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CROC: Convex Resolution Of Centroidal dynamics trajectories to
provide a feasibility criterion for the multi contact planning problem

Pierre Fernbach! 2, Steve Tonneau! 2 and Michel Taix! 2

Abstract— We tackle the transition feasibility problem, that is
the issue of determining whether there exists a feasible motion
connecting two configurations of a legged robot. To achieve this
we introduce CROC, a novel method for computing centroidal
dynamics trajectories in multi-contact planning contexts. Our
approach is based on a conservative and convex reformulation
of the problem, where we represent the center of mass trajectory
as a Bezier curve comprising a single free control point as
a variable. Under this formulation, the transition problem is
solved efficiently with a Linear Program (LP) of low dimension.

We use this LP as a feasibility criterion, incorporated in a
sampling-based contact planner, to discard efficiently unfeasible
contact plans. We are thus able to produce robust contact
sequences, likely to define feasible motion synthesis problems.
We illustrate this application on various multi-contact scenarios
featuring HRP2 and HyQ.

We also show that we can use CROC to compute valuable
initial guesses, used to warm-start non-linear solvers for motion
generation methods. This method could also be used for the 0
and 1-Step capturability problem. The source code of CROC
is available under an open source BSD-2 License.

I. INTRODUCTION

Multi-contact motion planning is the problem of automa-
tically computing a feasible motion for a legged robot, from
an initial to a goal position, in an arbitrary environment.
This problem is one of the main issues preventing the safe
deployment of legged robots in environments they never
encountered before.

While gaited legged locomotion is commonly achieved
on flat surfaces [1], addressing multi-contact locomotion
in the general case remains open. A first reason comes
from the difficulty of handling non-gaited behaviours. The
choice of the contacts to create or break during the motion
(which effectors, which locations, and for how long) intro-
duces a combinatorial problem [2]. Moreover, multi-contact
motion is not limited to flat and / or coplanar surfaces.
Thus simplified dynamic models such as the linear inverted
pendulum [1], [3] do not apply. As a result non-convex
dynamic constraints must be handled [4], without guarantees
of success given modern numerical resolution schemes. The
close proximity of obstacles introduces another source of
non-convexity, and as a result planning a motion in a complex
environment requires a global planning method to avoid
getting stuck in a local minima [5].

In this paper we focus on the planning aspect of multi
contact motion, that is the issue of finding the contacts that
must be created between the effectors and the environment.
Finding suitable contact candidates requires checking for
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Fig. 1: A feasible multi-contact sequence for a stair climbing
motion on the HRP2 robot automatically computed with our
contact planner and CROC. At most one contact creation and
removal separates two consecutive contact phases. CROC
guarantees that between each configuration in the sequence,
there exists a feasible centroidal trajectory for the Center Of
Mass (including the flying effector phases).

transition feasibility: two consecutive contact states in a
plan must be connected by a kinematically and dynamically
feasible motion (Figure 1). Significant contributions [6], [2],
[7] set the theoretical foundations of the problem for the
quasi-static case (where the acceleration remains close to
zero), but did not provide a computationally efficient way of
addressing it. For these reasons, recent contributions make
the assumption that a feasible contact sequence is a given
of the problem, and focus on the (already hard) generation
of a feasible motion along it [8], [9], [10]. Because of the
combinatorial aspect of contact planning, the computational
time required by these methods is too important to use a
trial-and-error approach to verify the feasibility. Caron et al.
recently proposed a computationally efficient method [11],



but its application range is restricted to single-contact to
single-contact transitions. The use of mixed-integer program-
ming allows to compute the contact sequence, though a major
issue is that the dynamic feasibility of the contact sequence
is not verified before trying to generate the motion [12],
which necessarily results in unfeasible problems. This issue
was later addressed in [13] through a convex approximation
of the dynamic constraints, though the approach remains
subject to combinatorial explosion. One noticeable exception
comes from the work of Mordatch et al. where the contact
locations and the trajectory are simultaneously computed
using a simplified model, although performances are not
interactive! [14].

