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Ferromagnetic nanotubes are proposed as an alternative to ferromagnetic nanowires for data-storage applications. In this paper, we consider a two-dimensional model for such devices and we establish the stability of moving walls in the Walker regime when the tube is subject to a small magnetic field.

Introduction

Domain walls formation and propagation in ferromagnetic nanowires are intensively studied. Indeed, their possible applications for data recording (see [START_REF] Stuart | Magnetic domain-wall racetrack memory[END_REF]) or in nano-electronics (see [START_REF] Allwood | Magnetic Domainwall Logic[END_REF]) are very promising. Such devices are modeled by a 1d-Landau-Lifschitz equation, and existence and stability of one-wall profiles are established (see [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF][START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF][START_REF] Thiaville | Domain wall dynamics in nanowires and nanostrips, Spin dynamics in confined magnetic structures III[END_REF] and the references therein). In [START_REF] Yan | Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission[END_REF], the authors propose to use ferromagnetic nanotubes instead of ferromagnetic nanowires or nano strips in order to deal with domain wall motion in the Walker regime, which is stabler and more reliable for applications. In the present work we exhibit a 2d-model for ferromagnetic nanotubes and we study domain wall dynamics in this model for a small applied magnetic field.

Let us recall the 3-dimensional model for a ferromagnetic sample O ⊂ IR 3 . We denote by (u • v) the canonical scalar product of u by v in IR 3 and by |.| the associated norm. The canonical basis of IR 3 is denoted by (e 1 , e 2 , e 3 ) and × is the usual cross product.

Ferromagnetic materials are characterized by a spontaneous magnetization described by the magnetic moment M defined on IR + × O and satisfying the saturation constraint

|M (t, x)| = M s a.e., (1.1) 
where M s is constant. The magnetic moment satisfies the Landau-Lifschitz equation

∂M ∂t = -γM × H e - αγ M s M × (M × H e ), (1.2) 
in which γ > 0 is the gyromagnetic ratio, α > 0 is the damping coefficient, H e is the effective field given by:

H e = A µ 0 M 2 s ∆M + H d (M ) + H app .
(1.3)

Here, A > 0 is the exchange coefficient, µ 0 is the permeability of the vacuum, H app is the applied magnetic field, and H d (M ) is the demagnetizing field generated by the magnetization M . In the quasi-stationary model, the operator H d is given by div (H d (M ) + M ) = 0, curl H d (M ) = 0, (1.4) where M is the extension of M by zero outside O.
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The energy associated to a configuration M is given by:

E(M ) = A 2M 2 s O |∇M | 2 dx + µ 0 2 I R 3 |H d (M )| 2 dx -µ 0 O H a • M dx,
and we have H e = -1 µ0 ∂ M E. Existence of weak or strong solutions for (1.2) is addressed in several papers (see [START_REF] Alouges | On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness[END_REF][START_REF] Carbou | Time average in Micromagnetism[END_REF][START_REF] Carbou | Regular Solutions for Landau-Lifschitz Equation in a Bounded Domain[END_REF][START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in IR 3[END_REF][START_REF] Ding | Global existence of weak solutions for Landau-Lifshitz-Maxwell equations[END_REF][START_REF] Guo | Global weak solution for the Landau-Lifshitz-Maxwell equation in three space dimensions[END_REF][START_REF] Labbé | Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques[END_REF][START_REF] Visintin | On Landau Lifschitz equation for ferromagnetism[END_REF]).

We focus now on the case of a thin nanotube of axis IRe 1 with circular section. The nanotube is assimilated to the cylinder IR × ρS 1 = (x, y, z) ∈ IR 3 , y 2 + z 2 = ρ 2 . We assume that a magnetic field H app is applied in the direction of the tube axis: H app = H a e 1 , H a ∈ IR. We use the twodimensional model of ferromagnetic thin film obtained in [START_REF] Carbou | Thin Layers in Micromagnetism[END_REF] and [START_REF] Gioia | Micromagnetics of very thin films[END_REF], in which the demagnetizing field reduces to an anisotropic local term forcing M to be tangent to the thin domain. In the case of our nanotube the demagnetizing field is described by the term -(M • n)n, derived from the limit demagnetizing energy µ 0 4 I R×S 1 |M •n| 2 dσ, where n is the unit normal vector to the cylinder surface.

In cylindrical coordinates, we write y = ρ cos y and z = ρ sin y, and we obtain the following 2d model:

                
M : (t, x, y) → S 2 , 2π-periodic in the variable y,

∂M ∂t = -γM × h(M ) - αγ M s M × (M × h(M )), h(M ) = A µ 0 M 2 s ∂ 2 M ∂x 2 + A µ 0 M 2 s ρ 2 ∂ 2 M ∂y 2 -(M • n(y))n(y) + H a e 1 , (1.5) 
where the unit normal vector n is given by n(y) = 

M (t, x, y) = M s m 1 γAt µ 0 M s ρ 2 , x ρ , y e 1 + m 2 γAt µ 0 M s ρ 2 , x ρ , y n(y) + m 3 γAt µ 0 M s ρ 2 , x ρ , y n ⊥ (y) .
We obtain that M satisfies (1.5) if and

only if m =   m 1 m 2 m 3   satisfies              m : (t, x, y) → S 2 , 2π-periodic in the variable y, ∂m ∂t = -m × h(m) -αm × (m × h(m)), h(m) = ∂ xx m + ∂ yy m + 2e 1 × ∂ y m + m 1 e 1 -κm 3 e 3 + h a e 1 , (1.6) 
where

κ = µ 0 M 2 s ρ 2 A and h a = µ 0 M s ρ 2 A H a .
Remark 1.1. In our model of ferromagnetic thin layer, the demagnetizing field behaves like the planar anisotropy term -κm 3 e 3 . The curvature of the tube induces another anisotropic effect since the tube axis IRe 1 becomes an easy axis of magnetization modeled by the term +m 1 e 1 in the resulting effective field h(m).

We deal with domain wall profiles in the Walker regime as in [START_REF] Yan | Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission[END_REF]. For a vanishing applied field (h a = 0), we observe the formation of domains in which the magnetization is along the tube axis. One-wall configuration separating a -e 1 domain and a +e 1 domain is described by the steady state solution M 0 given by

M 0 (x) =   tanh x 1/ cosh x 0   . (1.7)
Furthermore, a small applied field in the e 1 -direction induces wall motion. This situation is described in our model by the solution:

M ha (t, x, y) = R θ M 0 ( x -ct δ ) , (1.8) 
where we denote by R θ the rotation matrix:

R θ =   1 0 0 0 cos θ -sin θ 0 sin θ cos θ   , (1.9) 
and where c, θ and δ depend on h a as follows:

h a = ακ sin θ cos θ, c δ = -αh a -κ cos θ sin θ, 1 δ 2 = 1 + κ sin 2 θ. (1.10)
This solution is only defined for |h a | ≤ ακ 2 , since h a = ακ 2 sin 2θ.

Remark 1.2. This kind of solution only depending on the x-variable is also observed in 1d-models of nanowires with elliptical sections (see [START_REF] Takasao | Stability of travelling wave solutions for the Landau-Lifshitz equation[END_REF] and [START_REF] Thiaville | Domain wall dynamics in nanowires and nanostrips, Spin dynamics in confined magnetic structures III[END_REF]) and in Walker's 3d-model in [23].

In this paper we establish that the solution M ha is stable in the Lyapunov sense. We also prove that M ha is asymptotically stable modulo translations in the x-variable.

We use the following notations:

• Ω = IR×]0, 2π[,
• L 2 p is the space of the measurable functions u : (x, y) → IR l (l = 1, 2 or 3) which are 2π-periodic in y, and such that u ∈ L 2 (Ω; IR l ). We denote by | the associated inner product

u | v = Ω (u(x, y) • v(x, y))dx dy,
and by • L 2 p the associated norm.

