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Abstract

Let (A;)i>o0 be a finite state irreducible aperiodic Markov chain and f a lattice
score function such that the average score is negative and positive scores are
possible. Define Sy := 0 and Sy := Zle f(A;) the successive partial sums,
ST the maximal non-negative partial sum, @ the maximal segmental score
of the first excursion above 0 and M, := maxo<k<e<n(Se — Sk) the local
score, first defined by Karlin and Altschul [8]. We establish recursive formulae
for the exact distribution of S* and derive a new approximation for the tail
behaviour of @1, together with an asymptotic equivalence for the distribution
of M,,. Computational methods are explicitly presented in a simple application
case. Comparison is performed between the new approximations and the ones
proposed by Karlin and Dembo [9] in order to evaluate improvements, both in

the simple application case and on the real data examples considered in [§].
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1. Introduction

There is nowadays a huge amount of biological sequences available. The local score
for one sequence analysis, first defined by Karlin and Altchul in [8] (see Equation (3)
below for definition) quantifies the highest level of a certain quantity of interest, e.g.
hydrophobicity, polarity, etc..., that can be found locally inside a given sequence. This
allows for example to detect atypical segments in biological sequences. In order to
distinguish significantly interesting segments from the ones that could have appeared
by chance alone, it is necessary to evaluate the p-value of a given local score. Different
results have already been established using different probabilistic models for sequences:
independent and identically distributed variables model (i.i.d.) [2, 8, 9, 12], Markovian
models [7, 9] and Hidden Markov Models [4]. In this article we will focus on the

Markovian model.

An exact method was proposed by Hassenforder and Mercier [7] to calculate the
distribution of the local score for a Markovian sequence, but this result is computationally
time consuming for long sequences (> 103). Karlin and Dembo [9] established the limit
distribution of the local score for a Markovian sequence and a random scoring scheme
depending on the pairs of consecutive states in the sequence. They proved that, in the
case of a non-lattice scoring scheme, the distribution of the local score is asymptotically
a Gumble distribution, as in the i.i.d. case. In the lattice case, they give asymptotic
lower and upper bounds of Gumbel type for the local score distribution. In spite of
its importance, their result in the Markovian case is unforfunately very little cited
or used in the literature. A possible explanation could be the fact that the random
scoring scheme defined in [9] is more general than the ones classically used in practical
approaches. In [5] and [6], the authors verify by simulations that the local score in
a certain dependence model follows a Gumble distribution, and use simulations to

estimate the two parameters of this distribution.

In this article we study the Markovian case for a more classical scoring scheme. We
propose a new approximation, given as an asymptotic equivalence when the length of
the sequence tends to infinity, for the distribution of the local score of a Markovian
sequence. We compare it to the asymptotic bounds of Karlin and Dembo [9] and

illustrate the improvements both in a simple application case and on the real data
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examples proposed in [8].

Mathematical framework Let (A;);>o be an irreducible and aperiodic Markov chain
taking its values in a finite set A containing r states denoted «, 3, ... for simplicity.
Let P = (pag)a,pea be its transition probability matrix and = its stationary frequency
vector. In this work we suppose that P is positive (Va, 3, pas > 0). We also suppose
that the initial distribution of Ag is given by 7, hence the Markov chain is stationary.
P, will stand for the conditional probability given {Ag = a}. We consider a lattice
score function f : A — dZ, with d € N being the lattice step. Note that, since A is
finite, we have a finite number of possible scores. Since the Markov chain (4;);>¢ is
stationary, the distribution of A; is 7 for every i > 0. We will simply denote E[f(A)]
the average score.

In this article we make the hypothesis that the average score is negative, i.e.
Hypothesis (1):  E[f(4)] =Y _ f(a)ms < 0. (1)
We will also suppose that for every o € A we have
Hypothesis (2): P,(f(41) > 0) > 0. (2)

Note that, thanks to the assumption p.s > 0,Ve, 8, Hypothesis (2) is equivalent to
the existence of 5 € A such that f(5) > 0.

Let us introduce some definitions and notation. Let Sy := 0 and Sy, := Zle f(AY),
for k > 1, the successive partial sums. Let ST be the mazimal non-negative partial

sum

ST = max{0, Sy : k > 0}.

Further, let 0~ :=inf{k > 1 : Sk < 0} be the time of the first negative partial sum.

Note that o~ is an a.s.-finite stopping time due to Hypothesis (1), and let

Q1 := max Sy.
0<k<o—

First introduced by Karlin and Altschul [8], the local score, denoted M, is defined

as the maximum segmental score for a sequence of length n:

ni= max (Sp— Sg). (3)

0<k<lLn
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Note that, in order to study the distributions of the variables ST, Q1 and M,,, which
all take values in dN, it suffices to focus on the case d = 1. We will thus consider d = 1

throughout the article.

Remark 1.1. Karlin and Dembo [9] consider a more general model, with a random
score function defined on pairs of consecutive states of the Markov chain: they associate
to each transition (A;_1, 4;) = (a, 8) a bounded random score X, 3 whose distribution
depends on the pair (a, 8). Moreover, they suppose that, for (4;,_1, 4;) = (4,_1,4,) =
(@, B), the random scores X4, , 4, and X4, , 4, are independent and identically distri-
buted as X,g. Their model is more general also in that the scores are not restricted
to the lattice case and may be continuous random variables.

The framework of this article corresponds to the case where the score function is
deterministic and lattice, with X4, 4, = f(A).

Note also that in our case the Hypotheses (1) and (2) assure the so-called cycle
positivity, i.e. the existence of some state o € A and of some m > 2 satisfying
P (ﬂ;”;‘f{sk >0} Ag=Am = a) > 0. In [9], in order to simplify the presentation,
the authors strengthen the assumption of cycle positivity by assuming that
P(Xap > 0) > 0 and P(X,5 < 0) > 0 for all o, 8 € A (see (1.19) of [9]), but precise
that the cycle positivity is sufficient for their results to hold.

In Section 2 we first introduce few more definitions and notation. We then present
the main results: a recursive result for the exact distribution of the maximal non-
negative partial sum S for an infinite sequence in Theorem 2.1; based on the exact
distribution of ST, we further propose a new approximation for the tail behaviour of
the height of the first excursion Q1 in Theorem 2.3. We also establish, in Theorem 2.4,
an asymptotic equivalence result for the distribution of the local score M, when the
length n of the sequence tends to infinity. Section 3 contains the proofs of the results
of Section 2 and of some useful lemmas which use techniques of Markov renewal theory
and large deviations. In Section 4 we propose a computational method for deriving
the quantities appearing in the main results. A simple scoring scheme is developed
in Subsection 4.4, for which we compare our approximations to the ones proposed by
Karlin and Dembo [9] in the Markovian case. In Subsection 4.5 we also show the

improvements brought by the new approximations on the real data examples of [§].
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2. Statement of the main results

2.1. Definitions and notation

Let Ko := 0 and for ¢ > 1, K; := inf{k > K,;_; : Sy — Sk,_, < 0} the successive
decreasing ladder times of (Sk)x>0. Note that K1 = o~

Let us now consider the subsequence (A;)o<i<n for a given length n € N\ {0}.
Denote m(n) := max{i > 0 : K; < n} the random variable corresponding to the
number of decreasing ladder times arrived before n. For every i = 1,...,m(n), we call
the sequence (A;)k, ,<j<k, the i-th excursion above 0.

