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In this work, we aim to study a one dimensional model of ferromagnetic wire submitted to an electric field modeled by a transport term involved in the Landau-Lifschitz equation. We will consider two types of wires: the case of a wire with elliptical section and the case of a wire with round section. For both cases we prove the stability of exact solutions describing one wall configurations.

Introduction

Ferromagnetic materials exhibit a strong attraction to magnetic fields. They are able to retain their magnetic properties after vanishing of the external field. This particularity gives them important properties for applications in many industrial sectors as radar protection, storage of information, energy management and telecommunications equipment (see [START_REF] William | Micromagnetics[END_REF], [START_REF] Halpern | Modélisation et simulation du comportement des matériaux ferromagnétiques[END_REF], [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF] and [18] for more informations).

One of the most promising applications of ferromagnetic nanowires is the digital data storage in "racetrack memories" (see [START_REF] Stuart | Magnetic Domain-Wall Racetrack Memory[END_REF]). The formation of magnetic domains, in which the magnetization is along the wire, either in one sense or in the other sense, allows the storage of digital informations. The domains are separated by domain walls, thin zones in which the magnetization presents large variations. The information is transported along the wire (for example to a reading head) by an electric current inducing walls motion. Compared to an applied magnetic field, this solution can be very useful. Indeed it is easier to generate a constant electric current in a wire, even if it is not straight. Moreover, a constant applied current induces a motion of the walls preserving their positions one with respect to each other, while an application of a constant magnetic field in a finite wire can induce the collapse of consecutive walls and consequently the annihilation of domains.

In this paper we address the description of the effects of an electric current in a ferromagnetic material for a one dimensional model of infinite wire. In particular we will consider one wall configurations in the case of wires with round cross section or with elliptical cross section. For both case, we will prove the stability of such configurations.

Let us describe the one dimensional model we deal with.

A ferromagnetic material is characterized by a spontaneous magnetization represented by a magnetic moment. We consider an infinite homogeneous nanowire assimilated to the real line Re 1 , where (e 1 , e 2 , e 3 ) is the canonical basis of R 3 . We denote by m the magnetization:

m : R + × R → R 3 (t, x) → m(t, x).
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The magnetic moment m, the magnetic induction B and the magnetic field H are linked by the following constitutive relation:

B = H + m
where B and H are defined on the whole space R 3 and where m is the extension of m by zero outside the ferromagnetic domain. Furthermore we assume that the studied material is saturated, so that the magnetic moment m takes its value in S 2 the unit sphere of R 3 . In the case of a ferromagnetic nanowire submitted to an electric current, Thiaville, Miltat, Nakatani and Susuki have proposed in [START_REF] Thiaville | Micromagnetic understanding of currentdriven domain wall motion in patterned nanowires[END_REF] a process to integrate electric current effect on ferromagnetic materials in the Landau-Lifshitz equation, adding a transport term of the form (v • ∇)m + m × ((v • ∇)m) modeling the electric current, where v(t, x) is a vector field directed along the direction of electrons motion, with an amplitude proportional to the current density.

Therefore, in the case of a one dimensional model of nanowire, the behavior of magnetic moment m is described by the following Landau-Lifschitz type equation:

∂m ∂t = -m × H e (m) -m × (m × H e (m)) + v ∂m ∂x + m × v ∂m ∂x , (1) 
where H e , the effective field derived from micromagnetism energy (see [START_REF] Aharoni | Introduction to the Theory of Ferromagnetism[END_REF]) is given by:

H e (m) = ∂ 2 m ∂x 2 + h d (m).
The term ∂ 2 m ∂x 2 is called the exchange field and h d (m) represents the demagnetizing field. In the sequel, we denote

∂ x = ∂ ∂x and ∂ xx = ∂ 2 ∂x 2 •
In the three-dimensional model, the demagnetizing field h d (m) is given by coupling the static Maxwell equations with the law of Faraday div B = 0:

   curl h d (m) = 0 in R 3 , div (h d (m) + m) = 0 in R 3 .
In this paper we consider a straight wire along Re 1 with elliptical section with minor axis along Re 2 and major axis along Re 3 , so that the one dimensional model for the demagnetizing field reads

h d (m) = -m 2 e 2 -bm 3 e 3 with b ≥ 1,
where (m 1 , m 2 , m 3 ) are the coordinates of m in R 3 . The case b = 1 corresponds to a wire with round section. This model for the demagnetizing field in nanowires is justified by Γ-convergence arguments in the static case and by asymptotic studies for the dynamic Landau-Lifschitz model in [START_REF] Carbou | Domain walls dynamics for one-dimensional models of ferromagnetic nanowires[END_REF] and [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF].

We first consider the case b > 1:

             ∂m ∂t = -m × H e (m) -m × (m × H e (m)) + v∂ x m + m × v∂ x m, H e (m) = ∂ xx m -m 2 e 2 -bm 3 e 3 , |m| = 1 in R + × R, (2) 
In this case, for small values of v, the wall remains static. Indeed, we have the following proposition:

Proposition 1. Let b > 1 and v such that |v| < √ b -1.
We consider the following system:

   cos 2 θ + b sin 2 θ = 1 δ 2 , (b -1) cos θ sin θ = - v δ • (3) 
Then this system admits only one solution (θ, δ) with |θ| < arcsin

1 1 + √ b .
In addition, we define U θ,δ by U θ,δ (t, x)

:= R θ (M 0 ( x δ ))
where

M 0 =   tanh x 1/ cosh x 0   and R θ =   1 0 0 0 cos θ -sin θ 0 sin θ cos θ   • Then U θ,δ is a static solution of System (2).
In our first result we claim that this solution is stable and asymptotically stable up to translations in the x-variable:

Theorem 1.1. Let b > 1 and v such that |v| < √ b -1, let U θ,δ
given by Proposition 1. Then for all ε > 0, there exists η > 0 such that for every m 0 in H 2 (R; R 3 ), if m 0 satisfies the saturation constraint |m 0 | = 1 and verifies m 0 -U θ,δ H 1 ≤ η, if we denote by m the solution of (2) with initial data m(0, x) = m 0 (x) for all x ∈ R, then this solution satisfies:

∀t ≥ 0, m(t, .) -U θ,δ H 1 ≤ ε.
In addition, there exists σ ∞ such that

m(t, .) -U θ,δ (. -σ ∞ ) H 1 → 0 when t → +∞. Remark 1. For |v| ≥ √ b -1
we observe in numerical simulations that the wall moves with a periodic velocity. In [START_REF] Thiaville | Micromagnetic understanding of currentdriven domain wall motion in patterned nanowires[END_REF], a profile describing this situation is calculated, but the authors use an approximation which is not mathematically justified, so that existence and stability of any solution m for (2) in this case remain unproved.

