(0, λn)− ϕ(0, λn)ψ

′(0, λn)) = αβnf
2
↓ (λn).

Together with (2.5) this implies

γn =
αf2

↓ (λn)Φ
′(λn)

Ψ(λn)
.

We will need this formula in the next section in order to transform our two-spectra
inverse problem to an inverse problem solved in [11], but for now we will use it to
obtain more refined asymptotics for the difference

√
λn − √

µn. The mean value
theorem yields

Ψ(λn) = Ψ(λn)−Ψ(µn) =
(√

λn −
√
µn

)(√
λn +

√
µn

)
Ψ′(ζn) (3.1)
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for ζn ∈ [λn, µn] with
√
ζn = n− (ind f + indF )/2 +O

(
1
n

)
. Thus

√
λn −

√
µn =

αf2
↓ (λn)Φ

′(λn)(√
λn +

√
µn

)
γnΨ′(ζn)

.

Applying Lemma A.1 to the problems P(q, f, F ) and P(q, f+α, F ), and then apply-
ing Lemma A.3 to the functions Φ and Ψ and using (2.4), we obtain the asymptotics

√
λn −

√
µn =

(
n− ind f + indF

2

)−2r−1
(
α (h′0)

2

π
+ ℓ2

(
1

n

))
,

where

r := ind f − 2d =

{
1, ind f is odd,

0, ind f is even.

4. Inverse problem

In this section, we will prove Theorem 1.1. The results of the previous section
shows that if two sequences {λn}n≥0 and {µn}n≥0 are the eigenvalues of the prob-
lems P(q, f, F ) and P(q, f + α, F ), then they interlace and satisfy asymptotics of
the form
√
λn = n− L+

σ

πn
+ ℓ2

(
1

n

)
,

√
λn −

√
µn = (n− L)−2r−1

(
ν + ℓ2

(
1

n

))

(4.1)
where

L :=
ind f + indF

2
≥ d− 1− r

2
≥ −1

2
, ν :=

α (h′0)
2

π
6= 0.

Note also that if L = −1/2 then ind f = 0, and consequently r = 0. We are now
going to prove that these conditions are also sufficient for two sequences to be the
eigenvalues of two such problems. However, unlike the case of constant boundary
conditions, in order to determine these problems uniquely, we need some additional
data. The identity Ψ(λ) − Φ(λ) = αf↓(λ)χ(0, λ) (see Section 2) shows that the
zeros of f↓ are also zeros of Ψ − Φ. As we will see shortly, they can be chosen
arbitrarily among the zeros of Ψ− Φ.

Let now {λn}n≥0 and {µn}n≥0 be any two sequences such that they interlace
and satisfy asymptotics of the form (4.1) for some integer or half-integer L ≥ −1/2,
real ν 6= 0 and σ, and r ∈ {0, 1}. Define the functions

Φ(λ) := −
∏

n<L

(λn − λ)
∏

n=L

π(λn − λ)
∏

n>L

λn − λ

(n− L)2

and

Ψ(λ) := −
∏

n<L

(µn − λ)
∏

n=L

π(µn − λ)
∏

n>L

µn − λ

(n− L)2
.

Let d be an integer with

0 ≤ d ≤ L+
1− r

2
,

and let i1, i2, . . ., id be integers (indices) with 0 ≤ i1 < i2 < . . . < id. Define the
polynomial

p(λ) :=

d∏

k=1

(τik − λ),
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where τ0 < τ1 < . . . are the zeros of the function Φ(λ)−Ψ(λ). Lemma A.3 implies

Φ′(λn) = (−1)n (n− L)
2L

(
π

2
+ ℓ2

(
1

n

))
.

Using (3.1) and Lemma A.3 again we also have

Ψ(λn) = (−1)n(n− L)2L−2r

(
πν + ℓ2

(
1

n

))
.

From the asymptotics of
√
λn − √

µn and the fact that λn and µn interlace it
follows that if ν > 0 (respectively, ν < 0) then µn < λn < µn+1 (respectively,
λn < µn < λn+1) for each n ≥ 0. Thus the numbers γn defined by

γn :=
πνp2(λn)Φ

′(λn)

Ψ(λn)

are all positive and have the asymptotics

γn = (n− L)
4d+2r

(
π

2
+ ℓ2

(
1

n

))
.

By [11, Theorem 4.4], there exists a boundary value problem P(q, f, F ) having
the eigenvalues {λn}n≥0 and the norming constants {γn}n≥0. Moreover, ind f =

2d + r ≥ 0 and indF = 2L − 2d − r ≥ −1. Denote α := πν/ (h′0)
2
with h′0

defined as at the beginning of Section 2. It only remains to show that the problem
P(q, f +α, F ) has the eigenvalues µn. But first we show that the polynomials f↓(λ)
and p(λ) coincide up to a constant factor. Arguing as in the proof of Lemma 2.1
we have

∞∑

n=0

λknp(λn)

γn
=

∞∑

n=0

λknΨ(λn)

πνp(λn)Φ′(λn)
=

1

2π2νi
lim

N→∞

∫

CN

λk (Ψ(λ)− Φ(λ))

p(λ)Φ(λ)
dλ = 0,

where CN is the same as in that proof. Now arguing as after Lemma 2.1 we
obtain that the non-leading coefficients of the polynomial (−1)dp(λ) satisfy the
system (2.6). Therefore f↓(λ) = h′0p(λ).