• H k p is the space of the measurable functions u : (x, y) → IR l (l = 1, 2 or 3) which are 2πperiodic in y and such that u belongs to the Sobolev space H k (Ω; IR p ). The associated norm is denoted by • H k p . Our main result is the following stability theorem:

Theorem 1. There exists h max , 0 < h max < ακ 2 , such that if |h a | ≤ h max , then for all ε > 0, there exists η > 0 such that if m satisfies (1.6) with m(0, •) -M ha (0, •) H 2 p ≤ η, then: • for all t > 0, m(t, •) -M ha (t, •) H 2 p ≤ ε (stability), • there exists σ ∞ ∈ IR such that m(t, •) -M ha (t, • -σ ∞ ) H 2
p tends to 0 when t tends to +∞ (asymptotic stability modulo translations).

To our knowledge, this work is the first one dealing with the stability of moving walls structures in dimension strictly greater than 1. In the 3d-model of [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF], only static walls are studied. In addition, the model in [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF] is not complete since the demagnetizing field is unduly simplified in 3d. Here, the model is more convincing since the 2d-model for the demagnetizing field can be justified by asymptotic arguments (see [START_REF] Carbou | Thin Layers in Micromagnetism[END_REF] and [START_REF] Gioia | Micromagnetics of very thin films[END_REF]).

Roughly speaking, in the proof of Theorem 1, we use the techniques developed in [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF] and [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF]. We have to address several difficulties, some of them being specific to the nanotube case. The first one comes from the saturation constraint (1.1), since we must consider only perturbations satisfying this constraint. To overcome this problem we use a moving frame technique as in [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF] (see Section 2). In Section 3, we prove a linear stability result. We prove that the linearization around the studied solution is non negative outside its kernel. This kernel is one-dimensional and relates to the invariance by translation of the Landau-Lifschitz type equation (1.6). The coercivity proof is specific to our 2d case and is quite tricky because of the term e 1 × ∂ y m in the effective field in (1.6). Theorem 1 is established in Section 4. The zero eigenvalue due to the translation invariance is responsible for a drift of the perturbation. As in [START_REF] Kapitula | On the stability of travelling waves in weighted L ∞ spaces[END_REF][START_REF] Kapitula | Multidimensional stability of planar travelling waves[END_REF] and the references therein, we split the perturbations of M ha as a translation of M ha plus a residual term. The linear estimates of Section 3 and variational estimates yield that this remainder term tends exponentially to zero when t tends to +∞. For the convenience of the reader, we postpone the technical estimates of the nonlinear terms to Section 5.

Moving Frame Technique

The magnetic applied field h a being fixed, we introduce c, δ and θ given by (1.10). Then we write the solution m of (1.6) on the form:

m(t, x, y) = R θ v(t,
x -ct δ , y),

where v =   v 1 v 2 v 3
  satisfies the saturation constraint |v| = 1, so that m satisfies (1.6) if and only if

v satisfies ∂ t v - c δ ∂ x v = -v × H(v) -αv × (v × H(v)), (2.11) 
where

H(v) = 1 δ 2 ∂ xx v + ∂ yy v + 2e 1 × ∂ y v + v 1 e 1 -κ(sin θv 2 + cos θv 3 )(sin θe 2 + cos θe 3 ) + h a e 1 .
In addition, M ha is stable for (1.6) if and only if M 0 is stable for (2.11). Therefore in order to establish Theorem 1, we aim to prove that if v(0,

•)-M 0 (•) H 2 p is small enough, then v(t, •)-M 0 (•) H 2
p remains small for all t and there exists σ

∞ such that v(t, •)-M 0 (•-σ ∞ ) H 2 p
tends to zero when t tends to +∞.

In order to deal with perturbations v of M 0 satisfying the saturation constraint |v| = 1, we use the mobile frame technique developed in [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF]. We introduce M 1 and M 2 defined by

M 1 (x) =   -1/ cosh x tanh x 0   and M 2 =   0 0 1   ,
and we write v on the form

v(t, x, y) = M 0 (x) + r 1 (t, x, y)M 1 (x) + r 2 (t, x, y)M 2 + µ(r(t, x, y))M 0 (x),
where the new unknown r : (t, x, y) → r 1 (t, x, y) r 2 (t, x, y) ∈ IR 2 is 2π-periodic in the y-variable and where µ is chosen so that the saturation constraint in always satisfied:

µ(ξ) = 1 -(ξ 1 ) 2 -(ξ 2 ) 2 -1.
Plugging this formulation in (2.11) and taking the scalar product with M 1 and M 2 , we obtain that v satisfies (2.11) if and only if r satisfies:

∂r ∂t = -α -1 1 -α Mr -h a Lr + F(r), (2.12) 
where the linear operators M and L are defined by

M =     1 δ 2 L -∂ yy 2 tanh x ∂ y -2 tanh x ∂ y 1 δ 2 L -∂ yy + κ cos 2θ     , with L = -∂ xx + (2 tanh 2 -1), (2.13) 
and

Lr = α + 1 α r + 2 tanh x r 2    1 - 1 α    , with = ∂ x + tanh x, (2.14) 
and where the term F :

H 2 p → L 2 p is the non linear contribution (that is ∂ r F(0) = 0).
For the convenience of the reader, the expression of F is postponed to Section 5.

Linear Stability

In this part, we study the stability of the zero solution for the linearization of (2.12):

∂v ∂t = -α -1 1 -α Mv -h a Lv. (3.15) 
The linear operator L in (2.13) appears in several stability proofs concerning one-dimensional models of nanowires (see [START_REF] Carbou | Domain walls dynamics in a nanowire subject to an electric current[END_REF][START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF][START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF]). It also appears in [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF] for the 3d case. We recall the properties of this operator (see [START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF] for the proofs):

• L is self-adjoint with domain H 2 (IR),

• we can factorize L on the form L = * • with = ∂ x + tanh x, so that L is positive. In addition,

I R u • Lu = L 1 2 u 2 L 2 (I R) = u 2 L 2 (I R) , • Ker L = IR 1 cosh x , and the essential spectrum of L is [1, +∞[, • 0 in the only eigenvalue of L, • on (Ker L) ⊥ , L ≥ 1, so that if I R u(x) cosh x dx = 0, then u L 2 (I R) ≤ u L 2 (I R) ≤ Lu L 2 (I R) . (3.16)
We introduce the following notations:

• L 2,⊥ p = w = w 1 w 2 ∈ L 2 p , such that I R×]0,2π[ w 1 (t, x, y) 1 cosh x dx dy = 0 , • H k,⊥ p = H k p ∩ L 2,⊥ p .
The properties of M are summarized in the following: In addition, M is non negative on (Ker M) ⊥ = H 2,⊥ p , and for all fixed θ max ∈ [0, π 4 [, there exist constants α 1 > 0, α 2 > 0 and α 3 > 0 (depending on θ max ) such that for all θ ∈] -θ max , θ max [,

Proposition 3.1. For all θ ∈] -π 4 , π 4 
• for k ∈ {1, 2}, for all w ∈ H k+1,⊥ p , α 1 M k 2 w L 2 p ≤ M k+1 2 w L 2 p , • for k ∈ {1, 2, 3}, for all w ∈ H k,⊥ p , α 2 w H k p ≤ M k 2 w L 2 p ≤ α 3 w H k p .
As a corollary of Proposition 3.1, we obtain the following Theorem:

Theorem 2. There exists h l max with 0 < h l max < ακ 2
, such that for all h a with |h a | ≤ h l max , the zero solution is stable for Equation (3.15). More precisely, for all ε > 0, there exists η > 0 such that for all

v 0 ∈ H 1 p , if v 0 H 1 p ≤ η, then the solution v of (3.15) with initial data v 0 satisfies ∀ t > 0, v(t, •) H 1 p ≤ ε.
In addition, when t tends to +∞, v(t, •) tends in H 1 p to a limit of the form

σ ∞ cosh x 1 0
, where

σ ∞ ∈ IR.
Remark 3.1. We prove the linear stability in H 1 p . We could also prove the same result in H 2 p . For the nonlinear stability, we need H 2 p estimates to control the nonlinear terms. Theorem 2 is proved in Section 3.2

Proof of Proposition 3.1

We first establish the following Lemma: Lemma 3.1. There exists c 1 > 0 and c 2 > 0 such that for all w ∈ H 1,⊥ p ,

c 1 w H 1 p ≤ w 1 2 L 2 p + ∂ y w 1 2 L 2 p + w 2 2 L 2 p + ∂ y w 2 2 L 2 p + w 2 2 L 2 p 1 2 ≤ c 2 w H 1 p .
Proof. We recall that = ∂ x + tanh x, so that the existence of c 2 is straightforward.