In our previous works, we propose heuristics to increase
the odds that a computed contact sequence defines a feasible
motion generation problem [15], [16], but do not provide
strong guarantees of feasibility. More recently we proposed
a formal verification of the transition feasibility, but only
under the conservative quasi-static case [17].

In this paper, we propose a step towards formal guarantees
of transition feasibility in the general case. To prove the
feasibility of a contact transition, we introduce CROC, a
convex formulation of the transition feasibility problem,
efficiently solved as a 3-dimensional Linear Program (LP).
Regarding the centroidal dynamics constraints of the motion,
CROC is conservative (though not restricted to the quasi-
static case), thus the resolution of the problem guarantees
the dynamic feasibility. Furthermore, we take into account
the kinematic constraints with the inclusion of a necessary
condition on the kinematic feasibility.

Our contribution and main novelty is a convex reformu-
lation of the transition feasibility problem, conservative
but exact, when convexity is traditionally obtained through
a relaxation of the dynamic constraints or in the quasi-static
case. CROC has several important additional applications: it
can be used for the 0 and 1 step capturability problem [18]
[19] [20], and also to compute a valuable initial guess for
non-linear motion generation algorithms [8].

After recalling the formal definition of the problem in
Section II, we present our approach in Section III. We then
demonstrate two applications in Section IV: we first integrate
CROC as a filter to improve the robustness of a contact
planner [16]; we then use CROC to compute a warm start for
a non-linear motion generation algorithms [8], and we show
that this results in a computational gain in the convergence
of the solver. We present quantitative results showing the
interest of these two applications in Section IV, and discuss
the limitations and other applications of CROC in Section V.

II. PROBLEM DEFINITION

In this work we define the transition feasibility problem
with respect to the centroidal dynamics of a robot, as now
commonly done [21], [9], [8].

ISeveral minutes of computation are required to generate a centroidal
trajectory and the contact locations along few steps.

A. Legged motion is characterized by contact phases

A contact phase is defined such that: the number and
locations of the active contacts remain constant at each
phase; each contact phase differs from the previous one by
exactly one contact creation or removal. Each contact phase
constrains dynamically and kinematically the motion of the
robot, and at the transition instant between two phases, the
constraints of both phases apply. In Figure 1, between the
top left and top right configuration, there is thus three contact
phases, including one where the left foot is not in contact.

A state x1P} = (ciP} elrt ¢lr}) € R3 <R3 xR? describes
a Center Of Mass (COM) position, velocity and acceleration
satisfying the constraints at contact phase {p}. Given two
states x7) = (cs, €5, Cs) and X!{]q} = (cq, €4, ¢4) with g >
p, the transition feasibility problem consists in determining
whether there exists a feasible trajectory c(t),t € R* of

duration T, which connects exactly %P} and xg.

B. Centroidal dynamic constraints on c(t)

For a contact phase {p}, for any ¢ € [0, T the centroidal
dynamic constraints derived from the Newton-Euler equa-
tions are [4], [22]:

m(¢ —g)

{r} .
H [mcx (c—g)+L

} < hir} (1)

We isolate the state dependent term w:

{0} ¢ . < i v} |8
H/—/mH {(cxéJrgxc)JrL/m}h +mH {0
Aflr}
w alr}
2
where :

e m € R is the mass of the robot;

eg=1[0 0 —9.81]T is the gravity vector;

« L € R? is the angular momentum (applied at c).

o H?} and hiP} are respectively a matrix and a vector
defined by the contact points of the phase and their
friction coefficients.

Because of the cross product between c and ¢, the con-
straints are not linear, and the issue of finding a trajectory
satisfying them in the general case is a non-convex problem.

C. Centroidal kinematic constraints on c(t)

Each active contact creates kinematic constraints on c(t).
We approximate them with linear constraints, depending on
the 6D positions of each active contact frames, and refer
the reader to [17] for the computation of these constraints,
written K{Ptc < kiP} for phase {p}.

