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Introduction

Ferromagnetic nanowires are used in a wide range of applications such as microelectronics, paints for radar stealth, transformers and computers. In particular, ferromagnetic nanowires can be used to record and store data in racetrack memories (see [START_REF] Stuart | Magnetic Domain-Wall Racetrack Memory[END_REF]). In such devices, the magnetization tends to be aligned in the wire direction, in one sense or in the other sense. As a consequence, one observes in nanowires the formation of domains, large zone in which the magnetic moment is in the wire axis and domain walls, thin zones in which the magnetic moment presents large variations. In the framework of data storage, the stability of the walls position is crucial. Indeed a non-desired movement of a wall may induce a degradation of the data. Many papers address the stability of walls in ferromagnetic nanowires (cf. [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF][START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF][START_REF] Jizzini | Optimal stability criterion for a wall in ferromagnetic wire submitted to a magnetic field[END_REF][START_REF] Carbou | Domain walls dynamics in a nanowire subject to an electric current[END_REF][START_REF] Labbé | Stability properties of steady-states for a network of ferromagnetic nanowires[END_REF][START_REF] Takasao | Stability of travelling wave solutions for the Landau-Lifshitz equation[END_REF]). In [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF], the stability of wall profiles is proved in the case of an infinite straight nanowire (i.e. without curvature). We remark that we do not have asymptotic stability because of the possible translations and rotations of the wall. In addition, even a small applied magnetic field can produce a displacement of the wall. The situation is even worse in the finite-wire case since the walls profiles are unstable (see [START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF]). In this paper, we prove that a bend in a wire attracts the walls, so that profiles for walls located at the bend are asymptotically stable. This property is well known in the Physics literature (see [START_REF] Silevitch | Room temperature Domain Wall Pinning in Bent Ferromagnetic Nanowires[END_REF][START_REF] Tanase | Magnetotransport properties of bent ferromagnetic nanowires[END_REF] for example) but to our knowledge, this is the first mathematical work concerning the curvature effects on the walls stability in nanowires.

Let us recall the 3d model for ferromagnetic materials (see [START_REF] William | Micromagnetics[END_REF][START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF]). We consider a ferromagnetic body occupying the volume Ω ⊂ R 3 . We denote by M (t, x) the magnetization distribution at the time t and the point x ∈ Ω. The material is supposed to be saturated so that the norm of M (t, x), denoted by M s , does not depend on t and x. The variations of M satisfy the Landau-Lifschitz equation:

∂ t M = -γM × H eff - αγ M s M × (M × H eff ) 1
where × is the cross product in R 3 , γ is the gyromagnetic ratio, α is the damping coefficient and where the effective field H eff is given by:

H eff = A M 2 s ∆M + µ 0 H d (M ) + µ 0 H a . (1.1) 
In (1.1), A is the exchange constant, µ 0 is the permeability of the vacuum, H a is the applied magnetic field and H d (M ) is the demagnetizing field. This last field is deduced from M by the law of Faraday: div B = 0 (B is the magnetic induction), the constitutive relation: B = H + M ( M is the extension of M by zero outside Ω), and by the static Maxwell equation: curl H = 0. So, H d (M ) is obtained from M by solving the following system: curl H d (M ) = 0 and div(H d (M ) + M ) = 0.

(1.2)

Rewriting M as

M (t, x) = M s m(γµ 0 t, A M s µ 0 x),
we obtain the following rescaled model:

∂ t m = -m × H -αm × (m × H) (1.3) with H = ∆m + H d (m) + H a .
In this paper we are interested in an infinitely long wire with one bend. We consider the following one-dimensional model justified by asymptotic process in [START_REF] Sergiy | Circuits ferromagnetic of nano wires[END_REF][START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF][START_REF] Thiaville | Domain wall dynamics in nanowires and nanostrips, Spin dynamics in confined magnetic structures III[END_REF]. The wire is parametrized by:

x -→ x u if x ≤ 0, x e 1 if x ≥ 0, (1.4) 
where ( e 1 , e 2 , e 3 ) is the canonical basis of R As it is proved in [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF], [START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF], [START_REF] Valeriy | Slatiskov and Charles Sonnenberg Reduce models for ferromagnetic nanowires[END_REF], the equivalent 1d demagnetizing field reduces to the following local operator:

h d (m)(x) = 1 2 (-m(x) + (m(x)| τ (x)) τ (x)) ,
where (.|.) is the usual scalar product in R 3 , and τ (x) is the direction of the wire at the point x (with | τ | = 1). In our case, τ is given by τ (x) = u for x < 0, e 1 for x > 0.

(1.5)

We remark that since m × h d (m) = 1 2 m × ((m| τ ) τ ), we can replace h d (m) by 1 2 ((m| τ ) τ ) in the Landau-Lischitz equation. In addition, by rescaling in space and time, we get rid of the coefficient 1 2 in front of the demagnetizing field so that we obtain the following model for our bent wire:

     ∂m ∂t = -m × H e (m) -αm × (m × H e (m)) for t ≥ 0 and x ∈ R, H e (m) = ∂ xx m + (m| τ (x)) τ (x) + H a (x), (1.6) 
where τ is defined by (1.5) and H a : R -→ R 3 is the applied field.

Remark 1.1. In our model, there is no jump for m and ∂ x m at the bendt:

[|m|] := m(t, 0 + ) -m(t, 0 -) = 0 and [|∂ x m|] = ∂ x m(t, 0 + ) -∂ x m(t, 0 -) = 0. (1.7)
For vanishing applied field, we deal with stationary solutions separating a ± u-domain in R -u and a ± e 1 -domain in R + e 1 . So that we look for solutions satisfying:

m(x) ------→ x → -∞ ± u and m(x) ------→ x → +∞ ± e 1 . (1.8) 
We first exhibit all the solutions for (

1.6)-(1.8). We denote v =   sin β cos β 0   .
Theorem 1.2. For β ∈]0, π[, there are eight stationary solutions for (1.6) with H a = 0 satisfying the limit conditions (1.8).

