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A note on odd zeta values

Tanguy Rivoal and Wadim Zudilin

March 7, 2018

Abstract

Using a new construction of rational linear forms in odd zeta values and the saddle
point method, we prove the existence of at least two irrational numbers amongst
the 33 odd zeta values ζ(5), ζ(7), . . . , ζ(69).

Dedicated to Christian Krattenthaler, on his 60th birthday

1 Introduction

The arithmetic nature of the values of the Riemann zeta function at odd integers is still
largely unknown. Apéry [1] proved that ζ(3) is an irrational numbers and it was proved
in [2, 7] that infinitely many of the numbers ζ(2n + 1), n ≥ 1 integer, are irrational and
in fact even linearly independent over Q. The second author proved in [10] the existence
of at least one irrational number amongst ζ(5), ζ(7), ζ(9), ζ(11), and in [11] that for any
integer n ≥ 0, there exists at least one irrational number amongst the odd zeta values
ζ(2n + 3), ζ(2n + 5), . . . , ζ(16n + 7) (this result is used below with n = 5). Let us also
mention that Fischler and the second author proved in [3] the existence of two distinct odd
integers m,n ∈ {3, 5, . . . , 139} such that 1, ζ(m), ζ(n) are linearly independent over Q.

The goal of this note is to prove the following theorem.

Theorem 1. There exist at least two irrational numbers amongst the 33 odd zeta values

ζ(5), ζ(7), . . . , ζ(69).

We shall in fact prove the following equivalent form of Theorem 1.

Theorem 2. For any integer m such that 1 ≤ m ≤ 33, there exists at least one irrational

number amongst the 32 odd zeta values ζ(2n+ 3), where n ∈ {1, 2, . . . , 33} \ {m}.

Let us prove the equivalence between both theorems. Applying Theorem 2 with m = 1,
let ζ(2m0 + 3) denote one irrational number amongst ζ(7), ζ(9), . . . , ζ(69). We then
apply again Theorem 2 with m = m0: there exists an irrational number ζ(2n0 + 3) for
some n0 ∈ {1, 2, . . . , 33} \ {m0}, and Theorem 1 follows. Conversely, let ζ(2m0 + 3) and
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ζ(2n0 + 3) be two irrational numbers given by Theorem 1 with 1 ≤ m0, n0 ≤ 33. Let
m ∈ {1, 2, . . . , 33}: if m = m0, we pick the irrational number ζ(2n0 + 3) while if m 6= m0,
we pick the irrational number ζ(2m0 + 3), and Theorem 2 follows.

We now make some comparisons with the above mentioned results. The set {5, 7, . . . , 69}
is much smaller than {3, 5, . . . , 139}, but our method can’t decide if 1 and the two irra-
tional odd zeta values in Theorem 1 are linearly independent over Q. Also, there are two
irrational odd zeta values ζ(m) and ζ(n) with m ∈ {5, 7, 9, 11} and n ∈ {13, 15, . . . , 87}:
this bound is worse than in Theorem 1, but the localization is more precise.

In general, results of the type “there exists an irrational number amongst (. . . )” are
proved using the saddle point method to estimate the decay of certain sequences of linear
forms in zeta values. This is the case of the proofs of the results in [8, 10, 11]. Very
recently, the second author introduced a new method to prove in an “elementary” way the
existence of at least one irrational number amongst ζ(5), ζ(7), . . . , ζ(25). In particular,
he completely avoided the use of the saddle point method. Our approach is somewhat
different, as we shall indeed combine this new approach with the saddle point method
to obtain the proof of Theorem 2. Though one can still use an elementary strategy (as
outlined in [9]) to establish a result similar to Theorem 1, this result is weaker than ours.
For further applications of this new method, see [6, 9].

The paper is organized as follows. In §2, we introduce some notations and define two
series Sn and Ŝn that enable us to construct “good” linear forms in odd zeta values in §3.
In §4 we obtain two integrals representations Sn and Ŝn, to which we apply the saddle
point method in §5. We complete the proof of Theorem 2 in §6.