In the case of a nanowire with round cross-section, we have b = 1, so that we deal with the following system:

             ∂m ∂t = -m × H e (m) -m × (m × H e (m)) + v∂ x m + m × v∂ x m H e (m) = ∂ xx m -m 2 e 2 -m 3 e 3 , |m| = 1. (4) 
For a constant applied current v, we observe a rotation and a translation of the wall profile described by the solution of (4) given by: m

v (t, x) = R -vt M 0 (x + vt),
We establish the stability of this solution:

Theorem 1.2. We assume that |v| < 2. For all ε > 0, there exists η > 0 such that for every m 0 in the Sobolev space H 2 (R) with |m 0 | = 1 for any x ∈ R and m 0 (.) -m v (0, .) H 1 (R) ≤ η; if we denote by m the solution of (4) with initial data m 0 , then for all t ≥ 0 we have

m(t, .) -m v (t, .) H 1 (R) ≤ ε.
In addition, there exists σ ∞ and θ ∞ such that

m(t, .) -R θ∞ m v (t, . -σ ∞ ) H 1 → 0 when t → +∞.
The next theorem shows the instability of the previous solution in the case |v| > 2:

Theorem 1.3. For |v| > 2, the solution m v (t, x) = R -vt M 0 (x + vt) of ( 4) is linearly unstable.

Remark 2. The stability of a solution m for this Landau-Lifschitz equation with vanishing electric current but with a small applied magnetic field is treated in [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF], [START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF] and [START_REF] Carbou | Smooth control of nanowires by means of a magnetic field[END_REF]. The stability threshold for the value of the applied magnetic field is obtained in [START_REF] Jizzini | Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic field[END_REF].

Remark 3. The stability results contained in this work are optimal: in the round cross section case, we establish the threshold for the value of v to obtain stability. In the elliptical case, we prove the stability for all the values of v such that the wall remains stationary. This optimality is obtained thanks to a careful study of the linearized equation around the studied profiles. This is the key point of our work.

The present paper is organized as follows: In Section 2, after proving Proposition 1, we show the stability of the static solutions for small electric currents claimed in Theorem 1.1. The end of the paper is devoted to the case of the round section-wire. We prove the stability of moving walls for |v| < 2 in Section 3 and their linear instability for |v| > 2 in Section 4.

The framework for proving the stability theorems is the same developed in [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF] and in [START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF]. The main difficulties are due to the following facts:

• the non linear saturation constraint |m| = 1,

• the invariance of the model by translation (and by rotation in the case of a round wire) so that 0 is in the spectrum of the linearized equation,

• it is not so clear that the other eigenvalues have the good sign for stability,

• the system is quasilinear so that we must use variational estimates instead of Duhamel formula.

The proofs are organized as follows.

In a first step, we transform the problem and its unknowns to deal with the stability of the profile M 0 for an equation similar to the Landau-Lifschitz equation.

In the proof of Theorem 1.1, we describe the perturbation of

U δ = R θ (M 0 ( x δ )) as m(t, x) = R θ (u(t, x δ
)), where u takes its values in S 2 . Then U θ,δ is stable for System (2) if and only if the static profile M 0 is stable for a new system of unknown u. In the proof of Theorem 1.2, we describe the perturbation of R -vt M 0 (x + vt) writing m(t, x) = R -vt u(t, x + vt) so that R -vt M 0 (x + vt) is stable for 4 if and only of the static profile M 0 is stable for another new system of unknown u.

In a second step, we address the problem of the saturation constraint: we only deal with perturbation satisfying this non linear constraint. In order to do that, we describe the small perturbation u of M 0 in a moving orthonormal frame (M 0 , M 1 , M 2 ) defined by

M 0 (x) =   tanh x 1/ cosh x 0   , M 1 =   -1/ cosh x tanh x 0   , M 2 =   0 0 1   writing u as follows u(t, x) = r 1 (t, x)M 1 (x) + r 2 (t, x)M 2 + (µ(r) + 1)M 0 (x), (5) 
where µ : B(0; 1) → R is given by: µ(r 1 , r 2 ) = 1 -r 2 1 -r 2 2 -1. The new unknown r = (r 1 , r 2 ) takes its values in R 2 . After writing the Landau-Lifschitz equation with r, we obtain an equivalent formulation of u-equation where the unknown r satisfies the following non linear equation:

∂ t r = Lr + F (x, r, ∂ x r, ∂ 2 xx r), (6) 
where Lr and F represent respectively the linear part and the non linear part of this equation. We obtain that the stability of M 0 for u-equation is equivalent to the stability of zero solution for [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF].

We remark that we deal now with an equation taking its values in the flat space R 2 .

The key point is now the study of the spectrum of the linear operator L. This part strongly depends on the case we deal with (see Part 2.4 for the wire with elliptical section and Part 3.4).

In both cases, zero is in the spectrum of L. In the case of a wire with elliptical cross-section this is due to the invariance of the system with respect to translations in x so that there exists a one parameter family σ → R(σ) of static solutions for [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF]. In addition, the eigenspace associated to zero is one dimensional. In the case of a round-section wire, the system is invariant with respect to translation in x and rotations so that there exists a two parameter family of static solutions (σ, θ) → R(σ, θ). The null eigenspace is now two-dimensional.

The presence of zero is always a difficulty to obtain the non linear stability. To address this problem we decompose the solution r of ( 6) as the sum of R(σ(t)) (or R(σ(t), θ(t)) for a wire with circular cross section) plus a perturbation W belonging to the orthogonal to the null eigenspace .

Remark 4. This decomposition is rather classical for the study of static solution stability for semi linear parabolic equations (see [START_REF] Kapitula | Multidimensional stability of planar travelling waves[END_REF]). This technique has also been used in [START_REF] Bertozzi | Stability of compressive and undercompressive thin film travelling waves[END_REF] to demonstrate the stability of traveling waves in thin films or in [START_REF] Roussier | Stability of radially symmetric travelling waves in reaction-diffusion equations[END_REF] in the case of the radially symmetric traveling waves in reaction-diffusion equations.

This decomposition leads us to obtain a new system of equations where the unknowns are σ and w (plus the variable θ in the circular case). Our goal is to show the stability of (σ, W ) = (0, 0). The main difficulty is that our problem is quasilinear since the non linear part F depends on ∂ xx r. So we use variational methods to estimate the non linear terms.

In the following, we denote by | the inner product in the space L 2 (R) and . L 2 the associated norm. We denote by • the scalar product in R 3 and by |.| the associated euclidean norm.

2 Case of a wire with elliptical cross-section

Proof of Proposition 1

We start by establishing the existence of static solutions of (2).