Note that, due to the negative drift, we have E[K;] < oo (see Lemma 3.7) and
m(n) — oo a.s. when n — oco. To every excursion ¢ = 1,...,m(n) we associate its
mazimal segmental score (called also height) Q; defined by

Qi = max (Sk — SKi—l)’

K; 1<k<K;

Note that M,, = max(Q1,...,Qmm), Q"), with @* being the maximal segmental
score of the last incomplete excursion (4;)k,,,,<j<n- Mercier and Daudin [12] give
an alternative expression for M, using the Lindley process (Wj)r>o describing the
excursions above zero between the successive stopping times (K;);>o. With Wy := 0
and Wiyq := max(Wy + f(Ak+41),0), we have M,, = maxogr<n Wk.

For every a, f € A, we denote ¢op := Po(Ak, = B) and Q := (¢ap)a,seca. Define
A" :={a € A: f(a) <0} and AT := {a € A: f(a) > 0}. Note that the matrix Q
is stochastic, with g, = 0 for § € A\ A~. Its restriction Q to A~ is stochastic and
irreducible, since gog > pag > 0, Vo, B € A™. The states (Ag, );>1 of the Markov chain
at the end of the successive excursions define a Markov chain on A~ with transition
probability matrix Q
For every i > 2 we thus have P(Ak, = f |4k, , = &) = qap if o, € A and 0
otherwise. Denote Z > 0 the stationary frequency vector of the irreducible stochastic
matrix Q and let z := (2a)aca, With z, = 2, > 0 for @ € A~ and z, = 0 for

a € A\ A™. Note that z is invariant for the matrix @, i.e. 2Q = z.

Remark 2.1. Note that in Karlin and Dembo’s Markovian model of [9], the matrix Q
is irreducible, thanks to their random scoring function and to their hypotheses recalled

in Remark 1.1.
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Using the strong Markov property, conditionally on (Ag,);>1 the r.v. (Q;)i>1 are

independent, with the distribution of @); depending only on Ak, , and Ag,.

i—1

For every a € A, f € A~ and y > 0, let

FQhOfﬁ(?/) = PQ(QI <y |A0* = 5) and FQha(y) = Pa(Ql < y)

Note that for any o« € A~ and i > 1, Fp, o represents the cumulative distribution
function (cdf) of the height Q; of the i-th excursion given that it starts in state o and
ends in state 3, i.e. Fg, a5y) = P(Q: < y |Ak, = B,Ak, , = «), whereas Fg, o
represents the cdf of @); conditionally on the i-th excursion starting in state «, i.e.
F,a(y) =P(Qi <y |Ak, , = a). We thus have Fg, o(y) = > s 4~ £Q1,0,6(Y)dap-

We also introduce the stopping time o := inf{k > 1 : Sy > 0} with values in
NU {oc}. Due to Hypothesis (1), we have P, (0T < 00) < 1, for all a € A.

For every o, 8 € A and € > 0, let Log (&) := Po(So+ < &0 < 00, 4,+ = ).

Note that Lag(§) = 0 for f € A\ A", and Log(c0) < Po(0F < 00) < 1, therefore
fooo dLag(§) = Lap(o0) < 1.

Let us also denote L (€) := 3¢ 4+ Lap(§) = Pa(So+ < €07 < 00) the conditional
cdf of the first positive partial sum when it exists, given that the Markov chain starts
in state a, and Ly (00) 1= limg_y 00 Lo () = Po(0T < 00).

For any ¢ € R we introduce the following matrix ®(0) := (pas - exp(0f(5))), sea -
Since the transition matrix P is positive, by the Perron-Frobenius Theorem, the
spectral radius p(6) > 0 of the matrix ®(0) coincides with its dominant eigenvalue, for
which there exists a unique positive right eigen vector u(f) = (u;(#))1<i<r (seen as a
column vector) normalized so that _._, u;(#) = 1. Moreover, 6 — p(6) is differentiable
and strictly log convex (see [3, 10, 11]). In Lemma 3.5 we prove that p'(0) = E[f(4)],
hence p’(0) < 0 by Hypothesis (1). Together with the strict log convexity of p and the
fact that p(0) = 1, this implies that there exists a unique #* > 0 such that p(6*) =1

(see [3] for more details).

2.2. Main results. Improvements on the distribution of the local score

Let o € A. We start by giving a result which allows to compute recursively the
cdf of the maximal non-negative partial sum S*. We denote by Fg+ , the cdf of ST

conditionally on starting in state a: Fg+ o(€) := Po (ST < ¢), V¢ € N and for every
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ke N\ {0} and S8 € A:

L) = Po(Sy+ = kot < 00, Ay+ = B).

Note that Lfflg =0 for f € A\ AT and L (00) = Y g4+ Dopes ng

The following result gives a recurrence relation for the double sequence (Fs+ o (£))a,,

involving the coefficients Lng) which can be computed recursively (see Subsection 4.2).

Theorem 2.1. (Exact result for the distribution of S¥.) For alla € A and £ > 1:

FS+ a(o) = Pa(0+ = OO) =1- LQ(OO),

Fyr o(f) = 1= Lo(c0) + Y ZL()FS+B€ k).
BEAT k=1
The proof will be given in Section 3.

In Theorem 2.2 we obtain an asymptotic result for the tail behavior of ST using
Theorem 2.1 and ideas inspired from [9] adapted to our framework (see also the
discussion in Remark 1.1). Before stating this result, we need to introduce few more
notations.

For every o, 8 € A and k € N we denote

(k) _ us(0") gn (k) _ () N (k)
G : _T@*) Ly, Gaplk):=> Goh  Gap(o0) =Y Gy}
=0 k=0

e

The matrix G(00) := (Ga(00))a s is stochastic, using Lemma 3.3; the subset A™ is a
recurrent class, whereas the states in A\ AT are transient. The restriction of G(o0)
to AT is stochastic and irreducible; let us denote w > 0 the corresponding stationary
frequency vector. Define w = (W )aca, With w, = W, > 0 for @ € AT and w,, = 0 for

a € A\ AT. The vector w is invariant for G(00), i.e. wG(00) = w.

Remark 2.2. Note that in Karlin and Dembo’s Markovian model of [9], the matrix
G(o0) is positive, hence irreducible, thanks to their random scoring function and to

their hypotheses recalled in Remark 1.1.

Remark 2.3. In Subsection 4.3 we detail a recursive procedure for computing the
cdf Fg+ ,, based on Theorem 2.1. Note also that, for every o, 8 € A, there are a
finite number of L terms different from zero. Therefore, there are a finite number

of non-null terms in the sum defining Gy p(00).



8 S. Grusea, S. Mercier

The following result is the analogous, in our settings, of Lemma 4.3 of Karlin and

Dembo [9].

Theorem 2.2. (Asymptotics for the tail behaviour of ST.) For every a € A we have

P (ST > k) 1 w
li Z Ca\w T . 0l
hvdoo o (0%) o 2

D (Ly(00) = Ly(0)e” " = c(o0),  (4)

*
’YG.A+ u’Y( ) >0
where w = (wq )aca 18 the stationary frequency vector of the matriz G(co) and

w . 0 r (e
c:i= Z (g*)ug(ﬁ )Zﬁ-e‘g ¢ Lfyﬁ)

+ Uy >0
v,8€A >

The proof is deferred to Section 3.