2 Notations

Let A denote an integer ≥ 15. For any integer n ≥ 0, we define the rational function of t

R(t) := n!A−15218n(2t+ n)
(t− n)3n(t+ n + 1)3n(t− n + 1

2
)33n

(t)An+1

= n!A−152−3(2t+ n)
(2t− 2n)36n+1

(t)A+3
n+1

where (x)m := x(x+ 1) · · · (x+m− 1).
The degree of R(t) is (15−A)n−A+ 1 ≤ −2 so that the partial fraction expansion is

R(t) =

A∑

j=1

n∑

m=0

pj,m
(t+m)j

(1)

with

pj,m :=
1

(A− j)!

(
R(t)(t+m)A

)(A−j)

t=−m
∈ Q (2)

and the residue at ∞ of R(t) is 0.
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For any integer n ≥ 0, we define the series which will be our main objects of study:

Sn :=
∞∑

k=1

R′′(k), Ŝn :=
∞∑

k=1

R′′
(
k − 1

2

)

where the double prime stands for double differentiation.
A series similar to Sn with R(t) replaced by n!A−6(2t + n)(t − n)3n(t + n + 1)3n(t)

−A
n+1

was used in [8] to prove the existence of at least one irrational number amongst ζ(5), ζ(7),
. . . , ζ(21). We shall follow the same approach as in [8] and combine it with [12] where the
additional factor (t − n + 1

2
)3n is the principal innovation. Its effects are explained in the

comments just after Proposition 1 below.
The arithmetic normalization n!A−15218n of the rational function R(t) is not optimal in

the sense that there is a large factor which can be cancelled out from the coefficients pj,m.
We carefully perform this analysis in Proposition 1. It is also possible that the arithmetic
behavior of the coefficients of the linear forms Sn and Ŝn is even better, because of certain
hypergeometric transformations underlying the construction. This phenomenon, known as
“denominators conjecture”, is studied in [5], and the methods developed there might bring
in similar improvements for this new situation. To keep our exposition at an accessible
level, we do not include such considerations here.

3 Construction of two linear forms in odd zeta values

Proposition 1. Let us assume that A ≥ 16 and n ≥ 0 are both even.

(i) We have

Sn = q0,n +

A+1∑

j=5

j odd

qj,nζ(j) (3)

and

Ŝn = q̂0,n +
A+1∑

j=5

j odd

qj,n(2
j − 1)ζ(j) (4)

where q0,n, q̂0,n and the qj,n’s are rational numbers, that depend on A.

(ii) Let dn := lcm{1, 2, . . . , n} and Φn ∈ N be the product of prime powers defined in (9)
below. Then Φ−3

n dA+2
n is a common denominator of the coefficients q0,n, q̂0,n and the qj,n

for odd j ≥ 5.

Explicit expressions for the sequences q0,n, q̂0,n and qj,n are given in the proof. The

relevance of the series Sn and Ŝn for Theorem 2 can now easily be shown: for any odd
integer m ∈ {5, 7, . . . , A+ 1}, we have

(2m − 1)Sn − Ŝn = (2m − 1)q0,n − q̂0,n +
A+1∑

j=5,j 6=m

j odd

qj,n(2
m − 2j)ζ(j)
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where ζ(m) no longer appears.

Proof. (i) Using the partial fraction expansion (1), we get

Sn =

A∑

j=1

n∑

m=0

pj,m

∞∑

k=1

d2

dk2
1

(k +m)j

=
A∑

j=1

n∑

m=0

pj,m

∞∑

k=1

j(j + 1)

(k +m)j+2

=

A∑

j=1

( n∑

m=0

pj,m

)
j(j + 1)ζ(j + 2)−

A∑

j=1

n∑

m=0

m∑

k=1

j(j + 1)pj,m
kj+2

.

Now, −
∑n

m=0 pj,1 is the residue at t = ∞ of R(t), hence is 0. Moreover, we can use in (1)
the symmetry R(−n − t) = (−1)(A+1)(n+1)R(t) = −R(t) (because A and n are even): it
implies that pj,m = (−1)j+1pj,n−m. Hence

∑n
m=0 pj,m = 0 when j is even. Therefore

Sn =

A+1∑

j=5

j odd

( n∑

m=0

(j − 2)(j − 1)pj−2,m

)
ζ(j)−

A∑

j=1

n∑

m=0

m∑

k=1

j(j + 1)pj,m
kj+2

.

