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Abstract— We present a novel method for computing cen-
troidal dynamic trajectories in multi-contact planning context.
With dynamic motion it is necessary to respect kinematic
and dynamic constraints during the contact planning step.
Verifying the feasibility of a transition between contacts increase
the success rate of the motion generation along the planned
contacts. Our approach is based on a conservative but convex
reformulation of the problem where we represent the center
of mass trajectory as a Bezier curve, with control points
constrained by the initial and final states and one free control
point. Thanks to the convexity of this formulation, we can solve
it efficiently with a Linear Program of low dimension.

We use this LP as a feasibility criterion to test the contact
transition candidates during multi-contact planning. By incor-
porating this criterion in an existing sampling-based contact
planner, we are able to produce more robust contact sequences.
We illustrate this application on various multi-contact scenarios.

We also show that we can compute valuable initial guess,
used to warm-start non-linear solvers for motion generation
methods. This method could also be used for the 0 and 1-Step
capturability problem.

I. INTRODUCTION

Multi-contact motion planning is the problem of automa-
tically computing a feasible motion for a legged robot, from
an initial to a goal position, in an arbitrary environment.
This problem is one of the main issues preventing the safe
deployment of legged robots in environments they never
encountered before.

While gaited legged locomotion is commonly achieved
on flat surfaces [1], addressing multi-contact locomotion
in the general case remains open. A first reason comes
from the difficulty of handling non-gaited behaviours. The
choice of the contacts to create or break during the motion
(which effectors, which locations, and for how long) intro-
duces a combinatorial problem [2]. Moreover, multi-contact
motion is not limited to flat and / or coplanar surfaces.
Thus simplified dynamic models such as the linear inverted
pendulum [1], [3] do not apply. As a result non-convex
dynamic constraints must be handled [4], without guarantees
of success given modern numerical resolution schemes. The
close proximity of obstacles introduces another source of
non-convexity, and as a result planning a motion in a complex
environment requires a global planning method to avoid
getting stuck in a local minima [5].

In this paper we focus on the contact planning aspect of
multi contact motion, that is the issue of finding the contacts
that must be created between the effectors and the environ-
ment. Finding suitable contact candidates requires to verify
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Fig. 1: A feasible multi-contact sequence for a stair climbing
motion on the HRP2 robot automatically computed with our
contact planner and CROC. At most one contact creation and
removal separates two consecutive contact phases.

transition feasibility: two consecutive contact states in a
plan must be connected by a kinematically and dynamically
feasible motion (Figure 1). Significant contributions [6], [2],
[7] set the theoretical foundations of the problem for the
quasi-static case (where the acceleration remains close to
zero), but did not provide a computationally efficient way of
addressing it. For these reasons, recent contributions make
the assumption that a feasible contact sequence is a given of
the problem, and focus on the (already hard) generation of a
feasible motion along it [8], [9], [10], [11]. Because of the
combinatorial aspect of contact planning, the computational
time required by these methods is too important to use a
trial-and-error approach to verify the feasibility. In other con-
tributions, the contact sequence is indeed computed, though
a major issue is that the dynamic feasibility of the contact
sequence is not verified before trying to generate the motion
[12], [13], which necessarily results in unfeasible problems.



One noticeable exception comes from the work of Mordatch
et al. where the contact locations and the trajectory are
simultaneously computed using a simplified model, although
performances are not interactive1 [14].

In our previous works, we propose heuristics to increase
the odds that a computed contact sequence defines a feasible
motion generation problem [15], [16], but do not provide
strong guarantees of feasibility. More recently we proposed
a formal verification of the transition feasibility, but only
under the conservative quasi-static case [17].

In this paper, we propose a step towards formal guarantees
of transition feasibility in the general case. To prove the
feasibility of a contact transition, we introduce CROC, a
convex formulation of the transition feasibility problem,
efficiently solved as a 3-dimensional Linear Program (LP).
Regarding the centroidal dynamics constraints of the motion,
CROC is conservative (though not restricted to the quasi-
stati case), thus the resolution of the problem guarantees
the dynamic feasibility. Furthermore, we take into account
the kinematic constraints with the inclusion of a necessary
condition on the kinematic feasibility.