We have

∂ x w 2 L 2 p ≤ w 2 -tanh x w 2 L 2 p ≤ w 2 L 2 p + tanh x w 2 L 2 p , thus there exists K such that w 2 H 1 p ≤ K w 2 L 2 p + ∂ y w 2 L 2 p + w 2 L 2 p . (3.17) 
Concerning w 1 , we first recall that for all u ∈ H 1 (IR), we have

I R u(x) 1 cosh x dx = 0 =⇒ u L 2 (I R) ≤ u L 2 (I R) (see (3.16)).
We define τ by

τ (y) = x∈I R 1 2 cosh x w 1 (x, y)dx.
We split w 1 as:

w 1 (x, y) = W 1 (x, y) + τ (y) cosh x with ∀ y ∈ IR, x∈I R W 1 (x, y) 1 cosh x dx = 0. (3.18)
For a fixed y, x → W 1 (x, y) is in ( 1 cosh x ) ⊥ (for the L 2 (IR)-inner product), so

W 1 (•, y) L 2 (I R) ≤ W 1 (•, y) L 2 (I R) ,
and by integration in the variable y ∈ [0, 2π], using that 1 cosh x = 0, we obtain that

W 1 L 2 p ≤ w 1 L 2 p .
By the orthogonality condition in (3.18) we remark that

W 1 | 1 cosh x = 0 so w 1 2 L 2 p = W 1 2 L 2 p + τ (y) cosh x 2 L 2 p .
We have:

τ (y) cosh x 2 L 2 p = x∈I R y∈]0,2π[ |τ (y)| 2 1 cosh 2 x dx dy = 2 τ 2 L 2 ([0,2π]) . Since w ∈ H 1,⊥ p , we have w 1 | 1 cosh x = 0 thus ]0,2π[ τ (y)dy = 0.
Hence by Poincaré-Wirtinger inequality, we have

τ L 2 (]0,2π[) ≤ ∂ y τ L 2 (]0,2π[) .
Therefore,

w 1 2 L 2 p ≤ w 1 2 L 2 p + 2 ]0,2π[ |∂ y τ | 2 dy, ≤ w 1 2 L 2 p + 2 ]0,2π[ I R 1 2 cosh x ∂ y w 1 (x, y)dx 2 dy, ≤ w 1 2 L 2 p + 2 ]0,2π[ I R 1 4 cosh 2 x dx I R |∂ y w 1 (x, y)| 2 dx dy by Cauchy-Schwarz inequality, thus w 1 2 L 2 p ≤ w 1 2 L 2 p + ∂ y w 1 2 L 2 p . (3.19) Therefore w 1 H 1 p = w 1 L 2 p + ∂ x w 1 L 2 p + ∂ y w 1 L 2 p , ≤ w 1 L 2 p + w 1 L 2 p + tanh x w 1 L 2 p + ∂ y w 1 L 2 p , ≤ 3 
w 1 L 2 p + ∂ y w 1 L 2 p using (3.19).
(3.20)

Coupling (3.17 In order to establish that M is non negative, we prove the following: Lemma 3.2. There exists c > 0 such that for all θ ∈] -π/4, π/4[, for all w ∈ H 2,⊥ p , we have

Mw | w ≥ c cos 2θ w 2 H 1 p .
Proof. We recall that we denote Ω = IR × [0, 2π]. We have

Mw | w = 1 δ 2 Lw 1 | w 1 + ∂ y w 1 2 L 2 p + 1 δ 2 Lw 2 | w 2 + ∂ y w 2 L 2 p +κ cos 2θ w 2 2 L 2 p -2 Ω tanh x w 2 ∂ y w 1 + 2 Ω tanh x w 1 ∂ y w 2 .
(3.21)

We estimate the last two integrals. Let ν, 0 < ν ≤ 1. We have:

-2 Ω tanh x w 2 ∂ y w 1 +2 Ω tanh x w 1 ∂ y w 2 = -4ν Ω tanh x w 2 ∂ y w 1 -2(1 -ν) Ω tanh x w 2 ∂ y w 1 + 2(1 -ν) Ω tanh x w 1 ∂ y w 2 .
Since

Ω ∂ x w 2 ∂ y w 1 - Ω ∂ x w 1 ∂ y w 2 = 0, we have - Ω tanh x w 2 ∂ y w 1 + Ω tanh x w 1 ∂ y w 2 = - Ω w 2 ∂ y w 1 + Ω w 1 ∂ y w 2 (we recall that w i = ∂ x w i + tanh x w i ). Therefore -2 Ω tanh x w 2 ∂ y w 1 + 2 Ω tanh x w 1 ∂ y w 2 = -4ν Ω tanh x w 2 ∂ y w 1 -2(1 -ν) Ω ( w 2 ∂ y w 1 -w 1 ∂ y w 2 ) . Hence -2 Ω tanh x w 2 ∂ y w 1 +2 Ω tanh x w 1 ∂ y w 2 ≤ 4ν ∂ y w 1 L 2 p w 2 L 2 p +2(1 -ν) w 1 L 2 p ∂ y w 2 L 2 p + 2(1 -ν) w 2 L 2 p ∂ y w 1 L 2 p , ≤ ν 2 ∂ y w 1 2 L 2 p + 8ν w 2 2 L 2 p + (1 -ν) w 1 2 L 2 p + (1 -ν) ∂ y w 2 2 L 2 p +(1 -ν) w 2 2 L 2 p + (1 -ν) ∂ y w 1 2 L 2 p , ≤ (1 -ν) w 1 2 L 2 p + (1 - ν 2 ) ∂ y w 1 2 L 2 p + (1 -ν) ∂ y w 2 2 L 2 p +(1 -ν) w 2 2 L 2 p + 8ν w 2 2 L 2 p .
So, using this estimate in (3.21), since

Lw i | w i = w i 2 L 2 p , since 1 δ 2 -1 = κ sin 2 θ, we have Mw | w ≥ (κ sin 2 θ + ν) w 1 2 L 2 p + ν 2 ∂ y w 1 2 L 2 p + (κ sin 2 θ + ν) w 2 2 L 2 p +ν ∂ y w 2 2 L 2 p + (κ cos 2θ -8ν) w 2 2 L 2 p .
We take ν = ν(θ) := inf 1, κ cos 2θ 16 and we obtain that

Mw | w ≥ ν(θ) 2 w 1 2 L 2 p + ∂ y w 1 2 L 2 p + w 2 2 L 2 p + ∂ y w 2 2 L 2 p + w 2 2 L 2 p .
Using Lemma 3.1 we obtain:

Mw | w ≥ (c 1 ) 2 2 ν(θ) w 2 H 1
p . We remark now that there exists c > 0 such that for all θ ∈] -π/4, π/4[,

(c 1 ) 2 2 ν(θ) ≥ c cos 2θ.
This concludes the proof of Lemma 3.2.