Remark 2.4. Note that there are a finite number of non-null terms in the above sums
over £. We also have the following alternative expression for ¢(c0):
_ 1 Wy 0°S, . +
)= oy 2 g B e <] e
yeAT
Indeed, by the summation by parts formula

k k

ZZ fe(gesr = ge) = fra1gnar — Fnm — ; (fer1 — fo)gesn,
we obtain - -
iwoo) A ——— iwoo) — (@) () - o)
1
e —1
x {klijgo (Ly(00) = L (R)e”™ — Ly (00) — lf%we) L+ 1>>ee*<”l>}

1 1 o
= ﬁ {—L,Y(OO) + E 89 (£+1) P'Y(SU+ = K—‘r 1, 0'+ < OO)}
=0

= e(”*%l {E,y {60*50+;0+ < oo] - L.Y(oo)} .

Before stating the next results, let us denote for every integer £ < 0 and «, 5 € A,
O =Pu(S,- =, A, =
Qaﬁ = a( o~ — Yo~ _5)

Note that ngg =0 for 8 € A\ A™. In Section 4 we give a recursive method for

computing these quantities.
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Using Theorem 2.2 we obtain the following result, where the notation f B L
— 00

means fr — gr = o(gx), or equivalently Jr — 1.
gr k—oo

Theorem 2.3. (Asymptotic approximation for the tail behaviour of Q1.) We have the
following asymptotic result on the tail distribution of the height of the first excursion:
for every a € A we have

Po(Qi>k) ~ Pa o(ST > k) Z Z Ps (ST >k — 1) .Qgg. (5)

£<0 Be A~

The proof will be given in Section 3.

Remark 2.5. Note that, as a straightforward consequence of Theorems 2.2 and 2.3,

we recover the following limit result of Karlin and Dembo [9] (Lemma 4.4):

. TP Q1 > k)
kETmW =clo0)§ 1 Z

Z 0* eQ(L’)

Ua Z<0

BEA-
Using now Theorems 2.2 and 2.3, we finally obtain the following result on the

asymptotic distribution of the local score M, for a sequence of length n.

Theorem 2.4. (Asymptotic distribution of the local score M,,.) For every a € A and

z € R we have:

log(n) n .
P, (Mn < o —l—x) Lo exp _A*ﬁEZA z5Pg (ST > [log(n)/0* + z])

X exp Z Z > |log(n)/0* + z] — k) Z ZBQM ) (6)
k<0~vyeA- BEA—

where z = (za)aca 1$ the invariant probability measure of the matriz Q defined in
K, 1

Subsection 2.1 and A* := mgrﬂoo g E(7(A) Z 25E5[S,-] a.s.
BEA~
Remark 2.6. e Note that the asymptotic equivalent in Equation (6) does not

depend on the initial state a.

e We recall, for comparison, the asymptotic lower and upper bounds of Karlin

and Dembo [9] for the distribution of M,,:

liminf P, (M < 102( n) +x> > exp {—K" exp(—0"z)}, (7)

n—-+oo
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lim sup P, (Mn < 10%# + x) <exp{—K*exp(—0*z)}, (8)

n—+o00
with Kt = K* exp(6*) and K* = v(00) - ¢(00), where ¢(o0) is given in Theorem
2.2 and is related to the defective distribution of the first positive partial sum
So+ (see also Remark 2.4), and v(co) is related to the distribution of the first
negative partial sum S,- (see Equations (5.1) and (5.2) of [9] for more details).
A more explicit formula for K* is given in Subsection 4.4 for an application in a
simple case.

e Even if the expression of our asymptotic equivalent in Equation (6) seems
more cumbersome than the asymptotic bounds of Karlin and Dembo recalled

in Equations (7) and (8), the practical implementations are equivalent.

3. Proofs of the main results

3.1. Proof of Theorem 2.1

Fgr o(0) =Py(0F = 00) + P, (ST < £,0" < 0)

s

0
=1-La(co)+ > D> Pu(ST<lot <00,8,+ =k, Ay = f)
BeAt k=1

4
=1—La(o0)+ 3 S LY Po(S* <l o+ < 00,5+ =k, Ae = ).
BEAT k=1

It then suffices to note that
Po(ST —Sor <l—Fk|oT < 00,85+ =k, Ags = B) =Ps(ST <l —k),
by the strong Markov property applied to the stopping time o ™. O
3.2. Proof of Theorem 2.2
We first prove some preliminary lemmas.
Lemma 3.1. We have limy_, oo Po, (ST > k) = 0 for every o € A.

Proof. With Fg+  defined in Theorem 2.1, we introduce for every a and £ > 0:

_ Mee*z _ Mee*z_

ba(f) : 0 (0% y a(l) = U (6%)
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Theorem 2.1 allows to obtain the following renewal system for the family (by)aca:

L
V>0 Ya €A, ba(l) =aa() + 3D ba(t— k)G, (9)
B8 k=0

Since the restriction of G(co) of G(oc) to AT is stochastic, its spectral radius equals
1 and a corresponding right eigenvector is the vector having all components equal to
1; a left eigenvector is the stationary frequency vector w > 0.
Step 1: For every a € AT, a direct application of Theorem 2.2 of Athreya and Murthy
[1] gives the formula in Equation (4) for the limit ¢(00) of b, (¢) when £ — oo, which
implies lim P, (ST > k) = 0.

k—o0
Step 2: Consider now a ¢ AT. By Theorem 2.1 we have

Po(St > 0) = -y ZL(k) —Py(ST >L—k)}.

Be At k=1

Since Pg (S > £ —k) =1 for k> £ and La(00) = Y50 4+ Doy aﬁ’ we deduce

w(8T > 0) = ZZL 5(ST >0 —k). (10)

BeAt k=1
Note that for fixed o and 3, there are a finite number of non-null terms in the above sum
over k. Using the fact that for fixed 8 € AT and k > 1 we have Pg(St >0 —k) — 0

when ¢ — oo, as shown previously in Step 1, the stated result follows. O

Lemma 3.2. Let § > 0. With u(0) defined in Subsection 2.1, the sequence of random
variables (Uy, (0))m>o defined by Up(8) :==1 and

m—1
exp(ef(AiJrl)) UA; 11 (9) exp(05m>UA, (9)
U (0) .= . = L form>1
o =11 s (02, 6)
is a martingale with respect to the canonical filtration Fp, = 0(Ao, ..., Am).

Proof. For every m € N and 6 > 0, U,, () is clearly measurable with respect to F,,

and integrable, since A is finite. We can write

exp(@f(Am-H ) )uAm+1 (0)
ua,, (0)p(0) '

Since U,,(0) and u4,, (0) are measurable with respect to F,,, we have

E[exp(Qf(AmH))uAmH (9) |]:m]
ua,, (0)p(0) '

Un+1(6) = Un(0)

E[Um11(0)[Fm] = Un ()
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By the Markov property we further have

Elexp(0f (Am+1))ua,. i1 (0)|Fm] = Elexp(0f (Amt1))ua,. i, (0)]Am]

and by definition of u(#),
E[exp(0f (Am+1))ua, . (O Am = o] =) exp(0f(8))us(0)pas = ua(0)p(6).