We recall that U θ,δ (x) = R θ (M 0 ( x δ )). So, by direct calculations, denoting y = x δ , we obtain

U θ,δ × H e (U θ,δ ) = R θ (M 1 )(y) (b -1) sin θ cos θ 1 cosh y +R θ (M 2 ) 1 δ 2 -cos 2 θ -b sin 2 θ sinh y cosh 2 y ∂ x (U θ,δ ) = - 1 δ 1 cosh y R θ (M 1 (y))
Writing that U θ,δ satisfies (2) if and only if

-U θ,δ × H e (U θ,δ ) -U θ,δ × (U θ,δ × H e (U θ,δ )) + v∂ x U θ,δ + vU θ,δ × ∂ x U θ,δ = 0, we obtain that U θ,δ satisfies (2) if and only if 1 δ 2 -cos 2 θ -b sin 2 θ = 0 and (b -1) sin θ cos θ + v δ = 0. ( 7 
)
We aim to prove that System (7) admits only one solution for |v| < v max , where v max = √ b -1. By elimination of δ, we obtain that v and θ are linked by the relation:

v = ϕ(θ) := (1 -b) sin θ cos θ 1 + (b -1) sin 2 θ .
We have We describe a perturbation m of the profile U δ,θ as:

ϕ (θ) = b -1 (1 + (b -1) sin 2 θ) 3 2 (b -1) sin 4 θ + 2 sin 2 θ -1 . We set P (X) = (b -1)X 2 + 2X -1. The roots of P are -1 √ b -1 < 0 and 1 √ b + 1 > 0. So ϕ (θ) is strictly negative for sin 2 θ ∈ [0, 1 √ b+1 [. We introduce θ max = arcsin 1 1 + √ b and v max = -ϕ(θ max ) = √ b -1. We obtain that ϕ is a decreasing diffeomorphism from ] -θ max , θ max [ to ] -v max , v max [,
m(t, x) = R θ (u(t, x δ )),
where u : R + × R → S 2 . By a simple algebraic calculation, we obtain that m satisfies the Landau-Lifschitz equation ( 2) if and only if u satisfies the following system:

         ∂u ∂t = -u × h(u) -u × (u × h(u)) + v δ (∂ x u + u × ∂ x u) , h(u) = 1 δ 2 ∂ xx u - 1 δ 2 u 2 - v δ u 3 e 2 -(b + 1 - 1 δ 2 )u 3 - v δ u 2 e 3 . (8) 
In addition, U δ,θ is stable for (2) if and only if M 0 is stable for (8).

Second step: equation for the perturbations of the wall.

As in [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Smooth control of nanowires by means of a magnetic field[END_REF][START_REF] Jizzini | Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic field[END_REF], we consider the moving frame given by (M 0 (x), M 1 (x), M 2 (x)) given by

M 0 (x) =   tanh x 1/ cosh x 0   , M 1 =   -1/ cosh x tanh x 0   , M 2 =   0 0 1   .
If u is a small perturbation of M 0 satisfying the saturation constraint |u| = 1, we describe u in the mobile frame writing:

u(t, x) = r 1 (t, x)M 1 (x) + r 2 (t, x)M 2 + (µ(r) + 1)M 0 (x), (9) 
where

r = (r 1 , r 2 ) ∈ R 2 and µ(r) = 1 -r 2 1 -r 2 2 -1. The study of small perturbations of M 0 allows us to assume that u -M 0 L ∞ ≤ 1 2 .
We plug [START_REF] Halpern | Modélisation et simulation du comportement des matériaux ferromagnétiques[END_REF] in [START_REF] Carbou | Smooth control of nanowires by means of a magnetic field[END_REF] and we obtain that if u satisfies (8) satisfies the following equation:

∂ t r = 1 δ 2 JN r + F (x, r, ∂ x r, ∂ xx r). (10) 
In the linear part 1 δ 2 JN ,

J =   -1 -1 1 -1   and N =   L -δvl * -δvl L + α   , where L = -∂ xx + 2 tanh 2 x -1, l = ∂ x + tanh x and α = δ 2 (b + 1) -2.
The non linear part

F : R × B(0, 1) × R 2 × R 2 → R 2 is defined by F (x, r, ∂ x r, ∂ xx r) = A(r)∂ xx r + B(r)(∂ x r, ∂ x r) + C(x, r)(∂ x r) + D(r)(∂ x r) + E(x, r), (11) 
where

• A ∈ C ∞ (B(0, 1); M 2 (R)) (M 2 (R)
is the set of the real 2 × 2 matrices):

A(r)ξ = 1 δ 2   -r 2 1 µ -r 1 r 2 -µ -r 1 r 2 -r 2 2   ξ + 1 δ 2   -r 2 -r 1 (1 + µ(r)) r 1 -r 2 (1 + µ(r))   µ (r)(ξ), • B ∈ C ∞ (B(0, 1); L 2 (R 2 )) (L 2 (R 2
) is the set of the bilinear functions defined on R 2 × R 2 with values inR 2 ) :

B(r)(ξ, ξ) = 1 δ 2   -(µ + 1)r 1 -r 2 -(µ + 1)r 2 + r 1   µ (r)(ξ, ξ), • C ∈ C ∞ (R × B(0, 1); M 2 (R)) : C(x, r)(ξ) = 2 δ 2 cosh x   -r 1 (1 + µ(r)) -r 2 r 1 -r 2 (1 + µ(r))   ξ 1 + 2 δ 2 cosh x   (r 1 ) 2 r 1 r 2   µ (r)(ξ) • D ∈ C ∞ (R; M 2 (R)) : D(r)(ξ) = v δ µ(r)   -ξ 2 ξ 1   + v δ   r 2 -r 1   µ (r)(ξ) • E ∈ C ∞ (R × B(0, 1); R 2 ) : E(x, r) = 2 sinh x δ 2 cosh 2 x   r 1 r 2 + r 2 1 (1 + µ(r)) -(r 1 ) 2 + r 1 r 2 (1 + µ(r))   + v δ cosh x   -(r 2 ) 2 + µ(r) + (µ(r)) 2 -r 1 r 2 (1 + 2µ(r)) r 1 r 2 -2(r 2 ) 2 (1 + µ(r)) -(r 1 ) 2 -µ(r)(1 + µ(r))   + v δ tanh x   r 1 µ(r) -2(r 1 ) 2 r 2 -µ(r)r 2 -2r 1 (r 2 ) 2   + 2 δ 2 cosh 2 x   µ(r)(r 1 (2 + µ(r)) + r 2 ) µ(r)(-r 1 + r 2 (1 + µ(r)))   +   (b + 1 -1 δ 2 )(r 2 µ(r) + r 1 (r 2 ) 2 ) + 1 δ 2 (r 1 ) 3 1 δ 2 (r 1 µ(r) + (r 1 ) 2 r 2 ) + (b + 1 -1 δ 2 )(r 2 ) 3  
A simple projection of (8) on the mobile frame (M 1 (x), M 2 ) ensures that u satisfies (8) implies that r satisfies [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF]. The reverse is proved in detail in [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF] using the fact that, since [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF] preserves the saturation constraint |u| = 1, if u satisfies the projections of ( 6) on M 1 and M 2 , then it satisfies [START_REF] Carbou | Smooth control of nanowires by means of a magnetic field[END_REF].

In addition, we remark that u is stable for (8) if and only if 0 is stable for [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF].