We now let ζ̂(s) :=
∑∞

k=1
1

(k− 1

2
)s
= (2s − 1)ζ(s). We also have

Ŝn =

A∑

j=1

n∑

m=0

pj,m

∞∑

k=1

d2

dk2
1

(k +m− 1
2
)j

=
A∑

j=1

n∑

m=0

pj,m

∞∑

k=1

j(j + 1)

(k +m− 1
2
)j+2

=
A∑

j=1

( n∑

m=0

j(j + 1)pj,m

)
ζ̂(j + 2)−

A∑

j=1

n∑

m=0

m∑

k=1

j(j + 1)pj,m
(k − 1

2
)j+2

. (5)

Hence

Ŝn =

A+1∑

j=5

j odd

( n∑

m=0

(j − 2)(j − 1)pj−2,m

)
(2j − 1)ζ(j)−

A∑

j=1

n∑

m=0

m∑

k=1

j(j + 1)pj,m
(k − 1

2
)j+2

.

We have thus proved (3) and (4) with

qj,n :=
n∑

m=0

(j − 2)(j − 1)pj−2,m, j odd ≥ 5, (6)

q0,n := −
A∑

j=1

n∑

m=0

m∑

k=1

j(j + 1)pj,m
kj+2

(7)
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and

q̂0,n := −
A∑

j=1

n∑

m=0

m∑

k=1

j(j + 1)pj,m
(k − 1

2
)j+2

. (8)

(ii) We can apply mutatis mutandis [12, Lemma 1] and get that dA−j
n pj,m ∈ Z for any

j ∈ {1, . . . , A} and any m ∈ {0, . . . , n}.
On the other hand, observe that the rational function R(t) can be written as (2t+n)×

F (t)3G(t)A−15 where

F (t) := 26n
(t− n)n(t+ n + 1)n(t− n + 1

2
)3n

(t)5n+1

and G(t) :=
n!

(t)n+1

.

The numbers

(
F (t)(t+m)5

)
t=−m

=
(2n+ 2m)! (4n− 2m)!

m!6(n−m)!6
for m = 0, 1, . . . , n,

have a large common factor. Indeed, by the standard formula for p-adic valuation vp(n!) =∑∞
ℓ=1[n/p

ℓ] of n!, we get

vp

((2n+ 2m)! (4n− 2m)!

m!6(n−m)!6

)
= ρ

(n
p
,
m

p

)
≥ ρ0

(n
p

)

for an odd prime p > 2
√
n, where the function

ρ(x, y) := ⌊2x+ 2y⌋+ ⌊4x− 2y⌋ − 6⌊y⌋ − 6⌊x− y⌋
= 6{y}+ 6{x− y} − {2x+ 2y} − {4x− 2y}

is periodic of period 1 both in x and y, and

ρ0(x) := min
y∈R

ρ(x, y) = min
0≤y<1

ρ(x, y)

is also 1-periodic. The latter can be explicitly given on the interval 0 ≤ x < 1 by

ρ0(x) =





0 if 0 ≤ x < 1
3
,

1 if 1
3
≤ x < 1

2
,

2 if 1
2
≤ x < 2

3
,

3 if 2
3
≤ x < 5

6
,

4 if 5
6
≤ x < 1

(see, for example, [11, § 4] for similar computations). Thus, denoting

Φn :=
∏

2
√
n<p≤n

pρ0(n/p) (9)
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(a product over prime numbers), we obtain

Φ−1
n

(
F (t)(t+m)5

)
t=−m

∈ Z for m = 0, 1, . . . , n.

Following the lines of the proof of [11, Lemma 4.2], we see that these inclusions imply

Φ−1
n dkn

1

k!

(
F (t)(t+m)5

)(k)
t=−m

∈ Z

for m = 0, 1, . . . , n and all integers k ≥ 0. For the same range of indices we also have

dkn
1

k!

(
G(t)(t +m)

)(k)
t=−m

∈ Z.