III. CONSERVATIVE REFORMULATION OF THE
TRANSITION PROBLEM

To determine the existence of a valid c(¢), we formulate
the problem as a convex one by getting rid of the non-linear
constraints induced by the cross product ¢ x ¢. To achieve
this we impose a conservative condition on c(t).



A. Important note on the following equations.

In what follows, we define several constant terms, which
define the control points used in the various Bezier curves
used by our method. Although in the end the obtained
problem is solved straightforwardly, the manual calculation
of these constants requires several simple mathematical op-
erations and simplifications which we chose not to include
in this paper for clarity and space reasons. At the url?,
the reader can find a document detailing step by step the
computation of such constants for the O-step capturability
problem. The methodology used in this document applies
for all applications cases. At the url® the reader will find
a sympy script used to automatically compute the control
points depending on the desired set of constraints. The
control points only need to be computed once and for all.

B. Lossless reformulation of c(t) as a Bezier curve

Let us assume, without any loss of generality, that c(t)
is an arbitrarily constrained Bezier curve of degree n of
unknown duration 7"

n
c(t) =Y _ B t/T)P; 3)
i=0
where the B} are the Bernstein polynomials and the P; are
control points.

To connect two states xip } and xéq} with a Bezier curve
it is necessary to take into account the positions, velocities
and accelerations defined by the states. Accordingly, all the
curves that we use comprise at least 6 control points, thus
n > 5, to ensure that the following constraints are verified:

e Py = ¢, and P, = c, guarantee that the trajectory

starts and ends at the desired locations;

« P = %—i—Po and P,,_1 =P, — % guarantee that

the trajectory initial and final velocities are respected;

« Py= /000 4 op, — P and

P, >= w + 2P,,_; — P,, guarantee that the
initial and final accelerations are respected.

Depending on the considered problem, some or all of
the constraints on the velocity and acceleration can be
removed, without changing the validity of our approach. This
genericity also allows to solve the 0 or 1-Step capturability
problem, by removing the terminal position constraint. In the
following we assume that the 6 constraints are present.

C. Conservative reformulation of the transition problem

We constrain c(t) to be a Bezier curve of degree n = 6
and of duration 7', which leaves a free control point P35 = y:

C(t7Y):: jg:

1€{0,1,2,4,5,6}

BY(t/T)P; + By(t/T)y  (4)

In this case, y and T are the only variables of the problem.
For the time being, we fix T'. We derive twice to obtain &(t),

’http://stevetonneau.fr/files/publications/
irosl8/control_points.pdf

3http://stevetonneau.fr/files/publications/
irosl8/derivate.py

and compute the cross product to get the expression of w(t).
The non-convexity of the problem disappears, because the
cross product of y by itself is 0, and all other terms are either
constant or linear in y. The non-convexity only disappears in
our case, where the curve only admits one degree of freedom.
w(t,y) is thus a six-dimensional Bezier curve of degree 2n—
3 [23] (9 in this case) linearly dependent of y:

w(t,y)= Y Bt/T)wi(y)+L(t)/m (5
i€{0..9}

where w;(y) € RS are the control points expressed as :

wi(y) = w/y +w;} (©6)

The w! € R%*3 and w{ € R® are constants that only
depend on the control points P; of c(¢) and of T

In what follows, for the sake of simplicity, we assume
L(t) = 0. This is not a limitation: if we express L(t) as a
polynomial in the problem all the following reasoning stand.
One way to include L(t) is to represent it as a Bezier curve
with one free variable, similarly to equation (4). However
guaranteeing that we can generate a whole-body motion that
tracks a variable L(t) requires additional information on the
whole-body motion, which we leave for future work.

The existence of a valid trajectory c(¢) can thus be
determined by solving a convex problem.