Denote the eigenvalues of the boundary value problem P(q, f + α, F ) by µ̂n.
They coincide with the zeros of the function

Ψ̂(λ) := F↑(λ)ψ(π, λ) − F↓(λ)ψ
′(π, λ),

where ψ(x, λ) is defined as in (2.1). Using the results of Section 3, we obtain

Ψ̂(λn) =
αf2

↓ (λn)Φ
′(λn)

γn
=
πνp2(λn)Φ

′(λn)

γn
= Ψ(λn), n ≥ 0.

This and the proofs of Lemmas 2.1, A.1 and A.3 show that
(
Ψ̂(λ) −Ψ(λ)

)
/Φ(λ)

is an entire function satisfying the estimate

Ψ̂(λ) −Ψ(λ)

Φ(λ)
= O

(
1√
λ

)

on
⋃

N CN and hence by the maximum principle on the whole plane. Then the

Liouville theorem implies that this function is identically zero. Thus Ψ̂(λ) ≡ Ψ(λ)
and hence µ̂n = µn, n ≥ 0.
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Appendix A. Auxiliary results

In this appendix we prove two auxiliary lemmas used in the main body of the
paper.

Lemma A.1. The characteristic function Φ(λ) of P(q, f, F ) with ind f ≥ 0 has the

infinite product representation

Φ(λ) = −
∏

n<L

(λn − λ)
∏

n=L

π(λn − λ)
∏

n>L

λn − λ

(n− L)2

with

L :=
ind f + indF

2
.

Proof. The first-order asymptotics

Φ(λ) = λL+1/2 sin
(√

λ+ L
)
π +O

(
λLe| Im

√
λπ|
)

(A.1)

was obtained in [11] (see the proof of Lemma 2.2 therein). From Hadamard’s
theorem we obtain

Φ(λ) = C
∞∏

n=0

(
1− λ

λn

)
= C

∏

n<L

(
1− λ

λn

) ∏

n=L

(
1− λ

λn

) ∏

n>L

(
1− λ

λn

)
.

According to our assumption, L is an integer or half-integer with L ≥ −1/2. Then
we can combine infinite product representations for the sine and cosine functions
into

sin
(√

λ+ L
)
π = (−1)⌊L⌋

∏

n=L

π
√
λ
∏

n>L

(
1− λ

(n− L)2

)
.

The use of the identities

(−1)⌊L⌋ = −
∏

n<L

(−1)
∏

n=L

(−1), λL+1/2 =
∏

n<L

λ
∏

n=L

√
λ

yields

λL+1/2 sin
(√

λ+ L
)
π = −

∏

n<L

(−λ)
∏

n=L

(−πλ)
∏

n>L

(
1− λ

(n− L)
2

)
.

Thus

Φ(λ)

λL+1/2 sin
(√

λ+ L
)
π
= −C

∏

n<L

(
1

λn
− 1

λ

) ∏

n=L

(
1

πλn
− 1

πλ

)

×
∏

n>L

(n− L)
2

λn

∏

n>L

(
1 +

λn − (n− L)
2

(n− L)
2 − λ

)
.

Taking the limit as λ→ −∞ and using (A.1) and (2.2) we obtain

C = −
∏

n<L

λn
∏

n=L

πλn
∏

n>L

λn

(n− L)
2 ,

which proves the lemma. �

To prove our next result we need a lemma of Marchenko and Ostrovskii.
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Lemma A.2 ([22, Lemma 3.3], [21, Lemma 3.4.2]). For functions u(z) and v(z)
to admit representations of the form

u(z) = sinπz +Aπ
4z

4z2 − 1
cosπz +

g1(z)

z
, v(z) = cosπz −Bπ

sinπz

z
+
g2(z)

z
,

where g1(z) =
∫ π

0
g̃1(t) cos zt dt and g2(z) =

∫ π

0
g̃2(t) sin zt dt with g̃1, g̃2 ∈ L2[0, π]

and
∫ π

0
g̃1(t) dt = 0, it is necessary and sufficient to have the form

u(z) = πz

∞∏

n=1

n−2(u2n − z2), un = n− A

n
+ ℓ2

(
1

n

)
,

v(z) =

∞∏

n=1

(
n− 1

2

)−2

(v2n − z2), vn = n− 1

2
− B

n
+ ℓ2

(
1

n

)
.

Now we can prove

Lemma A.3. Let {ηn}n≥0 and {ζn}n≥0 be sequences of real numbers having the

asymptotics

√
ηn = n− L+

σ

πn
+ ℓ2

(
1

n

)
,

√
ζn = n− L+O

(
1

n

)
,

with an integer or half-integer L ≥ −1/2 and a real σ, and let

G(λ) := −
∏

n<L

(ηn − λ)
∏

n=L

π(ηn − λ)
∏

n>L

ηn − λ

(n− L)2
.

Then

G′(ζn) = (−1)n (n− L)
2L

(
π

2
+ ℓ2

(
1

n

))
.

Proof. Using the asymptotics of ηn and Lemma A.2 we obtain the representations

G(λ) = λL+1/2 sin
(√

λ+ L
)
π − σλL cos

(√
λ+ L

)
π +G1(λ)

and

G′(λ) =
π

2
λL cos

(√
λ+ L

)
π +

(
L+

σπ + 1

2

)
λL−1/2 sin

(√
λ+ L

)
π +G2(λ),

where G1(λ) and G2(λ) are of the form

G1(λ) = λL
∫ π

0

G̃1(t) cos
(√

λt+ Lπ
)
dt+O

(
λL−1/2e| Im

√
λπ|
)

and

G2(λ) = λL−1/2

∫ π

0

G̃1(t) sin
(√

λt+ Lπ
)
dt+O

(
λL−1e| Im

√
λπ|
)

with G̃1 ∈ L2[0, π]. The statement of the theorem now follows from the asymptotics
of ζn. �
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