We deduce Elexp(0f(Am+1))ua,,,, (0)|Am] = ua,, (0)p(0), hence E[Un,+1(0)[Fm] =
U, (0), which finishes the proof. a

Lemma 3.3. With 0* defined at the end of Subsection 2.1 we have

3 ZL“’ %) = 1. (11)

Be A+ =1

VYa e A:

ua)

Proof. The proof uses Lemma 3.1 and ideas inspired from [9] (Lemma 4.2). First
note that the above equation is equivalent to E,[Uy+(0%);0" < o] = 1, with U,, ()
defined in Lemma 3.2. By applying the optional sampling theorem to the bounded

stopping time 7,, := min(c ™, n) and to the martingale (U, (0*)),,, we obtain
= E,[Up(0)] = Eu[Us, (6%)] = Ea[Uy+ (0%);0" < n] + Eo[Un(6*);07 > n).

We will show that E, [U,(6*);0% > n] — 0 when n — co. Passing to the limit in the

previous relation will then give the desired result. Since p(6*) = 1, we have

exp(0*Sy)ua, (0)
UA, (9*)

and it suffices to show that lim,, o, Eq[exp(6*S,);0F > n] = 0.

Un(07) =

For a fixed a > 0 we can write

Eu[exp(0*S,); 0t > n| = Ey[exp(0*S,);0" >n, 3k <n: Sy < —2d]

+ Eqlexp(0*S,);0t >n,—2a < S, <0, VO < k <n]. (12)
The first expectation in the right-hand side of Equation (12) can further be bounded:

Eol[exp(0*S,);0" > n, 3k <n: Sy < —2a] < Eylexp(0*S,);0t > n, S, < —d]

+ Eolexp(0*S,);0" > n, S, > —a, Ik <n:Sp < —2a]. (13)
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We obviously have
E,[exp(6*S,);0" > n, S, < —a] < exp(—0*a). (14)

Let us further define the stopping time 7' := inf{k > 1 : S, < —2a}. Note that
T < o0 a.s., since S,, — —o0 a.s. when n — oo. Indeed, by the ergodic theorem, we

have S,,/n — E[f(A)] <0 a.s. when n — oo. Therefore we have

E,lexp(0*S,);0" >n, S, > —a, 3k <n: Sk < —2a] <P, (T <n,S, > —a)

= Y Po(T <n, Sy > —a |Ar = B)Po(Ar = B)

BEA~
< Y Pu(Sn—Sr > a|Ar = B)Pa(Ar = B) < D Py(ST > a)Pu(Ar = B),
BeA—- peA-

by the strong Markov property. For every a > 0 we thus have

limsup E, [exp(0*S,);0" > n, S, > —a, Ik <n: S, < —2a] < Z Ps(ST > a).
n— oo BEA-
(15)

Considering the second expectation in the right-hand side of Equation (12), we have

lm Po(—2a < S, <0, VO<k<n)=Py(~-2a< S, <0, Vk>0)=0, (16)

n—oo

again since S, — —o0 a.s. when n — oc.

Equations (12),(13),(14),(15) and (16) imply that, for every a > 0, we have

limsup E,[exp(0*S,); 0" > n] < exp(—60*a) + Z Ps(ST > a).

n—00 BEA-

Using Lemma 3.1 and taking a — oo we obtain lim,, . Ey[exp(0*S,);0T > n] = 0. 0

Proof of Theorem 2.2:

For oo € AT the formula has been already shown in Step I of the proof of Lemma
3.1. For a ¢ A" we prove the stated formula using Theorem 2.1. Equation (10) implies
the formula in Equation (9).

Note that for every o and 3 there are a finite number of non-null terms in the above
sum over k. Moreover, as shown in Step 1 of the proof of Lemma 3.1, we have

0* (6—Fk) + _
e ]P’g(S >/ k) N C(OO)

TOVE>0:
vBe AT, 20 u,@(a*) f—00




14 S. Grusea, S. Mercier

We finally obtain

PSSt >0 (oo
Jm ey Z ZL %),

/36«4* k=1

which equals ¢(c0) as desired, by Lemma 3.3.

3.3. Proof of Theorem 2.3

Since ST > @1, for every a € A we have
Po(ST > k) =Pa(Q1 > k) + Po (ST > k,Q1 < k).

We will further decompose the last probability with respect to the values taken by S, -

and A,-, as follows:
Po(ST >k Qu<k)=>Y > Po(ST >k Q1 <k Se- =0 A,- =B)
<0 Be A~

:Z Z PQ(SJF*SU* >k—4 |AU* :ﬂan SkaSU* :E)

£<0 pe A~

Pa(QlSkS*ZKA*:B)
=3 Y Past>k-0)- {Q (Q1>k5__€A__5)}

£<0 Be A~
by applying the strong Markov property to the stopping time o~. We thus obtain

Po(ST>k) =D > Pa(ST > k- 0)- Q%) —Pu(Q1 > k)

£<0 Be A~

- _Z Z IPB(S+ >k—0)Py(Qr > k,Sy- =L, A~ = PB).

£<0 Be A—

By Theorem 2.2 we have Pg(S* > k) = O(e= %) as k — oo, for every f € A~, from
which we deduce that the left-hand side of the previous equation is o(P(Q1 > k))

when k& — oo. The stated result then easily follows. O
3.4. Proof of Theorem 2.4
We will first prove some useful lemmas.

Lemma 3.4. There exists a constant C > 0 such that, for every a € A, B € A~
y >0, we have Po(Q > y|A,- = ) < Ce v,
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Proof. The proof is partly inspired from [9]. Let y > 0 and denote o(y) the first
exit time of S,, from the interval [0, y]. Applying the optional sampling theorem to the
martingale (U, (6*)), (see Lemma 3.2) and to the stopping time o(y), we get

Ea [Us((6)] = Ea [Us(67)] = 1. (a7)

The applicability of the optional sampling theorem is guaranteed by the fact that there
exists C' > 0 such that, for every n € N, we have 0 < Unin(o(y),n) (07) < C a.s.
Indeed, this follows from the fact that, when o(y) > n we have 0 < S,, <y, and when
o(y) < n, either S, <0ory < Sy <y-+max{f(a):aec AT}

We deduce from Equation (17) that, for some constant K > 0, we have:

1=E, ee*scr(y)w] > Kef'v E, [69*(Sa(y>—y))
UAg (0*) N

> KV Po(So(y) > y) = KV Pa(Soy) > yldo- = B)qas-

Sa(y) > y} . Pa(sa(y) > y)

Note further that, A being finite, there exists ¢ > 0 such that for all« € Aand 8 € A~
we have ¢og = Po(As- = ) > pap > c. In order to obtain the bound in the statement,
it remains to note that Py (Q1 > y|As- = B) = Pa(Ss(y) > ylAs- = B). O

Lemma 3.5. We have p/'(0) = E[f(A4)] < 0.

Proof. By the fact that p(6) is an eigenvalue of the matrix ®(6) with corresponding
eigenvector u(f), we have p(0)uq(6) = (®(0)u(0)), =>4 Pape®f Bug(0).

When derivating the previous relation with respect to 8 we obtain

L (p(0)1a(0) = Y ps (FET Oup(0) + Oty 0))
B

We have p(0) =1 et u(0) =* (1/r,...,1/r). For 6 = 0, we then get

S ta (P Oual®)| = TELFA)] + 3 mapastip(0) = TELF(A)] + Y mauis(0).
a B

=0 a,B
(18)

On the other hand,

S T (PO)ua() = (Z wapw)ua(e)) = O maua®)+p(0) Y mati(0).

For 6 = 0 we get

r

3 T s (p(O)ua8))

= 2O 4 o0) -3y (0), (19)

6=0
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From Equations (18) and (19) we deduce @—i—za Tt (0) = %E[f(A)]—l—ZB mauj(0),

from which the stated result easily follows. O

Lemma 3.6. There exists ng > 0 such that Yn > ng and Voo € A we have

Po(S, >0) < ( inf p(d)) , with0 < inf p(d) < 1.
( ) (elﬁwp( )> with 0 < inf p(6) <

Proof. By a large deviation principle for additive functionals of Markov chains (see
Theorem 3.1.2. in [3]), we have lrllgili})) % log (Pa <in € I‘)) < —Z,withI' = [0, +00)
and Z = inf  cp supgep (0 —log p(#)). Since A is finite, it remains to prove that Z > 0.

For every x > 0, let us denote g, () := 8z — log p(#) and I(x) := supyeg g=(6). We
will first show that I(x) = supgep+ 9=(6). Indeed, we have g/, (0) =« — p'(0)/p(6). By
the strict convexity property of p (see [3, 10]) and the fact that p’(0) = E[f(A)] < 0 (by
Lemma 3.5), we deduce that p’'(6) < 0 for every § < 0, implying that ¢/, (6) > x > 0 for
6 < 0. The function g, is therefore increasing on R™, and hence I(z) = supycp+ 92 (6).
As a consequence, we deduce that z — I(x) is non-decreasing on R*. We thus obtain
T =inf e+ I(x) = I(0).

Further, we have I(0) = supgep (—logp(f)) = —infycg+ log(p(f)). Using again
the fact that p'(0) < 0 (Lemma 3.5), the strict convexity of p and the fact that
p(0) = p(6*) = 1, we finally obtain Z = —log (infycpr+ p(0)) > —log p(0) = 0. O

Lemma 3.7. We have E,[K;] < oo for every a € A.

Proof. Note that P, (K7 > n) < P,(S, > 0). With ny € N defined in Lemma 3.6,
using a well-known alternative formula for the expectation, we get
n
— Y R (K ) < YRS, 20 <0t Y <mf+p ) ,
n>0 n>0 n>ngo ber

where C' > 0 is a constant and 0 < infycg+ p(6) < 1. The statement easily follows. O

K,
Lemma 3.8. The sequence (m) converges a.s. when m — oo. Therefore,
m>1
K
A* = lim — appearing in the statement of Theorem 2.4 is well defined. Moreover,
m—oo m

we have A* =35 23E5[K1] a.s

Proof. Recall that K1 = o~. We can write

K’" + ZK K1) = —I—Z ZK Kio1)lia,, =gy (20)
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First note that & — 0 a.s. when m — oo, since K1 < +o0 a.s. By the strong
Markov propertynzve have that, conditionally on (Ag, ,)i>2, the random variables
(K; — K;—1);>2 are all independent, the distribution of K; — K;_; depends only on
Ak, ,, and P(K; — K;—1 = { |Ak,_, = a) = Po (K7 = £). Therefore, the couples
Y; = (Ak,_,, K; — K;—1),1 > 2 form a Markov chain on A~ x N, with transition
probabilities P(Y; = (8,¢) |Yi—1 = (o, k)) = qapPs(K7 = £). Recall that the restriction
Q of the matrix Q to the subset A~ is irreducible. Since z is invariant for Q, we easily
deduce that 3, m(a, k) - qapPs (K1 = £) = (B, £), and hence the Markov chain (Y;);
is also irreducible, with invariant distribution m(a, k) := z,Po (K1 = k).

For fixed 8, when applying the ergodic theorem to the Markov chain (Y;); and to
the function wg(a, k) := k1{,—py, we deduce

1 m
Z(Ki —Kio1)lia,, =y — ngg(a,k‘)ﬂ(a,k) = 2gEg(K1) a.s.
o,k

m m— 00
=2

Taking the sum over 8 and using Equation (20) gives the result in the statement. [
Proof of Theorem 2.4:

Step 1: The proof of this step is partly inspired from [9]. We will prove that for any

convergent sequence (Z, )., we have

log(m) "
P, (MKm < g tam | ~ expq-m BXA; z5Pg (ST > [log(m) /0" + zp,])
A

X exp mz Z P, (St > [log(m)/0* + x| — k) - Z zBQg;)

k<O0~eA~ BEA~

Given (Ak,)i>0, the random variables (Q;);>1 are independent and the cdf of Q; is

Fay. g, - Therefore, for any y > 0:

i

Po (MKm < y) = E.

H FAKi71 Ak, (y)‘|
=1

= E, |exp Z m¢5v(m)10g(Fﬁv(y)) )
BEA

with ¢g,(m) == #{1: 1 <i<m, Ak, , = 5, Ak, =v}/m. Given that Ay =a € A~

the states (Ag,)i>0 form an irreducible Markov chain on A~ of transition matrix



18 S. Grusea, S. Mercier

Q= (48+)8,~vea- and stationary frequency vector Z = (23)gca- > 0. Consequently,
for 8,7 € A~ the ergodic theorem implies that g, (m) — 23¢s, a.s. when m — oo.
On the other hand, for any o € A, if 3 € A\ A~, then 1g,(m) equals either 0 or
1/m, and thus 1g,(m) — 0 a.s. when m — oo, for any v € A. With z3 = 0 for
g e A\ A, we thus have ¥g,(m) — zqsy a.s. when m — oo, for every 3,7 € A.
We will further use a Taylor series expansion of the log function. Let us denote

1
dgy(m) == m {1 — Fg, ( Ogg( m) + m)} for every m > 1. Thanks to Lemma 3.4,

dg~(m) are uniformly bounded in m, 8 and 7. Since, 0 < 1g,(m) < 1, we obtain

log(m
Py (MKMS g(* )+xm> o~ Eajexp Z Y~y (m)dg, (m)

0 —00 Py

~ exp | = Y 2pqsydgy(m)

m—00
B,yeA
Since
log(m)
> asydpy(m) =m |1 = Fy (=== +am )|,
yeEA
log(m) log(m)
P, (MKm < o + m> o~ exp | —m Z 23 [1 — Fpg < T + zm,
BEA~
But

1o p (P ) < (0> B ) < B (Qu > Logm) 0+,

and using Theorem 2.3 we get:

1 - Fy <1°g(m> + xm> ~ Py (ST > [log(m)/0" + 2 ))

0* m—oo
=373 By (ST > log(m) /60" + ] — k) - QY
k<O0~yeA—

This further leads to

log(m *
P, (MKm < 0(* ) —l—xm) L eXp g —m Z zPs (S+ > |log(m)/6 —l—xmj)

BeEA~

X exp mz Z P, (St > [log(m)/0* + x| — k) - Z ZﬁQ(k)

k<0~yeA— BeA~
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Step 2: We now deduce the stated asymptotic equivalent for the distribution of M,,.
Since going from the distribution of Mg, to the distribution of M, is more delicate
in our case than in [9], we present in details the proof of this step.