Our contribution is thus a formal, computationally efficient
method to address efficiently the transition feasiblity prob-
lem. CROC has several important additional applications: it
can be used for the 0 and 1 step capturability problem [18]
[19] [20], and also to compute a valuable initial guess for
non-linear motion generation algorithms [8].

After recalling the formal definition of the problem in
Section II, we present our approach in Section III. We then
demonstrate two applications in Section IV: we first integrate
CROC as a filter to improve the robustness of a contact
planner [16]; we then use CROC to compute a warm start for
a non-linear motion generation algorithms [8], and we show
that this results in a computational gain in the convergence
of the solver. We present quantitative results showing the
interest of these two applications in Section IV, and discuss
the limitations and other applications of CROC in Section V.

II. PROBLEM DEFINITION

In this work we define the transition feasibility problem
with respect to the centroidal dynamics of a robot, as now
commonly done [21], [9], [8].

A. Legged motion is characterized by contact phases

A contact phase is defined such that: the number and
locations of the active contacts remain constant at each
phase; each contact phase differs from the previous one by
exactly one contact creation or removal. Each contact phase
constrains dynamically and kinematically the motion of the
robot, and at the transition instant between two phases, the
constraints of both phases apply.

A state x{p} = (c{p}, ċ{p}, c̈{p}) ∈ R3×R3×R3 describes
a Center Of Mass (COM) position, velocity and acceleration
satisfying the constraints at contact phase {p}. Given two
states x

{p}
s = (cs, ċs, c̈s) and x

{q}
g = (cg, ċg, c̈g) with q ≥

1Several minutes of computation are required to generate a centroidal
trajectory and the contact locations along few steps.

p, the transition feasibility problem consists in determining
whether there exists a feasible trajectory c(t), t ∈ R+ of
duration T , which connects exactly x

{p}
s and x

{q}
g .

B. Centroidal dynamic constraints on c(t)

For a contact phase {p}, for any t ∈ [0, T ] the centroidal
dynamic constraints derived from the Newton-Euler equa-
tions are [4], [22]:

H{p}
[

m(c̈− g)

mc× (c̈− g) + L̇

]
︸ ︷︷ ︸

w

≤ h{p} (1)

where :
• m ∈ R is the mass of the avatar;
• g =

[
0 0 −9.81

]T
is the gravity vector;

• L̇ ∈ R3 is the angular momentum (applied at c).
• H{p} and h{p} are respectively a matrix and a vector

defined by the contact points of the phase and their
friction coefficients.

Because of the cross product between c and c̈, the con-
straints are not linear, and the issue of finding a trajectory
satisfying them in the general case is a non-convex problem.

C. Centroidal kinematic constraints on c(t)

Each active contact creates kinematic constraints on c(t).
We use linear constraints to represent these constraints de-
pending on the 6D positions of each active contact frames.
They give us a necessary but not sufficient condition for
kinematic feasibility (discussed in section V-A). We refer
the reader to [17] for the computation of these constraints.
We write them K{p}c ≤ k{p} for phase {p}.

III. CONSERVATIVE REFORMULATION OF THE
TRANSITION PROBLEM

To determine the existence of a valid c(t), we formulate
the problem as a convex one by getting rid of the non-linear
constraints induced by the cross product c × c̈. To achieve
this we impose a conservative condition on c(t).

A. Important note on the following equations.

In what follows, we define several constant terms, which
define the control points used in the various Bezier curves
used by our method. Although in the end the obtained
problem is solved straightforwardly, the manual calculation
of these constants requires several simple mathematical op-
erations and simplifications which we chose not to include
in this paper for clarity and space reasons. At the url2,
the reader can find a document detailing step by step the
computation of such constants for the 0-step capturability
problem. The methodology used in this document applies
for all applications cases. At the url3 the reader will find
a sympy script used to automatically compute the control
points depending on the desired set of constraints. The

2http://stevetonneau.fr/files/publications/
iros18/control_points.pdf

3http://stevetonneau.fr/files/publications/
iros18/derivate.py



control points only need to be computed once and for all, and
thus the user of the method will not require to calculate them
by itself: upon acceptance of the paper we would provide the
source code of our method and a document detailing all the
control points values.