Proof of Proposition 3.1. For all θ ∈] -θ max , θ max [, cos 2θ ≥ cos 2θ max . We set

α 1 = (c cos 2θ max ) 1 2 
(see Lemma 3.2) and we have, by density of

H 2,⊥ p in H 1,⊥ p , that ∀ w ∈ H 1,⊥ , α 1 w H 1 p ≤ M 1 2 w L 2 p , (3.22) 
thus ∀ w ∈ H 1,⊥ , α 1 w L 2 p ≤ M 1 2 w L 2 p . (3.23) 
In addition,

α 1 M 1 2 w 2 L 2 p = α 1 w | Mw ≤ α 3 w L 2 p Mw L 2 p ≤ M 1 2 w L 2 p Mw L 2 p . We obtain then that α 1 M 1 2 w L 2 p ≤ Mw L 2 p . If w ∈ H 3,⊥
p , then Mw ∈ H 1,⊥ p . Therefore, applying (3.23) replacing w by Mw, we obtain that for

w ∈ H 3,⊥ p , α 1 Mw L 2 p ≤ M 1 2 w L 2 p . (3.24) 
The existence of α 3 is straightforward, since M is an order-two operator.

Concerning α 2 , we first remark that from Proposition 3.2 we have:

α 1 w H 1 p ≤ M 1 2 w L 2 p . In addition, writing ∆ δ = 1 δ 2 ∂ xx + ∂ yy , we have Mw = -∆ δ w + A(w),
where

A(w) = 2 tanh x ∂ y w 2 -∂ y w 1 + 1 δ 2 (1 -2 tanh 2 x)w + κ cos 2θ 0 w 2 . So ∆ δ w L 2 p ≤ Mw L 2 p + Aw L 2 p , ≤ Mw L 2 p + c w H 1 p since A is an order-one operator, ≤ Mw L 2 p + c α 1 M 1 2 w L 2 p with (3.22), ≤ (1 + c (α 1 ) 2 ) Mw L 2 p . Since ∆ δ w 2 L 2 p = 1 δ 4 ∂ xx w 2 L 2 p + 2 1 δ 2 ∂ xy w 2 L 2 p + ∂ yy w 2 L 2 p with 1 ≤ 1 δ 2 ≤ 2
, we obtain that there exists a constant k independent of θ and w such that

∂ xx w L 2 p + ∂ xy w L 2 p + ∂ yy w L 2 p ≤ k Mw L 2 p .
Since we already know that w

H 1 p ≤ 1 α 1 M 1 2 w L 2 p ≤ 1 (α 1 ) 2 Mw L 2
p , we obtain that there exists a constant a 2 such that:

∀ θ ∈ [-θ max , θ max ], ∀ w ∈ H 2,⊥ p , a 2 w H 2 p ≤ Mw L 2 p .
Concerning the H 3 estimate, we remark that

M 3 2 w 2 L 2 p = M 2 w | Mw , = ∆ 2 δ w | ∆ δ w + ∆ δ w | ∆ δ Aw + A∆ δ w + A 2 w . So 1 δ 2 ∂ x ∆ δ w 2 L 2 p + ∂ y ∆ δ w 2 L 2 p ≤ M 3 2 w 2 L 2 p + | ∆ δ w | ∆ δ Aw + A∆ δ w + A 2 w |, ≤ M 3 2 w 2 L 2 p + ∆ δ w L 2 p ∆ δ Aw + A∆ δ w + A 2 w L 2 p , ≤ M 3 2 w 2 L 2 p + c w H 2 p w H 3 p .
We remark that there exists k 1 > 0 such that

w H 3 p ≤ k 1 1 δ 2 ∂ x ∆ δ w 2 L 2 p + ∂ y ∆ δ w 2 L 2 p 1 2 + w H 2 p , (3.25) 
so 1 δ 2 ∂ x ∆ δ w 2 L 2 p + ∂ y ∆ δ w 2 L 2 p ≤ M 3 2 w 2 L 2 p + c k 1 w H 2 p 1 δ 2 ∂ x ∆ δ w 2 L 2 p + ∂ y ∆ δ w 2 L 2 p 1 2 +c w 2 H 2 p , ≤ (c + c 2 (k 1 ) 2 2 ) w 2 H 2 p + M 3 2 w 2 L 2 p + 1 2 1 δ 2 ∂ x ∆ δ w 2 L 2 p + ∂ y ∆ δ w 2 L 2
p by Young inequality.

Therefore we obtain that

1 δ 2 ∂ x ∆ δ w 2 L 2 p + ∂ y ∆ δ w 2 L 2 p ≤ 2 M 3 2 w 2 L 2 p + 2(c + c 2 (k 1 ) 2 2 ) w 2 H 2 p .
Using (3.25), (3.24) and the previous H 2 -estimates, we obtain that there exists a 3 > 0 such that

a 3 w H 3 p ≤ M 3 2 w L 2 p .
Taking α 2 = min(α 1 , a 2 , a 3 ), we conclude the proof of Proposition 3.1.

Proof of Theorem 2

We fix h max a , with 0 < h max a < ακ 2 , and θ max = 1 2 arcsin( 2h max a ακ ). We introduce the constants α 1 , α 2 , and α 3 given by Proposition 3.1.

We consider v a solution of (3.15). We define σ(t) by 

σ(t) = 1 4π Ω v(t,

0

= 0, we have:

∂w ∂t + 1 cosh x dσ dt 1 0 = -α -1 1 -α Mw -h a Lw. (3.27)
We take the L 2 -inner product of (3.27) with 1 4π cosh x 1 0

. We remark that

• w 1 | 1 cosh x = 0 for all t, so ∂ t w 1 | 1 cosh x = 0, • ∂ yy w i | 1 cosh x = tanh x∂ y w i | 1 cosh x
= 0, by integration of parts in y and 2π-periodicity,

• L is self-adjoint so that Lw i | 1 cosh x = w i | L( 1 cosh x ) = 0, • 1 cosh x | 1 4π cosh x = 1.
Therefore we obtain:

dσ dt = Kw, (3.28) with Kw = 1 4π cosh x | -κ cos 2θ w 2 -h a (α + 1 α ) w 1 + 2h a tanh x w 2 .
By subtraction, we ob-

tain that ∂w ∂t = -α -1 1 -α Mw -h a Lw - 1 cosh x 1 0 Kw. (3.29)
We take the inner product of (3.29) with Mw. Since L is self adjoint, since L( 1 cosh x ) = 0, and by integration by parts in the y variable, we remark that

1 cosh x | (Mw) 1 = 1 cosh x | 1 δ 2 Lw 1 -∂ yy w 1 -2 tanh x ∂ y w 2 = 0.
Therefore, we obtain that 1 2

d dt M 1 2 w 2 L 2 p + α Mw 2 L 2 p = -h a Lw | Mw .
Since L is an order one operator, there exists K such that:

Lw L 2 p ≤ K w H 1 p ≤ K w H 2 p . (3.30)
The equivalence of norms in Proposition 3.1 yields:

1 2 d dt M 1 2 w 2 L 2 p + α Mw 2 L 2 p ≤ |h a | K α 2 Mw 2 L 2 p .
We set h l max = inf h max a , αα 2 2K , and we get that if |h a | ≤ h l max , then for all t,

1 2 d dt M 1 2 w 2 L 2 p + α 2 Mw 2 L 2 p ≤ 0.
Using again Proposition 3.1, we obtain that

d dt M 1 2 w 2 L 2 p + α(α 1 ) 2 M 1 2 w 2 L 2 p ≤ 0, so ∀ t ≥ 0, M 1 2 w L 2 p ≤ M 1 2 w(0) L 2 p e -α(α 1 ) 2 2 t .
This implies that:

∀ t ≥ 0, w(t) H 1 p ≤ α 3 α 2 w(0) H 1 p e -α(α 1 ) 2 2 t .
In addition, using that |Kw(t)| ≤ K w(t) H 1 p and Equation (3.28), we obtain that dσ dt is integrable on IR + , so σ(t) tends to a limit σ ∞ when t tends to +∞. This concludes the proof of Theorem 2.