The solutions satisfying the limit condition m(x) -→ -u when x -→ -∞ are given by:

m 1 (x) =      tanh(x -c) u + 1 cosh(x -c) v if x ≤ 0, tanh(x + c) e 1 + 1 cosh(x + c) e 2 if x ≥ 0, with c = artanh (sin β 2 ), (1.9) 
m 2 (x) =      tanh(x + c) u + 1 cosh(x + c) v if x ≤ 0, -tanh(x -c) e 1 - 1 cosh(x -c) e 2 if x ≥ 0, with c = artanh (cos β 2 
), (1.10)

m 3 (x) =      tanh(x + c) u - 1 cosh(x + c) v if x ≤ 0, tanh(x -c) e 1 - 1 cosh(x -c) e 2 if x ≥ 0, with c = artanh (sin β 2 ), (1.11) m 4 (x) =      tanh(x -c) u - 1 cosh(x -c) v if x ≤ 0, -tanh(x + c) e 1 + 1 cosh(x + c) e 2 if x ≥ 0. with c = artanh (cos β 2 ). (1.
12)

The solutions satisfying the limit condition m(x) -→ u when x -→ -∞ are given by -m 1 , -m 2 , -m 3 and -m 4 .

It is worth noting that the solutions m 1 and m 3 correspond to a wall profile in the case of a straight wire (case β = 0). The solution m 4 corresponds to a + e 1 -domain in a straight wire. We remark also that the solution m 2 is specific to the bent-wire case and has no equivalent in the case of a straight wire. Theorem 1.2 is proved in Section 2.

We address now the stability of these solutions. We recall that in the case of straight wire, a + e 1domain and -e 1 -domain are asymptotically stable while a wall profile is stable but not asymptotically stable because of the invariance of the system by translation in the x-variable and rotation around the wire axis. We obtain the following result concerning the asymptotic stability of m 1 and m 4 .

Theorem 1.3. Let β = 0 mod π. Then m 1 given by Theorem 1.2 is asymptotically stable for Equation (1.6), that is: for all ε > 0, there exists η > 0 such that for all initial data m 0 such that

m 0 -m 1 ∈ H 1 (R) and |m 0 (x)| = 1 for all x ∈ R, if m 0 -m 1 H 1 (R)
≤ η, then the solution of (1.6) with initial data m(0, x) = m 0 (x) satisfies:

• ∀ t > 0, m(t) -m 1 H 1 (R) ≤ ε,
• m(t) -m 1 H 1 (R) tends to zero when t tends to +∞.

The same result holds for -m 1 , m 4 and -m 4 given by Theorem 1.2.

The other solutions are unstable:

Theorem 1.4. For β ∈]0, π[, the solutions m 2 , -m 2 , m 3 and -m 3 given by Theorem 1.2 are linearly unstable for Equation (1.6) with limit conditions (1.8).

Contrary to the straight-wire case, the wall is pined at the bend, so that the profile m 1 is asymptotically stable. In addition, we loose the invariance by rotation around the wire axis so that only one chirality of the wall profile is relevant. This is the reason why m 3 is unstable.

In order to consider only perturbations satisfying the saturation constraint, we use the mobile frame method developed in [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF], [START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF], [START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF]. Part 3 is devoted to the obtention of the equivalent system in this mobile frame. This step is followed by a careful study of the linearized equation which ensures the asymptotic stability for m 1 and m 4 (see Part 4) and the linear instability for m 2 and m 3 (see Part 5).

After that we study the behavior of asymptotically-stable configurations when the wire is submitted to an applied magnetic field. In the case of a straight nanowire, a non-vanishing applied field in the direction of the wire induces a displacement of the wall (see [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF] and [START_REF] Jizzini | Optimal stability criterion for a wall in ferromagnetic wire submitted to a magnetic field[END_REF]). In our bent-wire case we only assume that the applied field is along the wire far from the origin: let ξ ∈ C 0 (R; R 3 ) such that

∃ A > 0, ∀ x ∈ R, x > A ⇒ ξ(x) = e 1 and ξ(-x) = u. (1.13)
We assume that the applied field H a is given by

H a (x) = λξ(x), λ ∈ R. (1.14) 
We establish that a small non-vanishing applied field defined by (1.14) does not induce wall motion: the wall remains pined at the bend.

Theorem 1.5. Let β ∈]0, π[, let m 1 given by Theorem 1.2. There exist h max > 0 and a one parameter family λ → m(λ) satisfying:

• m(0) = m 1 ,
• m(λ) is defined for |λ| ≤ h max and is a stationary solution for (1.6)

• λ → m(λ) -m 1 is in C 1 ([-h max , h max ]; H 2 (R)).
In addition, for all λ ∈ [-h max , h max ], m(λ) is asymptotically stable for (1.6).

The same result holds for Solutions -m 1 , m 4 and -m 4 given by Theorem 1.2.

Part 6 of the present paper is devoted to the proof of this Theorem using the implicit function theorem.

Stationary solution

We consider M 0 a stationary solution for (1.6) with H a = 0 satisfying the limit condition (1.8).

Writing M 0 as:

M 0 (x) =    M - 0 (x) = sin θ -(x) u + cos θ -(x) cos ϕ -(x) v + cos θ -(x) sin ϕ -(x) e 3 for x in R -, M + 0 (x) = sin θ + (x) e 1 + cos θ + (x) cos ϕ + (x) e 2 + cos θ + (x) sin ϕ + (x) e 3 for x in R + , (2.1) where u =   cos β -sin β 0   and v =   sin β cos β 0   ,
we obtain that M 0 is a stationary solution for (1.6)-(1.8) if and only if the following four assertions are satisfied:

(i) M - 0 × ∂ xx M - 0 + (M - 0 | u) u , (ii) M + 0 × ∂ xx M + 0 + (M + 0 | e 1 ) e 1 , (iii) M - 0 (0) = M + 0 (0) and dM - 0 (0) dx = dM + 0 (0) dx (jump conditions (1.7)), (iv) M - 0 ------→ x → -∞ ± u, M + 0 ------→ x → +∞ ± e 1 (limit condition (1.8)).
Plugging (2.1) in the first equation (i), we obtain that:

           d 2 θ - dx 2 + dϕ - dx 2 sin θ -cos θ -+ sin θ -cos θ -= 0 for x ∈ R -, - d 2 ϕ - dx 2 cos θ -+ 2 dθ - dx dϕ - dx sin θ -= 0 for x ∈ R -.
(2.

2)

The second equation yields

d dx ( dϕ - dx cos 2 θ -) = 0, so that dϕ - dx cos 2 θ -= cst. (2.3) From (iv), we obtain that θ -(x) ------→ x → -∞ π 2 mod π. This implies that the constant in (2.3) is zero, so that: dϕ - dx cos 2 θ -= 0. (2.4) Therefore ∀ x ∈ R -, dϕ - dx = 0 or θ -(x) = π 2 mod π. (2.5)
Let us prove that we have either

∀x ∈ R -, θ -(x) = π 2 mod π or ∀x ∈ R -, dϕ - dx = 0 .
Assume that we are not in the second case, that is that there exists x 0 such that dϕ - dx (x 0 ) = 0.