Invariance by translation and new formulation

The modified Landau-Lifschitz system (8) is invariant by translation in the x-variable so that x → M 0 (x -s) is a static solution of (8) for all s ∈ R. By projection on the mobile frame (M 0 (x), M 1 (x), M 2 ), we obtain a one parameter family R(s) of static solutions for (10) defined by:

R(s)(x) =   M 0 (x -s).M 1 (x) M 0 (x -s).M 2   =   ρ(s)(x) 0   , where ρ(s)(x) = tanh x cosh(x -s) - tanh(x -s) cosh x •.
The existence of this one parameter family of solutions implies that 0 is an eigenvalue of the linearized of (10) around zero. Indeed we have:

N 1 cosh x 0 = 0.
This fact obstructs immediate getting of the stability result. To overcome this difficult, we isolate the translation writing the solution r of (10) on the form:

r(t, x) = R(σ(t))(x) + W (t, x) (12) 
where σ : R + → R and

W = R + × R → R 2 , with W 1 | 1 cosh x = 0.
In a neighborhood of zero, this is a valid system of coordinates, as it is claimed in the following proposition:

Proposition 2. There exists δ 0 > 0 such that for all k ≥ 1, for all r ∈ H k (R, R 2 ) satisfying r L ∞ ≤ δ 0 , there exists a unique couple (σ, W ) ∈ R × H k (R; R 2 ) such that: r(x) = R(σ)(x) + W (x) with W 1 | 1 cosh x = 0.
Proof. Let us assume that r writes: r = R(σ)(x) + W (x) where W 1 | 1 cosh x = 0. By taking the scalar product with 1 2 cosh x 0

, we obtain that

r 1 | 1 2 cosh x = ψ(σ) where ψ is defined by ψ(s) = 1 2 x∈R ρ(s)(x) • 1 cosh x dx.
The map ψ is smooth and we have ψ(0) = 0 and ψ (0) = 1. So, in a neighborhood of zero, there exists

δ 0 > 0 such that ψ is a C ∞ -diffeomorphism from ] -δ 0 , δ 0 [ to a neighborhood of ψ(0) = 0.
So, σ can be obtained by:

σ(t) = ψ -1 ( r 1 | 1 2 cosh x )
. By subtraction, we define W by W (x) = r(x) -R(σ)(x), and by construction we have that

W 1 | 1 cosh x = 0.
We plug [START_REF] Rudin | Functional Analysis[END_REF] in [START_REF] Carbou | Smooth control of nanowires by means of a magnetic field[END_REF] and we obtain that

∂ s R(σ)σ + ∂ t W = 1 δ 2 JN R(σ) + 1 δ 2 JN W + F (x, R(σ) + W, ∂ x R(σ) + ∂ x W, ∂ xx R(σ) + ∂ xx W ). ( 13 
)
Since, for a fixed s, R(s) is a static solution of ( 8) we obtain that

1 δ 2 JN R(σ) + F (x, R(σ), ∂ x R(σ), ∂ xx R(σ)) = 0
so we obtain from (13) that

∂ s R(σ)σ + ∂ t W = 1 δ 2 JN W + G(x, σ, W, ∂ x W, ∂ xx W ), (14) 
where

G(x, σ, W, ∂ x W, ∂ xx W ) = F (x, R(σ) + W, ∂ x R(σ) + ∂ x W, ∂ xx R(σ) + ∂ xx W ) -F (x, R(σ), ∂ x R(σ), ∂ xx R(σ)).
In order to obtain the equation satisfied by σ, we take the inner product of ( 14) with κ 1 = 1 2 cosh x 0 .

We first remark that

∂ t W |κ 1 = 0 since W 1 ∈ ( 1 cosh x ) ⊥ .
In addition, 1

δ 2 JN W |κ 1 = λ(W )
where λ is defined by

λ(W ) = v 2δ 1 cosh x |W 1 - α 2δ 2 1 cosh x |W 2 . ( 15 
)
We denote by g(s) the map defined by

g(s) = x∈R ∂ρ ∂s (s)(x) 1 cosh x dx.
We remark that g(0) = 1 and g is smooth so that s → 1 g(s)

is smooth in a neighborhood of zero.

We denote:

G(σ, W ) = G(x, σ, W, ∂ x W, ∂ xx W )|κ 1 . (16) 
Therefore we have:

dσ dt = 1 g(σ) λ(W ) + G(σ, W ) . ( 17 
)
By subtraction we obtain the following system for W :

∂ t W = 1 δ 2 JN W - 1 g(σ) λ(W ) + G(σ, W ) ∂ s R(σ) + G(x, σ, W, ∂ x W, ∂ xx W ). (18) 

Estimate for the linear part

We recall that N is given by

N =   L -δvl * -δvl L + α   .
The operator L = -∂ xx + 2(tanh x) 2 -1 arising in the formulation of N is a self-adjoint operator acting on H 2 (R 3 ). As it is proved in [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF] we have the following proposition:

Proposition 3. The essential spectrum of the self-adjoint operator L is [1, +∞[ and zero is its unique eigenvalue which eigenspace is generated by 1 cosh x .

Proof. Since L is a compact perturbation of the operator -∂ xx + 1 then its essential spectrum is [1, +∞[ (see [START_REF] Rudin | Functional Analysis[END_REF]). Furthermore, we can see that L = l * l, then L is positive and 0 is a simple eigenvalue associated to the eigenvector 1 cosh x . Now, let us assume that λ is an eigenvalue of L and w is an eigenvector associated to λ, that is Lw = λw. Applying of the operator l on this equation and using the relation l * l = -∂ xx + 1 shows that λ is an eigenvalue for -∂ xx + 1 associated to the eigenvector lw, which ensures that lw = 0 so that λ = 0.

From this result we obtain the following corollary: Corollary 1. For al w ∈ H 2 (R) satisfying w| 1 cosh x = 0, we have:

w L 2 ≤ Lw|w ≤ LW 2 L 2 .
In addition there exists constants c 1 and c 2 such that for all w ∈

1 cosh x ⊥ , c 1 w H 1 ≤ Lw|w ≤ c 2 w H 1 and c 1 w H 2 ≤ Lw L 2 ≤ c 2 w H 2 .
We prove now that N is coercive on (Ker L) ⊥ × H 2 (R).