B. Lossless reformulation of c(t) as a Bezier curve

Let us assume, without any loss of generality [23], that
c(t) is an arbitrarily constrained Bezier curve of degree n of
unknown duration T :

c(t) =

n∑
i=0

Bn
i (t/T )Pi (2)

where the Bn
i are the bernstein polynoms and the Pi are

control points.
To connect two states x

{p}
s and x

{q}
g with a Bezier curve

it is necessary to take into account position, velocity and
acceleration defined by the states. Accordingly, all the curves
that we use comprise at least 6 control points, thus n ≥ 5,
to ensure that the following constraints are verified:
• P0 = cs and Pn = cg guarantee that the trajectory

starts and ends at the desired locations;
• P1 = ċs/n

T +P0 and Pn−1 = Pn− ċg/n
T guarantee that

the trajectory initial and final velocities are respected;
• P2 = c̈s/(n(n−1))

T 2 + 2P1 −P0 and
Pn−2 =

c̈g/(n(n−1))
T 2 + 2Pn−1 −Pn guarantee that the

initial and final accelerations are respected.
Depending on the considered problem, some or all of the

constraints on the velocity and acceleration can be removed,
without changing the validity of our approach. In section V-
C we show than this genericity can be used to solve 0 or
1-Step capturability problem. In the following we assume
that the 6 constraints are present.

C. Conservative reformulation of the transition problem

We constrain c(t) to be a Bezier curve of degree n = 6
and of duration T , which leaves a free control point P3 = y:

c(t,y) =
∑

i∈{0,1,2,4,5,6}

B6
i (t/T )Pi + B6

3(t/T )y (3)

In this case, y and T are the only variables of the
problem. For the time being, we fix T (we remove this
constraint in section IV-B). We derive twice to obtain c̈(t),
and compute the cross product to get the expression of w(t).
The non-convexity of the problem disappears, because the
cross product of y by itself is 0, and all other terms are either
constant or linear in y. w(t,y) is thus a six-dimensional
Bezier curve of degree 2n− 3 [24] (9 in this case) linearly
dependent of y:

w(t,y) =
∑

i∈{0..9}

B9
i (t/T )wi(y) + L̇(t) (4)

where wi(y) ∈ R6 are the control points expressed as :

wi(y) = wy
i y + ws

i (5)

The wy
i ∈ R6×3 and ws

i ∈ R6 are constants that only
depend on the control points Pi of c(t) and of T .

In what follows, for the sake of simplicity, we assume
L̇(t) = 0. This is not a limitation: if we express L̇(t) as a
polynomial in the problem all the following reasoning stand.
One way to include L̇(t) is to represent it as a Bezier curve
with one free variable, similarly to equation (3).

The existence of a valid trajectory c(t) can thus be
determined by solving a convex problem.

1) Application for a motion with no contact switch:
Consider the case where p = q = 1.

a) In the continuous case: Using the fact that a Bezier
curve is comprised in the convex hull of its control points,
and assuming that the start and goal states are feasible, we
only need to find a y that satisfies the constraints to guarantee
that the whole trajectory satisfies the constraints as well. We
can thus solve the feasibility problem with a minimal 3-
dimensional Linear Program (LP) :

find y

s. t. K{p}y ≤ k{p}

(mH{p}wy
i )y ≤ h{p} + mH{p}(

[
g
0

]
−ws

i ) ,∀i
(6)

Constraining y to satisfy the constraints of the trajectory
is a conservative approach that further constrains the solu-
tion space. However, this approach allows for a continuous
solution to the problem.

b) In the discrete case: To remove the additional
constraint on y, we can proceed similarly to all existing
approaches in the literature, and discretize the trajectory
using a step ∆t, which results in an increase in the constraint
size. We discretize w(t,y) over T as follows :

w(j∆t,y) = wy
jy + ws

j (7)

Where wy
j , ws

j are constants given by P{0,1,2,4,5,6}, the
total duration T and the time step j∆t. j belongs to the phase
set J{p} : {j ∈ N : 0 ≤ j∆t ≤ T {p}}. We can now rewrite
inequality (1) expressed at the discretization point j∆t:

(mH{p}wy
j )︸ ︷︷ ︸

A
{p}
j

y ≤ h{p} + mH{p}(

[
g
0

]
−ws

j)︸ ︷︷ ︸
a
{p}
j

(8)

Thus we rewrite the LP (6) in a discretized form :

find y

s. t.