By continuity argument, this is also satisfied in a neighborhood of x 0 . Therefore, by (2.5), θ -(x) = π 2 mod π in this neighborhood of zero, and by continuity argument, there exists k ∈ Z such that

θ -(x) = π 2
+ kπ in this neighborhood of zero (k is the same for all x in this neighborhood). So dθ - dx (x 0 ) = 0. Therefore, θ -is a solution for the Cauchy problem:

           d 2 θ - dx 2 + dϕ - dx 2 sin θ -cos θ -+ sin θ -cos θ -= 0 for x ∈ R -, θ -(x 0 ) = π 2 + k 0 π, dθ - dx (x 0 ) = 0.
By uniqueness argument, we obtain that

∀x ∈ R -, θ -(x) = π 2 + k 0 π.
In the second case, we remark that ϕ -is constant, and that θ -is a solution of the pendulum equation

d 2 θ - dx 2 + sin θ -cos θ -= 0 for x ∈ R -. (2.6) 
Since θ -satisfies the limit condition (iv), either θ -is constant equal to π 2 mod π or θ -is a solution represented by a separatrix on the phase portrait. From (ii) and (iv), the same analysis on R + yields that we have: either θ + = π 2 mod π or θ + is a solution on the separatrix of the phase portrait and in the last case, ϕ + is constant on R + .

We will now discriminate the different cases by using the transmission condition (iii).

Case 1: if θ -(x) ≡ π 2 mod π for x < 0 and θ + (x) ≡ π 2 mod π for x > 0, then M - 0 (x) = ± u and M + 0 = ± e 1 . So by jump conditions (iii) we have u = ± e 1 , which is impossible since β = 0 mod π. Case 2: if θ -(x) ≡ π 2 mod π for x < 0 and if on R + , θ + is a solution of (2.6) represented by a separatrix and ϕ + is constant, then M - 0 ≡ ± u so by (iii), dM + 0 dx (0) = 0. This last equation implies that dθ + dx (0) = 0, which is impossible on the separatrix. In the same way, the case θ + ≡ π 2 mod π is also impossible.

The analysis of the first two cases yields that θ -and θ + are trajectories on the separatrix of the phase portrait and ϕ -and ϕ + are constant. Case 3: let us assume that ϕ -= 0 mod π or ϕ + = 0 mod π. Then, for x > 0, M + 0 is in the plane P + given by P + = vect( e 1 , cos ϕ + e 2 + sin ϕ + e 3 ), thus, dM + 0 dx ∈ P + for x > 0.

In the same way, for x < 0, M 0 and dM - 0 dx belong to P -given by

P -= vect( u, cos ϕ -v + sin ϕ -w).
By the jump conditions (iii) we have

M + 0 (0 + ) = M - 0 (0 -) ∈ P + ∩ P -and dM - 0 dx (0 -) = dM + 0 dx (0 + ) ∈ P + ∩ P -.
Since one of the angles ϕ -or ϕ + is different from 0 mod π, P + ∩P -is a straight line, so that M + 0 (0) and dM + 0 dx (0) are colinear. In addition, from the saturation constraint |M + 0 | = 1, we obtain that

M + 0 (0) ⊥ dM + 0 dx ( 
0), so that dM + 0 dx (0) = 0. This implies that dθ + dx (0) = 0, which is impossible since θ + parametrizes a solution on the separatrix. Therefore the only possible case is the following: Case 4: ϕ ± = 0 mod π (so that M 0 takes its values in the plane R e 1 + R e 2 ) and θ -and θ + are solutions of the pendulum equation on the separatrix. Therefore:

M - 0 = a -tanh(x + c -) u + b - 1 cosh(x + c -) v,
where b -∈ {-1, 1} and a -= -1 (resp. +1) if M - 0 (x) tends to u (resp. -u) when x tends to -∞, and

M + 0 = a + tanh(x + c + ) e 1 + b + 1 cosh(x + c + ) e 2 ,
where b + ∈ {-1, 1} and a + = 1 (resp. -1) if M - 0 (x) tends to e 1 (resp. -e 1 ) when x tends to +∞.

We use now the transmission conditions (iii) in order to fix the constants a ± , b ± and c ± . At the bend, M - 0 (0) = M + 0 (0) and

dM - 0 dx (0) = M + 0 dx (0) 
, so we have:

         a -tanh(c -) u + b - 1 cosh(c -) v = a + tanh(c + ) e 1 + b + 1 cosh(c + ) e 2 ,
and

1 cosh(c -) a - 1 cosh(c -) u -b -tanh(c -) v = 1 cosh(c + ) a + 1 cosh(c + ) e 1 -b + tanh(c + ) e 2 .
(2.7)

The last equation induces that

1 cosh(c -) = 1 cosh(c + )
, thus c -= c + with = ±1. System (2.7) is equivalent to the system:

Q 1 X = X and Q 2 X = X, (2.8) 
where

X =    tanh(c -) 1 cosh(c -)   
and where

Q 1 =   a -a + cos β εa + b -sin β -a -b + sin β b -b + cos β   and Q 2 =   b -b + cos β εa -b + sin β -a + b -sin β a + a -cos β   .
The matrices Q 1 and Q 2 are orthogonal (rotation of orthogonal symmetry). In addition, (2.8) induces that one is an eigenvalue of Q 1 and Q 2 . So, Q 1 and Q 2 are matrices of orthogonal symmetries (Q 1 = Id is impossible since sin β = 0). So the determinant of Q 1 equals -1, i.e.

a -a + b -b + = -1.
(2.9)

Since both matrices have the same eigenvector X associated to +1, since they are orthogonal symmetries,

Q 1 = Q 2 . Therefore a -b + = a + b -and a + a -= b + b -. (2.10)
Coupling (2.9) and (2.10), we obtain that = -1, i.e. c + = -c -. Now, we have four cases with a -= +1:

Case 1: a -= 1, a + = 1, b -= 1 and b + = 1.
We have in this case:

Q 1 = Q 2 =   -cos β -sin β -sin β cos β   .
The eigenspace associated to the eigenvalue 1 is generated by