Proposition 4. There exists a constant c v > 0 such that for all

W ∈ H 2 (R; R 2 ) with W 1 | 1 cosh x = 0, N W |W ≥ c v W 2 L 2 . Proof.
The key point is the following estimate for N W |W :

N W |W = LW 1 |W 1 -δv l * W 2 |W 1 -δv lW 1 |W 2 + LW 2 |W 2 + α W 2 |W 2 ≥ lW 1 |lW 1 -2δv W 2 |lW 1 + α W 2 |W 2 since L = l * • l is positive ≥ lW 1 2 L 2 -2δ|v| W 2 L 2 lW 1 L 2 + W 2 2 L 2
We have then:

N W |W ≥ ( lW 1 L 2 W 2 L 2 ) 1 -δv -δv α lW 1 L 2 W 2 L 2
We introduce the matrix M v = 1 -δv -δv α . We denote by c v the smallest eigenvalue of M v . We have:

N W |W ≥ c v lW 1 2 L 2 + W 2 2 L 2 ≥ c v W 1 2 L 2 + W 2 2 L 2 since W 1 ∈ ( 1 cosh x ) ⊥ . It remains to prove that c v > 0 We have c v = 1 + α -(1 -α) 2 + 4δ 2 v 2 2 so that c v > 0 if and only if α > δ 2 v 2 .
Using [START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF], we remark that α -

δ 2 v 2 = δ 2 (b -1) cos 2 θ + b sin 2 θ (1 -2 sin 2 θ -(b -1) sin 4 θ
) and this quantity is non negative since sin 2 θ remains between the roots of the polynomial map 1 -2X -(b -1)X 2 (see subsection 2.1).

We deduce from the previous Proposition the following equivalence of norms:

Corollary 2. There exists c 1 and c 2 with

0 < c 1 < c 2 such that for all W ∈ H 2 (R; R 2 ) with W 1 | 1 cosh x = 0, c 1 W H 1 (R) ≤ N W |W ≤ c 2 W H 1 (R) c 1 W H 2 (R) ≤ N W ≤ c 2 W H 1 (R)
To conclude this part, we estimate the operator λ arising in ( 17) and ( 18):

Proposition 5. There exists C such that for all W ∈ H 1 (R),

|λ(W )| ≤ C W L 2 (R) .
Proof. We deduce this estimate from the expression of λ (see ( 15)).

Estimate for the non linear terms

We recall that the non linear contribution F (x, r, ∂ x r, ∂ xx r) in Equation ( 10) is detailed in [START_REF] Jizzini | Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic field[END_REF]. We estimate the nonlinear functions A, B, C, D and E appearing in this nonlinear term. Since µ(r) = O(|r| 2 ), by straightforward calculations, we obtain the following proposition: Proposition 6. There exists a constant C such that for r ∈ B(0,

) and for x ∈ R,

• |A(r)| ≤ C|r| 2 and |A (r)| ≤ C|r|, • |B(r)| ≤ C|r| and |B (r)| ≤ C, • |C(x, r)| ≤ C cosh x |r| and | ∂ ∂r C(x, r)| ≤ C cosh x , • |D(r)| ≤ C|r| 2 • |E(x, r)| ≤ C|r| 2 and | ∂ ∂r E(x, r)| ≤ C|r|,
Now, the non linear term G is deduced from F writing

G(x, σ, W, ∂ x W, ∂ xx W ) = F (x, R(σ) + W, ∂ x R(σ) + ∂ x W, ∂ xx R(σ) + ∂ xx W ) -F (x, R(σ), ∂ x R(σ), ∂ xx R(σ)). ( 19 
)
We detail the non linear term G writing the Fundamental Theorem of the Analysis between R σ and R σ + W writing G = G 1 + . . . + G 5 with:

• G 1 = A(R(σ) + W )∂ xx W + Ã(R(σ), W )(W )(∂ xx R(σ)), with Ã(u, v) = 1 0 A (u + sv)ds, • G 2 = B(R(σ)+W )(2∂ x R(σ)+∂ x W, ∂ x W )+ B(R(σ), W )(W )(∂ x R(σ), ∂ x R(σ)), with B(u, v) = 1 0 B (u + sv)ds, • G 3 = C(x, R(σ) + W )(∂ x W ) + C(x, R(σ), W )(W )(∂ x R(σ)) with C(x, u, v) = 1 0 ∂ ∂r C(x, u + sv)ds, • G 4 = D(R(σ) + W )(∂ x W ) + D(R(σ), W )(W )(∂ x R(σ)) with D(u, v) = 1 0 ∂ ∂r D(u + sv)ds, • G 5 = Ẽ(x, R(σ), W )(W ) with Ẽ(x, u, v) = 1 0 ∂ ∂r E(x, u + sv)ds,
We remark that there exists a constant C such that

|R(σ) + W | ≤ C(|σ| + |W |). ( 20 
)
From the properties detailed in Proposition 6, we obtain that there exists η 0 > 0, there exists a constant

K such that if |σ| + W L ∞ ≤ η 0 G 1 L 2 ≤ K(|σ| + W L ∞ )( ∂ xx W L 2 + W L 2 ) G 2 L 2 ≤ K |σ| ∂ x W L 2 + ∂ x W 2 L 4 + W L 2 |σ| G 3 L 2 ≤ K ((|σ| + W L ∞ ) ∂ x W L 2 + |σ| W L 2 ) G 4 L 2 ≤ K ((|σ| + W L ∞ ) ∂ x W L 2 + |σ| W L 2 ) G 5 L 2 ≤ K ((|σ| + W L ∞ ) W L 2 ) . (21) 
Using that W L ∞ ≤ C W H 1 by Sobolev injection, using the Gagliardo-Nirenberg inequality

∂ x u 2 L 4 ≤ C u L ∞ ∂ xx u L 2 for the estimate of G 2 , we obtain that if |σ| + W L ∞ ≤ η 0 , G L 2 ≤ C|σ| W H 2 + C W H 1 W H 2 . ( 22 
)
Let us now estimate G defined by [START_REF] Stuart | Magnetic Domain-Wall Racetrack Memory[END_REF]. We recall that κ 1 = 1 2 cosh x 0

. We estimate successively each term G i |κ 1 .

• G 1 |κ 1 = A(R(σ) + W )∂ xx W |κ 1 + Ã(R(σ), W )(W )(∂ xx R(σ))|κ 1
On the one hand, the first term satisfies

A(R(σ) + W )∂ xx W |κ 1 = ∂ xx W |A(R(σ) + W ) * κ 1 = -∂ x W |∂ x (A(R(σ) + W ) * κ 1 ) = -∂ x W |(A (R(σ) + W )(∂ x W )) * κ 1 -∂ x W |(A (R(σ) + W )(∂ x R(σ)) * κ 1 -∂ x W |A(R(σ) + W ) * ∂ x κ 1 ) so A(R(σ) + W )∂ xx W |κ 1 ≤ ∂ x W 2 L 2 A (R(σ) + W ) L ∞ κ 1 L ∞ + ∂ x W L 2 A (R(σ) + W ) L ∞ ∂ x R(σ) L ∞ κ 1 L 2 + ∂ x W L 2 A(R(σ) + W ) L ∞ ∂ x κ 1 L 2 Therefore, if |σ| + W L ∞ ≤ η 0 | A(R(σ) + W )∂ xx W |κ 1 | ≤ C ∂ x W 2 L 2 + C ∂ x W L 2
On the other hand,

