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The aim of this paper is to study the laws of the exponential functionals of the processes X with independent increments, namely

and also

Under suitable conditions we derive the integro-differential equations for the density of I t and I ∞ . We give sufficient conditions for the existence of a smooth density of the laws of these functionals with respect to the Lebesgue measure. In the particular case of Levy processes these equations can be simplified and, in a number of cases, solved explicitly.
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Introduction

This study was inspired by the questions arising in the mathematical finance, namely by the questions related with the perpetuities containing the liabilities, perpetuities subjected to the influence of the economical factors (see, for example, [START_REF] Kardaras | Continuous time perpetuities and time reversal of diffusions ARXIV[END_REF]), and also with the price of Asian options and similar questions (see, for instance, [START_REF] Jeanblanc | Mathematical Methods for Financial Markets[END_REF], [START_REF] Vecer | A new approach for pricing arithmetic average Asian options[END_REF], and references there). The study of the exponential functionals are also important in the insurance, since the insurance companies invest the money on risky assets. Then the distributions of these functionals appear very naturally in the ruin problem (see for example [START_REF] Asmussen | Ruin probabilities[END_REF], [START_REF] Paulsen | Ruin models with investment income[END_REF], [START_REF] Yu | In the insurance business risky investment are dangerous: the case of negative risk sums[END_REF], [START_REF] Spielmann | On the ruin problem with the investment when the risky asset is a semimartingale[END_REF] and the references there).

In the mathematical finance the exponential functionals of the processes with independent increments (PII in short) arise very often. This fact is related with the observation that the log price process is usually not a homogeneous process on the relatively long time interval. For this reason several authors used for the modelling of the log price the process process X such that

X t = t 0 g s-dL s
where L is Levy process and g is independent from L cádlàg random process for which the integral is well defined. In this case, the conditional distribution of the process X given σ -algebra generated by g, is a PII. Another important example of X is a Levy process L time changed by an independent increasing process (τ t ) t≥0 (cf. [START_REF] Carr | Time-changed Lévy processes and option pricing[END_REF]), i.e.

X t = L τt .
Again, conditionally to the process τ , the process X is PII.

In [START_REF] Salminen | On exponential functionals of the processes with independent increments[END_REF], [START_REF] Salminen | On moments of exponential functionals of additive processes[END_REF] we proved the recurrent formulas for Mellin transform and we used these formulas to calculate the moments of exponential functionals of the processes with independent increments. In this paper we obtain the equations for the densities, when they exist, of the laws of exponential functionals I t and I ∞ of PII processes.

Exponential functionals for Levy processes was studied in a big number of articles, the main part of them was related to the study of I ∞ . The asymptotic behaviour of exponential functionals I ∞ was studied in [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF], in particular for α-stable Levy processes. The authors also give an integro-differential equation for the density of the law of exponential functionals, when this density w.r.t. the Lebesgue measure exists. The questions related with the characterisation of the law of exponential functionals by the moments was studied in [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF].

In more general setting, related to the Lévy case, the following functional (1) ∞ 0 exp(-X s-)dη s where X = (X t ) t≥0 and η = (η t ) t≥0 are independent Lévy processes, was intensively studied. The conditions for finiteness of the integral (1) was obtained in [START_REF] Erickson | Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals[END_REF]. The continuity properties of the law of this integral was studied in [START_REF] Bertoin | On continuity Properties of the Law of Integrals of Levy Processes[END_REF], where the authors give the condition for absence of the atoms and also the conditions for absolute continuity of the laws of integral functionals w.r.t. the Lebesgue measure. Under the assumptions about the existence of the smooth density of these functionals, the equations for the density are given in [START_REF] Behme | Exponential functionals of Lévy Processes with Jumps, ALEA[END_REF], [START_REF] Behme | On exponential functionals of Levy processes[END_REF], [START_REF] Kuznetsov | Distributional properties of exponential functionals of Levy processes[END_REF].