     -sin β 2 cos β 2      and contains X =    tanh(c -) 1 cosh(c -)   . So there exists σ ∈ R such that X = σ      -sin β 2 cos β 2     
. Since both vectors are unitary, σ = ±1, and since the second coordinate is positive (we recall that β ∈]0, π[, σ = 1. In particular, tanh(c -) = -sin β 2 , so c -= -artanh (sin β 2 ). Thus, in this case, we obtain the following stationary solution: We have in this case:

m 1 (x) =      tanh(x -c) u + 1 cosh(x -c) v if x ≤ 0, tanh(x + c) e 1 + 1 cosh(x + c) e 2 if x ≥ 0, with c = artanh (sin β 2 ).
Q 1 = Q 2 =   cos β sin β sin β -cos β   .
Considering the eigenspace associated to the eigenvalue 1, we obtain that

  cos β 2 sin β 2   =    tanh(c -) 1 cosh(c -)    , so c -= artanh (cos β
2 ) and we obtain the following solution: In this case,

m 2 (x) =      tanh(x + c) u + 1 cosh(x + c) v if x ≤ 0, -tanh(x -c) e 1 - 1 cosh(x -c) e 2 if x ≥ 0, with c = artanh (cos β 2 ).
Q 1 = Q 2 = -cos β sin β sin β cos β ,
so, by considering the eigenspace associated to 1 we obtain that

  sin β 2 cos β 2   =    tanh(c -) 1 cosh(c -)    .
Thus c -= artanh (sin β

2 ), and the associated stationary solution is: In this case,

m 3 (x) =      tanh(x + c) u - 1 cosh(x + c) v if x ≤ 0, tanh(x -c) e 1 - 1 cosh(x -c) e 2 if x ≥ 0, with c = artanh (sin β 2 ).
Q 1 = Q 2 = cos β -sin β -sin β -cos β ,
so, the eigenspace associated to 1 is generated by:

   -cos( β 2 ) sin( β 2 )    =    tanh(c -) 1 cosh(c -)    , so that c -= -artanh (cos β
2 ). The associated stationary solution is: 

m 4 (x) =      tanh(x -c) u - 1 cosh(x -c) v if x ≤ 0, -tanh(x + c) e 1 + 1 cosh(x + c) e 2 if x ≥ 0, with c = artanh (sin β 2 ).

Equation for the perturbations

Let M 0 be one of the static solutions for (1.6) with vanishing applied field given by Theorem 1.2:

M 0 (x) = M - 0 (x) = sin θ -u + cos θ -(x) v if x ≤ 0, M + 0 (x) = sin θ + e 1 + cos θ + (x) e 2 if x ≥ 0.
We aim to address the stability of M 0 for (1.6). we denote by J the matrix

J =   0 -1 0 1 0 0 0 0 1   .
As in [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF][START_REF] Jizzini | Optimal stability criterion for a wall in ferromagnetic wire submitted to a magnetic field[END_REF][START_REF] Carbou | Domain walls dynamics in a nanowire subject to an electric current[END_REF], in order to consider only perturbations m satisfying the saturation constraint |m| = 1, we introduce the mobile frame (M 0 (x), M 1 (x), M 2 ) with

M 1 (x) = JM 0 (x) and M 2 = e 3
and we describe m in this mobile frame writing:

m(t, x) = M 0 (x) + r 1 (t, x)M 1 (x) + r 2 (t, x)M 2 + µ(r)M 0 (x), (3.1) 
where r = (r 1 , r 2 ) ∈ R 2 and µ(r) = 1 -r 2 1 -r 2 2 -1, so that the saturation constraint is satisfied. The linear part of (3.2) is given by:

We remark that [|M

0 |] = [|M 1 |] = [| dM 0 dx |] = [| dM 1 dx |] = 0,
Λ = -αL -L L -αL with L = -∂ xx + f β , (3.3) 
with f β (x) = sin 2 θ(x) -cos 2 θ(x),
where θ(x) = θ -(x) for x < 0 and θ(x) = θ + (x) for x > 0.

The nonlinear part F : R + × B(0,

1) × R 2 × R 2 -→ R 2 of (3.
2) is defined by

F (x, r, ∂ x r, ∂ xx ) = A(r)∂ xx r + B(r)(∂ x r, ∂ x r) + C(x, r)∂ x r + D(x, r), (3.4) 
where, for

x ∈ R, r = (r 1 , r 2 ) ∈ R 2 and ζ = (ζ 1 , ζ 2 ) ∈ R 2 , • A ∈ C ∞ (B(0, 1), M 2 (R)) (M 2 (R) is the set of the real 2 × 2 matrices) with A(r)ζ = -α(r 1 ) 2 -αr 1 r 2 + µ(r) -αr 1 r 2 -µ(r) -α(r 2 ) 2 ζ - αr 1 (µ(r) + 1) + r 2 αr 2 (µ(r) + 1) -r 1 µ (r)(ζ), (3.5) 
• B ∈ C ∞ (B(0, 1), L 2 (R 2 )) (L 2 (R 2 ) denotes the set of the bilinear functions defined on R 2 × R 2 with values in R 2 ) given by

B(r)(ζ, ζ) = - αr 1 (µ(r) + 1) + r 2 αr 2 (µ(r) + 1) -r 1 µ (r)(ζ, ζ). (3.6) • C ∈ C ∞ (R × B(0, 1), M 2 (R)) with C(x, r)ζ = -2θ (x) αr 1 (µ(r) + 1) + r 2 αr 2 (µ(r) + 1) -r 1 ζ 1 + 2θ (x) α(r 2 1 -1) 1 + µ(r) + αr 1 r 2 µ (r)(ζ) (3.7) • D ∈ C ∞ (R × B(0, 1), R 2 ) such that D = 2 sin θ(x) cos θ(x)r 1 -µ(r)(sin 2 θ(x) -cos 2 θ(x)) αr 1 (µ(r) + 1) + r 2 αr 2 (µ(r) + 1) -r 1 . (3.8) 
We remark that this equation is valid while r takes its values in a neighborhood of zero since µ is singular for |r| ≥ 1. In order to obtain uniform estimates, we will consider below perturbations such that r L ∞ ≤ 1 2 . We remark also that the asymptotic stability of M 0 for (1.6) is equivalent to the asymptotic stability of zero for (3.2).