Ã(R(σ), W )(W )(∂ xx R(σ))|κ 1 ≤ Ã(R(σ), W ) L ∞ W L 2 ∂ xx R(σ) L ∞ κ 1 L 2 so, if |σ| + W L ∞ ≤ η 0 Ã(R(σ), W )(W )(∂ xx R(σ))|κ 1 ≤ W L 2 . Therefore, if |σ| + W L ∞ ≤ η 0 | G 1 |κ 1 | ≤ C W H 1 + C W 2 H 1 .
• Concerning G 2 |κ 1 , we have:

G 2 |κ 1 ≤ 2 B(R(σ) + W ) L ∞ ∂ x R(σ) L ∞ ∂ x W L 2 κ 1 L 2 + B(R(σ) + W ) L ∞ ∂ x W 2 L 2 κ 1 L ∞ + B(R(σ), W ) L ∞ W L 2 ∂ x R(σ) 2 L ∞ κ 1 L 2 so that if |σ| + W L ∞ ≤ η 0 , | G 2 |κ 1 | ≤ C W H 1 + C W 2 H 1 .
• From the last three estimates in (21) we obtain that if |σ|

+ W L ∞ ≤ η 0 , | G 3 + G 4 + G 5 |κ 1 | ≤ C W H 1 .
Therefore, there exists a constant

C such that if |σ| + W L ∞ ≤ η 0 , G ≤ C W H 1 + C W 2 H 1 . (23) 

End of the proof

We take the inner product of ( 18) with N W . Since N is a self-adjoint operator we obtain that:

d dt W |N W + 1 δ 2 N W 2 L 2 = - 1 g(σ) λ(W ) + G ∂ s R(σ)|N W + G|N W .
We remark that

∂ s R(s) = 1 cosh x 0 + s τ (s)(x) 0
where τ is smooth and uniformly bounded in L 2 (R x ) for s in a neighborhood of zero.

In addition, we remark that

1 cosh x 0 |N W = 1 cosh x |LW 1 -δvl * W 2 = L 1 cosh x |W 1 -δv l 1 cosh x |W 2 = 0 since L 1 cosh x = l 1 cosh x = 0.
Therefore we obtain that

d dt W |N W + 1 δ 2 N W 2 L 2 = -σ 1 g(σ) λ(W ) + G τ (σ)(x)|N W + G|N W ≤ C|σ| |λ(W )| + | G| τ (σ) L 2 N W L 2 + G L 2 N W L 2 .
Using the Sobolev embedding H 1 (R) ⊂ L ∞ (R), using the equivalence of norms claimed in Corollary 2, using Proposition 5 and the estimates ( 22) and (23), we obtain that there exists η 1 > 0, there

exists a constant K such that if |σ| ≤ η 1 and W |N W 1 2 ≤ η 1 , d dt W |N W + 1 δ 2 N W 2 L 2 ≤ K |σ| + W |N W 1 2 N W 2 L 2 therefore d dt W |N W + N W 2 L 2 1 δ 2 -K |σ| + W |N W 1 2 ≤ 0. So while |σ| ≤ min( 1 3δ 2 K , η 1 ), while W |N W 1 2 ≤ min( 1 3δ 2 K , η 1 )
, we have:

d dt W |N W + N W 2 L 2 1 3δ 2 ≤ 0. Using Corollary 2, we have N W 2 L 2 ≥ (c 1 ) 2 W 2 H 2 ≥ (c 1 ) 2 W 2 H 1 ≥ c1 c2 2 W |N W , therefore, while |σ| ≤ min( 1 3δ 2 K , η 1 ), while W |N W 1 2 ≤ min( 1 3δ 2 K , η 1 )
, we have:

d dt W |N W + (c 1 ) 2 3(c 2 ) 2 δ 2 W |N W ≤ 0,
so that by comparison lemma:

W |N W (t) ≤ W |N W (0) exp - (c 1 ) 2 t 3(c 2 ) 2 δ 2 .
Now, using [START_REF] Thiaville | Micromagnetic understanding of currentdriven domain wall motion in patterned nanowires[END_REF], Proposition 5 and Estimate (23), we obtain that while |σ| ≤ min( 1 3δ 2 K , η 1 ), while

W |N W 1 2 ≤ min( 1 3δ 2 K , η 1 ), we have: dσ dt ≤ C W H 1 ≤ C c 1 W |N W ≤ C c 1 W |N W (0) exp - (c 1 ) 2 t 6(c 2 ) 2 δ 2 .
So by integration, we obtain that while |σ| ≤ min( 1 3δ 2 K , η 1 ), while W |N W 1 2 ≤ min( 1 3δ 2 K , η 1 ), we have:

|σ(t)| ≤ |σ(0)| + C c 1 W |N W (0) 6(c 2 ) 2 δ 2 (c 1 ) 2 .
Therefore if σ(0) and W |N W (0) are small enough, for all t ≥ 0, |σ| ≤ min( 1 3δ 2 K , η 1 ) and

W |N W 1 2 ≤ min( 1 3δ 2 K , η 1 )
, so that all the previous inequalities hold. In particular, W → 0 in H 1 (R) and since dσ dt is integrable on R + , σ tends to a limit σ ∞ when t tends to +∞.

This conclude the proof of Theorem 1.1.

3 Case of a round wire.

In this part, we deal with the following model:

             m : R + t × R x -→ S 2 , ∂m ∂t = -m × h e (m) -m × (m × h e (m)) + v∂ x m + vm × ∂ x m h e (m) = ∂ xx m -m 2 e 2 -m 3 e 3 . (24) 
where h e (m) is the effective field, v is a transport term, (e 1 , e 2 , e 3 ) is the canonical basis of R 3 and the nanowire is modeled by the axis Re 1 .

We remark that in this case we can replace the effective field h e (m) by he (m) = ∂ xx m + m 1 e 1 since it only appears m × h e (m) in the equation.

For a constant applied courant v, we consider the solution m v modeling one-wall configurations: by

m v (t, x) = R -vt M 0 (x + vt).
We aim to prove the stability of this solution for |v| < 2 claimed in Theorem 1.2. We will follow the same methodology of the previous section.

A new equation

As we did in the previous section, we define a new variable u by the relation

m(t, x) = R -vt u(t, x + vt).
Since the saturation constraint |m(t, x)| = 1 is satisfied by m for all (t, x) ∈ R + × R, then u satisfies also this constraint because the matrix R -vt preserves the euclidean norm. By a simple calculation, we obtain that m is solution of (24) if and only if u satisfies the following system

     ∂u ∂t = -u × h(u) -u × (u × h(u)) + vu × ∂ x u -vu × e 1 h(u) = ∂ xx u + u 1 e 1 , (25) 
and m v is stable for (24) if and only if the static profile M 0 is stable for (25).

Mobile frame.