Combining these inclusions with the representation R(t) = (2t+n)F (t)3G(t)A−15 and using
Leibniz’s rule for differentiating products, we conclude that the numbers pj,m in (2) satisfy
Φ−3

n dA−j
n pj,m ∈ Z for any j ∈ {1, . . . , A} and any m ∈ {0, . . . , n}.

From the expressions of qj,n in (6) and (7), we then deduce that Φ−3
n dA+2

n q0,n ∈ Z and
Φ−3

n dA+2
n qj,n ∈ Z for any odd j ≥ 5.

This argument does not work directly for q̂0,n with the expression in (8) because it
leads only to the weaker estimate Φ−3

n dA+2
2n q̂0,n ∈ Z. We need an alternative expression

for q̂0,n, and for this we follow [12, p. 5]. We let ω = ⌊n−1
2
⌋. Since R′′(k) = 0 for

k = −1
2
,−3

2
, . . . ,−n+ 1

2
, in particular R′′(k− 1

2
) = 0 for k = −ω, . . . ,−1, 0 when (1) n ≥ 1.

Hence, for any n ≥ 1,

Ŝn =
∞∑

k=−ω

R′′
(
k − 1

2

)
=

A∑

j=1

n∑

m=0

pj,m

∞∑

k=−ω

d2

dk2
1

(k +m− 1
2
)j

=

A∑

j=1

ω∑

m=0

pj,m

∞∑

k=−ω

j(j + 1)

(k +m− 1
2
)j+2

+

A∑

j=1

n∑

m=ω+1

pj,m

∞∑

k=−ω

j(j + 1)

(k +m− 1
2
)j+2

=

A∑

j=1

ω∑

m=0

pj,m

( 0∑

k=m−ω

j(j + 1)

(k − 1
2
)j+2

+

∞∑

k=1

j(j + 1)

(k − 1
2
)j+2

)

+
A∑

j=1

n∑

m=ω+1

pj,m

( ∞∑

k=1

j(j + 1)

(k − 1
2
)j+2

−
m−ω−1∑

k=1

j(j + 1)

(k − 1
2
)j+2

)

=

A∑

j=1

( n∑

m=0

j(j + 1)pj,m

)
ζ̂(j + 2) +

A∑

j=1

ω∑

m=1

(−1)jj(j + 1)pj,m

ω−m∑

k=0

1

(k + 1
2
)j+2

−
A∑

j=1

n∑

m=ω+1

(−1)jj(j + 1)pj,m

m−ω−1∑

k=1

1

(k − 1
2
)j+2

. (10)

1This not true when n = 0, but in this case q̂0,n = 0 and there is nothing to prove.
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Comparing (10) with (5), we see that when n ≥ 1,

q̂0,n =
A∑

j=1

ω∑

m=1

pj,m

ω−m∑

k=0

(−1)jj(j + 1)

(k + 1
2
)j+2

−
A∑

j=1

n∑

m=ω+1

pj,m

m−ω−1∑

k=1

(−1)jj(j + 1)

(k − 1
2
)j+2

.

This expression is more suitable than (8) and an analysis similar to [12, p. 6] shows that
Φ−3

n dA+2
n q̂0,n ∈ Z as expected.

4 Complex integral representations of Sn and Ŝn

In this section, the integers A ≥ 15 and n ≥ 0 are not necessarily even.

Proposition 2. Let L denotes any vertical line {c + iy, y ∈ R} oriented from y > 0 to

y < 0, where c ∈ (1
2
, n). We have

Sn =
n!A−15

iπ

∫

L

(2t+ n)
Γ(t)A+3Γ(2t+ 4n+ 1)3Γ(2n− 2t+ 1)3

Γ(t+ n + 1)A+3
cos(πt)4dt (11)

and

Ŝn = −n!
A−15

iπ

∫

L

(2t+ n− 1)
Γ(t− 1

2
)A+3Γ(2t+ 4n)3Γ(2n− 2t+ 2)3

Γ(t+ n+ 1
2
)A+3

cos(πt)4dt. (12)