In the papers [START_REF] Patie | Bernstein-Gamma functions and exponential functionals of Lévy processes[END_REF] and [START_REF] Pardo | On the density of exponential functionals of Lévy processes[END_REF], again for Levy process, the properties of the exponential functionals I τq killed at the independent exponential time τ q of the parameter q > 0, was investigated. In the article [START_REF] Pardo | On the density of exponential functionals of Lévy processes[END_REF] the authors studied the existence of the density of the law of I τq , they give an integral equation for the density and the asymptotics of the law of I ∞ at zero and at infinity, when X is a positive subordinator. The results given in [START_REF] Patie | Bernstein-Gamma functions and exponential functionals of Lévy processes[END_REF] involve analytic Wiener-Hopf factorisation, Bernstein functions and contain the conditions for regularity, semiexplicite expression and asymptotics for the distribution function of I τq . Despite numerous studies, the distribution properties of I t and I ∞ are known only in a limited number of cases. When X is Brownian motion with drift, the distributions of I t and I ∞ was studied in [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] and for a big number of specific processes X and η, like Brownian motion with drift and compound Poisson process, the distributions of I ∞ was given in [START_REF] Gjessing | Present value distributions with applications to ruin theory and stochastic equations[END_REF].

The exponential functionals for diffusions stoped at first hitting time was studied in [START_REF] Salminen | Perpetual integral functional of diffusions and their numerical computations[END_REF], where authors derive Laplace transform of the functionals and then, to find their laws, perform numerical inversion of Laplace transform. The relations between the hitting times and the occupation times for the exponential functionals was considered in [START_REF] Salminen | Perpetual Integral Functionals as Hitting and Occupation Times[END_REF], where the versions of identities in law such as Dufresne's identity, Ciesielski-Taylor's identity, Biane's identity, LeGall's identity was given.

In this article we consider a real valued process X = (X t ) t≥0 with independent increments and X 0 = 0, which is a semi-martingale with respect to its natural filtration. We denote by (B, C, ν) a semi-martingale triplet of this process, which can be chosen deterministic (see [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF], Ch. II, p.106). We suppose that B = (B t ) t≥0 , C = (C t ) t≥0 and ν are absolutely continuous with respect to the Lebesgue measure, i.e.

(2)

B t = t 0 b s ds, C t = t 0 c s ds, ν(dt, dx) = dtK t (dx) with càdlàg functions b = (b s ) s≥0 , c = (c s ) s≥0 , K = (K s (A)) s≥0,A∈B(R) .
We assume that the compensator of the measure of jumps ν verify the usual relation:

for each t ∈ R + (3) t 0 R (x 2 ∧ 1)K s (dx) ds < ∞.
For the the main result we will suppose an additional technical condition that (4)

t 0 |x|>1 e |x| K s (dx) ds < ∞.
The last condition implies that E(|X t |) < ∞ for t > 0 (cf [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], Th. 25.3, p.159) so that the truncation of the jumps is no more necessary.

We recall that the characteristic function of

X t φ t (λ) = E exp(iλX t )
is defined by the following expression: for λ ∈ R

φ t (λ) = exp{iλB t - 1 2 λ 2 C t + t 0 R (e iλx -1 -iλx) K s (dx) ds}.
We recall also that X is a semi-martingale if and only if for all λ ∈ R the characteristic function of X t is of finite variation in t on finite intervals (cf. [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF], Ch.2, Th. 4.14, p.106 ). Moreover, the process X always can be written as a sum of a semi-martingale and a deterministic function which is not necessarily of finite variation on finite intervals.

The article is organized as follows. The part 2. is devoted to the Kolmogorov type equation for the law of I t . As known, the exponential functional (I t ) t>0 is not a Markov process with respect to the filtration generated by the process X. It is continuous increasing process, which prevent the use of the stochastic calculus in an efficient way. For these reasons we fix t and we introduce a family of stochastic processes

V (t) = (V (t)
s ) 0≤s≤t indexed by t and such that I t = V (t) t

(P -a.s.) (see Lemma 1). The construction of such processes is made via the time reversion of the process X at a fixed time t, and this gives us the process

Y (t) = (Y (t) s ) 0≤s≤t . We show that if X is PII then Y (t)
is also PII, and if X is Levy process, then Y (t) is so (see Lemma 2). We prove then that V (t) is a Markov process with respect to the natural filtration of the process Y (t) (see Lemma 3), we find the generator and we give the Kolmogorovtype equations for V (t) (see Theorem 1). Supposing the existence of the smooth density of the law of the process V (t) we derive the integrodifferential equation for the density of the laws of V (t) s , 0 < s < t. The density of the law of V (t) t can be obtained just by integration of the right-hand side of the equation for the density of the law of V (t) s in s on the interval ]0, t[ since the laws of V (t) t and V (t) t-coincide. The last fact follows from the absence of the predictable jumps of the process X, and, hence, the ones of Y (t) .

In the part 3. we consider the question of existence of the smooth density of the process V (t) . The question of the existence of the density of the law of

V (t) s , 0 ≤ s ≤ t, of the class C 1,2 (]0, t[, R +, *
) is rather difficult question, which was open question in all cited papers on exponential functionals. We remark that in the case of Levy processes the laws of V (t) t and I t coincide. We will give in Proposition 2 sufficient conditions for the existence of the density of the class C ∞ (]0, t[, R +, * ) when X is Levy process. For non-homogeneous diffusions we give a partial answer on this question in Corollary 1.

The part 4 is devoted to Levy processes. When X is Levy process, the equations for the density of I t can be simplified due to the homogeneity (see Proposition 1). We present also the equations for the distribution functions of the laws of I t and I ∞ , since for these equations we have the explicit boundary conditions (cf. Corollary 2). In Corollary 3 we consider very known Brownian case. In Corollary 4 we give the equations for the case of Levy processes with integrable jumps, and in Corollary 5, we consider the case of exponential jumps.

Kolmogorov type equation for the density of the law of I t

We introduce, for fixed t > 0, a time reversal process Y = (Y s ) 0≤s≤t with

Y s = X t -X (t-s)-.
Of course, this process depends on the parameter t, but we will omit this parameter for the simplicity of the notations.

For convenience of the readers we present here Lemma 1 and Lemma 2 proved in [START_REF] Salminen | On exponential functionals of the processes with independent increments[END_REF]. First result establish the relation between I t and the process Y = (Y s ) 0≤s≤t .

Lemma 1. For t > 0 (P-a.s.)

I t = e -Yt t 0 e Ys ds.
Proof We write, using the definition of the process Y and the assumption that X 0 = 0:

e -Yt t 0 e Ys ds = t 0 e -Yt+Ys ds = t 0 e -X (t-s) -+X 0 ds = t 0 e -Xs ds = I t .
The last equality holds after time change noticing that the integration of left-hand version and right-hand version of some càdlàg process w.r.t. the Lebesgue measure gives the same result. ✷

In the following lemma we claim that Y is PII and we precise its semimartingale triplet. For that we introduce the functions b = ( bu ) 0≤u≤t , c = (c u ) 0≤u≤t and K = ( Ku ) 0≤u≤t putting

(5) bu = 1 {t} (u)(b t -b 0 ) + b t-u , (6) cu 
= 1 {t} (u)(c t -c 0 ) + c t-u , (7) Ku 
(x) = 1 {t} (u)(K t (x) -K 0 (x)) + K t-u (x)
where

1 {t} is indicator function. It means, for instance for b = ( bu ) 0≤u≤t that bu = b t-u if 0 ≤ u < t, b t if u = t.
So, the function b can have a discontinuity at t, since in general b 0 = b t .

Lemma 2. (cf. [START_REF] Salminen | On exponential functionals of the processes with independent increments[END_REF]) The process Y is a process with independent increments, it is a semi-martingale with respect to its natural filtration, and its semi-martingale triplet ( B, C, ν) is given by: for 0 ≤ s ≤ t,

= s 0 bu du, Cs = s 0 cu du, ν(du, dx) = Ku (dx) du (8) Bs 
To obtain an integro-differential equation for the density, we introduce two important processes related with the process Y , namely the process

V = (V s ) 0≤s≤t and J = (J s ) 0≤s≤t with (9) V s = e -Ys J s , J s = s 0 e Yu du.
We underline that the both processes depend of the parameter t, since it is so for the process Y .

We notice that according to Lemma 1, I t = V t , and then they have the same laws. As we will see, the process V = (V s ) 0≤s≤t is a Markov process with respect to the natural filtration F Y = (F Y s ) 0≤s≤t of the process Y and this fact will help us very much to find the equation for the density of the law of I t . Lemma 3. The process V = (V s ) 0≤s≤t is a Markov process with respect to the natural filtration

F Y = (F Y s ) 0≤s≤t of the process Y .
Proof. We write that for h > 0

V s+h = e -Y s+h s+h 0 e Yu du = e -(Y s+h -Ys) [V s + s+h s e Yu-Ys du]
Then for all measurable bounded functions f

E(f (V s+h ) | F Y s ) = E f (e -(Y s+h -Ys) [V s + s+h s e Yu-Ys du]) | F Y s = E f (e -(Y s+h -Ys) [x + s+h s e Yu-Ys du]) |x=Vs since Y is a process with independent increments. Hence, E(f (V s+h ) | F Y s
) is a measurable function of V s and we conclude that V is Markov process with respect to the filtration generated by Y .