4 Proof of the nonlinear stability

New unknowns

We remark that our model (2.11) is invariant by translation in the x-variable so that x → M 0 (x -σ) is a static solution for (2.11) for all σ ∈ IR. By projection on the mobile frame (M 1 , M 2 ), this induces the existence of a one-parameter family of static solutions for (2.12) given by

R(σ)(x) = ρ(σ)(x) 0 , (4.31) 
where ρ(s

)(x) = (M 0 (x -σ) • M 1 (x)) = - tanh(x -s) cosh x + tanh x cosh(x -s) .
The existence of this one-parameter family of solutions induces that 0 is in the spectrum of the operator arising in the linearization of (2.12), as observed in Section 3 (see also [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF][START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF]).

Remark 4.1. In [START_REF] Carbou | Domain walls dynamics in a nanowire subject to an electric current[END_REF][START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Carbou | Stabilization of Walls for Nano-Wires of Finite Length[END_REF][START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF], in the case of wires with circular cross section, the model is also invariant by rotation around the wire axis, so that 0 is an eigenvalue of multiplicity two of the linearization

In order to take into account this null eigenvalue, we rewrite r in the following new system of coordinates:

r(t, x, y) = R(σ(t))(x) + w(t, x, y), (4.32) 
where for all t, w(t, •) ∈ H 2,⊥ p , i.e. its first component w 1 satisfies:

∀ t ≥ 0, Ω w 1 (t, x, y) 1 cosh x dx dy = 0. (4.33)
The validity of this system of coordinates is claimed in the following:

Proposition 4.1. There exists ξ 0 > 0 such that for all r ∈ L 2 p with r L 2 p ≤ ξ 0 , then there exists one and only one couple (σ, w) ∈ IR × L 2,⊥ p such that r(x, y) = R(σ)(x) + w(x, y).

In addition, if r ∈ H k p then w ∈ H k,⊥ p .

Proof. Proceeding as in [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF] we define ψ : IR → IR by

ψ(s) = I R×]0,2π[ ρ(s)(x) 1 cosh x dx = 2π x∈I R - tanh(x -s) cosh 2 x + tanh x cosh(x -s) cosh x dx.
We remark that if r admits a decomposition on the form r(x, y) = R(σ)(x) + w(x, y) with w ∈ L 2,⊥ p then

I R×]0,2π[ r 1 (x, y) 1 cosh x dx dy = ψ(σ).
Since ψ(0) = 0 and ψ (0) = 4π = 0, ψ is a C ∞ -diffeomorphism in a neighborhood of zero, so that for r small enough, σ is characterized by:

σ = ψ -1 I R×]0,2π[ r 1 (x, y) 1 cosh x dx dy .
By subtraction we obtain then that w is characterized by w = r -R(σ) which is automatically in L 2,⊥ p . The H k p -regularity is a straightforward consequence of the previous decomposition since R(σ) is smooth.

We aim to establish the equivalent formulation for Equation (2.12) in the new variables (σ, w). For a fixed σ ∈ IR, R(σ) is a static solution for (2.12), so for all t we have

-α -1 1 -α MR(σ(t)) -h a LR(σ(t)) + F(R(σ(t))) = 0.
Therefore plugging (4.32) in (2.11) we obtain

∂ s R(σ) dσ dt + ∂ t w = -1 -1 1 -1 Mw -h a Lw + G, (4.34) 
where G = F(R(σ) + w) -F(R(σ)). We take the L 2 p -inner product of (4.34) with 1 4π cosh x 1 0 , and using the same arguments as in Section 3.2, we obtain:

g(σ) dσ dt = -h a Kw + G,
where

• g(s) = x∈I R 1 2 cosh x ∂ s ρ(s)(x)dx = 1 + O(s)
, so that g(s) ≥ 1 2 for σ small enough,

• Kw = Ω 1 4π cosh x -κ cos 2θ w 2 -h a (α + 1 α ) w 1 + 2h a tanh x w 2 dx dy, • G = Ω 1 4π cosh x G 1 dx dy where G 1 is the first component of G.
Therefore we get

dσ dt = K σ w + G (4.35)
where

K σ w = Kw g(σ) and G = G g(σ) .
Writing in (4.34) that ∂ s ρ(σ) = 1 cosh x + a(x, σ) where a(x, σ) = O(σ), using (4.35), we obtain by subtraction that :

∂ t w = -1 -1 1 -1 Mw -h a Lw - 1 cosh x 1 0 K σ w + H (4.36)
where

H = G -a(x, σ) K σ w 0 - ∂ s ρ(σ)G 0 . (4.37)
In order to avoid the singularity of µ, we have to assume that r L ∞ ≤ 1 2 . In addition, we must assume that r L 2 p ≤ ξ 0 to use Proposition 4.1, and that |σ| small enough to be sure that g(σ) ≥ 1 2 . Therefore, using the Sobolev embedding of H 2 p into L ∞ (IR 2 ), we introduce η 0 > 0 such that under the assumption:

|σ| ≤ η 0 and w H 2 p ≤ η 0 , (4.38) then we have:

R(σ) + w L ∞ ≤ 1 2 , R(σ) + w L 2 p ≤ 1 2
, and g(σ) ≥ 1 2 . (4.39)

Nonlinear Stability

We fix an a priori bound on h a : let h max a satisfying 0 < h max a < ακ 2 and let θ max related to h max a by (1.10):

θ max = 1 2 arcsin( 2h max a κ ).
We introduce the constants α 1 , α 2 and α 3 given by Proposition 3.1 with this θ max , so that the norms equivalences in Proposition 3. , for all σ ∈ IR satisfying |σ| ≤ η 0 , for all w ∈ H 3 p such that w H 2 p ≤ η 0 , then

|K σ (w)| ≤ K w H 2 p , |G| ≤ K w H 2 p , H L 2 p ≤ K |σ| + w H 2 p w H 2 p ,
and

H H 1 p ≤ K |σ| + w H 2 p w H 3 p .
For the convenience of the reader the proof of this proposition is postponed to Section 5.

First step: H 1 estimates. Taking the inner product of (4.36) with Mw, since the first component of Mw is orthogonal to 1 cosh x , we obtain:

1 2 d dt w | Mw + α Mw 2 L 2 p = -h a Lw | Mw + H | Mw
. By Proposition 4.2 and by the norms equivalences established in Proposition 3.1, we obtain that there exists K 1 such that while |σ| ≤ η 0 and w H 2 p ≤ η 0 , then

Lw L 2 p ≤ K 1 Mw L 2 p and H L 2 p ≤ K 1 |σ| + Mw L 2 p Mw L 2 p . So 1 2 d dt w | Mw + α Mw 2 L 2 p ≤ K 1 h a + |σ| + Mw L 2 p Mw 2 L 2 p . (4.40) 
Second step: H 2 estimates. We will take the inner product of (4.36) with M 2 w. Denoting by Y 1 and Y 2 the coordinates of Mw, we have on the one hand:

-α -1 1 -α Mw | M 2 w = -αY 1 -Y 2 Y 1 -αY 2 | MY , = -α Y | MY -Y 2 | (MY ) 1 + Y 1 | (MY ) 2 . Now, -Y 2 | (MY ) 1 = -Y 2 | ( 1 δ 2 L -∂ yy )Y 1 + 2 tanh x ∂ y Y 2 , = -( 1 δ 2 L -∂ yy )Y 2 | Y 1 , since 1 δ 2 L -∂ yy is self-adjoint and by 2π-periodicity of Y 2 , so that Y 2 | tanh x ∂ y Y 2 = 0.
In addition, with the same arguments,