Proof. We adapt the proof of [8, Lemma 4]. Using the trivial identity (x)m = Γ(x +
m)/Γ(x), we first rewrite

R(t) = n!A−152−3(2t+ n)
Γ(t)A+3Γ(2t+ 4n+ 1)3

Γ(t + n+ 1)A+3Γ(2t− 2n)3
(13)

= n!A−152−3(2t+ n)
Γ(t)A+3Γ(2t+ 4n+ 1)3Γ(2n− 2t+ 1)3

Γ(t+ n+ 1)A+3
· sin(2πt)

3

π3
(14)

where (14) is a consequence of the reflection formula Γ(x)Γ(1− x) = π/ sin(πx) applied to
(13) with x = 2t− 2n.

Let u be such that Re(u) ≤ 0 and |Im(u)| ≤ 3π. Let c denote any real number in (1
2
, n),

and N any integer ≥ n + 1. Let CN denote the rectangular contour (oriented positively)
with sides [c−iN,N+ 1

2
−iN ], [N+ 1

2
−iN,N+ 1

2
+iN ], [N+ 1

2
+iN, c+iN ], [c+iN, c−iN ].

By the residue theorem, and because R(j)(k) = 0 for k = 1, . . . , n and j ∈ {0, 1, 2}, we
have

1

2iπ

∫

CN

R(t)
π3

sin(πt)3
eutdt =

N∑

k=n+1

(
π2 + u2

2
R(k) + uR′(k) +

1

2
R′′(k)

)
(−eu)k.

The conditions on u ensure that, as N → +∞, we have

1

2iπ

c−i∞∫

c+i∞

R(t)
π3

sin(πt)3
eutdt =

∞∑

k=n+1

(
π2 + u2

2
R(k) + uR′(k) +

1

2
R′′(k)

)
(−eu)k. (15)
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In particular, summing the two specializations of (15) for u = iπ and u = −iπ, we get

1

iπ

c−i∞∫

c+i∞

R(t)
π3 cos(πt)

sin(πt)3
dt = Sn.

Hence,

Sn =
n!A−152−3

iπ

c−i∞∫

c+i∞

(2t+ n)
Γ(t)A+3Γ(2t+ 4n + 1)3Γ(2n− 2t + 1)3

Γ(t+ n+ 1)A+3
· sin(2πt)

3 cos(πt)

sin(πt)3
dt

=
n!A−15

iπ

c−i∞∫

c+i∞

(2t+ n)
Γ(t)A+3Γ(2t+ 4n + 1)3Γ(2n− 2t+ 1)3

Γ(t+ n+ 1)A+3
cos(πt)4dt.

With t− 1
2
instead of t in (14), we have

R
(
t− 1

2

)
= −n!A−152−3(2t+ n− 1)

Γ(t− 1
2
)A+3Γ(2t+ 4n)3Γ(2n− 2t+ 2)3

Γ(t+ n+ 1
2
)A+3

· sin(2πt)
3

π3
.

Since R(j)(k − 1
2
) = 0 for k = 1, . . . , n and j ∈ {0, 1, 2}, it follows again that

1

iπ

∫

CN

R
(
t− 1

2

)π3 cos(πt)

sin(πt)3
dt =

N∑

k=1

R′′
(
k − 1

2

)
.

Hence, upon letting N → +∞,

Ŝn = −n!
A−15

iπ

c−i∞∫

c+i∞

(2t+ n− 1)
Γ(t− 1

2
)A+3Γ(2t+ 4n)3Γ(2n− 2t+ 2)3

Γ(t+ n + 1
2
)A+3

cos(πt)4dt

and the proof is now complete.

5 Asymptotic behavior of Sn and Ŝn

To prove Theorem 1, we have to determine A even minimal such that Φ−3
n dA+2

n Sn → 0 and

Φ−3
n dA+2

n Ŝn → 0 along a subsequence of the even integers. It turns out that A = 68 is this
minimal value.