[
K{p}wy

j

A
{p}
j

]
︸ ︷︷ ︸

E
{p}
j

y ≤

[
k{p} −K{p}ws

j

a
{p}
j

]
︸ ︷︷ ︸

e
{p}
j

∀j ∈ J{p}

(9)
2) Application for a motion with one contact switch:

Consider the case where q = p + 1. In this case we define
T {p} and T {q} the times spent in each phase, such that T =
T {p} + T {q}. We also define J{q} : {j ∈ N, T {p} ≤ j∆t ≤
T {q}}.



We thus have 3 sets of constraints in this case: two for
each phase, plus one for the transition time t = T {p} where
the constraints of both phases apply:

find y

s. t. E
{z}
j y ≤ e

{z}
j ,∀j ∈ J{z},∀z ∈ {p, q}

(10)

3) Application for the general case: As we add more
contact phases, we add additional set of constraints for each
contact phase, thus defining as many T {z} and J{z} to write
the LP:

find y

s. t. E
{z}
j y ≤ e

{z}
j ,∀j ∈ J{z},∀z ∈ {p, . . . , q}

(11)

In our experiments, we only consider three consecutive
phases (which correspond to one step), and solve a new
problem for each subsequent set of phases.

4) Cost function and additional constraint: With a small
additional computational burden, we can formulate the prob-
lem (11) as a Quadratic Program (QP) and add a cost l. One
can for instance minimize the integral of the squared accel-
eration norm or the angular momentum. This cost function
is irrelevant to solve the transition feasibility problem, but it
can be used to compute a warm start trajectory for a non-
linear solver, as discussed in Section IV-D.

The formulation also allows to add arbitrary constraints on
c and any of its derivatives by proceeding as done in equation
(7). We note this constraints as follow, at the discretization
point j∆t:

O
{z}
j y ≤ o

{z}
j (12)

This allows to easily impose bounds on the velocity
and acceleration of the center of mass or on the angular
momentum variation. We obtain the generic QP :

find y

minimize l(y)

s. t. ∀j ∈ J{z},∀z ∈ {p, . . . , q}
E
{z}
j y ≤ e

{z}
j

O
{z}
j y ≤ o

{z}
j

(13)

In our experiments we set constraints on the acceleration
and velocity and minimize the squared acceleration norm as
a cost l.

IV. APPLICATIONS TO THE CONTACT PLANNING
PROBLEM AND THE COMPUTATION OF A WARM START

TRAJECTORY

We first study the application of CROC for contact plan-
ning. We recall that the goal of contact planning is to provide
a sequence of contact phases to a motion generation method.

A. CROC as a transition feasibility criterion

We use our contact planner [15] to demonstrate the
interest of CROC as a feasibility criterion. Given a state
x
{p}
s = (cs, ċs, c̈s) and a trajectory for the root of the robot

computed by [16], the planner generates either a candidate
state x

{p+1}
g or x

{p+2}
g , such that x

{z}
g = (cg, ċg, c̈g). We

use CROC to determine whether there exists a trajectory that
connects exactly both states. If it is we keep the candidate
state, otherwise we request the contact generator for a new
candidate.

Figure 2 shows examples of unfeasible contact sequences
filtered out thanks by CROC, resulting in a more robust
planner. While all the states of in these sequences are
dynamically consistent, there is no feasible transitioning
motion between them.

B. Time sampling

To remain convex, we choose to not include the duration
of each phase T {p}, T {p+1} and T {p+2} as variables of the
CROC. We rather sample various combinations of times and
solve the corresponding QPs in sequence until a solution
is found. In theory, this would mean that we need to
sample an infinity of combinations in order to be complete.
However, we pragmatically reduce this number and give up
on the completeness while maintaining a high success rate as
follows. We sampled a time for each duration phase T {z} by
choosing a value between 0.2 and 2 seconds, with increments
of 50ms. For a sequence of three phases, this gives a total
of 46656 possible combinations. We tested CROC with all
these combinations on various problems : with HRP2 or
HyQ robots on flat and non-coplanar surfaces, for several
thousands of states.

Upon analysis of the results of the convergence of the
QPs, we found out that we can use a small list of timings
combinations (5 in our case) that covers 100% of the success
cases for all the robots and scenarios tested. We thus solve
a maximum of 5 QPs for each validation.

C. Experimental results

1) Computation time: Solving the QP (13) for three con-
secutive contact phases takes on average 0.3ms4. Computing
the whole feasibility test (with the small list of timings as
described above) takes on average 1.7ms, 27% of it is spent
computing the equilibrium constraints H and h5.

While we are not solving the complete centroidal dynamic
optimization problem like in [25], [9] (we are only interested
in the existence of at least one solution and we constraint c(t)
to be a Bezier curve), it can be noted that we are at least
one order of magnitude faster. This allows us to test every
candidate states for feasibility during the contact planning
and still achieve interactive performances.

4Implemented in c++ with QuadProg, measured with a computer with an
Intel Xeon CPU E5-1630 v3 at 3.70GHz

5Computed with [22]



Fig. 2: Examples of unfeasible contacts transitions found by our feasibility criterion : for these transitions CROC does not
converge.

Fig. 3: Examples of trajectories found by our method. Green
polytopes : valid position of y that verifies the constraints
of the problem (13), red sphere : solution found for y. The
red part of the trajectory is for the phase with nc − 1 active
contacts. The next contact is shown in transparency.

2) Contact planning: We tested our contact planner with
the robots HyQ and HRP2 on various scenarios. Several
contact sequences and whole body motions are shown in the
attached video. We did not observe significant improvements
for simple scenarios (such as walks on flat ground), because
nearly all the transitions found by our previous heuristic were
feasible. However, we observed a significant change in the
contacts plans computed for harder, multi-contact, scenarios.
Our feasibility criterion filters out all the unfeasible transi-

tions such as the ones depicted in Figure 2, for which CROC
is unfeasible.

In average 18% of the candidate transitions are rejected
by CROC during the contact planning for the multi-contact
scenarios. Because of the additional feasibility constraints
on the contact candidate selection, the contact planner may
fail when no valid candidate is found. Thus reducing the
success rate of 16% on average (ie. the planner fail to find a
sequence that reaches the goal) when using our criterion,
only noticeable on harder, multi-contacts, scenarios. But
without our feasibility criterion an average of 79% of the
contact sequences computed contains at least one unfeasible
transition. Although at the present time we do not have a
way to determine precisely which ones correspond to false
negatives, we know that for at least 6% of the rejected
transitions a feasible centroidal trajectory was found by the
method presented in [25].

Figure 3 shows sample trajectories found with our method
for feasible transitions, along with the valid region for y and
the position of y found with our cost function. On the top
row, HRP2 is climbing a stair using his right hand. In the
middle row, HyQ is walking between two 45◦inclined planes.

On the last row and on figure 4 HRP2 crosses a gap
which is too large to be crossed with only one step (while
kinematically feasible, no whole body motions was found
for this long step). The platform in the middle of the
gap is inclined such that there isn’t any states in static
equilibrium with contacts only on the inclined platform.
Thus, this scenarios cannot be solved with a quasi-static
motion. Without the feasibility criterion, the planner will
produce contacts sequences that randomly try to cross the
gap in one step, use the platform with the wrong foot or
use correctly the platform. In the first two cases, this lead
to unfeasible transition and no whole body can be computed
from this contacts sequences.

With our test we only produce contact plan with a step
with the left foot on the platform like in figure 4 which lead
to feasible whole body motion as shown in the companion
video.

D. Motion generation
In order to generate a whole body motion from our

contact sequence, we used the framework proposed in



Fig. 4: Contact plan found by our planner. The platform is inclined at 30◦, such that no states can be in static equilibrium
on the platform.

[25]. We automatically compute a contact sequence with
our contact planner and CROC. Their non-linear solver
then computes an optimal centroidal trajectory, using a
multiple-shooting algorithm. Finally, a second-order inverse
kinematics solver computes a whole body motion that
follows the computed trajectory. The whole body motion
of the sequence of contacts in Figure 4 is shown in the
attached video.

Because trajectory generation methods use non-linear
solvers, the choice of an initial guess is essential as it can
drastically change the result of the method. Choosing this
initial guess may be challenging for multi-contact motions.
The centroidal trajectory (c(t), ċ(t), c̈(t)) found by CROC
can be used as an initial guess to warm start the non-linear
solvers. We tested the method presented in [25] with a CROC
warm start or with their naive one, on hundreds of randomly
generated scenarios. In our tests, we observed that in 17% of
the cases, the solver only converged with our warm-start. In
the other cases, it converged with both initial guesses but we
noticed a decrease of an average of 21% of the time required
to converge when we used our warm start.

V. CONCLUSION AND DISCUSSION

In this paper we introduce an accurate and efficient
formulation of the centroidal dynamics of a legged robot,
which is convex and not restricted to quasi-static motions.
To our knowledge it is the first method to combine these
three properties. We demonstrate the interest of the method
as a transition feasibility criterion for the contact planning
problem, and for computing a warm start centroidal trajec-
tory for non-linear solvers.

Contrary to methods using simplifying assumptions or
approximations, one strong advantage is that the computed
trajectories are thus guaranteed to respect the centroidal dy-
namics of the system. The additional main advantage of the
approach lies in its computational efficiency, which makes it
the first method fast enough to be integrated within a contact
planner. The last one is its simplicity of implementation and

the fact that it does not require any form of parametrization.
Upon acceptance of this paper, we would provide the source
code of the solver.

A. Handling the whole-body approximations

The remaining source of approximation is shared with all
centroidal-based methods, and comes from the whole-body
constraints (joint limits, angular momentum and torques),
which are only approximated or ignored in the current
formulation. One solution could be to alternate centroidal op-
timization with whole-body optimization as other approaches
do [9], however for the transition feasibility problem, this
approach would result in an increased computational burden
that is not compatible with the combinatorial. One immediate
way to improve the quality of this approximation is to
integrate torque constraints expressed at the centroidal level.
The formulation recently proposed in [26] is immediately
compatible with ours and will be integrated in future work.

B. How conservative is our method regarding the state of
the art?

The price of convexity is that our method does not cover
the whole solution space. However, evaluating the actual loss
is not possible since we share the limitation with all the
existing approaches, and thus do not have a ground truth for
comparison. In Section IV-C.2 we compare our method with
a non-linear solver [8], and note that in our scenarios an
encouragingly small number of the feasible transitions were
not found by our method (false negatives).

Comparatively to this non-linear solver, with the same cost
function CROC will most likely find a less optimal trajectory
in general. This is not a problem because we are mostly
concerned by the feasibility.

Furthermore, there is an interest in using the output of
our method has a warm start for a non-linear solver: in our
experiments some solutions could only be found with an
initial guess computed by CROC, as opposed to a naive
initial guess. We also observe that our warm starts signif-
icantly improve the computational performance of the non-
linear solver. This demonstrates another quantitative interest



of the approach, but further analysis is required to provide
a better insight on the benefit of combining the approaches
for motion generation.

C. Application to 0 and 1 step capturability

The N-Step capturability problem consists in determining
the ability of a robot (in a given state) to come to a stop (ie.
null velocity and acceleration) without falling by taking at
most N steps. This condition is used to detect and prevent
fall.

We can easily change the constraints on c(t) defined in
subsection III-B to remove the constraint on cg and constrain
(ċg = 0, c̈g = 0). With this set of constraints, the feasibility
of LP (6) determines the 0-Step capturability. Similarly, LP
(10) determines the 1-Step capturability.

For future work we would like to empirically determine
the accuracy of our method with respect to this problem,
using a framework similar to [20].
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