Y 1 | (MY ) 2 = Y 1 | ( 1 δ 2 L -∂ yy )Y 2 + κ cos 2θY 2 -2 tanh x∂ y Y 1 = Y 1 | ( 1 δ 2 L -∂ yy )Y 2 + κ cos 2θ Y 1 | Y 2 . Hence -α -1 1 -α Mw | M 2 w = -α M 1 2 Y 2 L 2 p + κ cos 2θ Y 1 | Y 2 .
On the other hand,

1 cosh x | (MY ) 1 = 1 cosh x | 1 δ 2 LY 1 -∂ yy Y 1 + 2 tanh x ∂ y Y 2 = 0.
Therefore by taking the inner product of (4.36) with M 2 w, we obtain:

1 2 d dt Mw 2 L 2 p + α M 3 2 w 2 L 2 p = κ cos 2θ (Mw) 1 | (Mw) 2 -h a Lw | M 2 w + H | M 2 w ≤ κ Mw 2 L 2 p -h a M 1 2 Lw | M 3 2 w + M 1 2 H | M 3 2 w .
Using Propositions 3.1 and 4.2, while |σ| ≤ η 0 and w H 2 p ≤ η 0 , there exists K 2 such that

M 1 2 Lw L 2 p ≤ K 2 M 3 2 w L 2 p and M 1 2 H L 2 p ≤ K 2 |σ| + Mw L 2 p M 3 2 w L 2 p .
Therefore we obtain that while |σ| ≤ η 0 and w

H 2 p ≤ η 0 , 1 2 
d dt Mw 2 L 2 p + α M 3 2 w 2 L 2 p ≤ κ Mw 2 L 2 p + K 2 h a + |σ| + Mw L 2 p M 3 2 w 2 L 2 p . (4.41) 
Adding up 2κ×(4.40) and α×(4.41) (so that the right-hand side term κ Mw 2 L 2 p in (4.41) is absorbed by the left-hand side of (4.40)), we obtain that while |σ| ≤ η 0 and w H 2 p ≤ η 0 , 1 2

d dt 2κ w | Mw + α Mw 2 L 2 p + ακ Mw 2 L 2 p + α 2 M 3 2 w 2 L 2 p ≤ 2κK 1 h a + |σ| + Mw L 2 p Mw 2 L 2 p + αK 2 h a + |σ| + Mw L 2 p M 3 2 w 2 L 2 p , that is 1 2 d dt 2κ w | Mw + α Mw 2 L 2 p + κ α -2K 1 h a -2K 1 |σ| -2K 1 Mw L 2 p Mw 2 L 2 p +α α -K 2 h a -K 2 |σ| -K 2 Mw L 2 p M 3 2 w 2 L 2 p ≤ 0.
We fix h max by:

h max = min h max a , α 4K 1 , α 2K 2 . 
From now on, we assume that |h a | ≤ h max .

We obtain that while |σ| ≤ η 0 and w

H 2 p ≤ η 0 : 1 2 d dt 2κ w | Mw + α Mw 2 L 2 p + κ α 2 -2K 1 |σ| -2K 1 Mw L 2 p Mw 2 L 2 p +α α 2 -K 2 |σ| -K 2 Mw L 2 p M 3 2 w 2 L 2 p ≤ 0.
Third step: joint estimates for w and σ. We fix

η 1 = min η 0 , α 16K 1 , α 8K 2 . While |σ| ≤ η 1
and Mw L 2 p ≤ η 1 then:

1 2 d dt 2κ w | Mw + α Mw 2 L 2 p + ακ 4 Mw 2 L 2 p + α 2 4 M 3 2 w 2 L 2 p ≤ 0.
Therefore, using Proposition 3.1, we obtain that while |σ| ≤ η 1 and Mw L 2 p ≤ η 1 then:

1 2 d dt 2κ M 1 2 w 2 L 2 p + α Mw 2 L 2 p + α(α 1 ) 2 8 2κ M 1 2 w 2 L 2 p + α Mw 2 L 2 p ≤ 0,
so that, by comparison lemma, while |σ| ≤ η 1 and Mw L 2 p ≤ η 1 then: 

2κ M 1 2 w(t) 2 L 2 p + α Mw(t) 2 L 2 p ≤ 2κ M 1 2 w(0) 2 L 2 p + α Mw(0)
| dσ dt | ≤ K 3 Mw L 2 p .
Therefore, while |σ| ≤ η 1 and Mw L 2 p ≤ η 1 , then

| dσ dt | ≤ K 3 2κ M 1 2 w(0) 2 L 2 p + α Mw(0) 2 L 2 p 1 2 exp(- α(α 1 ) 2 8 t), (4.44) 
so, by integration,

|σ(t)| ≤ |σ(0)| + 8K 3 α(α 1 ) 2 2κ M 1 2 w(0) 2 L 2 p + α Mw(0) 2 L 2 p 1 2 .
(4.45)

End of the proof. Using Proposition 3.1, we introduce η 2 > 0 such that for any w, if w(0)

H 2 p ≤ η 2 , then 1 + 8K 3 α(α 1 ) 2 2κ M 1 2 w(0) 2 L 2 p + α Mw(0) 2 L 2 p 1 2 ≤ η 1 4 .
We assume that |σ(0)| ≤ η1 4 and that w(0) H 2 p ≤ η 2 . Let us prove that for all t ≥ 0, we have: |σ(t)| < η and M(w(t)) L 2 p < η 1 . If not, since this property is obviously satisfied at t = 0, we introduce t 1 > 0 the first time in which this property fails. In particular, we have either |σ(t 1 )| = η 1 or M(w(t 1 )) L 2 p = η 1 . For all t < t 1 , we have |σ(t)| ≤ η 1 and Mw(t) L 2 p ≤ η 1 , so that Estimates (4.42) and (4.45) are valid on this interval. In particular, at t = t 1 , by continuity we have:

Mw(t 1 ) L 2 p ≤ 2κ M 1 2 w(0) 2 L 2 p + α Mw(0) 2 L 2 p 1 2 ≤ η 1 4 , and 
|σ(t 1 )| ≤ |σ(0)| + η 1 4 ≤ η 1 2 ,
and this leads to a contradiction.

Therefore, if σ(0) ≤ η1 4 and w(0) H 2 p ≤ η 2 , then for all t ≥ 0, (4.42) and (4.43) remain valid so that • w H 2 p remains small for all times, • w tends to zero in H 2 p when t tends to +∞,

• σ remains small for all times,

• since dσ dt is integrable on IR + by (4.44), σ tends to a limit σ ∞ when t tends to +∞.

This concludes the proof of Theorem 1.

Estimate of the nonlinear terms

The aim of this part is to estimate the right-hand side terms of (4.35) and to obtain L 2 and H 1 estimates for the nonlinear terms in (4.36).