Proposition 3. Let A = 68. There exists an increasing sequence of even integers σ(n)
such that

lim
n→+∞

|Sσ(n)|1/σ(n) = lim
n→+∞

|Ŝσ(n)|1/σ(n) = e−κ

with κ ≈ 66.1727, and

lim
n→+∞

Ŝσ(n)

Sσ(n)

= −1.
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Proof. We let the integer A ≥ 15 be unspecified for the moment, and n is any integer ≥ 0.
We define log(z) = ln |z|+ i arg(z), with | arg(z)| < π. Stirling’s formula reads:

Γ(z) = zze−z

√
2π

z

(
1 +O

(1
z

))

as z → ∞ in any angular sector | arg(z)| ≤ π − ε, and O depends on ε > 0. Let us define

ϕ0(t) := (A + 3)t log(t) + (6t+ 12) log(2t+ 4)

+ (6− 6t) log(2− 2t)− (A+ 3)(t+ 1) log(t + 1),

where all the logarithms are defined with their principal determinations. This function is
analytic in Ω := C \

(
(−∞, 0] ∪ [1,+∞)

)
.

After changing t to tn in (11) and (12) in Proposition 2, we apply Stirling’s formula to
the various Gamma functions of the integrands and get

Sn =
2i(2π)(A−9)/2

n(A+9)/2

c+i∞∫

c−i∞

gn(t)f(t)
n cos(πnt)4dt (16)

and

Ŝn =
−2i(2π)(A−9)/2

n(A+9)/2

c+i∞∫

c−i∞

ĝn(t)f(t)
n cos(πnt)4dt (17)

where c is any real number in (0, 1), and

f(t) = exp(ϕ0(t)) =
tt(A+3)(2t+ 4)3(2t+4)(2− 2t)3(2−2t)

(t+ 1)(t+1)(A+3)

is analytic in Ω. The functions gn(t) and ĝn(t) are analytic in Ω and such that as n→ +∞

gn(t) = g(t)
(
1 +O

( 1

n

))
,

ĝn(t) = g(t)
(t+ 1)(A+3)/2(2− 2t)3

t(A+3)/2(2t+ 4)3

(
1 +O

(1
n

))
.

with

g(t) =
(2t+ 1)(2t+ 4)3/2(2− 2t)3/2

t(A+3)/2(t+ 1)(A+3)/2
.

For any ε > 0, when t ∈ {| arg(t)| ≤ π − ε} ∩ {| arg(1− t)| ≤ π − ε}, the constants in the
O( 1

n
) depends on ε and not on t.

We shall now apply the saddle point method to estimate each integral in (16) and (17).
Since

cos(x)4 =
3

8

(
cos(4x) + 4 cos(2x) + 3

)
,

9



we have

Sn =
2i(2π)(A−9)/2

n(A+9)/2

2∑

ℓ=−2

uℓJℓ,n and Ŝn = −2i(2π)(A−9)/2

n(A+9)/2

2∑

ℓ=−2

uℓĴℓ,n (18)

where

Jℓ,n =

c+i∞∫

c−i∞

gn(t)f(t)
ne2ℓiπntdt and Ĵℓ,n =

c+i∞∫

c−i∞

ĝn(t)f(t)
ne2ℓiπntdt,

and u−4 = u4 =
3
16
, u−2 = u2 =

3
4
and u0 =

9
16
.

Observe that Jℓ,n = −J−ℓ,n and Ĵℓ,n = −Ĵ−ℓ,n.

We now give the details necessary to complete the proof when A = 68. For the state-
ment of the saddle point method, see [8, Lemma 3].

• Case ℓ = 0. The equation ϕ′
0(t) = 0 admits a solution t0 ≈ 0.9991 ∈ (0, 1) and we have

g(t0) = ĝ(t0) 6= 0 and ϕ′′
0(t0) 6= 0 (see below). The real function f0(y) := Re(ϕ0)(t0 + iy)

admits a unique maximum at y = 0; this is proved by studying the sign of

f ′
0(y) = −Im(ϕ′

0)(t0 + iy)

= −71 arg(t0 + iy)− 6 arg(2t0 + 2iy + 4)

+ 6 arg(2− 2t0 − 2iy) + 71 arg(1 + t0 + iy). (19)

This is done by the same method as in [8, Lemma 4], using arg(z) = arctan(Im(z)/Re(z))
when Re(z) > 0 (which is the case of all the various values of z in (19)). Hence, shifting
the line c+ iR to the line t0+ iR (oriented from Im(t) < 0 to Im(t) > 0), we can apply the

saddle point method to J0,n and Ĵ0,n, and get

J0,n = ig(t0)

√
2π

nϕ′′
0(t0)

f(t0)
n
(
1 + o(1)

)
and Ĵ0,n = iĝ(t0)

√
2π

nϕ′′
0(t0)

f(t0)
n
(
1 + o(1)

)
.