We define the set of functions

C = {f ∈ C 2 b | sup y∈R + |f ′ (y)y| < ∞, sup y∈R + |f ′′ (y)y 2 | < ∞} and such that f (0) = f ′ (0) = 0. For 0 ≤ s ≤ t we put (10) a s = -b s + 1 2 c s + R (e -x -1 + x)K s (dx)
We notice that the conditions (3) and (4) imply that ( λ-a.s.)

R |e -x -1 + x| K s (dx) < ∞,
so that, a s is ( λ-a.s.) well-defined. We introduce also for f ∈ C the generator (A V s ) 0≤s<t of the process V via (11)

A V s (f )(y) = (1+y a s ) f ′ (y)+ 1 2 c s f ′′ (y) y 2 + R f (ye -x ) -f (y) -f ′ (y)y(e -x -1) K s (dx)
Theorem 1. Let us suppose that the conditions (2),( 3) and (4) are satisfied. Then the infinitesimal generator (A V s ) 0≤s<t of the Markov process V is defined by [START_REF] Borodin | Handbook of Brownian motion -Facts and Formulae[END_REF]. In addition, for 0 ≤ s ≤ t and f ∈ C

(12) E(f (V s )) = s 0 E( A V u (f )(V u ) )du
where The existence and the uniqueness of the solution of the integro-differential equation given in Theorem 1 follows from the possibility to identify the characteristics of the corresponding process from the equation. Since the law of PII process, which is a semi-martingale, is uniquely defined by its characteristics, the solution of such equation exists and is unique.

A V t = lim s→t-A V s . If for 0 < s ≤ t
Proof of Theorem 1. The proof of Theorem 1 will be divided in three parts : in the first part we prove a decomposition (20), then using limit passage we prove [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF], and finally, in the third part we obtain the equations ( 13), ( 14) for the densities.

1) Proof of [START_REF] Kardaras | Continuous time perpetuities and time reversal of diffusions ARXIV[END_REF]. For f ∈ C and 0 ≤ s ≤ t we write the Ito formula:

(15) f (V s ) = f (V 0 ) + s 0 f ′ (V u-)dV u + 1 2 s 0 f ′′ (V u-)d < V c > u + s 0 R (f (V u-+ x) -f (V u-) -f ′ (V u-)x) µ V (du, dx),
where µ V is the measure of jumps of the process V . From the definition of the process V we can easily find that

dV s = ds + J s d( e -Ys )
and that (16)

dV c s = -e -Y s-J s dY c s = -V s-dY c s , d < V c > s = (e -Y s-J s ) 2 d < Y c > s = V 2 s-d < Y c > s , ∆V s = V s -V s-= e -Y s-J s (e -∆Ys -1) = V s-(e -∆Ys -1).
At the same time, again by the Ito formula we get the following decomposition [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF] e -Ys = e -Y 0 + A s + N s .

In this decomposition the process (A s ) s≥0 is defined as ( 18)

A s = s 0 e -Y u-[-bu + 1 2 cu + R (e -x -1 + x) Ku (dx)] du
and it is a process of locally bounded vatiation on bounded intervals.

In fact, let us introduce a sequence of stopping times: for n ≥ 1

τ n = inf{0 ≤ s ≤ t | e -Ys ≥ n}
with inf{∅} = ∞. We notice that this sequence of stopping times tends to +∞ as n → ∞. Then, since e Y s-< n on the stochastic interval [ [0, τ n [ [, we get from ( 2), ( 3) and (4) that

Var(A) s∧τn ≤ n t 0 | bu | + 1 2 cu + R |e -x -1 + x| K u (dx) du < ∞.
In [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF] the process N = (N s ) s≥0 is defined by ( 19)

N s = - s 0 e -Y u-d Mu + s 0 R e -Y u-(e -x -1 + x)(µ Y (du, dx) -Ku (dx)du)
In the relation [START_REF] Yu | In the insurance business risky investment are dangerous: the case of negative risk sums[END_REF], the process M is the martingale component of the semi-martingale decomposition of Y : Y s = Bs + Ms , and µ Y is the measure of jumps of the process Y . It should be noticed that since Y is a process with independent increments and B is deterministic, M is a martingale (see [START_REF] Shiryaev | Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing[END_REF], Th. 58, p. 45) as well as its pure discontinuous part Md . Then, the process (N s∧τn ) 0≤s≤t is a local martingale as a stochastic integral of a bounded function w.r.t. a martingale.

We put ( 16),( 17),( 18) and ( 19) into ( 15) to obtain a final decomposition for f (V s ). To present this final decomposition we put for y ≥ 0 and

x ∈ R F (y, x) = f (ye -x ) -f (y) -f ′ (y)
y(e -x -1) and also

B V s = s 0 f ′ (V u-)(1 + āu V u-) + 1 2 f ′′ (V u-)V 2 u-cu + R F (V u-, x) Ku (dx) du and 
N V s = s 0 f ′ (V u-) V u-[-d Mu + R (e -x -1+x)(µ Y (du, dx)-Ku (dx) du]+ s 0 R F (V u-, x)(µ Y (du, dx) -Ku (dx) du).
Finally, we get a decomposition ( 20)

f (V s ) = f (V 0 ) + B V s + N V s
In this decomposition B V is a process with locally bounded variation and N V is a local martingale. In fact, let us use the same sequence of stopping times τ n as previously and let

D = sup y∈R max(|f (y)|, |f ′ (y)|, |f ′ (y)y|, |f ′′ (y)y 2 |).
Then, for 0 ≤ s ≤ t

Var(B V ) s∧τn ≤ D t 0 1 + | bu | + cu + R |e -x -1 + x| K u (x)dx du + t 0 R |F (V u-, x)| Ku (dx) du
The first term of the r.h.s. is finite since the functions ( Bs ) 0≤s≤t and ( Cs ) 0≤s≤t have finite variation on finite intervals and since (4) holds. Now, using the Taylor-Lagrange formula of the second order, we find that for y > 0 and |x| ≤ 1

|F (y, x)| = 1 2 |f ′′ (y(1 + θ(e -x -1)))|y 2 (e -x -1) 2 ≤ D(e -x -1) 2 2[1 + θ(e -x -1)] 2
where 0 < θ < 1. Since for |x| ≤ 1, 1 + θ(e -x -1) ≥ 1 e and |e -x -1| ≤ e|x|, we find that |F (V u-, x)| ≤ 1 2 De 4 x 2 . For |x| > 1 we use Taylor-Lagrange formula of the first order to get

|F (y, x)| = |(f ′ (y(1 + θ(e -x -1))) -f ′ (y))y(e -x -1)| ≤ D |1 + θ(e -x -1)| -1 + 1 |e -x -1| Again, for x > 1, 1+θ(e -x -1) ≥ e -x , and for x < -1, 1+θ(e -x -1) ≥ 1. Moreover, for x > 1, |e -x -1| ≤ 1 and for x < -1, |e -x -1| ≤ e -x . Finally, |F (y, x)| ≤ C e |x| 1 {|x|>1} + x 2 1 {|x|≤1}
with some positive constant C. Then, the conditions (3) and (4) implies that

t 0 R |F (V u-, x)| Ku (dx) du < ∞.
Using above results we see that (N V s∧τn ) 0≤s≤t is a local martingale as an integral of a bounded function w.r.t. a martingale.

2) Proof of [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF]. Let (τ ′ n ) n∈N be the localising sequence for N V and τn = τ n ∧ τ ′ n . Let s ∈ [0, t[ and δ > 0 such that s + δ ≤ t. Then, from previous decomposition using the localisation we get:

E(f (V (s+δ)∧ τn ) -f (V s∧ τn ) | F Y s ) = E(B V (s+δ)∧ τn -B V s∧ τn | F Y s )
Since f is bounded function and lim n→∞ τn = +∞, we can pass to the limit in the l.h.s. by the Lebesgue convergence theorem. The same can be done on the r.h.s. since the process B V = (B V s ) 0≤s≤t is a process of bounded variation on bounded intervals, uniformly in s and n. After taking a limit as n → +∞ we get that

E(f (V s+δ ) -f (V s ) | F Y s ) = E(B V s+δ -B V s | F Y s ) Now, we write the expression for B V s+δ -B V s : B V s+δ -B V s = s+δ s [f ′ (V u-)(1 + āu V u-)+ 1 2 f ′′ (V u-)V 2 u-cu + R F (V u-, x) Ku (dx) ]du We remark that lim δ→0 B V s+δ -B V s δ = f ′ (V s-)(1+ā s V s-)+ 1 2 f ′′ (V s-)V 2 s-cs + R F (V s-, x) Ks (dx)
We show that the quantities

B V s+δ -B V s δ
are uniformly bounded, for small δ > 0, by a constant. In fact, we can write that

| B V s+δ -B V s | δ ≤ C δ s+δ s 1 + āu + 1 2 cu + R |F (V u-, x)| Ku (dx) du
Then, using the estimations for |F (V s-, x)| obtained previously, and the fact that the sequences

1 δ s+δ s āu du, 1 δ s+δ s cu du, 1 δ s+δ s R
x 2 I {|x|≤1} + e |x| I {|x|>1} Ku (dx)du are uniformly bounded, for small values of δ > 0, by a constant, we deduce that the quantities

|B V s+δ -B V s | δ
are uniformly bounded for small δ by a constant, too. Under these conditions we can exchange the limit and the conditional expectation and it gives us the expression for the generator of V at 0 ≤ s < t. As a conclusion, we get that for 0 ≤ s < t

(21) d ds E(f (V s )) = EA V s (f )(V s-)
Let us prove that we can replace V s-by V s in the above expression. In fact, for λ ∈ R E(e iλ ln( Vs V s-

) ) = E(e -iλ∆Ys ) = lim h→0+ E(e -iλ(Y s+h -Ys) ) = 1
since the characteristics of Y are continuous in time. Hence, V s-= V s (P-a.s.) and they have the same laws.

Then after the replacement of V s-by V s in ( 21) and the integration w.r.t. s we obtain [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF]. For s = t we take lim s→t-in [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF].

3) Proof of ( 13) and [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF]. We denote by P s the law of V s . Then from [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF] we get that for 0 ≤ s ≤ t

(22) s 0 ∞ 0 f ′ (y)(1 + y āu ) + 1 2 f ′′ (y)y 2 cu + R f (ye -x ) -f (y) -f ′ (y)y(e -x -1) Ku (x)dx P u (dy) du = ∞ 0 f (y)P s (dy)
Moreover, since for s > 0, the law P s of V s has a density p s w.r.t. Lebesque measure, it gives

(23) s 0 ∞ 0 f ′ (y)(1 + y āu ) + 1 2 f ′′ (y)y 2 cu + R f (ye -x ) -f (y) -f ′ (y)y(e -x -1) Ku (x)dx p u (y)dy du = ∞ 0 f (y)p s (y)dy
To obtain the equation for the density, we consider the set of continuously differentiable functions on compact support C 2 K ⊆ C. We differentiate the above equation with respect to s to get [START_REF] Patie | Bernstein-Gamma functions and exponential functionals of Lévy processes[END_REF]

) ∞ 0 f ′ (y)(1 + y ās ) + 1 2 f ′′ (y)y 2 cs + R f (ye -x ) -f (y) -f ′ (y)y(e -x -1) Ks (x)dx p s (y) = ∞ 0 f (y) ∂ ∂s p s (y) dy
Using the integration by part formula we deduce that The mentioned relations together with the equation [START_REF] Patie | Bernstein-Gamma functions and exponential functionals of Lévy processes[END_REF] gives that for all f ∈ C 2 K : We integrate the equation for p s on the interval ]0, tδ[ for δ > 0 and we pass to the limit as δ → 0. Since the laws of V t-and V t coincide, we get in this way the equation for p t . ✷

∞ 0 f ( 

Some results about the existence of the smooth density

The question of the existence of the density of the law of V s , 0 ≤ s ≤ t, of the class C 1,2 (]0, t[, R) is rather difficult question, which was open question in all cited works on exponential functionals. We will give here a partial answer on this question via the known result on Malliavin calculus given in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. For the convenience of the readers we present this result here in the one-dimensional setting.

We consider the following stochastic differential equation:

X x t = x+ t 0 a(X x s-) ds+ t 0 b(X x s-)dW s + t 0 R c(X x s-, z)(µ-ν)(ds, dz)
where x ∈ R, a, b, c are measurable functions on R and R 2 respectively, W is standard Brownian motion, and µ and ν are jump measure and its compensator of X x . It is assumed that the solution of this equation exists and is unique, and also that the following assumptions hold.