1) Application for a motion with no contact switch:
Consider the case where p = q = 1.

a) In the continuous case: Using the fact that a Bezier
curve is comprised in the convex hull of its control points,
and assuming that the start and goal states are feasible, we
only need to find a y such that the w; control points satisfy
the constraints. This guarantees that the whole trajectory
satisfies the constraints. We thus solve the feasibility problem
with a minimal 3-dimensional Linear Program (LP) :

find y
s.t. Kty <xiet (7
(A{P}wﬁ’)y <alrt — A{p}wf Vi

Constraining y to satisfy the constraints of the trajectory
is a conservative approach that further constrains the solu-
tion space. However, this approach allows for a continuous
solution to the problem.

b) In the discrete case: To remove the additional
constraint on y, we can proceed similarly to all existing
approaches in the literature, and discretize the trajectory
using a step At, which results in an increase in the constraint
size. We discretize w(t,y) over T as follows :

w(jAty) = wiy+w; (8)

Where w;-’, w; are constants given by P 12456}, the
total duration 7' and the time step jAt. j belongs to the
phase set JIP} : {j € N: 0 < jAt < T{P}}. Similarly we
write c(jAt,y) = c?y + ¢j. We can now rewrite inequality
(2) expressed at the discretization point jA#:

(A{”}wé’)y < al?t A{p}wjj 9)



Thus we rewrite the LP (7) in a discretized form :

find y

KirteY kirr — Kirtes
[

o
A{p}wjg alp} _ A{p}wé?] Vi€ Jw

Eir} etr}

J J (10)
2) Application for a motion with one contact switch:
Consider the case where ¢ = p+1. We define 717} and T{¢}
the times spent in each phase, such that 7' = TP} 4 Tid},

We also define Ji4} : {j € N, TP} < jAt < T}.
We thus have 3 sets of constraints in this case: two for
each phase, plus one for the transition time ¢ = T{?} where

the constraints of both phases apply:

find y

11)
s. t. Ej{-z}y < ej{-z} Vje i vz e {p,q} (

3) Application for the general case: As we add more
contact phases, we add additional set of constraints for each
contact phase, and define as many 7{*} and J{*} to write:

find y

. . (12)
s. t. EE }yge;{} VieJ¥ vaelp,.. . q}

In our experiments, we only consider three consecutive
phases (which correspond to one step), and solve a new
problem for each subsequent set of phases.

4) Cost function and additional constraint: With a small
additional computational burden, we can formulate the prob-
lem (12) as a Quadratic Program (QP) and add a cost [. One
can for instance minimize the integral of the squared accel-
eration norm or the angular momentum. This cost function
is irrelevant to solve the transition feasibility problem, but it
can be used to compute a warm start trajectory for a non-
linear solver (Section IV-D).

The formulation also allows to add arbitrary constraints
on c¢ and any of its derivatives by proceeding as done in
equation (8). At the discretization point jAZ, we express the
constraint as:

0ly <ol (13)

This allows to easily impose bounds on the velocity
and acceleration of the center of mass or on the angular
momentum variation. We obtain the generic QP :

find y
minimize [(y)
s.t. VjeJJE vaelp....ab (4

{=} {z}
Ej"y<e

{=} {=z}
0,7y <o

In our experiments we set constraints on the acceleration
and velocity and minimize the squared acceleration norm.

IV. APPLICATIONS TO THE CONTACT PLANNING
PROBLEM AND THE COMPUTATION OF A WARM START
TRAJECTORY

We first study the application of CROC for contact plan-
ning. We recall that the goal of contact planning is to provide
a sequence of contact phases to a motion generation method.

A. CROC as a transition feasibility criterion

We use our contact planner [15] to demonstrate the
interest of CROC as a feasibility criterion. Given a state
xﬁp b= (cs, €5, €s) and a trajectory for the root of the robot
computed by [16], the planner generates either a candidate
state x7T or x5, such that xi = (c,, ¢,,&,) with
z either p+ 1 or p+ 2. We use CROC to determine whether
there exists a trajectory that connects exactly both states, in
which case we keep the candidate state, otherwise we request
the contact generator for a new candidate.

Figure 2 shows examples of unfeasible contact sequences:
while all the states in these sequences are dynamically
consistent, there is no feasible transitioning motion between
them. These invalid sequences are filtered out by CROC,
resulting in a more robust planner.