First we give the exact expression of F(r), the nonlinear term arising in Equation (2.12):

F = F 1 (r)(∂ xx r) + F 2 (r)(∂ yy r) + F 3 (r)(∂ x r, ∂ x r) + F 4 (r)(∂ y r, ∂ y r) + F 5 (x, r)(∂ x r) +F 6 (x, r)(∂ y r) + F 7 (x, r), (5.46) 
with

• F 1 (r)(∂ xx r) = 1 δ 2 -αr 2 1 µ(r) -αr 1 r 2 -µ(r) -αr 1 r 2 -αr 2 2 ∂ xx r - 1 δ 2 r 2 + αr 1 + αµ(r)r 1 αr 2 -r 1 + αµ(r)r 2 dµ(r)(∂ xx r), • F 2 (r)(∂ yy r) = -αr 2 1 µ(r) -αr 1 r 2 -µ(r) -αr 1 r 2 -αr 2 2
∂ yy r -r 2 + αr 1 + αµ(r)r 1 αr 2 -r 1 + αµ(r)r 2 dµ(r)(∂ yy r),

• F 3 (r)(∂ x r, ∂ x r) = - 1 δ 2 r 2 + αr 1 + αµ(r)r 1 αr 2 -r 1 + αµ(r)r 2 d 2 µ(r)(∂ x r, ∂ x r), • F 4 (r)(∂ y r, ∂ y r) = - r 2 + αr 1 + αµ(r)r 1 αr 2 -r 1 + αµ(r)r 2 d 2 µ(r)(∂ y r, ∂ y r), • F 5 (x, r)(∂ x r) = - 2 δ 2 cosh x r 2 + αr 1 + αµ(r)r 1 αr 2 -r 1 + αµ(r)r 2 ∂ x r 1 + 2 δ 2 cosh x -α + αr 2 1 µ(r) + αr 1 r 2 + 1 dµ(r)(∂ x r), • F 6 (x, r)(∂ y r) = 2 tanh x µ(r) -αr 1 r 2 α r 2 1 -αr 2 2 µ(r) + αr 1 r 2 ∂ y r + 2 cosh x r 2 + αr 1 + αµ(r)r 1 αr 2 -r 1 + αµ(r)r 2 ∂ y r 2 + 2 cosh x 1 + µ(r) -αr 1 r 2 α -αr 2 2 dµ(r)(∂ y r), • F 7 (x, r) = 2 δ 2 tanh x cosh x r 1 + h a α 1 cosh x r 2 -µ(r)(1 - 2 cosh 2 x 1 δ 2 ) r 2 + αr 1 + αµ(r)r 1 -r 1 + αr 2 + αµ(r)r 2 -α 1 - 2 cosh 2 x 1 δ 2 + h a tanh x rµ(r) + h a cosh x α -1 µ(r) + h a 1 cosh x + κ sin 2 θr 1 + h a α tanh x r 2 αr 2 1 µ(r) + αr 1 r 2 + h a α 1 cosh x + κ cos 2 θr 2 + h a α tanh x r 1 + h a α 1 cosh x µ(r) αr 1 r 2 -µ(r) αr 2 2 
.

The term G arising in Equation (4.34) is defined by G = F(R(σ) + w) -F(R(σ)), so that we have:

G = G 1 + ... + G 7 , (5.47) 
with

G 1 = F 1 (R(σ) + w)(∂ xx w) + F 1 (R(σ), w)(w)(∂ xx R(σ)), G 2 = F 2 (R(σ) + w)(∂ yy w), G 3 = F 3 (R(σ) + w)(∂ x w, ∂ x w) + 2F 3 (R(σ) + w)(∂ x R(σ), ∂ x w) + F 3 (R(σ), w)(w)(∂ x R(σ), ∂ x R(σ)), G 4 = F 4 (R(σ) + w)(∂ y w, ∂ y w), G 5 = F 5 (x, R(σ) + w)(∂ x w) + F 5 (x, R(σ), w)(w)(∂ x R(σ)), G 6 = F 6 (x, R(σ) + w)(∂ y w), G 7 = F 7 (x, R(σ), w)(w).
We estimate ∇G 1 on the following way:

|∇G 1 | ≤ |dF 1 (R(σ) + w)|(|∂ x R(σ)| + |∇w|)|∂ xx w| + |F 1 (R(σ) + w)||∇∂ xx w| +|d F 1 (R(σ), w)|(|∂ x R(σ)| + |∇w|)|w||∂ xx R(σ)| + | F 1 (R(σ), w)||∇w||∂ xx R(σ)| +| F 1 (R(σ), w)||w||∂ xxx R(σ)|,
so using (5.48), (5.50) and (5.51), we obtain

|∇G 1 | ≤ K(|σ| + |w|)(|σ| + |∇w|)|∂ xx w| + K(|σ| + |w|)|∇∂ xx w| +K(|σ| + |∇w|)|w||σ| + K(|σ| + |w|)|∇w||σ|.
Thus,

∇G 1 L 2 p ≤ K(|σ| + w L ∞ ) w L 2 p + ∇w L 2 p + ∂ xx w L 2 p + ∇∂ xx w L 2 p +K ∇w L 4 ∂ xx w L 4 .
We recall that in 2d, we have the following interpolation-type inequality:

v L 4 (I R×]0,2π[) ≤ C v 1 2 L 2 (I R×]0,2π[) v 1 2
H 1 (I R×]0,2π[) .

(5.52)

Using this inequality for the last term of the previous estimate of ∇G 1 L 2 p , we obtain that

∇G 1 L 2 p ≤ K |σ| + w H 2 p w H 3 p . • Estimate of G 2
We recall that G 2 = F 2 (R(σ) + w)(∂ yy w), with F 2 = δ 2 F 1 so with the same argument as for G 1 we obtain that there exists K such that if |σ| ≤ η 0 and w H 2 p ≤ η 0 , then:

G 2 L 2 p ≤ K(|σ| + w L ∞ ) w H 2 p , and 
∇G 2 L 2 p ≤ K |σ| + w H 2 p w H 3 p . • Estimate of G 3
We have

G 3 = F 3 (R(σ)+w)(∂ x w, ∂ x w)+2F 3 (R(σ)+w)(∂ x R(σ), ∂ x w)+ F 3 (R(σ), w)(w)(∂ x R(σ), ∂ x R(σ)).
Using (5.49) and the formulation of F 3 in (5.46), there exists K such that if |r| ≤ 1 2 then 

|F 3 (r)| ≤ K|r| and |dF 3 (r)| + |d 2 F 3 | ≤ K. ( 5 
2 p ≤ η 0 , |G 3 | ≤ |F 3 (R(σ) + w)||∂ x w| 2 + 2|F 3 (R(σ) + w)||∂ x R(σ)||∂ x w| +| F 3 (R(σ), w)||w||∂ x R(σ)| 2 , ≤ K(|σ| + |w|) |∂ x w| 2 + |σ||∂ x w| + K|w||σ| 2 ,
with (5.53) and (5.54). So,

G 3 L 2 p ≤ K(|σ| + w L ∞ ) ∂ x w 2 L 4 + |σ| ∂ x w L 2 p + K|σ| 2 w L 2 p , ≤ K |σ| + w H 2 p w H 2 p .
Let us estimate now ∇G 3 : So, This term writes G 5 = F 5 (x, R(σ) + w)(∂ x w) + F 5 (x, R(σ), w)(w)(∂ x R(σ)),

|∇G 3 | ≤ |dF 3 (R(σ) + w)| (|∂ x R(σ)| + |∇w|) |∂ x w| 2 + 2|F 3 (R(σ) + w)||∇∂ x w||∂ x w| +2|dF 3 (R(σ) + w)| (|∂ x R(σ)| + |∇w|) |∂ x R(σ)||∂ x w| +2|F 3 (R(σ) + w)||∂ xx R(σ)||∂ x w| + 2|F 3 (R(σ) + w)||∂ x R(σ)||∇∂ x w| +|d F 3 (R(σ), w)| (|∂ x R(σ)| + ∇w|) |w||∂ x R(σ)| 2 + | F 3 (R(σ), w)||∇w||∂ x R(σ)| 2 +2| F 3 (R(σ), w)||w||∂ xx R(σ)||∂ x R(σ)|, ≤ K (|σ| + |∇w|) |∂ x w| 2 + K(|σ| + |w|)|∇∂ x w||∂ x w| + K (|σ| + |∇w|) |σ||∂ x w| +K(|σ| + |w|)|σ||∂ x w| + K(|σ| + |w|)|σ||∇∂ x w| + K (|σ| + |∇w|) |w||σ| 2
∇G 3 L 2 p ≤ K|σ| ∂ x w 2 L 4 + K ∇w 2 L 6 + K(|σ| + w L ∞ ) ∇∂ x w L 4 ∂ x w L 4 +K|σ| 2 ∂ x w L 2 + K ∇w 2 L 4 |σ| + K(|σ| + w L ∞ )|σ| ∂ x w L 2 +K(|σ| + w L ∞ )
where F 5 and F 5 satisfy that there exists K such that for |r| ≤ 1 2 , for x ∈ IR, we have: 

  the rescaling t = γAt µ0Msρ 2 and x = x ρ , we describe M in the frame (e 1 , n(y), n ⊥ (y)) writing:

  [, M is a self-adjoint positive operator for the L 2 p inner product with domain D(M) = H 2 p , and Ker M = IR

  ) and(3.20) we obtain the existence of c 1 . This concludes the proof of Lemma 3.1.