Proof of Theorem 1.2 4.1 Stability for m 1

For the first solution m 1 given by (1.9), the linear part in (3.2) is given by

Λ 1 = -αL 1 -L 1 L 1 -αL 1 and L 1 = -∂ xx + f 1,β (x), (4.1) 
where

f 1,β (x) = f (x + c) if x ≥ 0 f (x -c) if x ≤ 0, with f (x) = 2 tanh 2 (x) -1 and c = artanh (sin( β 2 
)).

Since f is strictly decreasing on R -and increasing on R + , as c > 0 since β ∈]0, π[, we remark that: We denote by .|. the usual L 2 -inner product in L 2 (R).

∀ x ∈ R, f 1,β (x) > f (x). ( 4 
We recall that the operator L = -∂ xx + f (x) is a self-adjoint operator acting on H 2 (R), its essential spectrum is [1, +∞[ and zero is its unique eigenvalue which eigenspace is generated by 1 cosh x (see [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Domain walls dynamics in a nanowire subject to an electric current[END_REF]). Therefore, for all w ∈ H 2 (R) satisfying w| 1 cosh x = 0, we have

w 2 L 2 ≤ Lw|w ≤ Lw 2 L 2 . (4.3) 
In addition there exists constants c 1 > 0 and c 2 > 0 such that for all w ∈

1 cosh x ⊥ , c 1 w 2 H 1 ≤ Lw|w ≤ c 2 w 2 H 1 . (4.4)
We claim the coercivity of L 1 in the following proposition:

Proposition 4.1. There exists c > 0, such that for all u ∈ H 2 (R), we have L 1 u|u ≥ c u 2 L 2 . Proof. Suppose that there exists (u n ) n , such that u n L 2 = 1 and

L 1 u n |u n < 1 n . We write u n = w n + σ n cosh x
, where w n ∈ ( 1 cosh x

) ⊥ and σ n ∈ R. Thus

L 1 u n |u n = -∂ xx u n + f 1,β u n |u n = -∂ xx u n + f u n + (f 1,β -f )u n |u n = Lu n |u n + R (f 1,β -f )|u n | 2 < 1 n . Moreover Lu n = Lw n since L( 1 cosh x ) = 0. So, since L is self-adjoint, Lu n |u n = Lw n |w n + σ n ( 1 cosh x ) = L(w n )|w n + L(w n )| σ n cosh x = Lw n |w n .
Therefore we have

Lw n |w n + R (f 1,β -f )|u n | 2 < 1 n .
So, with (4.4) we conclude that w n H 1 tends to zero when n tends to infinity.

On the other hand,

1 = u n 2 L 2 = w n 2 L 2 + 2 w n | σ n cosh x + σ n cosh x 2 L 2 = w n 2 L 2 + |σ n | 2 1 cosh x 2 L 2 .
Thus, we have lim

n→∞ |σ n | 2 = 1 2
. Consider now the second term

R (f 1,β -f )|u n | 2 dx = I 1 + I 2 + I 3 , (4.5) 
with

• I 1 = R (f 1,β -f )|w n | 2 dx ≤ f 1,β -f L ∞ w n 2 L 2 -→ 0 as n -→ ∞, • I 2 = 2 R (f 1,β -f )w n σ n cosh x dx ≤ 2 f 1,β -f L ∞ w n L 2 σ n cosh x L 2 -→ 0 as n -→ ∞, • I 3 = |σ n | 2 R (f 1,β -f ) 1 cosh 2 x dx -→ 1 2 R (f 1,β -f ) 1 cosh 2 x dx.
In view of the above analysis, we obtain

R (f 1,β -f )|u n | 2 dx -→ 1 2 R (f 1,β -f ) 1 cosh 2 x dx > 0 by (4.2).
On the other hand, since

R (f 1,β -f )|u n | 2 dx < 1 n , we obtain that R (f 1,β -f )|u n | 2 dx -→ 0 as n -→ ∞,
which leads to a contradiction. So the assumption is false and therefore there exists c > 0 such that for all u ∈ H 2 (R), we have

L 1 u|u ≥ c u 2 L 2 .
Corollary 4.1. There exist two constants K 1 and K 2 such that for every u ∈ H 2 (R) we have

K 1 u 2 H 1 ≤ L 1 u|u ≤ K 2 u 2 H 1 , K 1 u H 2 ≤ L 1 u L 2 ≤ K 2 u H 2 .
Proof. Thanks to Proposition 4.1, we have

∂ x u 2 L 2 = ∂ x u|∂ x u = -∂ xx u|u = L 1 u -f 1,β u|u ≤ L 1 u|u + f 1,β ∞ u 2 L 2 .
Since f 1,β L ∞ = 1 , we obtain by Proposition 4.1 that

∂ x u 2 L 2 ≤ (1 + 1 c ) L 1 u|u .
Therefore,

u 2 H 1 ≤ (2 + 1 c ) L 1 u|u .
In addition, we have:

L 1 u|u = R |∂ x u| 2 + R f 1,β |u| 2 ≤ u 2 H 1 since f 1,β ∞ = 1.
This proves the equivalence of norms in H 1 (R).

From Proposition 4.1 we have also

u L 2 ≤ 1 c L 1 u L 2 .
Furthermore,

∂ xx u L 2 = -∂ xx u + f 1,β u -f 1,β u ≤ L 1 u L 2 + f 1,β ∞ u L 2 ≤ (1 + 1 c ) L 1 u L 2 .
Thus, we conclude that there exists a constant K such that

u H 2 ≤ K L 1 u L 2 .
In addition,

L 1 u L 2 ≤ ∂ xx u L 2 + f 1,β L ∞ u L 2 ≤ 2 u H 2 .
This concludes the proof of Corollary 4.1.

Second step: estimate for the nonlinear term

In this section we estimate the L 2 (R)-norm of the nonlinear term F given by :

F (x, r, ∂ x r, ∂ xx ) = A(r)∂ xx r + B(r)(∂ x r, ∂ x r) + C(x, r)∂ x r + D(x, r),
where the right-hand-side terms are defined by (3.5)-(3.8).

Using the Sobolev injection of H 1 (R) in L ∞ (R) and the equivalence of norms claimed in Corollary 4.1, we introduce η 0 > 0 such that for all r ∈ H 2 (R), L 1 r|r

1 2 ≤ η 0 ⇒ r L ∞ (R) ≤ 1 2
. We prove the following estimate for the nonlinear part F : Proposition 4.2. There exists a constant k 0 such that for all r ∈ H 2 (R) with L 1 r|r 1 2 ≤ η 0 then:

F L 2 ≤ k 0 L 1 r|r 1 2 L 1 r L 2 . (4.6) 
Proof. We estimate each term of F separately. The same notation K is used for different constants independent of β and r ∈ H 2 (R) satisfying that r L ∞ ≤ 1 2 . We first remark that for r ∈ R 2 in a neighborhood of zero, µ(r) = O(|r| 2 ), µ (r) = O(|r|) and µ (r) = O(1). By (3.5) we remark that A(r) = O(|r| 2 ) so that:

|A(r)∂ xx r| ≤ C|r| 2 |∂ xx r|.

So using classical Sobolev embedding, we obtain that

A(r)∂ xx r L 2 ≤ K r L ∞ ∂ xx r L 2 ≤ K r H 1 r H 2 .
Concerning the second term defined by (3.6), since B(r) is bounded for r ∈ B(0, 1 2 ), we have

|B(r)(∂ x r, ∂ x r)| ≤ K|r||∂ x r| 2 . So, B(r)(∂ x r, ∂ x r) L 2 ≤ K ∂ x r L 2 ∂ x r L ∞ ,
thus, by Sobolev embeddings,

B(r)(∂ x r, ∂ x r) L 2 ≤ K r H 1 r H 2 .
By (3.7), since C(x, r) = O(|r|), we have

|C(x, r)∂ x r| ≤ K|r| |∂ x r|,
so we obtain:

C(x, r)∂ x r L 2 ≤ K r L ∞ ∂ x r L 2 , thus C(x, r)∂ x r L 2 ≤ K r 2 H 1 . Concerning the last term, we have D(x, r) = O(|r| 2 ), thus D(x, r) L 2 ≤ r L 2 r L ∞ ≤ K r 2 H 1 .
Finally, there exists a constant K such that if r ∈ H 2 (R) satisfies r L ∞ ≤ 1 2 , we have

F L 2 ≤ K r H 1 r H 2 . (4.7) 
Using Corollary 4.1 and the definition of η 0 , we obtain that there exists k 0 such that for all r ∈ H 2 (R) with L 1 r|r

1 2 ≤ η 0 then: F L 2 ≤ k 0 L 1 r|r 1 2 L 1 r L 2 .

Stability Proof

We recall that the asymptotic stability of m 1 for Equation (1.6) as claimed in Theorem 1.2 is equivalent to the asymptotic stability of 0 for Equation (3.2). We consider an initial data r 0 ∈ H 2 (R) such that L 1 r 0 |r 0 1 2 ≤ η 0 and we denote by r the solution of (3.2) with initial data r 0 . We take the L 2 -inner product of (3.2) with L 1 r, and we obtain that:

1 2 d dt L 1 r|r = -α L 1 r|L 1 r + F |L 1 r .
Therefore using (4.6), while L 1 r(t)|r(t)

1 2 ≤ η 0 , we have 1 2 d dt L 1 r|r + α L 1 r 2 L 2 ≤ k 0 L 1 r|r 1 2 L 1 r 2 L 2 ,
then, 1 2

d dt L 1 r|r + (α -k 0 L 1 r|r 1 2 ) L 1 r 2 L 2 ≤ 0. (4.8)
Thus, while L 1 r|r

1 2 (t) ≤ min{η 0 , α 2k 0 }, we obtain that α -k 0 L 1 r|r 1 2 ≥ α 2 . Then, 1 2 
d dt L 1 r|r + α 2 L 1 r 2 L 2 ≤ 0.
By Corollary 4.1, there exists a constant c 0 > 0 such that

L 1 r 2 L 2 ≥ c 0 L 1 r|r .
Therefore we obtain that while L 1 r|r

1 2 (t) ≤ min{η 0 , α 2k 0 }, d dt L 1 r|r + c 0 α L 1 r|r ≤ 0
which implies by comparison lemma that L 1 r(t)|r(t) ≤ L 1 r 0 |r 0 exp(-αc 0 t). (4.9)

We set η 1 = 1 2 inf{η 0 , α 2k0 }. We assume that the initial data r 0 satisfies Now, for t ∈ [0, t 1 [, we can apply (4.9) so that L 1 r(t)|r (t) ≤ L 1 r 0 |r 0 exp(-αc 0 t) ≤ η 1 . By continuity reasons, L 1 r(t 1 )|r (t 1 ) ≤ η 1 which is in contradiction with (4.12).

L 1 r 0 |r 0 1 2 ≤ η 1 . ( 4 
So if L 1 r 0 |r 0 1 2 ≤ η 1 , then for all t ≥ 0, Inequality (4.9) is true. This implies that under assumption (4.10), we obtain that r H 1 (R) remains small for all times and r H 1 -→ 0 as t tends to +∞. This concludes the proof of the asymptotic stability of m 1 .

Stability for m 4

For the forth solution m 4 defined by (1.12), the linear part in (3.2) is given by

Λ 4 = -αL 4 -L 4 L 4 -αL 4 , with L 4 = -∂ xx + f 4,β
where

f 4,β = f (x + c) if x ≥ 0, f (x -c) if x ≤ 0, with f (x) = 2 tanh 2 (x) -1 and c = artanh (sin( β 2 
)) > 0.

So we obtain the same linear part as in Subsection 4.1 for m 1 , and we prove the asymptotic stability of m 4 for (1.6) as for m 1 .

5 Linear instability of m 2 and m 3 For m 2 , the linear part of (3.2) is given by

Λ 2 = -αL 2 -L 2 L 2 -αL 2 , with L 2 = -∂ xx + f 2,β
where

f 2,β = f (x -c) if x ≥ 0, f (x + c) if x ≤ 0, with c = artanh (cos β 2 ) > 0.
Let us show that the linear operator Λ 2 admits at least one unstable direction.

We have

L 2 ( 1 cosh(x -c) ) = (-∂ xx + f (x -c)) 1 cosh(x -c) + (f 2,β -f (x -c)) 1 cosh(x -c)
.

Therefore, we have

L 2 ( 1 cosh(x -c) ) = (f 2,β -f (x -c)) 1 cosh(x -c) , since (-∂ xx + f (x -c))( 1 cosh(x -c) ) = 0.
We have also,

L 2 ( 1 cosh(x -c) )| 1 cosh(x -c) = R + (f (x -c) -f (x -c)) 1 cosh 2 (x -c) dx + R - (f (x + c) -f (x -c)) 1 cosh 2 (x -c) dx. Hence, L 2 ( 1 cosh(x -c) )| 1 cosh(x -c)
< 0, we conclude that L 2 has one strictly negative eigenvalue.

Therefore the solution is linearly unstable.

Concerning m 3 we obtain that the linear part arising in the stability proof can be written as:

Λ 3 = -αL 3 -L 3 L 3 -αL 3 with L 3 = -∂ xx + f 3,β ,
where

f 3,β = f (x -c) if x ≥ 0 f (x + c) if x ≤ 0, c = artanh (sin β 2 ) > 0.
Proceeding in the same way as for m 2 , we obtain the linear instability of m 3 .

Perturbation of stable profiles by small applied fields

Let m 1 be the static solution of (1.6) with vanishing applied field given by (1.9). We denote by (M 0 (x), M 1 (x), M 2 ) the mobile frame associated to m 1 defined at the beginning of Section 3:

M 0 (x) = m 1 (x), M 1 (x) =   0 -1 0 1 0 0 0 0 1   m 1 (x), M 2 =   0 0 1   .
In this part we consider solutions m of (1.6) with applied field H a = λξ remaining in the neighborhood of m 1 . We describe m in the mobile frame (M 0 (x), M 1 (x), M 2 ) writing m(t, x) = M 0 (x) + r 1 (t, x)M 1 (x) + r 2 (t, x)M 2 + µ(r(t, x))M 0 (x) (6.1)

with µ(r) = 1 -r 2 1 -r 2 2 -1, so that the saturation constraint is satisfied. We denote by (ξ 0 , ξ 1 , ξ 2 ) the coordinates of ξ in the mobile frame: ξ

(x) = ξ 0 (x)M 0 (x) + ξ 1 (x)M 1 (x) + ξ 2 (x)M 2 .
As in Section 3, plugging (6.1) in (1.6), we obtain that if m given by (6.1) remains in a neighborhood of m 1 , then m satisfies (1.6) if and only if r = (r 1 , r 2 ) satisfies

∂r ∂t = F(λ, r) := Λ 1 r + F (x, r, ∂ x r, ∂ xx ) + λκ(x) + λG(x, r). (6.2) 
The first two right-hand-side terms are defined in Section 3 by (3.3) and (3.4). We recall that

Λ 1 = -αL 1 -L 1 L 1 -αL 1 , with L = -∂ xx + f 1,β , (6.3 
) with f 1,β (x) = 2 tanh 2 (|x| + c) -1, c = artanh (sin( β 2 
)) > 0, and that F writes The additional terms coming from the applied field λξ are given by:

F (x, r, ∂ x r, ∂ xx ) = A(r)∂ xx r + B(r)(∂ x r, ∂ x r) + C(x, r)∂ x r + D(x, r),
κ(x) = ξ 2 + αξ 1 -ξ 1 + αξ 2 and G(x, r) = ξ 0 (x) -r 2 -αr 1 -αr 1 µ(r) r 1 -αr 2 -αr 2 µ(r) + ξ 1 (x) -αr 2 1 -µ(r) -αr 1 r 2 + ξ 2 (x) -αr 1 r 2 + µ(r) -αr 2 2 .
We recall that Equation (6.2) remains valid for |r| < 1 (since µ (r) is singular for |r| = 1).

Static solution

A small perturbation m of m 1 is a static solution for (1.6) with H a = λξ if and only if r = (r 1 , r 2 ) given by m

(x) = M 0 (x) + r 1 (x)M 1 (x) + r 2 (x)M 2 + µ(r(x))M 0 (x) satisfies F(λ, r) = 0. (6.4)
We will prove the existence of a static solution for (6.4) by using the following implicit function theorem in Banach spaces (see [START_REF] Serge | Pseudo-differential operators and the Nash-Moser theorem[END_REF]):

Theorem 6.1 (Implicit Function Theorem). Let B 0 , B 1 , B 2 three Banach spaces, U a neighborhood of (x 0 , y 0 ) ∈ B 0 × B 1 , and f : U -→ B 2 continuously differentiable. Suppose that f (x 0 , y 0 ) = 0 and that there exists a continuous linear mapping A : B 2 -→ B 1 , such that f y (x 0 , y 0 )A = id B2 . Then there exists g ∈ C 1 , from neighborhood of x 0 in B 0 , such that f (x, g(x)) = 0. If, in addition, f y (x 0 , y 0 ) is bijective, then g is unique and f (x, y) = 0 is equivalent to y = g(x) for (x, y) near to (x 0 , y 0 ).

In our case, B 0 = R with x 0 = 0 ∈ R, B 1 = H 2 (R; R 2 ) with y 0 = 0 ∈ H 2 (R; R 2 ), and

B 2 = L 2 (R; R 2 ).
By Assumption 1.13, we remark that the constant term λ ξ 2 + αξ 1 -ξ 1 + αξ 2 is in L 2 (R; R 2 ), so that F is defined in a neighborhood of zero in R × H 2 (R; R 2 ) and takes its values in L 2 (R; R 2 ). Now, we have ∂ r F(0, 0) = Λ 1 given by (6.3). We know that Λ 1 is strictly negative (see Section 4). So we can apply the implicit function theorem to the operator F. Thus there is a neighborhood ] -η, η[ of 0 in R, with η > 0, there exists a neighborhood ω of 0 in H 2 (R; R 2 ) and R :] -η, η[-→ ω, such that for all (λ, r) ∈] -η, η[×ω, F(λ, r) = 0 ⇐⇒ r = R(λ).

For λ ∈] -η, η[, we write: m(λ)(x) = M 0 (x) + R 1 (λ)(x)M 1 (x) + R 2 (λ)(x)M 2 + µ(R(λ)(x))M 0 (x).

The map λ → m(λ) is at least C 1 , m(0) = M 0 = m 1 and for all λ ∈] -η, η[, m(λ) satisfies (1.6).