B. Time sampling

To remain convex, we choose not to include the duration
of each phase TP} T{r+1} and TP+2} as variables of
CROC. We rather sample various combinations of times and
solve the corresponding QPs in sequence until a solution
is found. In theory, this would mean that we need to
sample an infinity of combinations in order to be complete.
However, we pragmatically reduce this number and give up
on the completeness while maintaining a high success rate as
follows. We sampled a time for each duration phase 71} by
choosing a value between 0.2 and 2 seconds, with increments
of 50ms. For a sequence of three phases, this gives a total
of 46656 possible combinations. We tested CROC with all
these combinations on various problems : with HRP2 or
HyQ robots on flat and non-coplanar surfaces, for several
thousands of states.

Upon analysis of the results of the convergence of the
QPs, we found out that we can use a small list of timings
combinations (5 in our case) that covers 100% of the success
cases for all the robots and scenarios tested. We thus solve
a maximum of 5 QPs for each validation.

C. Experimental results

1) Computation time: Solving the QP (14) for three con-
secutive contact phases takes on average 40 microseconds®.
Computing the whole feasibility test (with the small list of
timings as described above) takes on average 2.9ms, 85% of
it is spent computing the equilibrium constraints H and h>.

While we are not solving the complete centroidal dynamic
optimization problem as in [24], [9] (we are only interested
in the existence of at least one solution and we over-constrain

4Implemented in c++ with QuadProg, measured with a computer with an
Intel Xeon CPU E5-1630 v3 at 3.70GHz

SComputed with [22]
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Fig. 3: Examples of trajectories found by our method. Green
polytopes : valid position of y that verifies the constraints
of the problem (14), red sphere : solution found for y. The
red part of the trajectory is for the phase with n. — 1 active
contacts. The next contact is shown in transparency.

c(t)), it can be noted that our method performs at least
one order of magnitude faster. This allows us to test many
candidate states for feasibility during the contact planning
phase, and still achieve interactive performances.

2) Contact planning: We tested our contact planner with
the robots HyQ and HRP2 on various scenarios. Several
contact sequences and whole body motions are shown in the
attached video. We did not observe significant improvements
for simple scenarios (such as walks on flat ground), because
nearly all the transitions found by our previous heuristic were

=

rd

=

)
%

Fig. 2: Examples of unfeasible contacts transitions found and rejected by CROC.

feasible. However, we observed a significant change in the
contacts plans computed for harder, multi-contact, scenarios.
Our feasibility criterion filters out all the unfeasible transi-
tions such as the ones depicted in Figure 2, for which CROC
is unfeasible.

Figure 3 shows sample trajectories found with our method
for feasible transitions, along with the valid region for y and
the position of y found with our cost function. On the top
row, HRP2 is climbing a stair using his right hand. In the
middle row, HyQ is walking between two 45°inclined planes.

On the last row and on figure 4 HRP2 crosses a gap which
is too large to be crossed with only one step (while the tran-
sition is kinematically feasible, no dynamically consistent
whole body motion was found for this long step using either
state of the art solver). The platform in the middle of the
gap is inclined such that there is no way to remain in static
equilibrium while solely resting on it. In other words, this
scenario cannot be solved with a quasi-static motion. Without
CROC, the planner will produce contacts sequences that
randomly try to cross the gap in one step or use the platform
with the wrong foot, resulting in unfeasible problems.

With CROC, the only contact plans computed use a contact
between the left foot and the platform, as shown in Figure
4, resulting in the feasible whole body motion shown in the
companion video.

D. Motion generation

In order to generate a whole body motion from our
contact sequence, we used the framework proposed in
[24]. We automatically compute a contact sequence with
our contact planner and CROC. Their non-linear solver
then computes an optimal centroidal trajectory, using a
multiple-shooting algorithm. Finally, a second-order inverse
kinematics solver computes a whole body motion that
follows the computed trajectory. The whole body motion
of the sequence of contacts in Figure 4 is shown in the
attached video.