1 0

 1 .53) Since F 3 (a, b) = dF 3 (a + sb)ds, we have also| F 3 (a, b)| + |d F 3 (a, b)| ≤ K.(5.54) Therefore we have, for |σ| ≤ η 0 and w H

+K|∇w||σ| 2 +

 2 K(|σ| + |w|)|w||σ| 2 using (5.53) and (5.54).

|F 5 (

 5 x, r)| + |∂ x F 5 (x, r)| ≤ K|r|, |∂ r F 5 (x, r)| ≤ K, (5.55) and | F 5 (x, a, b)| + |∂ x F 5 (x, a, b)| + |∂ r F 5 (x, a, b)| ≤ K.(5.56)We have|G 5 | ≤ |F 5 (x, R(σ) + w)||∂ x w| + | F 5 (x, R(σ), w)||w||∂ x R(σ)|, ≤ K(|σ| + |w|)|∂ x w| + K|σ||w|, thus G 5 L 2 p ≤ K(|σ| + w L ∞ ) w H 1 p . In addition, |∇G 5 | ≤ |dF 5 (x, R(σ) + w)| (|∂ x R(σ)| + |∇w|) |∂ x w| + |F 5 (x, R(σ) + w)||∇∂ x w| + |∂ x F 5 (x, R(σ), w)| + |∂ a F 5 (x, R(σ), w)||∂ x R(σ)| |w||∂ x R(σ)| +|∂ b F 5 (x, R(σ), w)||∇w||w||∂ x R(σ)| +| F 5 (x, R(σ), w)||∇w||∂ x R(σ)| + | F 5 (x, R(σ), w)||w||∂ xx R(σ)|, ≤ K(|σ| + |∇w|)|∂ x w| + K(|σ| + |w|)|∇∂ x w| + K(1 + |σ|)|w||σ| K|∇w||w||σ| + K|∇w||σ| + K|w||σ|.

  |σ| ∇∂ x w L 2 + K|σ| 3 w L 2 p + K ∇w L 4 w L 2 p |σ| 2 +K ∇w L 2 |σ| 2 + K(|σ| + w L ∞ ) w L 2 |σ| 2 , ≤ K |σ| + w H 2We haveG 4 = F 4 (R(σ) + w)(∂ y w, ∂ y w), with F 4 = δ 2 F 3 .So, this term is estimated as the first term of G 3 and we obtain thatG 4 L 2 p ≤ K(|σ| + w H 2 p ) w H 2

	p	w H 3 p	using Estimate (5.52).
	• Estimate of G 4		
		p	and ∇G 4 L 2 p ≤ K |σ| + w H 2 p	w H 3 p .
	• Estimate of G 5		

  So,∇G 5 L 2 p ≤ K(|σ| + w L ∞ ) w L 2 p + ∇w L 2 p + ∇∂ x w L 2We recall that G 6 = F 6 (x, R(σ) + w)(∂ y w),with |F 6 (x, r)| + |∂ x F 6 (x, r)| ≤ K|r| and |∂ r F 6 | ≤ K. (5.57) Hence G 6 L 2 p ≤ F 6 (x, R(σ) + w) L ∞ ∂ y w L 2 p ≤ K(|σ| + w L ∞ ) w H 1 p . In addition, |∇G 6 | ≤ |∂ x F 6 (x, R(σ) + w)||∂ y w| + |∂ r F 6 (x, R(σ) + w)| (|∂ x R(σ)| + |∇w|) |∂ y w| +|F 6 (x, R(σ) + w)||∇∂ y w|, ≤ K(|σ| + |∇w|)(|∂ y w| + |∇∂ y w|) + K|∇w||∂ y w|.This last term is given byG 7 = F 7 (x, R(σ), w)(w),where, for |a|+ |b| ≤ 1 2 , | F 7 (x, a, b)| + |∂ x F 7 (x, a, b)| ≤ K(|a| + |b|) and |∂ a F 7 (x, a, b)| + |∂ b F 7 (x, a, b)| ≤ K. Therefore G 7 L 2 p ≤ F 7 (x, R(σ), w) L ∞ w L 2 p ≤ K(|σ| + w L ∞ ) w L 2 p . In addition, |∇G 7 | ≤ |∂ x F 7 (x, R(σ), w)||w| + |∂ a F 7 (x, R(σ), w)||∂ x R(σ)||w| +|∂ b F 7 (x, R(σ), w)||∇w||w| + | F 7 (x, R(σ), w)||∇w| ≤ K(|σ| + |w|)|w| + K|σ||w| + K|∇w||w| + K(|σ| + |w|)|∇w|. So ∇G 7 L 2 p ≤ K(|σ| + w L ∞ ) w H 1 p ., where G 1 is the first component of G, we have| G| ≤ 2π G L 2 p ≤ K |σ| + w H 2So, using that g(σ) is bounded by below by 1 2 , we obtain that there exists K such that if |σ| ≤ η 0 and w H 2 p ≤ η 0 , |G| ≤ K |σ| + w H 2 K|σ|, using the previously-obtained estimates we obtain that H L 2 p ≤ K |σ| + w H 2 Concerning the right-hand side terms in Equation (4.35), from (5.61), we get: |K σ (w)| ≤ K w H 2 p , and from (5.60), since |σ| ≤ η 0 and w H 2 p ≤ η 0 , we obtain that there exists K such that |G| ≤ K w H 2 p . This concludes the proof of Proposition 4.2.

	• Estimate of G 7			
	Therefore we obtain that			
	G L 2				p	w H 3 p .	(5.58)
	Since G = G 1 |	1 4π cosh x			
				p	w H 2 p .	p	+ ∇w 2 L 4 ,	(5.59)
		≤ K(|σ| + w H 2 p ) w H 2 p .			
	• Estimate of G 6	p	w H 2 p .	(5.60)
	From the expression of K p	w H 2 p ,
	and				
		H H 1 p ≤ K |σ| + w H 2 p	w H 3 p .
	So				
		∇G 6 L 2 p ≤ K(|σ| + w H 2 p ) w H 2 p .

p ≤ K |σ| + w H 2 p w H 2 p and G H 1 p ≤ K |σ| + w H 2 σ (w) we have |K σ (w)| ≤ C w 2 L 2 p + w 1 L 2 p . (

5

.61) Thus, as |a(x, σ)| + |∂ x a(x, σ)| ≤

Here, F i (R(σ), w) = 1 0 d r F i (R(σ) + s w)ds for i ∈ {1, 3}, and F i (x, R(σ), w) = 1 0 ∂ r F i (x, R(σ) + s w)ds for i ∈ {5, 7}.

Remark 5.1. These terms are obtained by the Fundamental Theorem of Calculus writing for example that

On the one hand we recall that

So by direct calculations and estimates, we obtain that there exists a constant K such that if |s| ≤ 1 then

(5.48)

On the other hand, since µ(r

Let us now estimate each term of G defined by (5.47). In what follows we recall that we assume that |σ| ≤ η 0 and w H 2 p ≤ η 0 , η 0 > 0 being small enough to ensure that R(σ) + w L ∞ ≤ 1 2 .

• Estimate of G 1

We recall that

Using (5.49) and the formulation of F 1 in (5.46), there exists K such that if |r| ≤ 1 2 then (5.51) Therefore we have Thus we get: