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Domain walls dynamics in a nanowire subject to an electric
current

Gilles CARBOU1and Rida JIZZINI 2

Abstract. In this work, we aim to study a one dimensional model of ferromagnetic wire submitted
to an electric field modeled by a transport term involved in the Landau-Lifschitz equation. We will
consider two types of wires: the case of a wire with elliptical section and the case of a wire with round
section. For both cases we prove the stability of exact solutions describing one wall configurations.

Keywords: Landau-Lifschitz equation, ferromagnetic materials, stability.

1 Introduction

Ferromagnetic materials exhibit a strong attraction to magnetic fields. They are able to retain their
magnetic properties after vanishing of the external field. This particularity gives them important
properties for applications in many industrial sectors as radar protection, storage of information,
energy management and telecommunications equipment (see [3], [9], [10] and [18] for more informa-
tions).

One of the most promising applications of ferromagnetic nanowires is the digital data storage in
”racetrack memories” (see [16]). The formation of magnetic domains, in which the magnetization is
along the wire, either in one sense or in the other sense, allows the storage of digital informations.
The domains are separated by domain walls, thin zones in which the magnetization presents large
variations. The information is transported along the wire (for example to a reading head) by an
electric current inducing walls motion. Compared to an applied magnetic field, this solution can
be very useful. Indeed it is easier to generate a constant electric current in a wire, even if it is
not straight. Moreover, a constant applied current induces a motion of the walls preserving their
positions one with respect to each other, while an application of a constant magnetic field in a finite
wire can induce the collapse of consecutive walls and consequently the annihilation of domains.

In this paper we address the description of the effects of an electric current in a ferromagnetic material
for a one dimensional model of infinite wire. In particular we will consider one wall configurations
in the case of wires with round cross section or with elliptical cross section. For both case, we will
prove the stability of such configurations.

Let us describe the one dimensional model we deal with.

A ferromagnetic material is characterized by a spontaneous magnetization represented by a magnetic
moment. We consider an infinite homogeneous nanowire assimilated to the real line Re1, where
(e1, e2, e3) is the canonical basis of R3. We denote by m the magnetization:

m : R+ × R → R3

(t, x) 7→ m(t, x).

1Laboratoire de Mathématiques et Applications de Pau, UMR CNRS 5131,
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The magnetic moment m, the magnetic induction B and the magnetic field H are linked by the
following constitutive relation:

B = H +m

where B and H are defined on the whole space R3 and where m is the extension of m by zero outside
the ferromagnetic domain.
Furthermore we assume that the studied material is saturated, so that the magnetic moment m
takes its value in S2 the unit sphere of R3. In the case of a ferromagnetic nanowire submitted to an
electric current, Thiaville, Miltat, Nakatani and Susuki have proposed in [17] a process to integrate
electric current effect on ferromagnetic materials in the Landau-Lifshitz equation, adding a transport
term of the form (v · ∇)m+m× ((v · ∇)m) modeling the electric current, where v(t, x) is a vector
field directed along the direction of electrons motion, with an amplitude proportional to the current
density.
Therefore, in the case of a one dimensional model of nanowire, the behavior of magnetic moment m
is described by the following Landau-Lifschitz type equation:

∂m

∂t
= −m×He(m)−m× (m×He(m)) + v

∂m

∂x
+m× v ∂m

∂x
, (1)

where He, the effective field derived from micromagnetism energy (see [1]) is given by:

He(m) =
∂2m

∂x2
+ hd(m).

The term
∂2m

∂x2
is called the exchange field and hd(m) represents the demagnetizing field. In the

sequel, we denote ∂x =
∂

∂x
and ∂xx =

∂2

∂x2
·

In the three-dimensional model, the demagnetizing field hd(m) is given by coupling the static
Maxwell equations with the law of Faraday div B = 0: curl hd(m) = 0 in R3,

div (hd(m) +m) = 0 in R3.

In this paper we consider a straight wire along Re1 with elliptical section with minor axis along Re2

and major axis along Re3, so that the one dimensional model for the demagnetizing field reads

hd(m) = −m2e2 − bm3e3 with b ≥ 1,

where (m1,m2,m3) are the coordinates of m in R3. The case b = 1 corresponds to a wire with round
section. This model for the demagnetizing field in nanowires is justified by Γ-convergence arguments
in the static case and by asymptotic studies for the dynamic Landau-Lifschitz model in [5] and [6].

We first consider the case b > 1:

∂m

∂t
= −m×He(m)−m× (m×He(m)) + v∂xm+m× v∂xm,

He(m) = ∂xxm−m2e2 − bm3e3,

|m| = 1 in R+ × R,

(2)

In this case, for small values of v, the wall remains static. Indeed, we have the following proposition:

Proposition 1. Let b > 1 and v such that |v| <
√
b− 1. We consider the following system: cos2 θ + b sin2 θ =

1

δ2
,

(b− 1) cos θ sin θ = −v
δ
·

(3)
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Then this system admits only one solution (θ, δ) with |θ| < arcsin
1√

1 +
√
b
.

In addition, we define Uθ,δ by Uθ,δ(t, x) := Rθ(M0(
x

δ
)) where

M0 =

 tanhx
1/ coshx

0

 and Rθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ·
Then Uθ,δ is a static solution of System (2).

In our first result we claim that this solution is stable and asymptotically stable up to translations
in the x-variable:

Theorem 1.1. Let b > 1 and v such that |v| <
√
b − 1, let Uθ,δ given by Proposition 1. Then for

all ε > 0, there exists η > 0 such that for every m0 in H2(R;R3), if m0 satisfies the saturation
constraint |m0| = 1 and verifies ‖m0 − Uθ,δ‖H1 ≤ η, if we denote by m the solution of (2) with
initial data m(0, x) = m0(x) for all x ∈ R, then this solution satisfies:

∀t ≥ 0, ‖m(t, .)− Uθ,δ‖H1 ≤ ε.

In addition, there exists σ∞ such that

‖m(t, .)− Uθ,δ(.− σ∞)‖H1 → 0 when t→ +∞.

Remark 1. For |v| ≥
√
b − 1 we observe in numerical simulations that the wall moves with a

periodic velocity. In [17], a profile describing this situation is calculated, but the authors use an
approximation which is not mathematically justified, so that existence and stability of any solution
m for (2) in this case remain unproved.

In the case of a nanowire with round cross-section, we have b = 1, so that we deal with the following
system: 

∂m

∂t
= −m×He(m)−m× (m×He(m)) + v∂xm+m× v∂xm

He(m) = ∂xxm−m2e2 −m3e3,

|m| = 1.

(4)

For a constant applied current v, we observe a rotation and a translation of the wall profile described
by the solution of (4) given by:

mv(t, x) = R−vtM0(x+ vt),

We establish the stability of this solution:

Theorem 1.2. We assume that |v| < 2.
For all ε > 0, there exists η > 0 such that for every m0 in the Sobolev space H2(R) with |m0| = 1
for any x ∈ R and ‖m0(.) − mv(0, .)‖H1(R) ≤ η; if we denote by m the solution of (4) with initial
data m0, then for all t ≥ 0 we have

‖m(t, .)−mv(t, .)‖H1(R) ≤ ε.

In addition, there exists σ∞ and θ∞ such that

‖m(t, .)−Rθ∞mv(t, .− σ∞)‖H1 → 0 when t→ +∞.

The next theorem shows the instability of the previous solution in the case |v| > 2:

Theorem 1.3. For |v| > 2, the solution mv(t, x) = R−vtM0(x+ vt) of (4) is linearly unstable.
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Remark 2. The stability of a solution m for this Landau-Lifschitz equation with vanishing electric
current but with a small applied magnetic field is treated in [6], [7] and [8]. The stability threshold
for the value of the applied magnetic field is obtained in [11].

Remark 3. The stability results contained in this work are optimal: in the round cross section case,
we establish the threshold for the value of v to obtain stability. In the elliptical case, we prove the
stability for all the values of v such that the wall remains stationary. This optimality is obtained
thanks to a careful study of the linearized equation around the studied profiles. This is the key point
of our work.

The present paper is organized as follows: In Section 2, after proving Proposition 1, we show the
stability of the static solutions for small electric currents claimed in Theorem 1.1. The end of the
paper is devoted to the case of the round section-wire. We prove the stability of moving walls for
|v| < 2 in Section 3 and their linear instability for |v| > 2 in Section 4.

The framework for proving the stability theorems is the same developed in [6] and in [7]. The main
difficulties are due to the following facts:

• the non linear saturation constraint |m| = 1,

• the invariance of the model by translation (and by rotation in the case of a round wire) so
that 0 is in the spectrum of the linearized equation,

• it is not so clear that the other eigenvalues have the good sign for stability,

• the system is quasilinear so that we must use variational estimates instead of Duhamel formula.

The proofs are organized as follows.

In a first step, we transform the problem and its unknowns to deal with the stability of the profile
M0 for an equation similar to the Landau-Lifschitz equation.
In the proof of Theorem 1.1, we describe the perturbation of Uδ = Rθ(M0(xδ )) as m(t, x) =

Rθ(u(t,
x

δ
)), where u takes its values in S2. Then Uθ,δ is stable for System (2) if and only if the

static profile M0 is stable for a new system of unknown u. In the proof of Theorem 1.2, we describe
the perturbation of R−vtM0(x + vt) writing m(t, x) = R−vtu(t, x + vt) so that R−vtM0(x + vt) is
stable for 4 if and only of the static profile M0 is stable for another new system of unknown u.

In a second step, we address the problem of the saturation constraint: we only deal with perturbation
satisfying this non linear constraint. In order to do that, we describe the small perturbation u of
M0 in a moving orthonormal frame (M0,M1,M2) defined by

M0(x) =

 tanhx
1/ coshx

0

 , M1 =

 −1/ coshx
tanhx

0

 , M2 =

 0
0
1


writing u as follows

u(t, x) = r1(t, x)M1(x) + r2(t, x)M2 + (µ(r) + 1)M0(x), (5)

where µ : B(0; 1) → R is given by: µ(r1, r2) =
√

1− r2
1 − r2

2 − 1. The new unknown r = (r1, r2)

takes its values in R2. After writing the Landau-Lifschitz equation with r, we obtain an equivalent
formulation of u-equation where the unknown r satisfies the following non linear equation:

∂tr = Lr + F (x, r, ∂xr, ∂
2
xxr), (6)

where Lr and F represent respectively the linear part and the non linear part of this equation. We
obtain that the stability of M0 for u-equation is equivalent to the stability of zero solution for (6).
We remark that we deal now with an equation taking its values in the flat space R2.
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The key point is now the study of the spectrum of the linear operator L. This part strongly depends
on the case we deal with (see Part 2.4 for the wire with elliptical section and Part 3.4).

In both cases, zero is in the spectrum of L. In the case of a wire with elliptical cross-section this
is due to the invariance of the system with respect to translations in x so that there exists a one
parameter family σ 7→ R(σ) of static solutions for (6). In addition, the eigenspace associated to
zero is one dimensional. In the case of a round-section wire, the system is invariant with respect
to translation in x and rotations so that there exists a two parameter family of static solutions
(σ, θ) 7→ R(σ, θ). The null eigenspace is now two-dimensional.
The presence of zero is always a difficulty to obtain the non linear stability. To address this problem
we decompose the solution r of (6) as the sum of R(σ(t)) (or R(σ(t), θ(t)) for a wire with circular
cross section) plus a perturbation W belonging to the orthogonal to the null eigenspace .

Remark 4. This decomposition is rather classical for the study of static solution stability for semi
linear parabolic equations (see [13]). This technique has also been used in [2] to demonstrate the
stability of traveling waves in thin films or in [15] in the case of the radially symmetric traveling
waves in reaction-diffusion equations.

This decomposition leads us to obtain a new system of equations where the unknowns are σ and w
(plus the variable θ in the circular case). Our goal is to show the stability of (σ,W ) = (0, 0). The
main difficulty is that our problem is quasilinear since the non linear part F depends on ∂xxr. So
we use variational methods to estimate the non linear terms.

In the following, we denote by
〈
|
〉

the inner product in the space L2(R) and ‖.‖L2 the associated
norm. We denote by · the scalar product in R3 and by |.| the associated euclidean norm.

2 Case of a wire with elliptical cross-section

2.1 Proof of Proposition 1

We start by establishing the existence of static solutions of (2).

We recall that Uθ,δ(x) = Rθ(M0(
x

δ
)). So, by direct calculations, denoting y =

x

δ
, we obtain

Uθ,δ ×He(Uθ,δ) = Rθ(M1)(y)

(
(b− 1) sin θ cos θ

1

cosh y

)

+Rθ(M2)

(
1

δ2
− cos2 θ − b sin2 θ

)
sinh y

cosh2 y

∂x(Uθ,δ) = −1

δ

1

cosh y
Rθ(M1(y))

Writing that Uθ,δ satisfies (2) if and only if

−Uθ,δ ×He(Uθ,δ)− Uθ,δ × (Uθ,δ ×He(Uθ,δ)) + v∂xUθ,δ + vUθ,δ × ∂xUθ,δ = 0,

we obtain that Uθ,δ satisfies (2) if and only if

1

δ2
− cos2 θ − b sin2 θ = 0 and (b− 1) sin θ cos θ +

v

δ
= 0. (7)

We aim to prove that System (7) admits only one solution for |v| < vmax, where vmax =
√
b− 1. By

elimination of δ, we obtain that v and θ are linked by the relation:

v = ϕ(θ) := (1− b) sin θ cos θ√
1 + (b− 1) sin2 θ

.
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We have

ϕ′(θ) =
b− 1

(1 + (b− 1) sin2 θ)
3
2

(
(b− 1) sin4 θ + 2 sin2 θ − 1

)
.

We set P (X) = (b − 1)X2 + 2X − 1. The roots of P are
−1√
b− 1

< 0 and
1√
b+ 1

> 0. So

ϕ′(θ) is strictly negative for sin2 θ ∈ [0, 1√
b+1

[. We introduce θmax = arcsin

(
1√

1 +
√
b

)
and

vmax = −ϕ(θmax) =
√
b− 1. We obtain that ϕ is a decreasing diffeomorphism from ]− θmax, θmax[

to ]− vmax, vmax[, and the proof of Proposition 1 is complete.

2.2 Proof of Theorem 1.1

2.2.1 First step: a new formulation.

We describe a perturbation m of the profile Uδ,θ as:

m(t, x) = Rθ(u(t,
x

δ
)),

where u : R+ × R→ S2.
By a simple algebraic calculation, we obtain that m satisfies the Landau-Lifschitz equation (2) if
and only if u satisfies the following system:

∂u

∂t
= −u× h(u)− u× (u× h(u)) +

v

δ
(∂xu+ u× ∂xu) ,

h(u) =
1

δ2
∂xxu−

(
1

δ2
u2 −

v

δ
u3

)
e2 −

(
(b+ 1− 1

δ2
)u3 −

v

δ
u2

)
e3.

(8)

In addition, Uδ,θ is stable for (2) if and only if M0 is stable for (8).

2.2.2 Second step: equation for the perturbations of the wall.

As in [6, 8, 11], we consider the moving frame given by (M0(x),M1(x),M2(x)) given by

M0(x) =

 tanhx
1/ coshx

0

 , M1 =

 −1/ coshx
tanhx

0

 , M2 =

 0
0
1

 .

If u is a small perturbation of M0 satisfying the saturation constraint |u| = 1, we describe u in the
mobile frame writing:

u(t, x) = r1(t, x)M1(x) + r2(t, x)M2 + (µ(r) + 1)M0(x), (9)

where r = (r1, r2) ∈ R2 and µ(r) =
√

1− r2
1 − r2

2−1. The study of small perturbations of M0 allows

us to assume that ‖u−M0‖L∞ ≤ 1

2
.

We plug (9) in (8) and we obtain that if u satisfies (8) satisfies the following equation:

∂tr =
1

δ2
JNr + F (x, r, ∂xr, ∂xxr). (10)

In the linear part
1

δ2
JN ,

J =

−1 −1

1 −1

 and N =

 L −δvl∗

−δvl L+ α

 ,
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where L = −∂xx + 2 tanh2 x− 1, l = ∂x + tanhx and α = δ2(b+ 1)− 2.

The non linear part F : R×B(0, 1)× R2 × R2 → R2 is defined by

F (x, r, ∂xr, ∂xxr) = A(r)∂xxr +B(r)(∂xr, ∂xr) + C(x, r)(∂xr) +D(r)(∂xr) + E(x, r), (11)

where

• A ∈ C∞(B(0, 1);M2(R)) (M2(R) is the set of the real 2× 2 matrices):

A(r)ξ =
1

δ2

 −r2
1 µ− r1r2

−µ− r1r2 −r2
2

 ξ +
1

δ2

 −r2 − r1(1 + µ(r))

r1 − r2(1 + µ(r))

µ′(r)(ξ),

• B ∈ C∞(B(0, 1);L2(R2)) (L2(R2) is the set of the bilinear functions defined on R2 × R2 with
values inR2) :

B(r)(ξ, ξ) =
1

δ2

−(µ+ 1)r1 − r2

−(µ+ 1)r2 + r1

µ′′(r)(ξ, ξ),

• C ∈ C∞(R×B(0, 1);M2(R)) :

C(x, r)(ξ) =
2

δ2 coshx

 −r1(1 + µ(r))− r2

r1 − r2(1 + µ(r))

 ξ1 +
2

δ2 coshx

 (r1)2

r1r2

µ′(r)(ξ)

• D ∈ C∞(R;M2(R)) :

D(r)(ξ) =
v

δ
µ(r)

 −ξ2
ξ1

+
v

δ

 r2

−r1

µ′(r)(ξ)

• E ∈ C∞(R×B(0, 1);R2) :

E(x, r) =
2 sinhx

δ2 cosh2 x

 r1r2 + r2
1(1 + µ(r))

−(r1)2 + r1r2(1 + µ(r))



+
v

δ coshx

 −(r2)2 + µ(r) + (µ(r))2 − r1r2(1 + 2µ(r))

r1r2 − 2(r2)2(1 + µ(r))− (r1)2 − µ(r)(1 + µ(r))



+
v

δ
tanhx

 r1µ(r)− 2(r1)2r2

−µ(r)r2 − 2r1(r2)2

+
2

δ2 cosh2 x

 µ(r)(r1(2 + µ(r)) + r2)

µ(r)(−r1 + r2(1 + µ(r)))



+

 (b+ 1− 1
δ2 )(r2µ(r) + r1(r2)2) + 1

δ2 (r1)3

1
δ2 (r1µ(r) + (r1)2r2) + (b+ 1− 1

δ2 )(r2)3


A simple projection of (8) on the mobile frame (M1(x),M2) ensures that u satisfies (8) implies that
r satisfies (10). The reverse is proved in detail in [6] using the fact that, since (10) preserves the
saturation constraint |u| = 1, if u satisfies the projections of (6) on M1 and M2, then it satisfies (8).
In addition, we remark that u is stable for (8) if and only if 0 is stable for (10).
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2.3 Invariance by translation and new formulation

The modified Landau-Lifschitz system (8) is invariant by translation in the x-variable so that
x 7→ M0(x − s) is a static solution of (8) for all s ∈ R. By projection on the mobile frame
(M0(x),M1(x),M2), we obtain a one parameter family R(s) of static solutions for (10) defined by:

R(s)(x) =

M0(x− s).M1(x)

M0(x− s).M2

 =

ρ(s)(x)

0

 ,

where ρ(s)(x) =
tanhx

cosh(x− s)
− tanh(x− s)

coshx
·.

The existence of this one parameter family of solutions implies that 0 is an eigenvalue of the linearized
of (10) around zero. Indeed we have:

N

(
1

coshx
0

)
= 0.

This fact obstructs immediate getting of the stability result. To overcome this difficult, we isolate
the translation writing the solution r of (10) on the form:

r(t, x) = R(σ(t))(x) +W (t, x) (12)

where σ : R+ → R and W = R+ × R→ R2, with
〈
W1| 1

cosh x

〉
= 0.

In a neighborhood of zero, this is a valid system of coordinates, as it is claimed in the following
proposition:

Proposition 2. There exists δ0 > 0 such that for all k ≥ 1, for all r ∈ Hk(R,R2) satisfying
‖r‖L∞ ≤ δ0, there exists a unique couple (σ,W ) ∈ R×Hk(R;R2) such that:

r(x) = R(σ)(x) +W (x)

with
〈
W1|

1

coshx

〉
= 0.

Proof. Let us assume that r writes: r = R(σ)(x) + W (x) where
〈
W1|

1

coshx

〉
= 0. By taking the

scalar product with

(
1

2 coshx
0

)
, we obtain that

〈
r1|

1

2 coshx

〉
= ψ(σ) where ψ is defined by ψ(s) =

1

2

∫
x∈R

ρ(s)(x) · 1

coshx
dx.

The map ψ is smooth and we have ψ(0) = 0 and ψ′(0) = 1. So, in a neighborhood of zero, there
exists δ0 > 0 such that ψ is a C∞-diffeomorphism from ] − δ0, δ0[ to a neighborhood of ψ(0) = 0.
So, σ can be obtained by: σ(t) = ψ−1(

〈
r1| 1

2 cosh x

〉
).

By subtraction, we define W by W (x) = r(x) − R(σ)(x), and by construction we have that〈
W1| 1

cosh x

〉
= 0.

We plug (12) in (8) and we obtain that

∂sR(σ)σ′+∂tW =
1

δ2
JNR(σ) +

1

δ2
JNW +F (x,R(σ) +W,∂xR(σ) +∂xW,∂xxR(σ) +∂xxW ). (13)

Since, for a fixed s, R(s) is a static solution of (8) we obtain that

1

δ2
JNR(σ) + F (x,R(σ), ∂xR(σ), ∂xxR(σ)) = 0

8



so we obtain from (13) that

∂sR(σ)σ′ + ∂tW =
1

δ2
JNW +G(x, σ,W, ∂xW,∂xxW ), (14)

where

G(x, σ,W, ∂xW,∂xxW ) = F (x,R(σ) +W,∂xR(σ) + ∂xW,∂xxR(σ) + ∂xxW )

−F (x,R(σ), ∂xR(σ), ∂xxR(σ)).

In order to obtain the equation satisfied by σ, we take the inner product of (14) with κ1 =(
1

2 coshx
0

)
.

We first remark that
〈
∂tW |κ1

〉
= 0 since W1 ∈ (

1

coshx
)⊥.

In addition,
〈 1

δ2
JNW |κ1

〉
= λ(W ) where λ is defined by

λ(W ) =
v

2δ

〈 1

coshx
|W1

〉
− α

2δ2

〈 1

coshx
|W2

〉
. (15)

We denote by g(s) the map defined by

g(s) =

∫
x∈R

∂ρ

∂s
(s)(x)

1

coshx
dx.

We remark that g(0) = 1 and g is smooth so that s 7→ 1

g(s)
is smooth in a neighborhood of zero.

We denote:
G̃(σ,W ) =

〈
G(x, σ,W, ∂xW,∂xxW )|κ1

〉
. (16)

Therefore we have:
dσ

dt
=

1

g(σ)

(
λ(W ) + G̃(σ,W )

)
. (17)

By subtraction we obtain the following system for W :

∂tW =
1

δ2
JNW − 1

g(σ)

(
λ(W ) + G̃(σ,W )

)
∂sR(σ) +G(x, σ,W, ∂xW,∂xxW ). (18)

2.4 Estimate for the linear part

We recall that N is given by

N =

 L −δvl∗

−δvl L+ α

 .

The operator L = −∂xx + 2(tanhx)2 − 1 arising in the formulation of N is a self-adjoint operator
acting on H2(R3). As it is proved in [6] we have the following proposition:

Proposition 3. The essential spectrum of the self-adjoint operator L is [1,+∞[ and zero is its

unique eigenvalue which eigenspace is generated by
1

coshx
.

Proof. Since L is a compact perturbation of the operator −∂xx + 1 then its essential spectrum is
[1,+∞[ (see [12]). Furthermore, we can see that L = l∗l, then L is positive and 0 is a simple

eigenvalue associated to the eigenvector
1

coshx
. Now, let us assume that λ is an eigenvalue of L and

w is an eigenvector associated to λ, that is Lw = λw. Applying of the operator l on this equation
and using the relation l∗l = −∂xx + 1 shows that λ is an eigenvalue for −∂xx + 1 associated to the
eigenvector lw, which ensures that lw = 0 so that λ = 0.
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From this result we obtain the following corollary:

Corollary 1. For al w ∈ H2(R) satisfying
〈
w| 1

cosh x

〉
= 0, we have:

‖w‖L2 ≤
√〈

Lw|w
〉
≤ ‖LW‖2L2 .

In addition there exists constants c1 and c2 such that for all w ∈
(

1
cosh x

)⊥
,

c1‖w‖H1 ≤
√〈

Lw|w
〉
≤ c2‖w‖H1

and
c1‖w‖H2 ≤ ‖Lw‖L2 ≤ c2‖w‖H2 .

We prove now that N is coercive on (Ker L)⊥ ×H2(R).

Proposition 4. There exists a constant cv > 0 such that for all W ∈ H2(R;R2) with
〈
W1| 1

cosh x

〉
=

0, 〈
NW |W

〉
≥ cv‖W‖2L2 .

Proof. The key point is the following estimate for
〈
NW |W

〉
:〈

NW |W
〉

=
〈
LW1|W1

〉
− δv

〈
l∗W2|W1

〉
− δv

〈
lW1|W2

〉
+
〈
LW2|W2

〉
+ α

〈
W2|W2

〉
≥

〈
lW1|lW1

〉
− 2δv

〈
W2|lW1

〉
+ α

〈
W2|W2

〉
since L = l∗ ◦ l is positive

≥ ‖lW1‖2L2 − 2δ|v|‖W2‖L2‖lW1‖L2 + ‖W2‖2L2

We have then: 〈
NW |W

〉
≥ (‖lW1‖L2 ‖W2‖L2)

(
1 −δv
−δv α

)(
‖lW1‖L2

‖W2‖L2

)
We introduce the matrixMv =

(
1 −δv
−δv α

)
. We denote by cv the smallest eigenvalue ofMv. We

have: 〈
NW |W

〉
≥ cv

(
‖lW1‖2L2 + ‖W2‖2L2

)
≥ cv

(
‖W1‖2L2 + ‖W2‖2L2

)
since W1 ∈ ( 1

cosh x )⊥. It remains to prove that cv > 0
We have

cv =
1 + α−

√
(1− α)2 + 4δ2v2

2
so that cv > 0 if and only if α > δ2v2.

Using (7), we remark that α− δ2v2 =
δ2(b− 1)

cos2 θ + b sin2 θ
(1− 2 sin2 θ− (b− 1) sin4 θ) and this quantity

is non negative since sin2 θ remains between the roots of the polynomial map 1 − 2X − (b − 1)X2

(see subsection 2.1).

We deduce from the previous Proposition the following equivalence of norms:

Corollary 2. There exists c1 and c2 with 0 < c1 < c2 such that for all W ∈ H2(R;R2) with〈
W1| 1

cosh x

〉
= 0,

c1‖W‖H1(R) ≤
√〈

NW |W
〉
≤ c2‖W‖H1(R)

c1‖W‖H2(R) ≤ ‖NW‖ ≤ c2‖W‖H1(R)

To conclude this part, we estimate the operator λ arising in (17) and (18):

Proposition 5. There exists C such that for all W ∈ H1(R),

|λ(W )| ≤ C‖W‖L2(R).

Proof. We deduce this estimate from the expression of λ (see (15)).

10



2.5 Estimate for the non linear terms

We recall that the non linear contribution F (x, r, ∂xr, ∂xxr) in Equation (10) is detailed in (11).
We estimate the nonlinear functions A, B, C, D and E appearing in this nonlinear term. Since
µ(r) = O(|r|2), by straightforward calculations, we obtain the following proposition:

Proposition 6. There exists a constant C such that for r ∈ B(0,
1

2
) and for x ∈ R,

• |A(r)| ≤ C|r|2 and |A′(r)| ≤ C|r|,

• |B(r)| ≤ C|r| and |B′(r)| ≤ C,

• |C(x, r)| ≤ C

coshx
|r| and | ∂

∂r
C(x, r)| ≤ C

coshx
,

• |D(r)| ≤ C|r|2

• |E(x, r)| ≤ C|r|2 and | ∂
∂r
E(x, r)| ≤ C|r|,

Now, the non linear term G is deduced from F writing

G(x, σ,W, ∂xW,∂xxW ) = F (x,R(σ) +W,∂xR(σ) + ∂xW,∂xxR(σ) + ∂xxW )

−F (x,R(σ), ∂xR(σ), ∂xxR(σ)).
(19)

We detail the non linear term G writing the Fundamental Theorem of the Analysis between Rσ and
Rσ +W writing G = G1 + . . .+G5 with:

• G1 = A(R(σ) +W )∂xxW + Ã(R(σ),W )(W )(∂xxR(σ)), with Ã(u, v) =

∫ 1

0

A′(u+ sv)ds,

• G2 = B(R(σ)+W )(2∂xR(σ)+∂xW,∂xW )+B̃(R(σ),W )(W )(∂xR(σ), ∂xR(σ)), with B̃(u, v) =∫ 1

0

B′(u+ sv)ds,

• G3 = C(x,R(σ) + W )(∂xW ) + C̃(x,R(σ),W )(W )(∂xR(σ)) with C̃(x, u, v) =

∫ 1

0

∂

∂r
C(x, u +

sv)ds,

• G4 = D(R(σ) +W )(∂xW ) + D̃(R(σ),W )(W )(∂xR(σ)) with D̃(u, v) =

∫ 1

0

∂

∂r
D(u+ sv)ds,

• G5 = Ẽ(x,R(σ),W )(W ) with Ẽ(x, u, v) =

∫ 1

0

∂

∂r
E(x, u+ sv)ds,

We remark that there exists a constant C such that

|R(σ) +W | ≤ C(|σ|+ |W |). (20)

From the properties detailed in Proposition 6, we obtain that there exists η0 > 0, there exists a
constant K such that if |σ|+ ‖W‖L∞ ≤ η0

‖G1‖L2 ≤ K(|σ|+ ‖W‖L∞)(‖∂xxW‖L2 + ‖W‖L2)

‖G2‖L2 ≤ K
(
|σ|‖∂xW‖L2 + ‖∂xW‖2L4 + ‖W‖L2 |σ|

)
‖G3‖L2 ≤ K ((|σ|+ ‖W‖L∞)‖∂xW‖L2 + |σ|‖W‖L2)

‖G4‖L2 ≤ K ((|σ|+ ‖W‖L∞)‖∂xW‖L2 + |σ|‖W‖L2)

‖G5‖L2 ≤ K ((|σ|+ ‖W‖L∞)‖W‖L2) .

(21)
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Using that ‖W‖L∞ ≤ C‖W‖H1 by Sobolev injection, using the Gagliardo-Nirenberg inequality
‖∂xu‖2L4 ≤ C‖u‖L∞‖∂xxu‖L2 for the estimate of G2, we obtain that if |σ|+ ‖W‖L∞ ≤ η0,

‖G‖L2 ≤ C|σ|‖W‖H2 + C‖W‖H1‖W‖H2 . (22)

Let us now estimate G̃ defined by (16). We recall that κ1 =

(
1

2 coshx
0

)
. We estimate successively

each term
〈
Gi|κ1

〉
.

•
〈
G1|κ1

〉
=
〈
A(R(σ) +W )∂xxW |κ1

〉
+
〈
Ã(R(σ),W )(W )(∂xxR(σ))|κ1

〉
On the one hand, the first term satisfies〈

A(R(σ) +W )∂xxW |κ1

〉
=

〈
∂xxW |A(R(σ) +W )∗κ1

〉
= −

〈
∂xW |∂x(A(R(σ) +W )∗κ1)

〉
= −

〈
∂xW |(A′(R(σ) +W )(∂xW ))∗κ1

〉
−
〈
∂xW |(A′(R(σ) +W )(∂xR(σ))∗κ1

〉
−
〈
∂xW |A(R(σ) +W )∗∂xκ1)

〉
so ∣∣〈A(R(σ) +W )∂xxW |κ1

〉∣∣ ≤ ‖∂xW‖2L2‖A′(R(σ) +W )‖L∞‖κ1‖L∞

+‖∂xW‖L2‖A′(R(σ) +W )‖L∞‖∂xR(σ)‖L∞‖κ1‖L2

+‖∂xW‖L2‖A(R(σ) +W )‖L∞‖∂xκ1‖L2

Therefore, if |σ|+ ‖W‖L∞ ≤ η0

|
〈
A(R(σ) +W )∂xxW |κ1

〉
| ≤ C‖∂xW‖2L2 + C‖∂xW‖L2

On the other hand,∣∣∣〈Ã(R(σ),W )(W )(∂xxR(σ))|κ1

〉∣∣∣ ≤ ‖Ã(R(σ),W )‖L∞‖W‖L2‖∂xxR(σ)‖L∞‖κ1‖L2

so, if |σ|+ ‖W‖L∞ ≤ η0 ∣∣∣〈Ã(R(σ),W )(W )(∂xxR(σ))|κ1

〉∣∣∣ ≤ ‖W‖L2 .

Therefore, if |σ|+ ‖W‖L∞ ≤ η0

|
〈
G1|κ1

〉
| ≤ C‖W‖H1 + C‖W‖2H1 .

• Concerning
〈
G2|κ1

〉
, we have:∣∣〈G2|κ1

〉∣∣ ≤ 2‖B(R(σ) +W )‖L∞‖∂xR(σ)‖L∞‖∂xW‖L2‖κ1‖L2

+‖B(R(σ) +W )‖L∞‖∂xW‖2L2‖κ1‖L∞

+‖B̃(R(σ),W )‖L∞‖W‖L2‖∂xR(σ)‖2L∞‖κ1‖L2

so that if |σ|+ ‖W‖L∞ ≤ η0,

|
〈
G2|κ1

〉
| ≤ C‖W‖H1 + C‖W‖2H1 .

12



• From the last three estimates in (21) we obtain that if |σ|+ ‖W‖L∞ ≤ η0,

|
〈
G3 +G4 +G5|κ1

〉
| ≤ C‖W‖H1 .

Therefore, there exists a constant C such that if |σ|+ ‖W‖L∞ ≤ η0,∣∣∣G̃∣∣∣ ≤ C‖W‖H1 + C‖W‖2H1 . (23)

2.6 End of the proof

We take the inner product of (18) with NW . Since N is a self-adjoint operator we obtain that:

d

dt

〈
W |NW

〉
+

1

δ2
‖NW‖2L2 = − 1

g(σ)

(
λ(W ) + G̃

) 〈
∂sR(σ)|NW

〉
+
〈
G|NW

〉
.

We remark that

∂sR(s) =

(
1

coshx
0

)
+ s

(
τ(s)(x)

0

)
where τ is smooth and uniformly bounded in L2(Rx) for s in a neighborhood of zero.
In addition, we remark that

〈( 1

coshx
0

)
|NW

〉
=
〈 1

coshx
|LW1 − δvl∗W2

〉
=
〈
L

1

coshx
|W1

〉
− δv

〈
l

1

coshx
|W2

〉
= 0

since L 1
cosh x = l 1

cosh x = 0. Therefore we obtain that

d

dt

〈
W |NW

〉
+

1

δ2
‖NW‖2L2 = −σ 1

g(σ)

(
λ(W ) + G̃

) 〈
τ(σ)(x)|NW

〉
+
〈
G|NW

〉
≤ C|σ|

(
|λ(W )|+ |G̃|

)
‖τ(σ)‖L2‖NW‖L2 + ‖G‖L2‖NW‖L2 .

Using the Sobolev embedding H1(R) ⊂ L∞(R), using the equivalence of norms claimed in Corollary
2, using Proposition 5 and the estimates (22) and (23), we obtain that there exists η1 > 0, there

exists a constant K such that if |σ| ≤ η1 and
〈
W |NW

〉 1
2 ≤ η1,

d

dt

〈
W |NW

〉
+

1

δ2
‖NW‖2L2 ≤ K

(
|σ|+

〈
W |NW

〉 1
2

)
‖NW‖2L2

therefore
d

dt

〈
W |NW

〉
+ ‖NW‖2L2

(
1

δ2
−K

(
|σ|+

〈
W |NW

〉 1
2

))
≤ 0.

So while |σ| ≤ min( 1
3δ2K , η1), while

〈
W |NW

〉 1
2 ≤ min( 1

3δ2K , η1), we have:

d

dt

〈
W |NW

〉
+ ‖NW‖2L2

1

3δ2
≤ 0.

Using Corollary 2, we have ‖NW‖2L2 ≥ (c1)2‖W‖2H2 ≥ (c1)2‖W‖2H1 ≥
(
c1
c2

)2 〈
W |NW

〉
, therefore,

while |σ| ≤ min( 1
3δ2K , η1), while

〈
W |NW

〉 1
2 ≤ min( 1

3δ2K , η1), we have:

d

dt

〈
W |NW

〉
+

(c1)2

3(c2)2δ2

〈
W |NW

〉
≤ 0,

13



so that by comparison lemma:〈
W |NW

〉
(t) ≤

〈
W |NW

〉
(0) exp

(
− (c1)2t

3(c2)2δ2

)
.

Now, using (17), Proposition 5 and Estimate (23), we obtain that while |σ| ≤ min( 1
3δ2K , η1), while〈

W |NW
〉 1

2 ≤ min( 1
3δ2K , η1), we have:∣∣∣∣dσdt

∣∣∣∣ ≤ C‖W‖H1 ≤ C

c1

√〈
W |NW

〉
≤ C

c1

√〈
W |NW

〉
(0) exp

(
− (c1)2t

6(c2)2δ2

)
.

So by integration, we obtain that while |σ| ≤ min( 1
3δ2K , η1), while

〈
W |NW

〉 1
2 ≤ min( 1

3δ2K , η1), we
have:

|σ(t)| ≤ |σ(0)|+ C

c1

√〈
W |NW

〉
(0)

6(c2)2δ2

(c1)2
.

Therefore if σ(0) and
〈
W |NW

〉
(0) are small enough, for all t ≥ 0, |σ| ≤ min( 1

3δ2K , η1) and〈
W |NW

〉 1
2 ≤ min( 1

3δ2K , η1), so that all the previous inequalities hold. In particular, W → 0 in

H1(R) and since
dσ

dt
is integrable on R+, σ tends to a limit σ∞ when t tends to +∞.

This conclude the proof of Theorem 1.1.

3 Case of a round wire.

In this part, we deal with the following model:

m : R+
t × Rx −→ S2,

∂m

∂t
= −m× he(m)−m× (m× he(m)) + v∂xm+ vm× ∂xm

he(m) = ∂xxm−m2e2 −m3e3.

(24)

where he(m) is the effective field, v is a transport term, (e1, e2, e3) is the canonical basis of R3 and
the nanowire is modeled by the axis Re1.
We remark that in this case we can replace the effective field he(m) by h̃e(m) = ∂xxm+m1e1 since
it only appears m× he(m) in the equation.

For a constant applied courant v, we consider the solution mv modeling one-wall configurations: by

mv(t, x) = R−vtM0(x+ vt).

We aim to prove the stability of this solution for |v| < 2 claimed in Theorem 1.2. We will follow the
same methodology of the previous section.

3.1 A new equation

As we did in the previous section, we define a new variable u by the relation

m(t, x) = R−vtu(t, x+ vt).

Since the saturation constraint |m(t, x)| = 1 is satisfied by m for all (t, x) ∈ R+×R, then u satisfies
also this constraint because the matrix R−vt preserves the euclidean norm. By a simple calculation,
we obtain that m is solution of (24) if and only if u satisfies the following system

∂u

∂t
= −u× h(u)− u× (u× h(u)) + vu× ∂xu− vu× e1

h(u) = ∂xxu+ u1e1,

(25)

and mv is stable for (24) if and only if the static profile M0 is stable for (25).
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3.2 Mobile frame.

We consider u as a little perturbation of M0. Let us write u in the moving frame (M0,M1,M2)
where the physical constraint |u| = 1 is automatically satisfied:

u(t, x) = r1(t, x)M1(x) + r2(t, x)M2 + (µ(r) + 1)M0(x),

where µ is a smooth map defined in the first section.
After a rather long algebraic calculation, we obtain the following result:

Proposition 7. The function u satisfies (25) if and only if r satisfies

∂r

∂t
= Lr + F0(x, r, ∂xr, ∂xxr), (26)

where the linear operator L is defined by

L =

 −L −L− vl

L+ vl −L


with L = −∂xx + (2 tanh2 x − 1) and l = ∂x + tanhx, and where F0 is the non linear part of (26)
given by:

F0(x, r, ∂xr, ∂xxr) = A0(r)∂xxr +B0(x, r)∂xr + C0(r)(∂xr, ∂xr) +D0(x, r)

where

• A0 ∈ C∞(B(0, 1);M2(R)) :

A0(r)(ξ) =

 −r2
1 µ− r1r2

−µ− r1r2 −r2
2

 ξ +

−r2 − r1(1 + µ(r))

r1 − r2(1 + µ(r))

µ′(r)(ξ),

• B0 ∈ C∞(R×B(0, 1);M2(R)) :

B0(x, ξ) =
2

coshx

−r1(1 + µ(r))− r2

r1 − r2(1 + µ(r))

 ξ1 + vµ(r)

−ξ2
ξ1



+


2

coshx
((r1)2 − 1) + vr2

2

coshx
(1 + µ(r) + r1r2)− vr1

µ′(r)(ξ)

• C0 ∈ C∞(R;L2(R3))

C0(r)(ξ, ξ) =

(
−r2 − r1(1 + µ(r))
r1 − r2(1 + µ(r))

)
µ′′(r)(ξ, ξ)

• D0 ∈ C∞(R×B(0, 1);R2):

D0(x, r) =
sinhx

cosh2 x

 2r1r2 + 2(r1)2(1 + µ(r))

−2(r1)2 + 2r1r2(1 + µ(r))

+
v

coshx

 r1r2

−(r1)2 − µ(r)(1 + µ(r))



+(2 tanh2 x− 1)

−(r1 + r2)µ(r)− µ(r)(1 + µ(r))r1

(r1 − r2)µ(r)− µ(r)(1 + µ(r))r2


and the stability of M0 for (25) is equivalent to stability of zero solution for (26).
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3.3 New system of unknown

In the case of a nanowire with round section, the Landau-Lifschitz system (24) is invariant by
translation in the x-variable and by rotation around the axis of the wire, that is: if m is a solution of
(24) then for all σ ∈ R and θ ∈ R, then (t, x) 7→ Rθ(m(t, x−σ)) is also solution for (24). Therefore for
all (σ, θ) ∈ R2, x 7→ RθM0(x−σ) is a static solution for (24) and by projection of the mobile frame,
we obtain the existence of a two-parameter family of static solutions for (26) given for Λ = (σ, θ) by

RΛ(x) =


RθM0(x− σ) ·M1(x)

RθM0(x− σ) ·M2

 =


− tanh(x− σ)

coshx
+

cos θ tanhx

cosh(x− σ)

sin θ

cosh(x− σ)

 (27)

The existence of this two parameter family of static solutions induces that 0 is a double eigenvalue

for the linearized operator L arising in (26) and the kernel of L is generated by ϕ1 =

(
1/ coshx

0

)
and ϕ2 =

(
0

1/ coshx

)
.

In order to address the difficulty arising from the null eigenspace, we decompose the solutions of
(26) on the form:

r(t, x) = RΛ(t)(x) +W (t, x), (28)

with
〈
W1| 1

cosh x

〉
=
〈
W2| 1

cosh x

〉
= 0.

As it is proved in [6] this is a valid system of coordinates in a neighborhood of zero in H2(R).

By plugging (28) in (26) we obtain that

∂θRΛ∂tθ + ∂σRΛ∂tσ + ∂tW = LRΛ + LW + F0(x,RΛ, ∂xRΛ, ∂xxRΛ) +G0(x,Λ,W, ∂xW,∂xxW ),

whereG0(x,Λ,W, ∂xW,∂xxW ) = F0(x,RΛ+W,∂xRΛ+∂xW,∂xxRΛ+∂xxW )−F0(x,RΛ, ∂xRΛ, ∂xxRΛ).

As remarked before, for a fixed Λ, RΛ is a static solution for (26) so that

LRΛ + F0(x,RΛ, ∂xRΛ, ∂xxRΛ) = 0.

Therefore we obtain

∂σRΛ∂tσ + ∂θRΛ∂tθ + ∂tW = LW +G0(x,Λ,W, ∂xW,∂xxW ). (29)

We take the inner product of (29) with ϕ1 and ϕ2. We remark that
〈
ϕi|∂tW

〉
= 0 and that〈

LW |ϕi
〉

= 0 so that we obtain

A(Λ)
dΛ

dt
= vλ̃W + G̃0

where

A(Λ) =

〈∂σRΛ|ϕ1

〉 〈
∂θRΛ|ϕ1

〉
〈
∂σRΛ|ϕ2

〉 〈
∂θRΛ|ϕ2

〉
 , λ̃W =

−〈lW2| 1
cosh x

〉
〈
lW1| 1

cosh x

〉
 , G̃0

〈G0|ϕ1

〉
〈
G0|ϕ2

〉


We remark that the matrix A(Λ) depends continuously on Λ and that

A(0, 0) =

2 0

0 2


so there exists η0 > 0 and a constant C such that if |Λ| ≤ η1, A(Λ) is invertible with | (A(Λ))

−1 | ≤ C.
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Therefore we obtain the following equation for Λ:

dΛ

dt
= B(Λ,W ). (30)

where B(Λ,W ) = (A(Λ))
−1
(
vλ̃W + G̃0

)
. We denote B1 and B2 the coordinates of B.

By subtraction we obtain that W satisfies

∂tW = LW +G0 − B1∂σRΛ − B2∂θRΛ. (31)

3.4 Estimate of the linear terms

The linear operator L writes

L =

 −L −L− vl

L+ vl −L


with L = −∂xx + (2 tanh2 x− 1) and l = ∂x + tanhx.

From Corollary 1, we recall that for w ∈ (
1

coshx
)⊥,

‖w‖2L2 ≤
〈
Lw|w

〉
≤ ‖Lw‖2L2 .

In order to estimateW we will multiply (26) by

LW1

LW2

 and it will appear the term v
(〈
lW1|LW2

〉
−
〈
lW2|LW1

〉)
.

Let us estimate this term:

Proposition 8. For W1 and W2 in (
1

coshx
)⊥,

|
〈
W1|LW2

〉
−
〈
LW1|lW2

〉
| ≤ 1

2
(‖LW1‖2L2 + ‖LW2‖2L2).

Proof. Let us denote by ĝ the Fourier transform of a function g. We denote by ξ the Fourier variable
in R2. To obtain the proof of the proposition, we will use the fact that L = l∗l and ll∗ = −∂xx + 1.
Indeed let us denote di = lWi for i = 1, 2, then

‖LWi‖2L2 =
〈
LWi|LWi

〉
=

〈
l∗di|l∗di

〉
=

〈
ll∗di|di

〉
=

〈
− ∂xxdi + di|di

〉
=

〈
(|ξ|2 + 1)d̂i|d̂i

〉
= ‖

√
1 + |ξ|2d̂i‖2L2 .

Moreover, we have 〈
lW1|LW2

〉
−
〈
LW1|lW2

〉
=

〈
d1|l∗d2

〉
−
〈
d2|l∗d1

〉
= 2

〈
∂xd1|d2

〉
.
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By young inequality we get

|
〈
lW1|LW2

〉
−
〈
LW1|lW2

〉
| ≤ 2|

〈
d̂2|iεd1

〉
|

≤ 2

∫
ξ∈R
|d̂1||d̂2||ξ|

≤
∫
R

√
1 + |ξ|2|d̂1|

√
1 + |ξ|2|d̂2|

≤ ‖
√

1 + |ξ|2|d̂1|‖L2‖
√

1 + |ξ|2|d̂2|‖L2

≤ 1

2
(‖
√

1 + |ξ|2|d̂1|‖2L2 + ‖
√

1 + |ξ|2|d̂2|‖2L2

≤ 1

2
‖LW‖2L2 .

3.5 Estimate of the non linear terms

We first estimate F0 arising in Proposition 7. We recall that F0 writes

F0(x, r, ∂xr, ∂xxr) = A0(r)∂xxr +B0(x, r)∂xr + C0(r)(∂xr, ∂xr) +D0(x, r)

The properties concerning A0, B0, C0, and D0 are described in the following proposition:

Proposition 9. There exists a constant C > 0 such that for all r in B(0, 1
2 ) and for x ∈ R we get:

• |A0(r)| ≤ C|r|2 and |A′0(r)| ≤ C|r|,

• |B0(x, r)| ≤ C|r| and |B′0(r)| ≤ C,

• |C0(r)| ≤ C|r| and | ∂
∂r
C0(r)| ≤ C,

• |D0(x, r)| ≤ C|r|2, and | ∂
∂r
D0(x, r)| ≤ C|r|,

Proof. These estimates come from the expression of the terms A0, B0, ...

As in the previous section (for the estimate of G), writing that G0(x,Λ,W, ∂xW,∂xxW ) = F0(x,RΛ+
W,∂xRΛ +∂xW,∂xxRΛ +∂xxW )−F0(x,RΛ, ∂xRΛ, ∂xxRΛ), using the fondamental theorem of Anal-
ysis and Proposition 9, we obtain the following estimate: there exist η0 and a constant C such that
if |σ|+ |θ|+ ‖W‖L∞ ≤ η0,

‖G0‖L2 ≤ C|σ|‖W‖H2 + C‖W‖H1‖W‖H2 . (32)

The term G̃0 is estimated as we did for G̃ in the previous section: there exists a constant C such
that while |σ|+ |θ|+ ‖W‖L∞ ≤ η0,∣∣∣G̃0

∣∣∣ ≤ C‖W‖H1 + C‖W‖2H1 . (33)

In addition, we have
|λ̃W | ≤ C‖W‖H1 . (34)

From (33) and (34), since the matrix A(Λ) is invertible, using the equivalence of norms in Corollary

1, we obtain that there exists η1 such that while |σ| ≤ η1, |θ| ≤ η1 and
〈
LW |W

〉 1
2 ≤ η1, we have:

|B(Λ,W )| ≤ C
〈
LW |W

〉 1
2 . (35)
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3.6 End of the proof

Taking the inner product of (31) with

(
LW1

LW2

)
, we obtain:

1

2

d

dt

〈
LW |W

〉
= −‖LW‖2L2 + v

(〈
lW1|LW2

〉
−
〈
LW1|lW2

〉)
+

2∑
i=1

〈
Gi|LWi

〉
, (36)

where G = G0 − B1∂σRΛ − B2∂θRΛ.

From Estimates (32) and (35), using also Proposition 8, we obtain that while |σ| ≤ η1, |θ| ≤ η1 and〈
LW |W

〉 1
2 ≤ η1, we have:

1

2

d

dt

〈
LW |W

〉
+ ‖LW‖2L2 ≤

|v|
2
‖LW‖2L2 + C

(
|Λ|+

√〈
LW |W

〉)
‖LW‖2L2

that is
1

2

d

dt

〈
LW |W

〉
+ ‖LW‖2L2

(
1− |v|

2
− C

(
|σ|+ |θ|+

√〈
LW |W

〉))
≤ 0. (37)

So while |σ| ≤ min(η1,
1− |v|2

4C
), |θ| ≤ min(η1,

1− |v|2
4C

) and
√〈

LW |W
〉
≤ min(η1,

1− |v|2
4C

), we have:

1

2

d

dt

〈
LW |W

〉
+ ‖LW‖2L2

1− |v|2
4C

≤ 0

so that, since
〈
LW |W

〉
≤ ‖LW‖2L2 and by comparison lemma,

〈
LW |W

〉
(t) ≤

〈
LW |W

〉
(0) exp

(
− 4Ct

1− |v|2

)
. (38)

Taking into account this exponential decay in Equation (30) using Estimate (35), we conclude the
proof of Theorem 1.2 with the same arguments as in the proof of Theorem 1.

4 Proof of Theorem 1.3

The instability result described in Theorem 1.3 can be obtained if we prove that the spectrum of
the linear part L has at least one element λ with strictly positive real part. At first, we recall the
following result:

Theorem 4.1. Let A be an unbounded operator on a Banach space. Let λ ∈ C. We assume that
there exists a sequence (Un)n such that ‖Wn‖ = 1 and ‖(A − λId)Wn‖ tends to 0 when n tends to
infinity. Then λ is in the spectrum of A.

Let us consider a smooth function ϕ : R→ [0, 1] such that ϕ(x) = 0 for x ∈ [−1, 1] and ϕ(x) = 1 for
x ∈ [− 1

2 ,
1
2 ].

We define the sequence (un)n by:

un(x) =



0 for x ≤ −an −
n

2
− 1 or x ≥ −an +

n

2
+ 1,

ϕ
(
x+ an +

n

2

)
for − an −

n

2
− 1 ≤ x ≤ −an −

n

2
,

1 for − an −
n

2
≤ x ≤ −an +

n

2
,

ϕ
(
x+ an −

n

2

)
for − an +

n

2
≤ x ≤ −an +

n

2
+ 1.
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where (an)n will be fixed below.
Let us consider the sequence (vn)n defined by vn(x) = un(x)ei

vx
2 .

Taking Vn(x) =

(
vn(x)
ivn(x)

)
, we obtain that for all λ ∈ C, we have:

(L − λ)Vn =

(−L− λ)vn − i(L+ vl)vn

(L+ vl)vn − i(L+ λ)vn

 =

1

i

Gn(x)

where Gn(x) = (−(1 + i)L− ivl − λ) vn. On the interval [−an −
n

2
,−an +

n

2
], vn(x) = ei

vx
2 so that

Gn(x) =

(
v2

4
− 1− i

(
v2

4
+ 1 + v

)
− λ− (1 + i)(2 tanh2 x− 2)− iv(tanhx+ 1)

)
ei

vx
2

We set

λ =
v2

4
− 1− i

(
v2

4
+ 1 + v

)
so that Gn(x) = −(1 + i)(2 tanh2 x− 2)− iv(tanhx+ 1) on the interval [−an −

n

2
,−an +

n

2
].

Since tanhx tends to −1 when x tends to −∞, then for all n, there exists Mn such that for all
x < −Mn, ∣∣−(1 + i)(2 tanh2 x− 2)− iv(tanhx+ 1)

∣∣ ≤ 1

n
.

We set now an = Mn + n
2 . We have the following estimates:

• for x ≤ −an −
n

2
− 1 or x ≥ −an +

n

2
+ 1, Gn(x) = 0,

• for −an −
n

2
− 1 ≤ x ≤ −an −

n

2
or −an +

n

2
≤ x ≤ −an +

n

2
+ 1, |Gn(x)| ≤ K where K does

not depend on n,

• for −an −
n

2
≤ x ≤ −an +

n

2
, |Gn(x)| ≤ 1

n .

So, ‖Gn‖L2 ≤ (2K2 + 1)
1
2 .

Now we define Wn by Wn =
Vn
‖Vn‖L2

. We have

‖(L − λ)Wn‖L2 =

√
2

‖Vn‖L2

‖Gn‖L2 ≤
√

2
(2K2 + 1)

1
2

‖Vn‖L2

.

Since ‖Vn‖L2 tends to zero when n tends to +∞, then ‖(L − λ)Wn‖L2 tends to zero when n tends
to +∞ whereas ‖Wn‖L2 = 1. Therefore, λ is in the spectrum of L by Theorem 4.1. Since the real

part of λ equals v2

4 − 1 > 0 as |v| > 2, we obtain the linear instability of mv and we conclude the
proof of Theorem 1.3.
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