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Abstract

Let (Ai)i≥0 be a finite state irreducible aperiodic Markov chain and f a lattice

score function such that the average score is negative and positive scores are

possible. Define S0 := 0 and Sk :=
∑k
i=1 f(Ai) the successive partial sums,

S+ the maximal non-negative partial sum, Q1 the maximal segmental score

of the first excursion above 0 and Mn := max0≤k≤`≤n(S` − Sk) the local

score, first defined by Karlin and Altschul [8]. We establish recursive formulae

for the exact distribution of S+ and derive a new approximation for the tail

behaviour of Q1, together with an asymptotic equivalence for the distribution

of Mn. Computational methods are explicitly presented in a simple application

case. Comparison is performed between the new approximations and the ones

proposed by Karlin and Dembo [9] in order to evaluate improvements, both in

the simple application case and on the real data examples considered in [8].
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1. Introduction

There is nowadays a huge amount of biological sequences available. The local score

for one sequence analysis, first defined by Karlin and Altchul in [8] (see Equation (3)

below for definition) quantifies the highest level of a certain quantity of interest, e.g.

hydrophobicity, polarity, etc..., that can be found locally inside a given sequence. This

allows for example to detect atypical segments in biological sequences. In order to

distinguish significantly interesting segments from the ones that could have appeared

by chance alone, it is necessary to evaluate the p-value of a given local score. Different

results have already been established using different probabilistic models for sequences:

independent and identically distributed variables model (i.i.d.) [2, 8, 9, 12], Markovian

models [7, 9] and Hidden Markov Models [4]. In this article we will focus on the

Markovian model.

An exact method was proposed by Hassenforder and Mercier [7] to calculate the

distribution of the local score for a Markovian sequence, but this result is computationally

time consuming for long sequences (> 103). Karlin and Dembo [9] established the limit

distribution of the local score for a Markovian sequence and a random scoring scheme

depending on the pairs of consecutive states in the sequence. They proved that, in the

case of a non-lattice scoring scheme, the distribution of the local score is asymptotically

a Gumble distribution, as in the i.i.d. case. In the lattice case, they give asymptotic

lower and upper bounds of Gumbel type for the local score distribution. In spite of

its importance, their result in the Markovian case is unforfunately very little cited

or used in the literature. A possible explanation could be the fact that the random

scoring scheme defined in [9] is more general than the ones classically used in practical

approaches. In [5] and [6], the authors verify by simulations that the local score in

a certain dependence model follows a Gumble distribution, and use simulations to

estimate the two parameters of this distribution.

In this article we study the Markovian case for a more classical scoring scheme. We

propose a new approximation, given as an asymptotic equivalence when the length of

the sequence tends to infinity, for the distribution of the local score of a Markovian

sequence. We compare it to the asymptotic bounds of Karlin and Dembo [9] and

illustrate the improvements both in a simple application case and on the real data
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examples proposed in [8].

Mathematical framework Let (Ai)i≥0 be an irreducible and aperiodic Markov chain

taking its values in a finite set A containing r states denoted α, β, . . . for simplicity.

Let P = (pαβ)α,β∈A be its transition probability matrix and π its stationary frequency

vector. In this work we suppose that P is positive (∀α, β, pαβ > 0). We also suppose

that the initial distribution of A0 is given by π, hence the Markov chain is stationary.

Pα will stand for the conditional probability given {A0 = α}. We consider a lattice

score function f : A → dZ, with d ∈ N being the lattice step. Note that, since A is

finite, we have a finite number of possible scores. Since the Markov chain (Ai)i≥0 is

stationary, the distribution of Ai is π for every i ≥ 0. We will simply denote E[f(A)]

the average score.

In this article we make the hypothesis that the average score is negative, i.e.

Hypothesis (1): E[f(A)] =
∑
α

f(α)πα < 0. (1)

We will also suppose that for every α ∈ A we have

Hypothesis (2): Pα(f(A1) > 0) > 0. (2)

Note that, thanks to the assumption pαβ > 0,∀α, β, Hypothesis (2) is equivalent to

the existence of β ∈ A such that f(β) > 0.

Let us introduce some definitions and notation. Let S0 := 0 and Sk :=
∑k
i=1 f(Ai),

for k ≥ 1, the successive partial sums. Let S+ be the maximal non-negative partial

sum

S+ := max{0, Sk : k ≥ 0}.

Further, let σ− := inf{k > 1 : Sk < 0} be the time of the first negative partial sum.

Note that σ− is an a.s.-finite stopping time due to Hypothesis (1), and let

Q1 := max
0≤k<σ−

Sk.

First introduced by Karlin and Altschul [8], the local score, denoted Mn, is defined

as the maximum segmental score for a sequence of length n:

Mn := max
06k6`6n

(S` − Sk). (3)
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Note that, in order to study the distributions of the variables S+, Q1 and Mn, which

all take values in dN, it suffices to focus on the case d = 1. We will thus consider d = 1

throughout the article.

Remark 1.1. Karlin and Dembo [9] consider a more general model, with a random

score function defined on pairs of consecutive states of the Markov chain: they associate

to each transition (Ai−1, Ai) = (α, β) a bounded random score Xαβ whose distribution

depends on the pair (α, β). Moreover, they suppose that, for (Ai−1, Ai) = (Aj−1, Aj) =

(α, β), the random scores XAi−1Ai and XAj−1Aj are independent and identically distri-

buted as Xαβ . Their model is more general also in that the scores are not restricted

to the lattice case and may be continuous random variables.

The framework of this article corresponds to the case where the score function is

deterministic and lattice, with XAi−1Ai = f(Ai).

Note also that in our case the Hypotheses (1) and (2) assure the so-called cycle

positivity, i.e. the existence of some state α ∈ A and of some m ≥ 2 satisfying

P
(⋂m−1

k=1 {Sk > 0} | A0 = Am = α
)
> 0. In [9], in order to simplify the presentation,

the authors strengthen the assumption of cycle positivity by assuming that

P(Xαβ > 0) > 0 and P(Xαβ < 0) > 0 for all α, β ∈ A (see (1.19) of [9]), but precise

that the cycle positivity is sufficient for their results to hold.

In Section 2 we first introduce few more definitions and notation. We then present

the main results: a recursive result for the exact distribution of the maximal non-

negative partial sum S+ for an infinite sequence in Theorem 2.1; based on the exact

distribution of S+, we further propose a new approximation for the tail behaviour of

the height of the first excursion Q1 in Theorem 2.3. We also establish, in Theorem 2.4,

an asymptotic equivalence result for the distribution of the local score Mn when the

length n of the sequence tends to infinity. Section 3 contains the proofs of the results

of Section 2 and of some useful lemmas which use techniques of Markov renewal theory

and large deviations. In Section 4 we propose a computational method for deriving

the quantities appearing in the main results. A simple scoring scheme is developed

in Subsection 4.4, for which we compare our approximations to the ones proposed by

Karlin and Dembo [9] in the Markovian case. In Subsection 4.5 we also show the

improvements brought by the new approximations on the real data examples of [8].
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2. Statement of the main results

2.1. Definitions and notation

Let K0 := 0 and for i ≥ 1, Ki := inf{k > Ki−1 : Sk − SKi−1 < 0} the successive

decreasing ladder times of (Sk)k≥0. Note that K1 = σ−.

Let us now consider the subsequence (Ai)0≤i≤n for a given length n ∈ N \ {0}.

Denote m(n) := max{i ≥ 0 : Ki ≤ n} the random variable corresponding to the

number of decreasing ladder times arrived before n. For every i = 1, . . . ,m(n), we call

the sequence (Aj)Ki−1<j≤Ki the i-th excursion above 0.

Note that, due to the negative drift, we have E[K1] < ∞ (see Lemma 3.7) and

m(n) → ∞ a.s. when n → ∞. To every excursion i = 1, . . . ,m(n) we associate its

maximal segmental score (called also height) Qi defined by

Qi := max
Ki−1≤k<Ki

(Sk − SKi−1
).

Note that Mn = max(Q1, . . . , Qm(n), Q
∗), with Q∗ being the maximal segmental

score of the last incomplete excursion (Aj)Km(n)<j≤n. Mercier and Daudin [12] give

an alternative expression for Mn using the Lindley process (Wk)k≥0 describing the

excursions above zero between the successive stopping times (Ki)i≥0. With W0 := 0

and Wk+1 := max(Wk + f(Ak+1), 0), we have Mn = max06k6nWk.

For every α, β ∈ A, we denote qαβ := Pα(AK1
= β) and Q := (qαβ)α,β∈A. Define

A− := {α ∈ A : f(α) < 0} and A+ := {α ∈ A : f(α) > 0}. Note that the matrix Q

is stochastic, with qαβ = 0 for β ∈ A \ A−. Its restriction Q̃ to A− is stochastic and

irreducible, since qαβ ≥ pαβ > 0, ∀α, β ∈ A−. The states (AKi)i≥1 of the Markov chain

at the end of the successive excursions define a Markov chain on A− with transition

probability matrix Q̃.