We consider u as a little perturbation of M 0 . Let us write u in the moving frame (M 0 , M 1 , M 2 ) where the physical constraint |u| = 1 is automatically satisfied:

u(t, x) = r 1 (t, x)M 1 (x) + r 2 (t, x)M 2 + (µ(r) + 1)M 0 (x),
where µ is a smooth map defined in the first section. After a rather long algebraic calculation, we obtain the following result:

Proposition 7. The function u satisfies (25) if and only if r satisfies

∂r ∂t = Lr + F 0 (x, r, ∂ x r, ∂ xx r), (26) 
where the linear operator L is defined by

L =   -L -L -vl L + vl -L   with L = -∂ xx + (2 tanh 2 x -1
) and l = ∂ x + tanh x, and where F 0 is the non linear part of (26) given by:

F 0 (x, r, ∂ x r, ∂ xx r) = A 0 (r)∂ xx r + B 0 (x, r)∂ x r + C 0 (r)(∂ x r, ∂ x r) + D 0 (x, r)
where

• A 0 ∈ C ∞ (B(0, 1); M 2 (R)) : A 0 (r)(ξ) =   -r 2 1 µ -r 1 r 2 -µ r 1 r 2 -r 2 2   ξ +   -r 2 -r 1 (1 + µ(r)) r 1 -r 2 (1 + µ(r))   µ (r)(ξ), • B 0 ∈ C ∞ (R × B(0, 1); M 2 (R)) : B 0 (x, ξ) = 2 cosh x   -r 1 (1 + µ(r)) -r 2 r 1 -r 2 (1 + µ(r))   ξ 1 + vµ(r)   -ξ 2 ξ 1   +     2 cosh x ((r 1 ) 2 -1) + vr 2 2 cosh x (1 + µ(r) + r 1 r 2 ) -vr 1     µ (r)(ξ) • C 0 ∈ C ∞ (R; L 2 (R 3 )) C 0 (r)(ξ, ξ) = -r 2 -r 1 (1 + µ(r)) r 1 -r 2 (1 + µ(r)) µ (r)(ξ, ξ) • D 0 ∈ C ∞ (R × B(0, 1); R 2 ): D 0 (x, r) = sinh x cosh 2 x   2r 1 r 2 + 2(r 1 ) 2 (1 + µ(r)) -2(r 1 ) 2 + 2r 1 r 2 (1 + µ(r))   + v coshx   r 1 r 2 -(r 1 ) 2 -µ(r)(1 + µ(r))   +(2 tanh 2 x -1)   -(r 1 + r 2 )µ(r) -µ(r)(1 + µ(r))r 1 (r 1 -r 2 )µ(r) -µ(r)(1 + µ(r))r 2  
and the stability of M 0 for (25) is equivalent to stability of zero solution for (26).

New system of unknown

In the case of a nanowire with round section, the Landau-Lifschitz system (24) is invariant by translation in the x-variable and by rotation around the axis of the wire, that is: if m is a solution of (24) then for all σ ∈ R and θ ∈ R, then (t, x) → R θ (m(t, x-σ)) is also solution for (24). Therefore for all (σ, θ) ∈ R 2 , x → R θ M 0 (x -σ) is a static solution for (24) and by projection of the mobile frame, we obtain the existence of a two-parameter family of static solutions for (26) given for Λ = (σ, θ) by

R Λ (x) =     R θ M 0 (x -σ) • M 1 (x) R θ M 0 (x -σ) • M 2     =      - tanh(x -σ) cosh x + cos θ tanh x cosh(x -σ) sin θ cosh(x -σ)      (27)
The existence of this two parameter family of static solutions induces that 0 is a double eigenvalue for the linearized operator L arising in (26) and the kernel of L is generated by ϕ 1 = 1/ cosh x 0 and ϕ 2 = 0 1/ cosh x .

In order to address the difficulty arising from the null eigenspace, we decompose the solutions of (26) on the form:

r(t, x) = R Λ(t) (x) + W (t, x), (28) 
with [START_REF] Carbou | Stability For static walls in ferromagnetic nanowires[END_REF] this is a valid system of coordinates in a neighborhood of zero in H 2 (R).

W 1 | 1 cosh x = W 2 | 1 cosh x = 0. As it is proved in
By plugging (28) in ( 26) we obtain that

∂ θ R Λ ∂ t θ + ∂ σ R Λ ∂ t σ + ∂ t W = LR Λ + LW + F 0 (x, R Λ , ∂ x R Λ , ∂ xx R Λ ) + G 0 (x, Λ, W, ∂ x W, ∂ xx W ), where G 0 (x, Λ, W, ∂ x W, ∂ xx W ) = F 0 (x, R Λ +W, ∂ x R Λ +∂ x W, ∂ xx R Λ +∂ xx W )-F 0 (x, R Λ , ∂ x R Λ , ∂ xx R Λ ).
As remarked before, for a fixed Λ, R Λ is a static solution for (26) so that

LR Λ + F 0 (x, R Λ , ∂ x R Λ , ∂ xx R Λ ) = 0.
Therefore we obtain

∂ σ R Λ ∂ t σ + ∂ θ R Λ ∂ t θ + ∂ t W = LW + G 0 (x, Λ, W, ∂ x W, ∂ xx W ). (29) 
We take the inner product of (29) with ϕ 1 and ϕ 2 . We remark that ϕ i |∂ t W = 0 and that LW |ϕ i = 0 so that we obtain

A(Λ) dΛ dt = v λW + G 0 where A(Λ) =   ∂ σ R Λ |ϕ 1 ∂ θ R Λ |ϕ 1 ∂ σ R Λ |ϕ 2 ∂ θ R Λ |ϕ 2   , λW =   -lW 2 | 1 cosh x lW 1 | 1 cosh x   , G 0   G 0 |ϕ 1 G 0 |ϕ 2  
We remark that the matrix A(Λ) depends continuously on Λ and that

A(0, 0) =   2 0 0 2   so there exists η 0 > 0 and a constant C such that if |Λ| ≤ η 1 , A(Λ) is invertible with | (A(Λ)) -1 | ≤ C.
Therefore we obtain the following equation for Λ:

dΛ dt = B(Λ, W ). ( 30 
)
where B(Λ, W ) = (A(Λ)) -1 v λW + G 0 . We denote B 1 and B 2 the coordinates of B.

By subtraction we obtain that W satisfies

∂ t W = LW + G 0 -B 1 ∂ σ R Λ -B 2 ∂ θ R Λ . (31) 

Estimate of the linear terms

The linear operator L writes

L =   -L -L -vl L + vl -L   with L = -∂ xx + (2 tanh 2 x -1) and l = ∂ x + tanh x.
From Corollary 1, we recall that for w ∈

( 1 cosh x ) ⊥ , w 2 L 2 ≤ Lw|w ≤ Lw 2 L 2 .
In order to estimate W we will multiply (26) by

  LW 1 LW 2   and it will appear the term v lW 1 |LW 2 -lW 2 |LW 1 .
Let us estimate this term:

Proposition 8. For W 1 and W 2 in ( 1 cosh x ) ⊥ , | W 1 |LW 2 -LW 1 |lW 2 | ≤ 1 2 ( LW 1 2 L 2 + LW 2 2 L 2 ).
Proof. Let us denote by ĝ the Fourier transform of a function g. We denote by ξ the Fourier variable in R 2 . To obtain the proof of the proposition, we will use the fact that L = l * l and ll * = -∂ xx + 1. Indeed let us denote d i = lW i for i = 1, 2, then

LW i 2 L 2 = LW i |LW i = l * d i |l * d i = ll * d i |d i = -∂ xx d i + d i |d i = (|ξ| 2 + 1) di | di = 1 + |ξ| 2 di 2 L 2 .
Moreover, we have

lW 1 |LW 2 -LW 1 |lW 2 = d 1 |l * d 2 -d 2 |l * d 1 = 2 ∂ x d 1 |d 2 .
By young inequality we get

| lW 1 |LW 2 -LW 1 |lW 2 | ≤ 2| d2 |iεd 1 | ≤ 2 ξ∈R | d1 || d2 ||ξ| ≤ R 1 + |ξ| 2 | d1 | 1 + |ξ| 2 | d2 | ≤ 1 + |ξ| 2 | d1 | L 2 1 + |ξ| 2 | d2 | L 2 ≤ 1 2 ( 1 + |ξ| 2 | d1 | 2 L 2 + 1 + |ξ| 2 | d2 | 2 L 2 ≤ 1 2 LW 2 L 2 .

Estimate of the non linear terms

We first estimate F 0 arising in Proposition 7. We recall that F 0 writes

F 0 (x, r, ∂ x r, ∂ xx r) = A 0 (r)∂ xx r + B 0 (x, r)∂ x r + C 0 (r)(∂ x r, ∂ x r) + D 0 (x, r)
The properties concerning A 0 , B 0 , C 0 , and D 0 are described in the following proposition:

Proposition 9. There exists a constant C > 0 such that for all r in B(0, 1 2 ) and for x ∈ R we get: 

• |A 0 (r)| ≤ C|r|
+ |θ| + W L ∞ ≤ η 0 , G 0 L 2 ≤ C|σ| W H 2 + C W H 1 W H 2 . ( 32 
)
The term G 0 is estimated as we did for G in the previous section: there exists a constant C such that while |σ|

+ |θ| + W L ∞ ≤ η 0 , G 0 ≤ C W H 1 + C W 2 H 1 . (33) 
In addition, we have

| λW | ≤ C W H 1 . (34) 
From ( 33) and (34), since the matrix A(Λ) is invertible, using the equivalence of norms in Corollary 1, we obtain that there exists η 1 such that while |σ| ≤ η 1 , |θ| ≤ η 1 and LW |W 

End of the proof

Taking the inner product of (31) with LW 1 LW 2 , we obtain:

1 2 d dt LW |W = -LW 2 L 2 + v lW 1 |LW 2 -LW 1 |lW 2 + 2 i=1 G i |LW i , (36) 
where

G = G 0 -B 1 ∂ σ R Λ -B 2 ∂ θ R Λ .
From Estimates (32) and (35), using also Proposition 

Taking into account this exponential decay in Equation (30) using Estimate (35), we conclude the proof of Theorem 1.2 with the same arguments as in the proof of Theorem 1.

4 Proof of Theorem 1.3

The instability result described in Theorem 1.3 can be obtained if we prove that the spectrum of the linear part L has at least one element λ with strictly positive real part. At first, we recall the following result:

Theorem 4.1. Let A be an unbounded operator on a Banach space. Let λ ∈ C. We assume that there exists a sequence (U n ) n such that W n = 1 and (A -λId)W n tends to 0 when n tends to infinity. Then λ is in the spectrum of A.

Let us consider a smooth function ϕ : R → [0, 1] such that ϕ(x) = 0 for x ∈ [-1, 1] and ϕ(x) = 1 for x ∈ [-1 2 , 1 2 ]. We define the sequence (u n ) n by: 

u n (x) =                            0 for x ≤ -a n - n 2 

  and the proof of Proposition 1 is complete.

2. 2
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  2 and |A 0 (r)| ≤ C|r|, • |B 0 (x, r)| ≤ C|r| and |B 0 (r)| ≤ C, • |C 0 (r)| ≤ C|r| and | ∂ ∂r C 0 (r)| ≤ C, • |D 0 (x, r)| ≤ C|r| 2 , and | ∂ ∂r D 0 (x, r)| ≤ C|r|,Proof. These estimates come from the expression of the terms A 0 , B 0 , ... As in the previous section (for the estimate of G), writing thatG 0 (x, Λ, W, ∂ x W, ∂ xx W ) = F 0 (x, R Λ + W, ∂ x R Λ + ∂ x W, ∂ xx R Λ + ∂ xx W ) -F 0 (x, R Λ , ∂ x R Λ , ∂ xx R Λ ), using the fondamental theorem of Analysis and Proposition 9, we obtain the following estimate: there exist η 0 and a constant C such that if |σ|

1 2 ≤ 2 .

 22 η 1 , we have:|B(Λ, W )| ≤ C LW |W 1 (35)

  8, we obtain that while |σ| ≤ η 1 , |θ| ≤ η 1 and

		1							
	LW |W	2 ≤ η 1 , we have:		
		1 2	d dt	LW |W + LW 2 L 2 ≤	|v| 2	LW 2 L 2 + C |Λ| +	LW |W	LW 2 L 2
	that is		1 2	d dt	LW |W + LW 2 L 2 1 -	|v| 2	-C |σ| + |θ| +	LW |W	≤ 0.	(37)
	So while |σ| ≤ min(η 1 ,	1 -|v| 2 4C	), |θ| ≤ min(η 1 ,	1 -|v| 2 4C	) and	LW |W ≤ min(η 1 ,	1 -|v| 2 4C	), we have:
								1 2	d dt	LW |W + LW 2 L 2	1 -|v| 2 4C	≤ 0

so that, since LW |W ≤ LW 2 L 2 and by comparison lemma,

LW |W (t) ≤ LW |W (0) exp -4Ct 1 -|v|

2

.

Laboratoire de Mathématiques et Applications de Pau, UMR CNRS 5131, Université de Pau et des Pays de l'Adour Avenue de l'Université 64000 Pau cedex, France Phone number: 00 33 5 59 40 75 32 email: gilles.carbou@univ-pau.fr

where (a n ) n will be fixed below. Let us consider the sequence (v n ) n defined by v n (x) = u n (x)e i vx 2 .

, we obtain that for all λ ∈ C, we have:

where

We set

Since tanh x tends to -1 when x tends to -∞, then for all n, there exists M n such that for all x < -M n ,

We set now a n = M n + n 2 . We have the following estimates:

V n L 2 .

Since V n L 2 tends to zero when n tends to +∞, then (L -λ)W n L 2 tends to zero when n tends to +∞ whereas W n L 2 = 1. Therefore, λ is in the spectrum of L by Theorem 4.1. Since the real part of λ equals v 2 4 -1 > 0 as |v| > 2, we obtain the linear instability of m v and we conclude the proof of Theorem 1.3.