Let € R. Since Kp(n) <0 < Kpy(n)41 and (M), is non decreasing, we have

log(n) log(n) log(n)
]P)O/, (MK.,”(,,L)+1 S 0* + 'I> S ]P)O/ (M'IL S 9* + x S ]P)Ct MK"L(,L> — 9* + X
(21)

1
Since m(n) — oo a.s., Lemma 3.8 implies that m(n) — g s, with A* =
n
K

hmm_>oo “m -

Fix now ¢ > 0. We have

1
Pa <MKm(n) S Oi( ) +x>

lo n m(n 1 m(n 1
(< 0 ) (2 1]
log(n m(n 1
<P, (MKM/A*M} < 95‘ )+m) + P, (‘ 7(1)—; >g>. (22)

Using the result of Step 1, we obtain

Pa (M ey < 258 4 2)
me W ’ ~ Rn(E)v (23)

E, n—00

where F,, is the asymptotic equivalent given in the statement

E, :=exp —l* Z zgPs (ST > |log(n)/0* + z])

A
BeA~
X exp —Z Z P, (St > [log(n)/6" + ] — k) Z ng
k<O0O~yeA— BEA—

and

R.(e):==expie-n Z zsPs (ST > |log(n)/0* + x)
BEA~

X exp{ —¢ - nz Z P, (St > [log(n)/6* + ] — k) Z ZBQM

k<0~yecA- pEA~

Using Theorem 2.2 we obtain

limsup R, (¢) < exp {s . c(oo)e*O*ID*} , (24)

n—oo
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with

D= 37 zpus(0) — Y zpul(67) QL.

BEA~ ByeEA~ k<0
: . m(n) 1
Equations (21), (22), (23) and (24), together with the fact that — 4 as.
n
imply that
Poz (Mn S 1057&77,) + .’II) .
lim sup < exp {5 - c(o0)e™? “’D*} . (25)
n—oo E’n,
In a similar manner, we can show that
P, (Mn < logtn) 4 w)
linrr_l)ioréf B > exp {—5 . c(oo)e_e*””G*} , (26)

with
* * * * * k
G = Z zpup (%) — €’ Z zgu~ (6 )Zeke Q(ﬂ’Y)
BEA~ B,yEA™ k<0
Taking now the limit € — 0 in Equations (25) and (26) gives

Pa(Mngb%#‘i’x) Pa(Mngloggﬁ‘f'-T)

1 < liminf < limsu <1,
T n—oo En - n—)oop En -

and hence P, (Mn < bg& + x) o FE,, with E,, the asymptotic equivalent given in
the statement.

Step 3: The last step is to prove the stated expression for A*. Recall that ¢~ = Kj.
In Lemma 3.8 we proved that A* = 3" z,Eq(07).

Let n € N. By applying the optional sampling theorem to the martingale (U, (9)),, and
to the bounded stopping time min(c~,n), we get E, [Umin(f’n)(G)] =E, [Uo(9)] = 1.

Furthermore, we have
1=Eq [Uy-(0);0~ <n] +Eq, [Un(0);0~ >n]. (27)

We will show that E, [U,(0);0~ >n] — 0 when n — oo. It suffices to prove that

E. [(0, o > n] — 0. By the Cauchy-Schwartz inequality, we have
p n

)
efSn ] 172 (Py(o™ >n) 1/2
Eo | ——;0" > n| < (E, [ (a > .
0*
Further, using Theorem 2.2, we can easily see that E, [e295+] <xif0 <6< 5

Moreover, by Lemma 3.6, we have P, (0~ > n) <P, (S, > 0) < (imf(;eRJr p(é)) .
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0
Since p(f) — 1 when 6 — 0, for sufficiently small § we will both have 6 < 5 and

0Sn
p(0)% > infycp+ p(0), implying that E, [e; o~ > n} — 0 when n — oo.

p(0)"

When passing to the limit as n — oo in Equation (27), we deduce that, for 6

sufficiently small, we have E,, [U,- (0)] = E, [Up(¢)] = 1. Consequently,

ua _(0) 1 ua, (0) 1
E“[e"pw's")u ] wal®) (07

ZEO‘ {exp(eu%)uﬁ 6 _1 |A,- = 5] ‘Po(Ap- = B)
B

1

—E, [exp(e S,-)

uq (0) p(0)7
_ ug(6) exp(f - S,-) _ Al
) %uaw)Ea{ e =] s

We deduce that, for 0 sufficiently small, we have
exp(0 - S,-
ua(8) = > E, {MMU - 5} u5(0)gas.
5 p()

For 6 sufficiently small, by derivating the above relation, we obtain:

D Gasus(9)E Som el S plOF ;(;;2(0~Sg)ap(9)ﬂ - p(e)\A
8

o exp(®-55-)y, _
+%:Qaﬁ ﬁ(g)]Eoc[ p( ) !A =pB|.

Since p(0) = 1, we obtain for § = 0:

200 =" qapup(0) (Ea [So- |Ag- = B] = p/(0)Eq [0 |4y- = B]) +an5uﬁ
5

By the fact that u(0) =* (1/r,...,1/r), we further get

(0 = 25,1 - PR 07 3 g (0)

From the last relation we deduce

> zaul,(0) = % > zaBa [So-] - @ D zaBalo T+ Y ) Zagasuf(0)
a a « a B

On the other hand, since z is invariant for Q, we obtain

ZZQUZX(O) =* ZU’/(O) =* (ZQ)’U’/(O) = Z (ZQ B uB ZZZQQDA,BU,B

B

(28)

(29)
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Equations (28) and (29) imply that > z4Es [So-] = p/(0) - Y°, 2aEalo™] and thus
A =3 2aEofo7] = ﬁ Y o ZaEa [Sy-]. Using now the fact that p’(0) = E[f(A)]

(see Lemma 3.5) gives the stated expression for A*. g

4. Applications and computational methods

Let —u,...,0,...,v be the possible scores, with u,v € N.

For —u < j < wv, we introduce the matrix P with entries
P = Pa(Ar = B, f(41) = j)

for a, 3 € A. Note that P(f(ﬁ)) = Dap ,P(J) =0ifj # f(B) and P = >¥__ P

J——u ’

where P = (pag)a,s is the transition probability matrix of the Markov chain (A4;),.

In order to obtain the asymptotic result on the tail distribution of @) given in
Theorem 2.3, we need to compute the quantities Q((fg for —u <l <wv,a,8 € A. This
is the topic of the next subsection. We denote Q) the matrix (fo/)g)a,BEA~

4.1. Computation of Q® for —u < £ < v, and of Q

Recall that Qaﬁ =Py (S,- = ¢, A,- = ), and hence Q&% =0if{>0o0orf e A\A".
Note also that o~ = 1if f(A;) < 0. Let —u < £ < —1. When decomposing with respect
to the possible values j of f(A;), we obtain:

QY =Pal(Ar = B, f(A1) = 0) + Po(S,- = 6, A,- = B, f(A1) = 0)
+ ) Pa(S,- =6, A, = B, f(A1) = ).

j=1
Note that the first term on the right hand side is exactly Po(fﬁ) defined at the beginning of
this section. We further have, by the law of total probability and the Markov property:

Pu(S,- =0, Ay = B, f(A)) = ZP(O)P (So- =, Ay =B | A1 =, f(A1) = 0)
ZP“” Py(So- =L, Ap- = B) = (PLQ),4
Let j € {1,...,v} be fixed. We have

Po(Se- =l A =B, f(A1) =4) =Y  PY) Pu(So- =L, Ay = B |A1 =, f(A1) = ).

v
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For every possible s > 1, we denote 7 the set of all possible s-tuples t = (¢1,...,ts)
verifying —u < t; < —1lfori=1,...,s, t14+---+ts-1>—j>0and t; +---+ts =

£ — j > 0. Decomposing over all the possible paths from —j to £ gives

QY = P+ (POQ"),, + zv: (P(j) N H Q(n)) 7
i=1 oB

s teTsi=1
hence
QY =PO L POQ® 4 ZP(J) Z Z H Q. (30)
s teTsi=1
Recalling that Q = (gag)a,s With ¢ap = ]P’Q(AU_ =8)=2 <0 Qaﬁ, we have
Q=> QY. (31)
£<0
Example: In the case where u = v = 1, we only have the possible values £ = —1,
j=1,s=2and t; =ty = —1, thus
QY =p-V L PO . Q-1 4 P(1)<Q(—1))2 and Q = Q1. (32)

4.2. Computation of L((f[)a for 0 < ¢ < v, and of L, (c0)

Recall that L'} = Po(S,+ = €,0% < 00, Ay+ = f). Denote L := (L)) 5. First
note that Lgﬁ =0for{<0orfe A\ AT, Using a similar method as the one used to
obtain Q(a% in the previous subsection, we denote for every possible s > 1, 7! the set
of all s-tuples t = (t1,...,ts) verifying 1 <t¢; <wvfori=1,...,8, t1+ - +ts_1 <k
andt;1 +---+ts=0+k >0.

For every 0 < ¢ < v we then have

LY =pPW  POL f>+ZP< k) ZZHL (33)
s teT!i=1

Since La(00) = Po(ot < 00) = 37537, Lffg7 and denoting by L(co) the column

vector containing all L, (c0) for o € A, and by 1, the column vector of size r with all

components equal to 1, we can write

%) =Y LU .1, (34)
=1
Example: In the case where u = v = 1, equation (33) gives
LY =p® 4 pO . L) L pC ()2, (35)

L® =0 for £ > 1, thus L(co) = LM - 1,. (36)
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4.3. Computation of Fg4 ,(£) for £ >0

For £ > 0 let us denote Fg+ .(£) := (Fg+ o(¢))acAa, seen as a column vector of size

r. From Theorem 2.1 we deduce that for £ = 0 and every a € A we have
Fs+ 4(0) =1 — Ly(00).

For £ =1 and every o € A we get Fg+ o(1) =1 — La(00) + > 5c 4 LS; Fgs+ 5(0).

With L(co) = (La(00))aca, seen as a column vector, we can write

Fgi (1) =1—L(cc) + LYFg (0),

V4
Fg (0) =1-L(co) + Y L®Fg (£~ k), VL > 1.
k=1

See Subsection 4.2 for how to compute L&) for k& > 1 and L(c0).

4.4. Numerical application in a simple case

Let us consider the simple case where the possible score values are —1,0, 1, corres-
ponding to the case u = v = 1. We will use the results in the previous subsections (see
Equations (32, 35, 36)) to derive the distribution of the maximal non-negative partial

sum ST. This distribution can be determined using the following matrix equalities:

Lco)= [ Y L) | =1®.1,, (37)
B

(e

with L) given in Equation (33) and

Fgi.(0) = 1-L(co), (38)

Fgi (0) = 1-L(oo) +LMFg: (1) (39)

This allows to further derive the approximation results on the distributions of @}; and
M, given in Theorems 2.3 and 2.4.
We present hereafter a numerical application for the local score of a DNA sequence.

We suppose that we have a Markovian sequence whose possible letters are {4, C, G, T}
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and whose transition probability matrix is given by

1/2 1/6 1/6 1/6

1/4 1/4 1/4 1/4

1/6 1/6 1/6 1/2

1/6 1/6 1/2 1/6
We choose the respective scores —1,—1,0, 1 for the letters A, C, G, T for which Hypo-
theses (1) and (2) are verified. We use the successive iteration methodology described in
Equation (5.12) of [9] in order to compute L(*) and Q(~1), solutions of Equations (32)
and (35), from which we derive the approximate formulas proposed in our Theorems
2.1, 2.3 and 2.4 for the distributions of ST, Q1 and M,, respectively. We also compute
the different approximations proposed in Karlin and Dembo [9]. We then compare
these results with the corresponding empirical distributions computed using a Monte
Carlo approach based on 10° simulations. We can see in Figure 1, left panel, that
for n = 300 the empirical edf of ST and the one obtained using Theorem 2.1 match
perfectly. We can also visualize the fact that Theorem 2.1 improves the approximation
of Karlin and Dembo in Lemma 4.3 of [9] for the distribution of ST (see Theorem
2.2 for the analogous formula in our settings). The right panel of Figure 1 allows to
compare, for different values of the sequence length n, the empirical cdf of ST and the
exact cdf given in Theorem 2.1: we can see that our formula performs very satisfactory
in this example, even for sequence length n = 100.
In this simple example, the approximate formula for the tail distribution of Q1 given in
Theorem 2.3 and the one given in Lemma 4.4 of [9] give quite similar numerical values.
In Figures 2 and 3 we compare three approximations for the cdf of M,: the Karlin
and Dembo’s [9] asymptotic bounds (the lower bound, depending on KT and recalled
in Equation (7), and the upper bound, depending on K* and recalled in Equation
(8)), our approximation proposed in Theorem 2.4, and a Monte Carlo estimation.
For the simple scoring scheme of this application, the parameter K* appearing in the

asymptotic bounds of Karlin and Dembo [9] is given by their Equation (5.6):
K* = (e =) B[f(A)] Y zpup(07) - > wy/uq(07).
B v

More precisely, in Figure 2 we plot the probability p(n,z) := P (Mn < 10%# + x) as
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FIGURE 1: Cumulative distribution function of ST for the simple scoring scheme (—1,0, +1)
and A9 =“A”. Left panel: Comparison between the approximation of Karlin and Dembo [9], a
Monte Carlo estimation with sequences of length n = 300, and our exact formula proposed in
Theorem 2.1. Right panel: Comparison, for different values of n, of the Monte Carlo empirical

cumulative distribution function and the exact one given in Theorem 2.1.

a function of n, for two fixed values © = —5 and —8. This illustrates the asymptotic
behavior of this probability with growing n. We can also observe the fact that Karlin
and Dembo’s asymptotic bounds do not depend on n. In Figure 3, we compare the
asymptotic bounds of Karlin and Dembo [9] for the same probability p(n,x) with our
approximation, for varying x and fixed n = 100. We observe that the improvement
brought by our approximation is more significant for negative values of . For fixed n

and extreme deviations (large z) the two approximations are quite similar and accurate.

4.5. Numerical applications on real data

We consider the examples presented in [8] for which we could recover the given
sequences. On each sequence separately, we learn the score frequencies f, for each
possible score x, as well as the transition probability matrix P, for which we give each

row P,. For each example, we also show the corresponding invariant probability 7,
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FIGURE 2: Comparison of the different approximations for p(n,z) = P (Mn < 10‘;# + 1:) as a
function of n, for fixed x and for the simple scoring scheme (—1,0,+1): the asymptotic lower
and upper bounds of Karlin and Dembo’s [9] (see Equations (7) and (8)), the approximation
we propose in Theorem 2.4 and Monte Carlo estimation. Left panel: p(n,z) for z = —5.

Right panel: p(n,z) for z = —8.
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FIGURE 3: Comparison of the different approximations for p(n,z) = P (Mn < 102# + x)
p(n,z) as a function of z, for fixed n = 100, and for the simple scoring scheme (—1,0,+1):
the asymptotic lower and upper bounds of Karlin and Dembo’s [9] (see Equations (7) and

(8)), our approximation proposed in Theorem 2.4 and Monte Carlo estimation.
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which is in general close to the score frequencies, as expected. Biologists awared us
that since 1990 the sequences referred by [8] may have a little bit changed due to the
evolution of sequencing, which can explain some small differences in score frequencies
between our sequences and the ones in [8]. Note that our Hypotheses (1) and (2) are
both verified in all the following applications.

For each example, we computed the corresponding p-values of the observed local
score using the asymptotic lower and upper bounds of Karlin and Dembo [9] (pxpe
refers to the bound with K* based on Equation (8), and px pe_+ refers to the bound
with KT based on Equation (7)), the approximation we propose in Theorem 2.4
(pcare), and an empirical Monte Carlo estimation (ppsc) based on 10° simulations
of sequences of the given length. Note that in all examples we have pyro < panve <
PEDe < PKDe-Ic+, €xcept in Example d)ii), where we have peye < pyc < Prpe <
PrDe—k+- In order to simplify the presentation, in what follows we only show the
results based on the best of the two bounds of Karlin and Dembo, which is pxp.. We
also compute the percentage of relative error for both theoretical methods:

PKDe — pMc’ RE(GMe) —100- PGMe — pMC. (40)
pPmMmc pPMmc

RE(K De) =100 -
The p-value given by [8] in the i.i.d. model (pxpe—iiq) is recalled.

We also computed two classical measures of dissimilarity between the theoretical
approximate distribution of the local score (the one we propose, denoted GM e, respectively
the one given by the asymptotic upper bound of Karlin and Dembo [9], denoted K De),
and the empirical distribution obtained by Monte Carlo simulations, denoted MC:

- the Kolmogorov-Smirnov distance:
dxs(GMe) = mgx(|PGMe(Mn < x) — Pyo(M, < z)|). (41)

- the Kullback-Leibler divergence:

drr(GMe) = ZPMC(M" =) log <1§)GIV[]\56((JA\44: _‘?)) )

We define similarly dg (K De) and dg (K De) using the asymptotic upper bound of
Karlin and Dembo [9] for the distribution of the local score (see Equation (8)).

We gather the relative errors and the two distance computations in Table 1.
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TABLE 1: Numerical comparison between our approximation for the local score distribution

and the one of [9], using relative errors (see Equation (40)) and two classical dissimilarity

measures recalled in Equations (41) and (42).

dxs(KDe) drxs(GMe) drxr(KDe) dxr(GMe) RE(KDe) RE(GMe)

a)i) 0.44 0.03 1.14 < 0.01 259% 7%
a)il) 0.48 0.06 1.32 0.02 307% 12%
b) 0.81 0.01 12.85 ~ 1073 1043% 3%
c)ii) 0.80 0.13 11.6 0.07 562% 5%
d)i) 0.66 0.06 4.78 0.01 870% 22%
d)ii) 0.84 0.20 5.64 0.29 307% —18%
d)iii) 0.69 0.06 5.37 0.01 1061% 64%

Examples ¢)i) and c)iii) have not been considered, since we did not recover the sequences

presented in [8]. Note that the sequence a)i) has one supplementary amino acid than

the one referenced in [8] and the local score is equal to 21 instead of 24 in their article.

Example e) has not been studied because one of the transition probabilities is equal to

0 and does not verify our hypotheses.

Exemple a), Mixed charge segment: s = 2 for the amino acids aspartate (D),

glutamate (E), histidine (H), lysine (K) and arginine (R), and s = —1 otherwise.

i) Human keratin cytoskeletal type II (UniProtKB-P04264): n = 644, M, = 24,
positions 238-292. f_; = 82.2%; fo = 17.8%. P_; = (0.784,0.216); P, = (0.821,0.179).
Prpe = 5.06 - 103 paare = 1.51- 1073 ppre = 1.41- 1073, 7 = [0.792;0.208].

ii) Human c-jun, nuclear transcription factor (UniProtKB-P05412): n = 331, M,, = 29,
positions 246-285. f_; = 79.5%; fo = 20.5%. P_; = (0.805,0.195); P, = (0.754,0.246).

PKDe = 2.2 - 10_3§pGMe = 6.03 - 10_4;pMC =54- 10_4;pKDefiid <2-107% 7=

[0.795; 0.205].

Exemple b), Acidic charge segments: s = 2 for aspartate (D) and glutamate (E);

s = —2 for lysine (K) and arginine (R) ; and s = —1 otherwise.
Zeste protein (UniProtKB-P09956): n = 575, M,, = 11, positions 194-209. f_o =
8.0%; f_1 = 82.8%; fo = 9.2%. P_, = (0.109,0.696,0.195); P_; = (0.078, 0.853,0.069);
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Py = (0.075,0.717,0.208). pxpe = 5.76 - 10~ paare = 5.21 - 1072
prc = 5.04 1072 prpe_iia = 3.7- 1073, 7 = [0.080; 0.828; 0.092].

Exemple c¢), High-scoring basic charge segments: s = 2 for lysine (K), arginine

(R) and histidine (H); s = —2 for aspartate (D) and glutamate (E); s = —1 otherwise.

ii) Zeste protein (UniProtKB-P09956): n = 575, M,, = 12, positions 78-86. f_o =
9.2%: f_1 = 79.7%; fo = 11.1%. P_, = (0.208,0.698,0.094); P_; = (0.068,0.827,0.105);
Py = (0.172,0.656,0.172). prpe = 13.9- 102 perre = 2.2+ 102

pyvc =2.1-1072 prpe—iia = 4 - 1072, 7 =[0.093;0.796;0.111].

Exemple d), Strong Hydrophobic segments: s = 1 for isoleucine (I), leucine (L),
valine (V), phenylalanine (F), methionine (M), cysteine (C), alanine(A); s = —1 for
glycine (G), serine (S), threonine (T), tryptophan (W), tyrosine (Y), proline (P); s =
—2 for arginine (R), lysine (K), aspartate (D), glutamate (E), histidine (H), asparagine
(N), glutamine (Q).

i) Drosophila engrailed (UniProtKB-P02836): n = 552, M,, = 17, positions 63-88.
foo =34.6%; f-1 = 33.7%; f1 = 31.7%. P_2 = (0.466,0.230,0.304);

P_1 = (0.254,0.449,0.297); P, = (0.314,0.337,0.349). pxpe = 5.82-107%; panre =
7.31-107%pare = 6 - 1075 pr pe—iia = 1.8 - 1075, 7 = [0.346; 0.338; 0.316].

ii) Human c-mas, angiotensin receptor factor (UniProtKB-P04201): n = 325, M,, = 15,
positions 186-212. f_o = 23.4%; f_1 = 29.8%; f1 = 46.8%. P_» = (0.381,0.316,0.303);
P_1 = (0.206,0.289,0.505); P, = (0.179,0.298,0.523). prpe = 8.77 - 107 parre =
177107 pare = 2.15 - 101 pre pesia = 0.80 - 10~ 7 = [0.234; 0.3; 0.466).

iii) Cystic Fibrosis (UniProtKB-P13569): n = 1480, M, = 21, positions 986-1029.
foo =31.55%; f_1 = 26.9%; f1 =41.55%. P_5 = (0.355,0.270,0.375);

P_; = (0.322,0.271,0.407); P, = (0.282,0.267,0.451). prpe = 22.5- 1072 pgare =
3.19-1073%;pare = 1.94 - 1073, pr pe—iia = 1073, m = [0.316;0.269; 0.415].
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