Stability

We assume that |λ| < η. The asymptotic stability of m(λ) for Equation (1.6) with applied field λξ is equivalent to the asymptotic stability of R(λ) for Equation (6.2). Writing a small perturbation of R(λ) on the form R(λ)+w, we have to prove the asymptotic stability of zero for the equation: ∂w ∂t = F(λ, R(λ) + w). (6.5)

Using the Taylor expansion of F at the neighborhood of R(λ) and the fact that F(λ, R(λ)) = 0, we have F(λ, R(λ) + w) = Λ 1 w + N λ (x, w, ∂ x w, ∂ xx w) Proposition 6.1. There exists a constant k 1 such that for all w ∈ H 2 (R) with L 1 w|w 1 2 ≤ η 0 and for all λ ∈ [-η 1 , η 1 ] then:

N λ (x, w, ∂ x w, ∂ xx w) L 2 ≤ k 1 L 1 w|w 1 2 + |λ| L 1 w L 2 .
(6.9)

Proof. We recall that there exists a constant K 5 such that for all r ∈ R 2 , with |r| ≤ Let us estimate each term of N λ . We assume that L 1 w|w 1 2 ≤ η 0 and that |λ| ≤ η 1 , so that w L ∞ ≤ 1 2 and R(λ) L ∞ ≤ 1 4 . Thus R(λ) + w L ∞ ≤ 3 4 and Estimates (6.10) remain valid for r = R(λ)(x) + w(t, x). Therefore, we have:

A(R(λ) + w)∂ xx w L 2 ≤ A(R(λ) + w) L ∞ ∂ xx w L 2 ≤ K 5 R(λ) + w L ∞ ∂ xx w L 2 , B(R(λ) + w)(∂ x w, ∂ x w) L 2 ≤ B(R(λ) + w) L ∞ ∂ x w 2 L 4 ≤ K 5 w L ∞ w H 2 , C(λ, x, w)∂ x w L 2 ≤ 2 B(R(λ) + w)) L ∞ ∂ x R(λ) L ∞ ∂ x w L 2 + C(•, R(λ) + w) L ∞ ∂ x w L 2 ≤ K 5 (2 ∂ x R(λ) L ∞ + R(λ) + w L ∞ ) ∂ x w L 2 .
We bound each part of D(λ, •, w) separately:

A λ (•, w)(∂ xx R(λ)) L 2 ≤ A λ (•, w) L ∞ ∂ xx R(λ) L 2 ≤ K 5 w L ∞ ∂ xx R(λ) L 2 , B λ (•, w)(∂ x R(λ), ∂ x R(λ)) L 2 ≤ B λ (•, w) L ∞ ∂ x R(λ) 2 L 4 ≤ K 5 w L ∞ R(λ) L ∞ R(λ) H 2 C λ (•, w)(∂ x R(λ)) L 2 ≤ C λ (•, w) L ∞ ∂ x R(λ) L 2 ≤ K 5 w L ∞ ∂ x R(λ) L 2 D λ (•, w) L 2 ≤ K 5 ( R(λ) L ∞ + w L ∞ ) w L 2 .
The last term is estimated as D λ (x, w):

G(λ, x, w) L 2 ≤ K 5 w L 2
Using the previous estimates, (6.6) and (6.7), we conclude the proof of Proposition 6.1.

3 and u =   cos β -sin β 0 

 0 is a unitary vector in the plane ( e 1 , e 2 ). The angle β = ( u, e 1 ) is supposeed to be in ]0, π[.
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 21 By solving (2.6), we obtain that the solutions θ represented by a separatrix are on the form x → kπ + arcsin(tanh(x + c)) where c is an arbitrary constant, = ±1 and k ∈ Z. Thus for these solutions, we have sin(θ(x)) = a tanh(x + c) and cos(θ(x)) = b 1 cosh(x+c) where a = ±1 and b = ±1.
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  then the jump conditions [|m|] = [|∂ x m|] = 0 at x = 0 are equivalent to the null-jump condition on r: [|r|] = [|∂ x r|] = 0 at x = 0. Now, we plug (3.1) in (1.6). By projection onto RM 1 and RM 2 , we obtain that m satisfies (1.6) if and only if r satisfies ∂ t r = Λr + F on R. (3.2)
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  where A, B, C, D are smooth in the variable r and are defined respectively by (3.5), (3.6), (3.7) and(3.8).

3 4 ,

 4 for all x ∈ R, we have:|D(x, r)| ≤ K 5 |r| 2 , |A(r)| + |∂ r A(r)| + |C(x, r)| + |∂ r D(x, r)| + |G(x, r)| ≤ K 5 |r|, |B(r)| + |∂ r B(r)| + |∂ r C(x, r)| + |∂ r D(x, r)| + |∂ r G(x, r)| ≤ K 5 .(6.10)

  If it is not the case, let t 1 the first time in which (4.11) is false. Since (4.11) is true for small t by continuity reason, then t 1 > 0, the property is true for t ∈ [0, t 1 [ and at the time t 1 , we have:

	Let us show that for all t ≥ 0,				
	L 1 r(t)|r(t)	1 2 < min{η 0 ,	α 2k 0	}.	(4.11)
	L 1 r(t 1 )|r(t 1 )	1 2 = min{η 0 ,	α 2k 0	}.	(4.12)
						.10)

where N λ (x, w, ∂ x w, ∂ xx w) = A(R(λ) + w)∂ xx w + B(R(λ) + w)(∂ x w, ∂ x w) + C(λ, x, w)∂ x w +D(λ, x, w) + λG(λ, x, w).

The term C(λ, x, w) is defined for λ in a neighborhood of zero, x ∈ R and w ∈ B(0, 1 2 ) and takes its values in M 2 (R):

The term D(λ, x, w) is defined for λ in a neighborhood of zero, x ∈ R and w ∈ B(0, 1 2 ) and takes its values in R 2 :

with:

The last term G(λ, x, w) is given by

On the one hand, we recall that, in Section 4.1.2, we introduced η 0 > 0 such that:

In addition, there exists a constant K 3 such that for all w ∈ H 2 (R),

with R(0) = 0, so that there exists a constant η 1 > 0 with η 1 < η and a constant K 4 such that:

Hereafter, we assume that |λ| ≤ η 1 . Since Equation (6.2) is valid for |r| < 1, we will consider sufficient small initial data w 0 such that L 1 w(0)|w(0)

4 so that (6.5) remains valid.

As in Section 3 we take the L 2 -inner product of (6.5) with L 1 w and we obtain that 1 2

The right-hand-side term is estimated as follows:

By Proposition 6.1, since we assumed that |λ| ≤ η 1 , Equation (6.8) yields that while L 1 w|w

We set

We assume that |λ| ≤ h max . So, while L 1 w|w 1 2 ≤ η 0 , we have:

Setting η 2 = min{η 0 , α 4k1 }, we remark that while L 1 w|w .11) We prove as in Section 3 that if L 1 w(0)|w(0)

, then for all t ≥ 0, L 1 w(t)|w(t) 1 2 remains less than η 2 so that Equation (6.11) remains valid for all time, and we conclude the proof of stability as in Section 3.