Numerically,
t0 ≈ 0.99918, f(t0) ≈ 1.8127× 10−29

g(t0) =
(2t0 + 1)(2t0 + 4)3/2(2− 2t0)

3/2

t
71/2
0 (t0 + 1)71/2

≈ 6.2647× 10−14

ĝ(t0) = g(t0)
(t0 + 1)71/2(2− 2t0)

3

t
71/2
0 (2t0 + 4)3

= g(t0), ϕ′′
0(t0) ≈ 7373.2123

• Case ℓ = 1. Let us define ϕ1(t) := ϕ0(t)+2iπt. The equation ϕ′
1(t) = 0 admits a solution

t1 ≈ 0.9995 − i0.0007. We have g(t1) = −ĝ(t1) 6= 0 and ϕ′′
1(t1) = ϕ′′

0(t1) 6= 0 (see below).
The real function f1(y) := Re(ϕ1)(t1 + iy) admits a unique maximum at y = 0; again, this
is proved by studying the sign of

f ′
1(y) = −Im(ϕ′

1)(t0 + iy) = −Im(ϕ′
0)(t0 + iy)− 2π

10



as in [8, Lemma 4]. Hence, shifting the line c + iR to the line t1 + iR (oriented from

Im(t) < 0 to Im(t) > 0), we can apply the saddle point method to J1,n and Ĵ1,n, and get

J1,n = ig(t1)

√
2π

nϕ′′
0(t1)

f(t1)
n
(
1 + o(1)

)
and Ĵ1,n = iĝ(t1)

√
2π

nϕ′′
0(t1)

f(t1)
n
(
1 + o(1)

)
.

Numerically,
t1 ≈ 0.9995− i0.0007,

f(t1)e
2iπt1 ≈ 1.8171× 10−29 − i7.7425× 10−32

g(t1) =
(2t1 + 1)(2t1 + 4)3/2(2− 2t1)

3/2

t
71/2
1 (t1 + 1)71/2

≈ −i1.8629× 10−15 + 6.1544× 10−14

ĝ(t1) = g(t1)
(t1 + 1)71/2(2− 2t1)

3

t
71/2
1 (2t1 + 4)3

= −g(t1)

ϕ′′
0(t1) ≈ 3724.1063− i6320.4884

• Case ℓ = −1. We have

J−1,n = −J1,n = ig(t1)

√
2π

nϕ′′
0(t1)

f(t1)
n(
1 + o(1)

)

and

Ĵ1,n = −Ĵ1,n = iĝ(t1)

√
2π

nϕ′′
0(t1)

f(t1)
n(
1 + o(1)

)
.

• Case ℓ = 2. Let us define ϕ2(t) := ϕ0(t) + 4iπt. The equation ϕ′
2(t) = 0 admits a

solution t2 ≈ 1.0004 − i0.0007. We have g(t2) = ĝ(t2) 6= 0 and ϕ′′
2(t2) = ϕ′′

0(t2) 6= 0 (see
below). The situation is a different here because Re(t2) > 1 and thus the straightline
t2 + iR is not contained in Ω. Instead, we define the polygonal contour L := {t2 + y, y ≤
0} ∪ [t2, 1] ∪ {1 + iy, y ≥ 0}. One can then prove that when t varies in L, Re(ϕ2)(t) has a
unique maximum at t = t2; see the proof of [4, Lemma 10] or [11] for similar computations.
We now replace the “corner” at t = 1 by an arc of circle centered at 1 and of small
radius η > 0 (and contained in Ω), and connect it to the remaining parts of [t2, 1] and
{1 + iy, y ≥ 0}: we obtain a path L′ along which Re(ϕ2)(t) still has a unique maximum
at t = t2 provided η is small enough, and L′ is at positive distance of (−∞, 0] ∪ [1,+∞).
Hence, moving the line c + iR to L′ (oriented from Im(t) < 0 to Im(t) > 0) we can apply

the saddle point method to J2,n and Ĵ2,n, and get

J2,n = ig(t2)

√
2π

nϕ′′
0(t2)

f(t2)
n
(
1 + o(1)

)
and Ĵ2,n = iĝ(t2)

√
2π

nϕ′′
0(t2)

f(t2)
n
(
1 + o(1)

)
.

Numerically,
t2 ≈ 1.0004− i0.0007,

11



f(t2)e
4iπt2 ≈ 1.8261× 10−29 − i7.8209× 10−32

g(t2) =
(2t2 + 1)(2t2 + 4)3/2(2− 2t2)

3/2

t
71/2
2 (t2 + 1)71/2

≈ −5.9420× 10−14 − i1.8161× 10−15

ĝ(t2) = g(t2)
(t2 + 1)71/2(2− 2t2)

3

t
71/2
2 (2t2 + 4)3

= g(t2)

ϕ′′
0(t2) ≈ −3574.1082− i6320.4861

• Case ℓ = −2. We have

J−2,n = −J2,n = ig(t2)

√
2π

nϕ′′
0(t2)

f(t2)
n(
1 + o(1)

)

and

Ĵ−2,n = −Ĵ2,n = iĝ(t2)

√
2π

nϕ′′
0(t2)

f(t2)
n(
1 + o(1)

)
.

We now observe that |f(t2)e4iπt2 | > |f(t1)e2iπt1 | > |f(t0)|. By an argument similar to

[8, Lemma 5], we deduce from (18) and the above asymptotic estimates for J2,n, J−2,n, Ĵ2,n
and Ĵ−2,n the existence of an increasing sequence of even integers σ(n) such that

lim
n→+∞

|Sσ(n)|1/σ(n) = |f(t2)e4iπt2 |, lim
n→+∞

|Ŝσ(n)|1/σ(n) = |f(t2)e4iπt2 |

and moreover

lim
n→+∞

Ŝσ(n)

Sσ(n)

= −1.

We conclude the proof with the estimate |f(t2)e4iπt2 | ≈ exp(−66.1727).

6 Proof of Theorem 2

We first remark that the asymptotic behaviors of dn and of Φn both follow from the prime
number theorem:

lim
n→∞

log(dn)

n
= 1 and δ := lim

n→∞

log(Φn)

n
=

∫ 1

0

ρ0(t) d(ψ(t) + t−1) ≈ 1.29564,

where ψ(t) := Γ′(t)/Γ(t) and the function ρ0(t) is defined in the proof of Proposition 1.
We now take A = 68 in Proposition 1. For any odd integer m ∈ {5, 7, . . . , 69} and any

even integer n, we have

Φ−3
n d70n

(
(2m − 1)Sn − Ŝn

)
= Q0,n +

69∑

j=5,j 6=m

j odd

Qj,nζ(j).

12



with Q0,n := Φ−3
n d70n

(
(2m − 1)q0,n − q̂0,n

)
∈ Z and Qj,n = Φ−3

n d70n (2m − 2j)qj,n ∈ Z.
By Proposition 3, we have

lim
n→+∞

∣∣∣Φ−3
σ(n)d

70
σ(n)

(
(2m − 1)Sσ(n) − Ŝσ(n)

)∣∣∣
1/σ(n)

= lim
n→+∞

∣∣Φ−3
σ(n)d

70
σ(n)Sσ(n)

∣∣1/σ(n) × lim
n→+∞

∣∣∣∣(2
m − 1)− Ŝσ(n)

Sσ(n)

∣∣∣∣
1/σ(n)

= e70−κ−3δ ≈ e−0.0597 ∈ (0, 1).

This proves the existence of at least one irrational number amongst the odd zeta values
ζ(j) with j odd in {5, 7, . . . , 69} \ {m}.

Bibliography
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