For every i ≥ 2 we thus have P(AKi = β |AKi−1
= α) = qαβ if α, β ∈ A− and 0

otherwise. Denote z̃ > 0 the stationary frequency vector of the irreducible stochastic

matrix Q̃ and let z := (zα)α∈A, with zα = z̃α > 0 for α ∈ A− and zα = 0 for

α ∈ A \ A−. Note that z is invariant for the matrix Q, i.e. zQ = z.

Remark 2.1. Note that in Karlin and Dembo’s Markovian model of [9], the matrix Q

is irreducible, thanks to their random scoring function and to their hypotheses recalled

in Remark 1.1.
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Using the strong Markov property, conditionally on (AKi)i≥1 the r.v. (Qi)i≥1 are

independent, with the distribution of Qi depending only on AKi−1
and AKi .

For every α ∈ A, β ∈ A− and y ≥ 0, let

FQ1,α,β(y) := Pα(Q1 ≤ y |Aσ− = β) and FQ1,α(y) := Pα(Q1 ≤ y).

Note that for any α ∈ A− and i ≥ 1, FQ1,α,β represents the cumulative distribution

function (cdf ) of the height Qi of the i-th excursion given that it starts in state α and

ends in state β, i.e. FQ1,α,β(y) = P(Qi ≤ y |AKi = β,AKi−1 = α), whereas FQ1,α

represents the cdf of Qi conditionally on the i-th excursion starting in state α, i.e.

FQ1,α(y) = P(Qi ≤ y |AKi−1
= α). We thus have FQ1,α(y) =

∑
β∈A− FQ1,α,β(y)qαβ .

We also introduce the stopping time σ+ := inf{k > 1 : Sk > 0} with values in

N ∪ {∞}. Due to Hypothesis (1), we have Pα(σ+ <∞) < 1, for all α ∈ A.

For every α, β ∈ A and ξ > 0, let Lαβ(ξ) := Pα(Sσ+ 6 ξ, σ+ <∞, Aσ+ = β).

Note that Lαβ(ξ) = 0 for β ∈ A \ A+, and Lαβ(∞) ≤ Pα(σ+ < ∞) < 1, therefore∫∞
0
dLαβ(ξ) = Lαβ(∞) < 1.

Let us also denote Lα(ξ) :=
∑
β∈A+ Lαβ(ξ) = Pα(Sσ+ 6 ξ, σ+ <∞) the conditional

cdf of the first positive partial sum when it exists, given that the Markov chain starts

in state α, and Lα(∞) := limξ→∞ Lα(ξ) = Pα(σ+ <∞).

For any θ ∈ R we introduce the following matrix Φ(θ) := (pαβ · exp(θf(β)))α,β∈A .

Since the transition matrix P is positive, by the Perron-Frobenius Theorem, the

spectral radius ρ(θ) > 0 of the matrix Φ(θ) coincides with its dominant eigenvalue, for

which there exists a unique positive right eigen vector u(θ) = (ui(θ))1≤i≤r (seen as a

column vector) normalized so that
∑r
i=1 ui(θ) = 1. Moreover, θ 7→ ρ(θ) is differentiable

and strictly log convex (see [3, 10, 11]). In Lemma 3.5 we prove that ρ′(0) = E[f(A)],

hence ρ′(0) < 0 by Hypothesis (1). Together with the strict log convexity of ρ and the

fact that ρ(0) = 1, this implies that there exists a unique θ∗ > 0 such that ρ(θ∗) = 1

(see [3] for more details).

2.2. Main results. Improvements on the distribution of the local score

Let α ∈ A. We start by giving a result which allows to compute recursively the

cdf of the maximal non-negative partial sum S+. We denote by FS+,α the cdf of S+

conditionally on starting in state α: FS+,α(`) := Pα(S+ ≤ `), ∀` ∈ N and for every
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k ∈ N \ {0} and β ∈ A:

L
(k)
αβ := Pα(Sσ+ = k, σ+ <∞, Aσ+ = β).

Note that L
(k)
αβ = 0 for β ∈ A \ A+ and Lα(∞) =

∑
β∈A+

∑∞
k=1 L

(k)
αβ .

The following result gives a recurrence relation for the double sequence (FS+,α(`))α,`,

involving the coefficients L
(k)
αβ which can be computed recursively (see Subsection 4.2).

Theorem 2.1. (Exact result for the distribution of S+.) For all α ∈ A and ` ≥ 1:

FS+,α(0) = Pα(σ+ =∞) = 1− Lα(∞),

FS+,α(`) = 1− Lα(∞) +
∑
β∈A+

∑̀
k=1

L
(k)
αβ FS+,β(`− k).

The proof will be given in Section 3.

In Theorem 2.2 we obtain an asymptotic result for the tail behavior of S+ using

Theorem 2.1 and ideas inspired from [9] adapted to our framework (see also the

discussion in Remark 1.1). Before stating this result, we need to introduce few more

notations.

For every α, β ∈ A and k ∈ N we denote

G
(k)
αβ :=

uβ(θ∗)

uα(θ∗)
eθ
∗kL

(k)
αβ , Gαβ(k) :=

k∑
`=0

G
(`)
αβ , Gαβ(∞) :=

∞∑
k=0

G
(k)
αβ .

The matrix G(∞) := (Gαβ(∞))α,β is stochastic, using Lemma 3.3; the subset A+ is a

recurrent class, whereas the states in A \ A+ are transient. The restriction of G(∞)

to A+ is stochastic and irreducible; let us denote w̃ > 0 the corresponding stationary

frequency vector. Define w = (wα)α∈A, with wα = w̃α > 0 for α ∈ A+ and wα = 0 for

α ∈ A \ A+. The vector w is invariant for G(∞), i.e. wG(∞) = w.

Remark 2.2. Note that in Karlin and Dembo’s Markovian model of [9], the matrix

G(∞) is positive, hence irreducible, thanks to their random scoring function and to

their hypotheses recalled in Remark 1.1.

Remark 2.3. In Subsection 4.3 we detail a recursive procedure for computing the

cdf FS+,α, based on Theorem 2.1. Note also that, for every α, β ∈ A, there are a

finite number of L
(k)
αβ terms different from zero. Therefore, there are a finite number

of non-null terms in the sum defining Gαβ(∞).
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The following result is the analogous, in our settings, of Lemma 4.3 of Karlin and

Dembo [9].

Theorem 2.2. (Asymptotics for the tail behaviour of S+.) For every α ∈ A we have

lim
k→+∞

eθ
∗kPα(S+ > k)

uα(θ∗)
=

1

c
·
∑
γ∈A+

wγ
uγ(θ∗)

∑
`≥0

(Lγ(∞)− Lγ(`))eθ
∗` := c(∞), (4)

where w = (wα)α∈A is the stationary frequency vector of the matrix G(∞) and

c :=
∑

γ,β∈A+

wγ
uγ(θ∗)

uβ(θ∗)
∑
`≥0

` · eθ
∗` L

(`)
γβ .

The proof is deferred to Section 3.

Remark 2.4. Note that there are a finite number of non-null terms in the above sums

over `. We also have the following alternative expression for c(∞):

c(∞) =
1

c(eθ∗ − 1)
·
∑
γ∈A+

wγ
uγ(θ∗)

{
Eγ
[
eθ
∗Sσ+ ;σ+ <∞

]
− Lγ(∞)

}
.

Indeed, by the summation by parts formula

k∑
`=m

f`(g`+1 − g`) = fk+1gk+1 − fmgm −
k∑

`=m

(f`+1 − f`)g`+1,

we obtain

∞∑
`=0

(Lγ(∞)− Lγ(`))eθ
∗` =

1

eθ∗ − 1

∞∑
`=0

(Lγ(∞)− Lγ(`))
(
eθ
∗(`+1) − eθ

∗`
)

=
1

eθ∗ − 1

×

{
lim
k→∞

(Lγ(∞)− Lγ(k))eθ
∗k − Lγ(∞)−

∞∑
`=0

(Lγ(`)− Lγ(`+ 1))eθ
∗(`+1)

}

=
1

eθ∗ − 1

{
−Lγ(∞) +

∞∑
`=0

eθ
∗(`+1) Pγ(Sσ+ = `+ 1, σ+ <∞)

}

=
1

eθ∗ − 1

{
Eγ
[
eθ
∗Sσ+ ;σ+ <∞

]
− Lγ(∞)

}
.

Before stating the next results, let us denote for every integer ` < 0 and α, β ∈ A,

Q
(`)
αβ := Pα(Sσ− = `, Aσ− = β).

Note that Q
(`)
αβ = 0 for β ∈ A \ A−. In Section 4 we give a recursive method for

computing these quantities.
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Using Theorem 2.2 we obtain the following result, where the notation fk ∼
k→∞

gk

means fk − gk = o(gk), or equivalently
fk
gk
−→
k→∞

1.

Theorem 2.3. (Asymptotic approximation for the tail behaviour of Q1.) We have the

following asymptotic result on the tail distribution of the height of the first excursion:

for every α ∈ A we have

Pα(Q1 > k) ∼
k→∞

Pα(S+ > k)−
∑
`<0

∑
β∈A−

Pβ
(
S+ > k − `

)
·Q(`)

αβ . (5)

The proof will be given in Section 3.

Remark 2.5. Note that, as a straightforward consequence of Theorems 2.2 and 2.3,

we recover the following limit result of Karlin and Dembo [9] (Lemma 4.4):

lim
k→+∞

eθ
∗kPα(Q1 > k)

uα(θ∗)
= c(∞)

1−
∑
β∈A−

uβ(θ∗)

uα(θ∗)

∑
`<0

eθ
∗`Q

(`)
αβ

 .

Using now Theorems 2.2 and 2.3, we finally obtain the following result on the

asymptotic distribution of the local score Mn for a sequence of length n.

Theorem 2.4. (Asymptotic distribution of the local score Mn.) For every α ∈ A and

x ∈ R we have:

Pα
(
Mn ≤

log(n)

θ∗
+ x

)
∼

n→∞
exp

− n

A∗

∑
β∈A−

zβPβ
(
S+ > blog(n)/θ∗ + xc

)
× exp

 n

A∗

∑
k<0

∑
γ∈A−

Pγ
(
S+ > blog(n)/θ∗ + xc − k

)
·
∑
β∈A−

zβQ
(k)
βγ

 , (6)

where z = (zα)α∈A is the invariant probability measure of the matrix Q defined in

Subsection 2.1 and A∗ := lim
m→+∞

Km

m
=

1

E(f(A))

∑
β∈A−

zβEβ [Sσ− ] a.s.

Remark 2.6. • Note that the asymptotic equivalent in Equation (6) does not

depend on the initial state α.

• We recall, for comparison, the asymptotic lower and upper bounds of Karlin

and Dembo [9] for the distribution of Mn:

lim inf
n→+∞

Pα
(
Mn ≤

log(n)

θ∗
+ x

)
≥ exp

{
−K+ exp(−θ∗x)

}
, (7)
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lim sup
n→+∞

Pα
(
Mn ≤

log(n)

θ∗
+ x

)
≤ exp {−K∗ exp(−θ∗x)} , (8)

with K+ = K∗ exp(θ∗) and K∗ = v(∞) · c(∞), where c(∞) is given in Theorem

2.2 and is related to the defective distribution of the first positive partial sum

Sσ+ (see also Remark 2.4), and v(∞) is related to the distribution of the first

negative partial sum Sσ− (see Equations (5.1) and (5.2) of [9] for more details).

A more explicit formula for K∗ is given in Subsection 4.4 for an application in a

simple case.

• Even if the expression of our asymptotic equivalent in Equation (6) seems

more cumbersome than the asymptotic bounds of Karlin and Dembo recalled

in Equations (7) and (8), the practical implementations are equivalent.

3. Proofs of the main results

3.1. Proof of Theorem 2.1

FS+,α(`) = Pα(σ+ =∞) + Pα(S+ ≤ `, σ+ <∞)

= 1− Lα(∞) +
∑
β∈A+

∑̀
k=1

Pα(S+ ≤ `, σ+ <∞, Sσ+ = k,Aσ+ = β)

= 1− Lα(∞) +
∑
β∈A+

∑̀
k=1

L
(k)
αβ Pα(S+ ≤ ` |σ+ <∞, Sσ+ = k,Aσ+ = β).

It then suffices to note that

Pα(S+ − Sσ+ ≤ `− k |σ+ <∞, Sσ+ = k,Aσ+ = β) = Pβ(S+ ≤ `− k),

by the strong Markov property applied to the stopping time σ+. �

3.2. Proof of Theorem 2.2

We first prove some preliminary lemmas.

Lemma 3.1. We have limk→∞ Pα(S+ > k) = 0 for every α ∈ A.

Proof. With FS+,α defined in Theorem 2.1, we introduce for every α and ` ≥ 0:

bα(`) :=
1− FS+,α(`)

uα(θ∗)
eθ
∗`, aα(`) :=

Lα(∞)− Lα(`)

uα(θ∗)
eθ
∗`.
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Theorem 2.1 allows to obtain the following renewal system for the family (bα)α∈A:

∀` > 0,∀α ∈ A, bα(`) = aα(`) +
∑
β

∑̀
k=0

bβ(`− k)G
(k)
αβ . (9)

Since the restriction of G̃(∞) of G(∞) to A+ is stochastic, its spectral radius equals

1 and a corresponding right eigenvector is the vector having all components equal to

1; a left eigenvector is the stationary frequency vector w̃ > 0.

Step 1 : For every α ∈ A+, a direct application of Theorem 2.2 of Athreya and Murthy

[1] gives the formula in Equation (4) for the limit c(∞) of bα(`) when ` → ∞, which

implies lim
k→∞

Pα(S+ > k) = 0.

Step 2 : Consider now α /∈ A+. By Theorem 2.1 we have

Pα(S+ > `) = Lα(∞)−
∑
β∈A+

∑̀
k=1

L
(k)
αβ

{
1− Pβ(S+ > `− k)

}
.

Since Pβ(S+ > `− k) = 1 for k > ` and Lα(∞) =
∑
β∈A+

∑∞
k=1 L

(k)
αβ , we deduce

Pα(S+ > `) =
∑
β∈A+

∞∑
k=1

L
(k)
αβ Pβ(S+ > `− k). (10)

Note that for fixed α and β, there are a finite number of non-null terms in the above sum

over k. Using the fact that for fixed β ∈ A+ and k ≥ 1 we have Pβ(S+ > `− k) −→ 0

when `→∞, as shown previously in Step 1, the stated result follows. �

Lemma 3.2. Let θ > 0. With u(θ) defined in Subsection 2.1, the sequence of random

variables (Um(θ))m≥0 defined by U0(θ) := 1 and

Um(θ) :=

m−1∏
i=0

[
exp(θf(Ai+1))

uAi(θ)
·
uAi+1(θ)

ρ(θ)

]
=

exp(θSm)uAm(θ)

ρ(θ)muA0
(θ)

, for m ≥ 1

is a martingale with respect to the canonical filtration Fm = σ(A0, . . . , Am).

Proof. For every m ∈ N and θ > 0, Um(θ) is clearly measurable with respect to Fm
and integrable, since A is finite. We can write

Um+1(θ) = Um(θ)
exp(θf(Am+1))uAm+1

(θ)

uAm(θ)ρ(θ)
.

Since Um(θ) and uAm(θ) are measurable with respect to Fm, we have

E[Um+1(θ)|Fm] = Um(θ)
E[exp(θf(Am+1))uAm+1

(θ)|Fm]

uAm(θ)ρ(θ)
.
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By the Markov property we further have

E[exp(θf(Am+1))uAm+1
(θ)|Fm] = E[exp(θf(Am+1))uAm+1

(θ)|Am]

and by definition of u(θ),

E[exp(θf(Am+1))uAm+1
(θ)|Am = α] =

∑
β

exp(θf(β))uβ(θ)pαβ = uα(θ)ρ(θ).

We deduce E[exp(θf(Am+1))uAm+1
(θ)|Am] = uAm(θ)ρ(θ), hence E[Um+1(θ)|Fm] =

Um(θ), which finishes the proof. �

Lemma 3.3. With θ∗ defined at the end of Subsection 2.1 we have

∀α ∈ A :
1

uα(θ∗)

∑
β∈A+

∞∑
`=1

L
(`)
αβ e

θ∗` uβ(θ∗) = 1. (11)

Proof. The proof uses Lemma 3.1 and ideas inspired from [9] (Lemma 4.2). First

note that the above equation is equivalent to Eα[Uσ+(θ∗);σ+ < ∞] = 1, with Um(θ)

defined in Lemma 3.2. By applying the optional sampling theorem to the bounded

stopping time τn := min(σ+, n) and to the martingale (Um(θ∗))m, we obtain

1 = Eα[U0(θ∗)] = Eα[Uτn(θ∗)] = Eα[Uσ+(θ∗);σ+ ≤ n] + Eα[Un(θ∗);σ+ > n].

We will show that Eα[Un(θ∗);σ+ > n] −→ 0 when n→∞. Passing to the limit in the

previous relation will then give the desired result. Since ρ(θ∗) = 1, we have

Un(θ∗) =
exp(θ∗Sn)uAn(θ∗)

uA0
(θ∗)

and it suffices to show that limn→∞ Eα[exp(θ∗Sn);σ+ > n] = 0.

For a fixed a > 0 we can write

Eα[exp(θ∗Sn);σ+ > n] = Eα[exp(θ∗Sn);σ+ > n, ∃k ≤ n : Sk ≤ −2a]

+ Eα[exp(θ∗Sn);σ+ > n,−2a ≤ Sk ≤ 0, ∀0 ≤ k ≤ n]. (12)

The first expectation in the right-hand side of Equation (12) can further be bounded:

Eα[exp(θ∗Sn);σ+ > n, ∃k ≤ n : Sk ≤ −2a] ≤ Eα[exp(θ∗Sn);σ+ > n, Sn ≤ −a]

+ Eα[exp(θ∗Sn);σ+ > n, Sn > −a, ∃k < n : Sk ≤ −2a]. (13)
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We obviously have

Eα[exp(θ∗Sn);σ+ > n, Sn ≤ −a] ≤ exp(−θ∗a). (14)

Let us further define the stopping time T := inf{k ≥ 1 : Sk ≤ −2a}. Note that

T <∞ a.s., since Sn −→ −∞ a.s. when n→∞. Indeed, by the ergodic theorem, we

have Sn/n −→ E[f(A)] < 0 a.s. when n→∞. Therefore we have

Eα[exp(θ∗Sn);σ+ > n, Sn > −a, ∃k < n : Sk ≤ −2a] ≤ Pα(T ≤ n, Sn > −a)

=
∑
β∈A−

Pα(T ≤ n, Sn > −a |AT = β)Pα(AT = β)

≤
∑
β∈A−

Pα(Sn − ST > a |AT = β)Pα(AT = β) ≤
∑
β∈A−

Pβ(S+ > a)Pα(AT = β),

by the strong Markov property. For every a > 0 we thus have

lim sup
n→∞

Eα[exp(θ∗Sn);σ+ > n, Sn > −a, ∃k < n : Sk ≤ −2a] ≤
∑
β∈A−

Pβ(S+ > a).

(15)

Considering the second expectation in the right-hand side of Equation (12), we have

lim
n→∞

Pα(−2a ≤ Sk ≤ 0, ∀0 ≤ k ≤ n) = Pα(−2a ≤ Sk ≤ 0, ∀k ≥ 0) = 0, (16)

again since Sn −→ −∞ a.s. when n→∞.

Equations (12),(13),(14),(15) and (16) imply that, for every a > 0, we have

lim sup
n→∞

Eα[exp(θ∗Sn);σ+ > n] ≤ exp(−θ∗a) +
∑
β∈A−

Pβ(S+ > a).

Using Lemma 3.1 and taking a→∞ we obtain limn→∞ Eα[exp(θ∗Sn);σ+ > n] = 0. �

Proof of Theorem 2.2:

For α ∈ A+ the formula has been already shown in Step 1 of the proof of Lemma

3.1. For α /∈ A+ we prove the stated formula using Theorem 2.1. Equation (10) implies

the formula in Equation (9).

Note that for every α and β there are a finite number of non-null terms in the above

sum over k. Moreover, as shown in Step 1 of the proof of Lemma 3.1, we have

∀β ∈ A+, ∀k ≥ 0 :
eθ
∗(`−k)Pβ(S+ > `− k)

uβ(θ∗)
−→
`→∞

c(∞).
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We finally obtain

lim
`→+∞

eθ
∗`Pα(S+ > `)

uα(θ∗)
=

c(∞)

uα(θ∗)

∑
β∈A+

∞∑
k=1

L
(k)
αβ e

θ∗k uβ(θ∗),

which equals c(∞) as desired, by Lemma 3.3.

3.3. Proof of Theorem 2.3

Since S+ ≥ Q1, for every α ∈ A we have

Pα(S+ > k) = Pα(Q1 > k) + Pα(S+ > k,Q1 ≤ k).

We will further decompose the last probability with respect to the values taken by Sσ−

and Aσ− , as follows:

Pα(S+ > k,Q1 ≤ k) =
∑
`<0

∑
β∈A−

Pα(S+ > k,Q1 ≤ k, Sσ− = `, Aσ− = β)

=
∑
`<0

∑
β∈A−

Pα(S+ − Sσ− > k − ` |Aσ− = β,Q1 ≤ k, Sσ− = `)

× Pα(Q1 ≤ k, Sσ− = `, Aσ− = β)

=
∑
`<0

∑
β∈A−

Pβ(S+ > k − `) ·
{
Q

(`)
αβ − Pα(Q1 > k, Sσ− = `, Aσ− = β)

}
,

by applying the strong Markov property to the stopping time σ−. We thus obtain

Pα(S+ > k)−
∑
`<0

∑
β∈A−

Pβ(S+ > k − `) ·Q(`)
αβ − Pα(Q1 > k)

= −
∑
`<0

∑
β∈A−

Pβ(S+ > k − `) Pα(Q1 > k, Sσ− = `, Aσ− = β).

By Theorem 2.2 we have Pβ(S+ > k) = O(e−θ
∗k) as k → ∞, for every β ∈ A−, from

which we deduce that the left-hand side of the previous equation is o(Pα(Q1 > k))

when k →∞. The stated result then easily follows. �

3.4. Proof of Theorem 2.4

We will first prove some useful lemmas.

Lemma 3.4. There exists a constant C > 0 such that, for every α ∈ A, β ∈ A− and

y > 0, we have Pα(Q1 > y|Aσ− = β) ≤ Ce−θ∗y.
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Proof. The proof is partly inspired from [9]. Let y > 0 and denote σ(y) the first

exit time of Sn from the interval [0, y]. Applying the optional sampling theorem to the

martingale (Um(θ∗))m (see Lemma 3.2) and to the stopping time σ(y), we get

Eα
[
Uσ(y)(θ

∗)
]

= Eα [U0(θ∗)] = 1. (17)

The applicability of the optional sampling theorem is guaranteed by the fact that there

exists C̃ > 0 such that, for every n ∈ N, we have 0 < Umin(σ(y),n)(θ
∗) ≤ C̃ a.s.

Indeed, this follows from the fact that, when σ(y) > n we have 0 ≤ Sn ≤ y, and when

σ(y) ≤ n, either Sσ(y) < 0 or y < Sσ(y) < y + max {f(α) : α ∈ A+}.

We deduce from Equation (17) that, for some constant K > 0, we have:

1 = Eα
[
eθ
∗Sσ(y)

uAσ(y)(θ
∗)

uA0(θ∗)

]
≥ Keθ

∗y Eα
[
eθ
∗(Sσ(y)−y))

∣∣∣Sσ(y) > y
]
· Pα(Sσ(y) > y)

≥ Keθ
∗y Pα(Sσ(y) > y) ≥ Keθ

∗y Pα(Sσ(y) > y|Aσ− = β)qαβ .

Note further that, A being finite, there exists c > 0 such that for all α ∈ A and β ∈ A−

we have qαβ = Pα(Aσ− = β) ≥ pαβ ≥ c. In order to obtain the bound in the statement,

it remains to note that Pα(Q1 > y|Aσ− = β) = Pα(Sσ(y) > y|Aσ− = β). �

Lemma 3.5. We have ρ′(0) = E[f(A)] < 0.

Proof. By the fact that ρ(θ) is an eigenvalue of the matrix Φ(θ) with corresponding

eigenvector u(θ), we have ρ(θ)uα(θ) = (Φ(θ)u(θ))α =
∑
β pαβe

θf(β)uβ(θ).

When derivating the previous relation with respect to θ we obtain

d

dθ
(ρ(θ)uα(θ)) =

∑
β

pαβ

(
f(β)eθf(β)uβ(θ) + eθf(β)u′β(θ)

)
.

We have ρ(0) = 1 et u(0) =t (1/r, . . . , 1/r). For θ = 0, we then get∑
α

πα
d

dθ
(ρ(θ)uα(θ))

∣∣∣∣∣
θ=0

=
1

r
E[f(A)] +

∑
α,β

παpαβu
′
β(0) =

1

r
E[f(A)] +

∑
β

πβu
′
β(0).

(18)

On the other hand,∑
α

πα
d

dθ
(ρ(θ)uα(θ)) =

d

dθ

(∑
α

παρ(θ)uα(θ)

)
= ρ′(θ)

∑
α

παuα(θ) +ρ(θ)
∑
α

παu
′
α(θ).

For θ = 0 we get∑
α

πα
d

dθ
(ρ(θ)uα(θ))

∣∣∣∣∣
θ=0

=
ρ′(0)

r
+ ρ(0) ·

∑
α

παu
′
α(0). (19)
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From Equations (18) and (19) we deduce ρ′(0)
r +

∑
α παu

′
α(0) = 1

rE[f(A)]+
∑
β πβu

′
β(0),

from which the stated result easily follows. �

Lemma 3.6. There exists n0 ≥ 0 such that ∀n ≥ n0 and ∀α ∈ A we have

Pα(Sn ≥ 0) ≤
(

inf
θ∈R+

ρ(θ)

)n
, with 0 < inf

θ∈R+
ρ(θ) < 1.

Proof. By a large deviation principle for additive functionals of Markov chains (see

Theorem 3.1.2. in [3]), we have lim sup
n→+∞

1

n
log

(
Pα
(
Sn
n
∈ Γ

))
≤ −I, with Γ = [0,+∞)

and I = infx∈Γ̄ supθ∈R(θx− log ρ(θ)). Since A is finite, it remains to prove that I > 0.

For every x ≥ 0, let us denote gx(θ) := θx− log ρ(θ) and I(x) := supθ∈R gx(θ). We

will first show that I(x) = supθ∈R+ gx(θ). Indeed, we have g′x(θ) = x− ρ′(θ)/ρ(θ). By

the strict convexity property of ρ (see [3, 10]) and the fact that ρ′(0) = E[f(A)] < 0 (by

Lemma 3.5), we deduce that ρ′(θ) < 0 for every θ ≤ 0, implying that g′x(θ) > x ≥ 0 for

θ ≤ 0. The function gx is therefore increasing on R−, and hence I(x) = supθ∈R+ gx(θ).

As a consequence, we deduce that x 7→ I(x) is non-decreasing on R+. We thus obtain

I = infx∈R+ I(x) = I(0).

Further, we have I(0) = supθ∈R (− log ρ(θ)) = − infθ∈R+ log(ρ(θ)). Using again

the fact that ρ′(0) < 0 (Lemma 3.5), the strict convexity of ρ and the fact that

ρ(0) = ρ(θ∗) = 1, we finally obtain I = − log (infθ∈R+ ρ(θ)) > − log ρ(0) = 0. �

Lemma 3.7. We have Eα[K1] <∞ for every α ∈ A.

Proof. Note that Pα(K1 > n) ≤ Pα(Sn ≥ 0). With n0 ∈ N defined in Lemma 3.6,

using a well-known alternative formula for the expectation, we get

Eα[K1] =
∑
n≥0

Pα(K1 > n) ≤
∑
n≥0

P(Sn ≥ 0) ≤ C +
∑
n≥n0

(
inf
θ∈R+

ρ(θ)

)n
,

where C > 0 is a constant and 0 < infθ∈R+ ρ(θ) < 1. The statement easily follows. �

Lemma 3.8. The sequence

(
Km

m

)
m≥1

converges a.s. when m → ∞. Therefore,

A∗ := lim
m→∞

Km

m
appearing in the statement of Theorem 2.4 is well defined. Moreover,

we have A∗ =
∑
β zβEβ [K1] a.s.

Proof. Recall that K1 = σ−. We can write

Km

m
=
K1

m
+

1

m

m∑
i=2

(Ki −Ki−1) =
K1

m
+
∑
β

1

m

m∑
i=2

(Ki −Ki−1)1{AKi−1
=β}. (20)
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First note that
K1

m
→ 0 a.s. when m → ∞, since K1 < +∞ a.s. By the strong

Markov property we have that, conditionally on (AKi−1
)i≥2, the random variables

(Ki − Ki−1)i≥2 are all independent, the distribution of Ki − Ki−1 depends only on

AKi−1
, and P(Ki − Ki−1 = ` |AKi−1

= α) = Pα(K1 = `). Therefore, the couples

Yi := (AKi−1 ,Ki − Ki−1), i ≥ 2 form a Markov chain on A− × N, with transition

probabilities P(Yi = (β, `) |Yi−1 = (α, k)) = qαβPβ(K1 = `). Recall that the restriction

Q̃ of the matrix Q to the subset A− is irreducible. Since z is invariant for Q, we easily

deduce that
∑
α,k π(α, k) · qαβPβ(K1 = `) = π(β, `), and hence the Markov chain (Yi)i

is also irreducible, with invariant distribution π(α, k) := zαPα(K1 = k).

For fixed β, when applying the ergodic theorem to the Markov chain (Yi)i and to

the function ϕβ(α, k) := k1{α=β}, we deduce

1

m

m∑
i=2

(Ki −Ki−1)1{AKi−1
=β} −→

m→∞

∑
α,k

ϕβ(α, k)π(α, k) = zβEβ(K1) a.s.

Taking the sum over β and using Equation (20) gives the result in the statement. �

Proof of Theorem 2.4:

Step 1: The proof of this step is partly inspired from [9]. We will prove that for any

convergent sequence (xm)m we have

Pα
(
MKm ≤

log(m)

θ∗
+ xm

)
∼

m→∞
exp

−m ∑
β∈A−

zβPβ
(
S+ > blog(m)/θ∗ + xmc

)
× exp

m∑
k<0

∑
γ∈A−

Pγ
(
S+ > blog(m)/θ∗ + xmc − k

)
·
∑
β∈A−

zβQ
(k)
βγ

 .

Given (AKi)i≥0, the random variables (Qi)i≥1 are independent and the cdf of Qi is

FAKi−1
AKi

. Therefore, for any y > 0:

Pα (MKm ≤ y) = Eα

[
m∏
i=1

FAKi−1
AKi

(y)

]

= Eα

exp

 ∑
β,γ∈A

mψβγ(m) log(Fβγ(y))


 ,

with ψβγ(m) := #{i : 1 ≤ i 6 m,AKi−1 = β,AKi = γ}/m. Given that A0 = α ∈ A−,

the states (AKi)i≥0 form an irreducible Markov chain on A− of transition matrix
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Q̃ = (qβγ)β,γ∈A− and stationary frequency vector z̃ = (zβ)β∈A− > 0. Consequently,

for β, γ ∈ A− the ergodic theorem implies that ψβγ(m) −→ zβqβγ a.s. when m→∞.

On the other hand, for any α ∈ A, if β ∈ A \ A−, then ψβγ(m) equals either 0 or

1/m, and thus ψβγ(m) −→ 0 a.s. when m → ∞, for any γ ∈ A. With zβ = 0 for

β ∈ A \ A−, we thus have ψβγ(m) −→ zβqβγ a.s. when m→∞, for every β, γ ∈ A.

We will further use a Taylor series expansion of the log function. Let us denote

dβγ(m) := m

[
1− Fβγ

(
log(m)

θ∗
+ xm

)]
for every m ≥ 1. Thanks to Lemma 3.4,

dβγ(m) are uniformly bounded in m, β and γ. Since, 0 ≤ ψβγ(m) ≤ 1, we obtain

Pα
(
MKm ≤

log(m)

θ∗
+ xm

)
∼

m→∞
Eα

exp

− ∑
β,γ∈A

ψβγ(m)dβγ(m)


∼

m→∞
exp

− ∑
β,γ∈A

zβqβγdβγ(m)

 .

Since ∑
γ∈A

qβγdβγ(m) = m

[
1− Fβ

(
log(m)

θ∗
+ xm

)]
,

Pα
(
MKm ≤

log(m)

θ∗
+ xm

)
∼

m→∞
exp

−m ∑
β∈A−

zβ

[
1− Fβ

(
log(m)

θ∗
+ xm

)] .

But

1− Fβ
(

log(m)

θ∗
+ xm

)
= Pβ

(
Q1 >

log(m)

θ∗
+ xm

)
= Pβ (Q1 > blog(m)/θ∗ + xmc) ,

and using Theorem 2.3 we get:

1− Fβ
(

log(m)

θ∗
+ xm

)
∼

m→∞
Pβ
(
S+ > blog(m)/θ∗ + xmc

)
−
∑
k<0

∑
γ∈A−

Pγ
(
S+ > blog(m)/θ∗ + xmc − k

)
·Q(k)

βγ .

This further leads to

Pα
(
MKm ≤

log(m)

θ∗
+ xm

)
∼

m→∞
exp

−m ∑
β∈A−

zβPβ
(
S+ > blog(m)/θ∗ + xmc

)
× exp

m∑
k<0

∑
γ∈A−

Pγ
(
S+ > blog(m)/θ∗ + xmc − k

)
·
∑
β∈A−

zβQ
(k)
βγ

 .
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Step 2: We now deduce the stated asymptotic equivalent for the distribution of Mn.

Since going from the distribution of MKm to the distribution of Mn is more delicate

in our case than in [9], we present in details the proof of this step.

Let x ∈ R. Since Km(n) ≤ n ≤ Km(n)+1 and (Mn)n is non decreasing, we have

Pα
(
MKm(n)+1

≤ log(n)

θ∗
+ x

)
≤ Pα

(
Mn ≤

log(n)

θ∗
+ x

)
≤ Pα

(
MKm(n)

≤ log(n)

θ∗
+ x

)
.

(21)

Since m(n) −→ ∞ a.s., Lemma 3.8 implies that
m(n)

n
−→ 1

A∗
a.s., with A∗ =

limm→∞
Km
m .

Fix now ε > 0. We have

Pα
(
MKm(n)

≤ log(n)

θ∗
+ x

)
≤ Pα

(
MKm(n)

≤ log(n)

θ∗
+ x,

∣∣∣∣m(n)

n
− 1

A∗

∣∣∣∣ ≤ ε)+ Pα
(∣∣∣∣m(n)

n
− 1

A∗

∣∣∣∣ > ε

)
≤ Pα

(
MKdn/A∗−nεe ≤

log(n)

θ∗
+ x

)
+ Pα

(∣∣∣∣m(n)

n
− 1

A∗

∣∣∣∣ > ε

)
. (22)

Using the result of Step 1, we obtain

Pα
(
MKdn/A∗−nεe ≤

log(n)
θ∗ + x

)
En

∼
n→∞

Rn(ε), (23)

where En is the asymptotic equivalent given in the statement

En := exp

− n

A∗

∑
β∈A−

zβPβ
(
S+ > blog(n)/θ∗ + xc

)
× exp

 n

A∗

∑
k<0

∑
γ∈A−

Pγ
(
S+ > blog(n)/θ∗ + xc − k

)
·
∑
β∈A−

zβQ
(k)
βγ


and

Rn(ε) := exp

ε · n ∑
β∈A−

zβPβ
(
S+ > blog(n)/θ∗ + xc

)
× exp

−ε · n∑
k<0

∑
γ∈A−

Pγ
(
S+ > blog(n)/θ∗ + xc − k

)
·
∑
β∈A−

zβQ
(k)
βγ

 .

Using Theorem 2.2 we obtain

lim sup
n→∞

Rn(ε) ≤ exp
{
ε · c(∞)e−θ

∗xD∗
}
, (24)
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with

D∗ := eθ
∗ ∑
β∈A−

zβuβ(θ∗)−
∑

β,γ∈A−
zβuγ(θ∗)

∑
k<0

ekθ
∗
Q

(k)
βγ .

Equations (21), (22), (23) and (24), together with the fact that
m(n)

n
−→ 1

A∗
a.s.

imply that

lim sup
n→∞

Pα
(
Mn ≤ log(n)

θ∗ + x
)

En
≤ exp

{
ε · c(∞)e−θ

∗xD∗
}
. (25)

In a similar manner, we can show that

lim inf
n→∞

Pα
(
Mn ≤ log(n)

θ∗ + x
)

En
≥ exp

{
−ε · c(∞)e−θ

∗xG∗
}
, (26)

with

G∗ :=
∑
β∈A−

zβuβ(θ∗)− eθ
∗ ∑
β,γ∈A−

zβuγ(θ∗)
∑
k<0

ekθ
∗
Q

(k)
βγ .

Taking now the limit ε→ 0 in Equations (25) and (26) gives

1 ≤ lim inf
n→∞

Pα
(
Mn ≤ log(n)

θ∗ + x
)

En
≤ lim sup

n→∞

Pα
(
Mn ≤ log(n)

θ∗ + x
)

En
≤ 1,

and hence Pα
(
Mn ≤ log(n)

θ∗ + x
)
∼

n→∞
En, with En the asymptotic equivalent given in

the statement.

Step 3: The last step is to prove the stated expression for A∗. Recall that σ− = K1.

In Lemma 3.8 we proved that A∗ =
∑
α zαEα(σ−).

Let n ∈ N. By applying the optional sampling theorem to the martingale (Um(θ))m and

to the bounded stopping time min(σ−, n), we get Eα
[
Umin(σ−,n)(θ)

]
= Eα [U0(θ)] = 1.

Furthermore, we have

1 = Eα
[
Uσ−(θ);σ− ≤ n

]
+ Eα

[
Un(θ);σ− > n

]
. (27)

We will show that Eα [Un(θ);σ− > n] −→ 0 when n → ∞. It suffices to prove that

Eα
[
eθSn

ρ(θ)n
;σ− > n

]
−→ 0. By the Cauchy-Schwartz inequality, we have

Eα
[
eθSn

ρ(θ)n
;σ− > n

]
≤
(
Eα
[
e2θSn

])1/2(Pα(σ− > n)

ρ(θ)2n

)1/2

.

Further, using Theorem 2.2, we can easily see that Eα
[
e2θS+

]
< ∞ if 0 ≤ θ <

θ∗

2
.

Moreover, by Lemma 3.6, we have Pα(σ− > n) ≤ Pα(Sn ≥ 0) ≤
(

inf θ̃∈R+ ρ(θ̃)
)n

.
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Since ρ(θ) → 1 when θ → 0, for sufficiently small θ we will both have θ <
θ∗

2
and

ρ(θ)2 > infθ∈R+ ρ(θ), implying that Eα
[
eθSn

ρ(θ)n
;σ− > n

]
−→ 0 when n→∞.

When passing to the limit as n → ∞ in Equation (27), we deduce that, for θ

sufficiently small, we have Eα [Uσ−(θ)] = Eα [U0(θ)] = 1. Consequently,

1 = Eα
[
exp(θ · Sσ−)

uAσ− (θ)

uA0(θ)

1

ρ(θ)σ−

]
= Eα

[
exp(θ · Sσ−)

uAσ− (θ)

uα(θ)

1

ρ(θ)σ−

]
=

∑
β

Eα
[
exp(θ · Sσ−)

uβ(θ)

uα(θ)

1

ρ(θ)σ−
∣∣Aσ− = β

]
· Pα(Aσ− = β)

=
∑
β

uβ(θ)

uα(θ)
Eα
[

exp(θ · Sσ−)

ρ(θ)σ−
∣∣Aσ− = β

]
· qαβ .

We deduce that, for θ sufficiently small, we have

uα(θ) =
∑
β

Eα
[

exp(θ · Sσ−)

ρ(θ)σ−
∣∣Aσ− = β

]
· uβ(θ)qαβ .

For θ sufficiently small, by derivating the above relation, we obtain:

u′α(θ) =∑
β

qαβuβ(θ)Eα

[
Sσ− exp(θ · Sσ−)ρ(θ)σ

− − exp(θ · Sσ−)σ−ρ(θ)σ
−−1ρ′(θ)

ρ(θ)2σ−

∣∣Aσ− = β

]

+
∑
β

qαβu
′
β(θ)Eα

[
exp(θ · Sσ−)

ρ(θ)σ−
∣∣Aσ− = β

]
.

Since ρ(0) = 1, we obtain for θ = 0:

u′α(0) =
∑
β

qαβuβ(0)
(
Eα
[
Sσ−

∣∣Aσ− = β
]
− ρ′(0)Eα

[
σ−
∣∣Aσ− = β

])
+
∑
β

qαβu
′
β(0).

By the fact that u(0) =t (1/r, . . . , 1/r), we further get

u′α(0) =
1

r
Eα[Sσ− ]− ρ′(0)

r
Eα[σ−] +

∑
β

qαβu
′
β(0).

From the last relation we deduce∑
α

zαu
′
α(0) =

1

r

∑
α

zαEα [Sσ− ]− ρ′(0)

r

∑
α

zαEα[σ−] +
∑
α

∑
β

zαqαβu
′
β(0). (28)

On the other hand, since z is invariant for Q, we obtain∑
α

zαu
′
α(0) =t z ·u′(0) =t (zQ)·u′(0) =

∑
β

t(zQ)β ·u′β(0) =
∑
β

∑
α

zαqαβu
′
β(0). (29)
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Equations (28) and (29) imply that
∑
α zαEα [Sσ− ] = ρ′(0) ·

∑
α zαEα[σ−] and thus

A∗ =
∑
α zαEα[σ−] = 1

ρ′(0)

∑
α zαEα [Sσ− ]. Using now the fact that ρ′(0) = E[f(A)]

(see Lemma 3.5) gives the stated expression for A∗. �

4. Applications and computational methods

Let −u, . . . , 0, . . . , v be the possible scores, with u, v ∈ N.

For −u ≤ j ≤ v, we introduce the matrix P(j) with entries

P
(j)
αβ := Pα(A1 = β, f(A1) = j)

for α, β ∈ A. Note that P
(f(β))
αβ = pαβ , P

(j)
αβ = 0 if j 6= f(β) and P =

∑v
j=−u P(j),

where P = (pαβ)α,β is the transition probability matrix of the Markov chain (Ai)i.

In order to obtain the asymptotic result on the tail distribution of Q1 given in

Theorem 2.3, we need to compute the quantities Q
(`)
αβ for −u ≤ ` ≤ v, α, β ∈ A . This

is the topic of the next subsection. We denote Q(`) the matrix (Q
(`)
αβ)α,β∈A.

4.1. Computation of Q(`) for −u ≤ ` ≤ v, and of Q

Recall that Q
(`)
αβ = Pα(Sσ− = `, Aσ− = β), and hence Q

(`)
αβ = 0 if ` ≥ 0 or β ∈ A\A−.

Note also that σ− = 1 if f(A1) < 0. Let−u ≤ ` ≤ −1. When decomposing with respect

to the possible values j of f(A1), we obtain:

Q
(`)
αβ = Pα(A1 = β, f(A1) = `) + Pα(Sσ− = `, Aσ− = β, f(A1) = 0)

+

v∑
j=1

Pα(Sσ− = `, Aσ− = β, f(A1) = j).

Note that the first term on the right hand side is exactly P
(`)
αβ defined at the beginning of

this section. We further have, by the law of total probability and the Markov property:

Pα(Sσ− = `, Aσ− = β, f(A1) = 0) =
∑
γ

P (0)
αγ Pα(Sσ− = `, Aσ− = β |A1 = γ, f(A1) = 0)

=
∑
γ

P (0)
αγ Pγ(Sσ− = `, Aσ− = β) = (P(0)Q(`))αβ .

Let j ∈ {1, . . . , v} be fixed. We have

Pα(Sσ− = `, Aσ− = β, f(A1) = j) =
∑
γ

P (j)
αγ Pα(Sσ− = `, Aσ− = β |A1 = γ, f(A1) = j).



Distribution for the maximal segmental score of a Markov chain 23

For every possible s ≥ 1, we denote Ts the set of all possible s-tuples t = (t1, . . . , ts)

verifying −u ≤ ti ≤ −1 for i = 1, . . . , s, t1 + · · · + ts−1 ≥ −j > 0 and t1 + · · · + ts =

`− j > 0. Decomposing over all the possible paths from −j to ` gives

Q
(`)
αβ = P

(`)
αβ + (P(0)Q(`))αβ +

v∑
j=1

(
P(j)

∑
s

∑
t∈Ts

s∏
i=1

Q(ti)

)
αβ

,

hence

Q(`) = P(`) + P(0)Q(`) +

v∑
j=1

P(j)
∑
s

∑
t∈Ts

s∏
i=1

Q(ti). (30)

Recalling that Q = (qαβ)α,β with qαβ = Pα(Aσ− = β) =
∑
`<0Q

(`)
αβ , we have

Q =
∑
`<0

Q(`). (31)

Example: In the case where u = v = 1, we only have the possible values ` = −1,

j = 1, s = 2 and t1 = t2 = −1, thus

Q(−1) = P(−1) + P(0) ·Q(−1) + P(1)(Q(−1))2 and Q = Q(−1). (32)

4.2. Computation of L
(`)
αβ for 0 ≤ ` ≤ v, and of Lα(∞)

Recall that L
(`)
αβ = Pα(Sσ+ = `, σ+ <∞, Aσ+ = β). Denote L(`) := (L

(`)
αβ)α,β . First

note that L
(`)
αβ = 0 for ` ≤ 0 or β ∈ A\A+. Using a similar method as the one used to

obtain Q
(`)
αβ in the previous subsection, we denote for every possible s ≥ 1, T ′s the set

of all s-tuples t = (t1, . . . , ts) verifying 1 ≤ ti ≤ v for i = 1, . . . , s, t1 + · · ·+ ts−1 ≤ k

and t1 + · · ·+ ts = `+ k > 0.

For every 0 < ` ≤ v we then have

L(`) = P(`) + P(0)L(`) +

u∑
k=1

P(−k)
∑
s

∑
t∈T ′s

s∏
i=1

L(ti) (33)

Since Lα(∞) = Pα(σ+ < ∞) =
∑
β

∑v
`=1 L

(`)
αβ , and denoting by L(∞) the column

vector containing all Lα(∞) for α ∈ A, and by 1 r the column vector of size r with all

components equal to 1, we can write

L(∞) =

v∑
`=1

L(`) · 1 r. (34)

Example: In the case where u = v = 1, equation (33) gives

L(1) = P(1) + P(0) · L(1) + P(−1) · (L(1))2, (35)

L(`) = 0 for ` > 1, thus L(∞) = L(1) · 1 r. (36)
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4.3. Computation of FS+,α(`) for ` ≥ 0

For ` ≥ 0 let us denote FS+,·(`) := (FS+,α(`))α∈A, seen as a column vector of size

r. From Theorem 2.1 we deduce that for ` = 0 and every α ∈ A we have

FS+,α(0) = 1− Lα(∞).

For ` = 1 and every α ∈ A we get FS+,α(1) = 1− Lα(∞) +
∑
β∈A L

(1)
αβ FS+,β(0).

With L(∞) = (Lα(∞))α∈A, seen as a column vector, we can write

FS+,·(1) = 1− L(∞) + L(1)FS+,·(0),

FS+,·(`) = 1− L(∞) +
∑̀
k=1

L(k)FS+,·(`− k), ∀` ≥ 1.

See Subsection 4.2 for how to compute L(k) for k ≥ 1 and L(∞).

4.4. Numerical application in a simple case

Let us consider the simple case where the possible score values are −1, 0, 1, corres-

ponding to the case u = v = 1. We will use the results in the previous subsections (see

Equations (32, 35, 36)) to derive the distribution of the maximal non-negative partial

sum S+. This distribution can be determined using the following matrix equalities:

L(∞) =

∑
β

L
(1)
αβ


α

= L(1) · 1 r, (37)

with L(1) given in Equation (33) and

FS+,·(0) = 1− L(∞), (38)

FS+,·(`) = 1− L(∞) + L(1)FS+,·(`− 1). (39)

This allows to further derive the approximation results on the distributions of Q1 and

Mn given in Theorems 2.3 and 2.4.

We present hereafter a numerical application for the local score of a DNA sequence.

We suppose that we have a Markovian sequence whose possible letters are {A,C,G, T}
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and whose transition probability matrix is given by

P =


1/2 1/6 1/6 1/6

1/4 1/4 1/4 1/4

1/6 1/6 1/6 1/2

1/6 1/6 1/2 1/6

 .

We choose the respective scores −1,−1, 0, 1 for the letters A,C,G, T for which Hypo-

theses (1) and (2) are verified. We use the successive iteration methodology described in

Equation (5.12) of [9] in order to compute L(1) and Q(−1), solutions of Equations (32)

and (35), from which we derive the approximate formulas proposed in our Theorems

2.1, 2.3 and 2.4 for the distributions of S+, Q1 and Mn respectively. We also compute

the different approximations proposed in Karlin and Dembo [9]. We then compare

these results with the corresponding empirical distributions computed using a Monte

Carlo approach based on 105 simulations. We can see in Figure 1, left panel, that

for n = 300 the empirical cdf of S+ and the one obtained using Theorem 2.1 match

perfectly. We can also visualize the fact that Theorem 2.1 improves the approximation

of Karlin and Dembo in Lemma 4.3 of [9] for the distribution of S+ (see Theorem

2.2 for the analogous formula in our settings). The right panel of Figure 1 allows to

compare, for different values of the sequence length n, the empirical cdf of S+ and the

exact cdf given in Theorem 2.1: we can see that our formula performs very satisfactory

in this example, even for sequence length n = 100.

In this simple example, the approximate formula for the tail distribution of Q1 given in

Theorem 2.3 and the one given in Lemma 4.4 of [9] give quite similar numerical values.

In Figures 2 and 3 we compare three approximations for the cdf of Mn: the Karlin

and Dembo’s [9] asymptotic bounds (the lower bound, depending on K+ and recalled

in Equation (7), and the upper bound, depending on K∗ and recalled in Equation

(8)), our approximation proposed in Theorem 2.4, and a Monte Carlo estimation.

For the simple scoring scheme of this application, the parameter K∗ appearing in the

asymptotic bounds of Karlin and Dembo [9] is given by their Equation (5.6):

K∗ = (e−2θ∗ − e−θ
∗
) · E[f(A)] ·

∑
β

zβuβ(θ∗) ·
∑
γ

wγ/uγ(θ∗).

More precisely, in Figure 2 we plot the probability p(n, x) := P
(
Mn ≤ log(n)

θ∗ + x
)

as
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Figure 1: Cumulative distribution function of S+ for the simple scoring scheme (−1, 0,+1)

and A0 =“A”. Left panel: Comparison between the approximation of Karlin and Dembo [9], a

Monte Carlo estimation with sequences of length n = 300, and our exact formula proposed in

Theorem 2.1. Right panel: Comparison, for different values of n, of the Monte Carlo empirical

cumulative distribution function and the exact one given in Theorem 2.1.

a function of n, for two fixed values x = −5 and −8. This illustrates the asymptotic

behavior of this probability with growing n. We can also observe the fact that Karlin

and Dembo’s asymptotic bounds do not depend on n. In Figure 3, we compare the

asymptotic bounds of Karlin and Dembo [9] for the same probability p(n, x) with our

approximation, for varying x and fixed n = 100. We observe that the improvement

brought by our approximation is more significant for negative values of x. For fixed n

and extreme deviations (large x) the two approximations are quite similar and accurate.

4.5. Numerical applications on real data

We consider the examples presented in [8] for which we could recover the given

sequences. On each sequence separately, we learn the score frequencies fx for each

possible score x, as well as the transition probability matrix P , for which we give each

row Px. For each example, we also show the corresponding invariant probability π,
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Figure 2: Comparison of the different approximations for p(n, x) = P
(
Mn ≤ log(n)

θ∗ + x
)

as a

function of n, for fixed x and for the simple scoring scheme (−1, 0,+1): the asymptotic lower

and upper bounds of Karlin and Dembo’s [9] (see Equations (7) and (8)), the approximation

we propose in Theorem 2.4 and Monte Carlo estimation. Left panel: p(n, x) for x = −5.

Right panel: p(n, x) for x = −8.
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Figure 3: Comparison of the different approximations for p(n, x) = P
(
Mn ≤ log(n)

θ∗ + x
)

p(n, x) as a function of x, for fixed n = 100, and for the simple scoring scheme (−1, 0,+1):

the asymptotic lower and upper bounds of Karlin and Dembo’s [9] (see Equations (7) and

(8)), our approximation proposed in Theorem 2.4 and Monte Carlo estimation.
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which is in general close to the score frequencies, as expected. Biologists awared us

that since 1990 the sequences referred by [8] may have a little bit changed due to the

evolution of sequencing, which can explain some small differences in score frequencies

between our sequences and the ones in [8]. Note that our Hypotheses (1) and (2) are

both verified in all the following applications.

For each example, we computed the corresponding p-values of the observed local

score using the asymptotic lower and upper bounds of Karlin and Dembo [9] (pKDe

refers to the bound with K∗ based on Equation (8), and pKDe−K+ refers to the bound

with K+ based on Equation (7)), the approximation we propose in Theorem 2.4

(pGMe), and an empirical Monte Carlo estimation (pMC) based on 105 simulations

of sequences of the given length. Note that in all examples we have pMC ≤ pGMe ≤

pKDe ≤ pKDe−K+ , except in Example d)ii), where we have pGMe ≤ pMC ≤ pKDe ≤

pKDe−K+ . In order to simplify the presentation, in what follows we only show the

results based on the best of the two bounds of Karlin and Dembo, which is pKDe. We

also compute the percentage of relative error for both theoretical methods:

RE(KDe) = 100 · pKDe − pMC

pMC
, RE(GMe) = 100 · pGMe − pMC

pMC
. (40)

The p-value given by [8] in the i.i.d. model (pKDe−iid) is recalled.

We also computed two classical measures of dissimilarity between the theoretical

approximate distribution of the local score (the one we propose, denotedGMe, respectively

the one given by the asymptotic upper bound of Karlin and Dembo [9], denoted KDe),

and the empirical distribution obtained by Monte Carlo simulations, denoted MC:

- the Kolmogorov-Smirnov distance:

dKS(GMe) := max
x

(|PGMe(Mn ≤ x)− PMC(Mn ≤ x)|). (41)

- the Kullback-Leibler divergence:

dKL(GMe) :=
∑
x

PMC(Mn = x) · log

(
PMC(Mn = x)

PGMe(Mn = x)

)
. (42)

We define similarly dKS(KDe) and dKL(KDe) using the asymptotic upper bound of

Karlin and Dembo [9] for the distribution of the local score (see Equation (8)).

We gather the relative errors and the two distance computations in Table 1.
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Table 1: Numerical comparison between our approximation for the local score distribution

and the one of [9], using relative errors (see Equation (40)) and two classical dissimilarity

measures recalled in Equations (41) and (42).

dKS(KDe) dKS(GMe) dKL(KDe) dKL(GMe) RE(KDe) RE(GMe)

a)i) 0.44 0.03 1.14 < 0.01 259% 7%

a)ii) 0.48 0.06 1.32 0.02 307% 12%

b) 0.81 0.01 12.85 ' 10−3 1043% 3%

c)ii) 0.80 0.13 11.6 0.07 562% 5%

d)i) 0.66 0.06 4.78 0.01 870% 22%

d)ii) 0.84 0.20 5.64 0.29 307% −18%

d)iii) 0.69 0.06 5.37 0.01 1061% 64%

Examples c)i) and c)iii) have not been considered, since we did not recover the sequences

presented in [8]. Note that the sequence a)i) has one supplementary amino acid than

the one referenced in [8] and the local score is equal to 21 instead of 24 in their article.

Example e) has not been studied because one of the transition probabilities is equal to

0 and does not verify our hypotheses.

Exemple a), Mixed charge segment: s = 2 for the amino acids aspartate (D),

glutamate (E), histidine (H), lysine (K) and arginine (R), and s = −1 otherwise.

i) Human keratin cytoskeletal type II (UniProtKB-P04264): n = 644, Mn = 24,

positions 238-292. f−1 = 82.2%; f2 = 17.8%. P−1 = (0.784, 0.216);P2 = (0.821, 0.179).

pKDe = 5.06 · 10−3; pGMe = 1.51 · 10−3; pMC = 1.41 · 10−3. π = [0.792; 0.208].

ii) Human c-jun, nuclear transcription factor (UniProtKB-P05412): n = 331, Mn = 29,

positions 246-285. f−1 = 79.5%; f2 = 20.5%. P−1 = (0.805, 0.195);P2 = (0.754, 0.246).

pKDe = 2.2 · 10−3; pGMe = 6.03 · 10−4; pMC = 5.4 · 10−4; pKDe−iid < 2 · 10−4. π =

[0.795; 0.205].

Exemple b), Acidic charge segments: s = 2 for aspartate (D) and glutamate (E);

s = −2 for lysine (K) and arginine (R) ; and s = −1 otherwise.

Zeste protein (UniProtKB-P09956): n = 575, Mn = 11, positions 194-209. f−2 =

8.0%; f−1 = 82.8%; f2 = 9.2%. P−2 = (0.109, 0.696, 0.195);P−1 = (0.078, 0.853, 0.069);
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P2 = (0.075, 0.717, 0.208). pKDe = 5.76 · 10−1; pGMe = 5.21 · 10−2;

pMC = 5.04 · 10−2; pKDe−iid = 3.7 · 10−3. π = [0.080; 0.828; 0.092].

Exemple c), High-scoring basic charge segments: s = 2 for lysine (K), arginine

(R) and histidine (H); s = −2 for aspartate (D) and glutamate (E); s = −1 otherwise.

ii) Zeste protein (UniProtKB-P09956): n = 575, Mn = 12, positions 78-86. f−2 =

9.2%; f−1 = 79.7%; f2 = 11.1%. P−2 = (0.208, 0.698, 0.094);P−1 = (0.068, 0.827, 0.105);

P2 = (0.172, 0.656, 0.172). pKDe = 13.9 · 10−2; pGMe = 2.2 · 10−2;

pMC = 2.1 · 10−2; pKDe−iid = 4 · 10−3. π = [0.093; 0.796; 0.111].

Exemple d), Strong Hydrophobic segments: s = 1 for isoleucine (I), leucine (L),

valine (V), phenylalanine (F), methionine (M), cysteine (C), alanine(A); s = −1 for

glycine (G), serine (S), threonine (T), tryptophan (W), tyrosine (Y), proline (P); s =

−2 for arginine (R), lysine (K), aspartate (D), glutamate (E), histidine (H), asparagine

(N), glutamine (Q).

i) Drosophila engrailed (UniProtKB-P02836): n = 552, Mn = 17, positions 63-88.

f−2 = 34.6%; f−1 = 33.7%; f1 = 31.7%. P−2 = (0.466, 0.230, 0.304);

P−1 = (0.254, 0.449, 0.297); P1 = (0.314, 0.337, 0.349). pKDe = 5.82 · 10−4; pGMe =

7.31 · 10−5; pMC = 6 · 10−5; pKDe−iid = 1.8 · 10−5. π = [0.346; 0.338; 0.316].

ii) Human c-mas, angiotensin receptor factor (UniProtKB-P04201): n = 325, Mn = 15,

positions 186-212. f−2 = 23.4%; f−1 = 29.8%; f1 = 46.8%. P−2 = (0.381, 0.316, 0.303);

P−1 = (0.206, 0.289, 0.505);P1 = (0.179, 0.298, 0.523). pKDe = 8.77 · 10−1; pGMe =

1.77 · 10−1; pMC = 2.15 · 10−1; pKDe−iid = 0.80 · 10−1. π = [0.234; 0.3; 0.466].

iii) Cystic Fibrosis (UniProtKB-P13569): n = 1480, Mn = 21, positions 986-1029.

f−2 = 31.55%; f−1 = 26.9%; f1 = 41.55%. P−2 = (0.355, 0.270, 0.375);

P−1 = (0.322, 0.271, 0.407); P1 = (0.282, 0.267, 0.451). pKDe = 22.5 · 10−3; pGMe =

3.19 · 10−3; pMC = 1.94 · 10−3; pKDe−iid = 10−3. π = [0.316; 0.269; 0.415].
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