Because trajectory generation methods use non-linear
solvers, the choice of an initial guess is essential as it can
drastically change the result of the method. Choosing this
initial guess may be challenging for multi-contact motions.
The centroidal trajectory (c(t), ¢(t), é(t)) found by CROC
can be used as an initial guess to warm start the non-linear



Fig. 4: Contact plan found by our planner. The platform is inclined at 30°, such that no states can be in static equilibrium

on the platform.

solvers. We tested the method presented in [24] with a CROC
warm start or with their naive one, on hundreds of randomly
generated scenarios. In our tests, we observed that in 17% of
the cases, the solver only converged with our warm-start. In
the other cases, it converged with both initial guesses but we
noticed a decrease of an average of 21% of the time required
to converge when we used our warm start.

V. CONCLUSION AND DISCUSSION

In this paper we introduce an accurate and efficient
formulation of the centroidal dynamics of a legged robot,
which is convex and not restricted to quasi-static motions.
To our knowledge it is the first method to combine these
three properties. We demonstrate the interest of the method
as a transition feasibility criterion for the contact planning
problem, and for computing a warm start centroidal trajec-
tory for non-linear solvers.

Contrary to methods using simplifying assumptions or
approximations, one strong advantage is that the computed
trajectories are thus guaranteed to respect the centroidal dy-
namics of the system. The additional main advantage of the
approach lies in its computational efficiency, which makes it
the first method fast enough to be integrated within a contact
planner. The last one is its simplicity of implementation and
the fact that it does not require any form of parametrization.

A. Handling whole-body approximations and uncertainties

The remaining source of approximation is shared with all
centroidal-based methods, and comes from the whole-body
constraints (joint limits, angular momentum and torques),
which are only approximated or ignored in the current
formulation. One solution could be to alternate centroidal op-
timization with whole-body optimization as other approaches
do [9], however for the transition feasibility problem, this
approach would result in an increased computational burden
that is not compatible with the combinatorial aspect of the
search. One way to improve the quality of this approximation
is to integrate torque constraints [25], [26]. Expressing such
constraints at the COM level is considered for future work.

Another interesting question is to guarantee that CROC
provides an answer robust to real world uncertainties. One
option to address the issue is to add an additional slack vari-
able to the problem in order to maximize the distance to the
considered constraints, similarly to our previous work [15],
and reject solutions that would not reach a user-defined
threshold. This would result in a conservative yet robust
approach to guarantee the transition.

B. How conservative is CROC?

The price for convexity is that our method does not cover
the whole solution space. However, evaluating the actual loss
is not possible since we share the limitation with all the
existing approaches, and thus do not have a ground truth for
comparison. For future work we plan to compare our method
with a non-linear solver [8], which we will consider as the
ground truth to measure the effective loss.

Comparatively to this non-linear solver, with the same cost
function CROC will most likely find a less optimal trajectory
in general. This is not a problem because we are mostly
concerned with feasibility. Regarding the time variable, it
appears that sampling the time over a discretized set has no
significant impact on the success rate on the method, and
thus is not an issue regarding the feasibility problem.

Interestingly, our experiments suggest that the solution
set spanned by CROC is not strictly included in the one
spanned by a non-linear solver not warm-started with CROC.
CROC is able to help non-linear solvers to converge in cases
where they fail otherwise. We also observe that our warm
starts significantly improve the computational performance of
the non-linear solver. This demonstrates another quantitative
interest of the approach, but further analysis is required to
provide a better insight on the benefit of combining the
approaches for motion generation.

C. Application to 0 and 1 step capturability

The N-Step capturability problem consists in determining
the ability of a robot (in a given state) to come to a stop (ie.
null velocity and acceleration) without falling by taking at
most N steps. It is used to detect and prevent fall.



We can easily change the constraints on c(¢) defined in
subsection III-B to remove the constraint on ¢, and constrain
(¢y = 0,&, = 0). With this set of constraints, the feasibility
of LP (7) determines the 0-Step capturability. Similarly, LP
(11) determines the 1-Step capturability.

For future work we would like to empirically determine
the accuracy of our method with respect to this problem,
using a framework similar to [20].

VI. SOURCE CODE

Code available (C++/python) under a BSD-2 license:
https://gitlab.com/stonneau/bezier_COM_traj
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