Assumption (A-r):

(i) a and b are r-times differentiable with bounded derivatives of all order from 1 to r, (ii) c(•, z) is r-times differentiable and there exists a sigma-finite measure G on R such that 

(a) c(0, •) ∈ 2≤p<∞ L p (R * , G) (b) for 1 ≤ n ≤ r, sup y ( ∂ n ∂y n (c(y, •)) ∈ 2≤p<∞ L p (R * , G) Assumption (SB-(ζ,
→ p t (x, y) is of class C r (]0, t] × R × R).
To apply this theorem let us write stochastic differential equation for (V s ) 0≤s≤t . For that we put for 0

≤ s ≤ t    a s (y) = y(-bs + 1 2 cs + R (e -z -1 + z) Ks (dz) + 1, b s (y) = y √ cs , c s (y, z) = y(e -z -1). Proposition 1. Suppose that t 0 R |e -z -1 + z| Ks (dz) < ∞
and that cs > 0 for 0 < s ≤ t. Then the process (V s ) 0≤s≤t satisfy the following stochastic differential equation:

V s = s 0 a u (V u-)du- s 0 b u (V u-)dW u + s 0 R c u (V u-, z)(dµ Y -Ku (dz)du) (25) 
where µ Y is the jump measure of Y and W is DDS Brownian motion corresponding to the continuous martingale part Y c of Y .

Proof. We recall that V s is defined by [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. Let us introduce the process Ŷ via the relation : for 0 ≤ s ≤ t

(26) e -Ys = E( Ŷ ) s
where E(•) is Doléan-Dade exponential. Then,

V s = E( Ŷ ) s s 0 du E( Ŷ ) u
and we can see by the integration by part formula that (V s ) 0≤s≤t is unique strong solution of the equation [START_REF] Salminen | On exponential functionals of the processes with independent increments[END_REF] dV s = V s-d Ŷs + ds with the initial condition V 0 = 0. Using the definition of Doléan-Dade exponential we see that ( 26) is equivalent to

e -Ys = e Ŷs-1 2 < Ŷ c > 0<u≤s (1 + ∆ Ŷu ) e -∆ Ŷu
where Ŷ c is continuous martingale part of Ŷ . From this equality we find that Ŷ c s = -Y c s , ln(1+∆ Ŷs ) = -∆Y s and that the semi-martingale characteristics ( B, Ĉ, ν) of Ŷ are: 

   Bs = -Bs + 1 2 Cs + s 0 R (e -z -1 + z) Ku (dz)du Ĉs = Cs ν(ds, dz) = (e -z
(-bu + 1 2 cu + R (e -z -1 + z) Ku (dz))du - s 0 √ cu dW u + s 0 R (e -z -1)(µ Y (du, dz) -Ku (dz)du)
where W is DDS Brownian motion corresponding to the continuous martingale part of Y . Let us put this decomposition into [START_REF] Salminen | On exponential functionals of the processes with independent increments[END_REF] and we obtain [START_REF] Paulsen | Ruin models with investment income[END_REF].

To apply the Theorem 2.29 from [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] we suppose that Y is a Levy process and we introduce the supplementary process

V x s = x + E( Ŷ ) s s 0 du E( Ŷ ) u
with x > 0. We see that V x sx = V s , and V 0 s = V s , and also that the density p s (x, y) of the law of V x s w.r.t. the Lebesgue measure and the density p s (y) of the law of V s exist or not at the same time and are related: for all x > 0 and y > 0

p s (x, y + x) = p s (y).
So, the both densities are the same regularity w.r.t.(s, y). In addition we have : for all s ≥ 0 and all ω ∈ Ω, V x s (ω) ≥ x. Proposition 2. Suppose that Y is Levy process with the triplet (b 0 , c 0 , K 0 ) and the following conditions are satisfied:

(1) c 0 > 0, (2) z<-1 e -pz K 0 (dz) < ∞ for p ≥ 2, (3) there exists a constant A > 0 such that K 0 (]A, +∞[) = 0.
Then, for s > 0, the law of V s has a density p s and the map (s, y)

→ p s (y) is of class C ∞ (]0, t], R +, * ).
Proof. When Y is Levy process, the functions a s , b s , c s figured in ( 25) are independent on s and are equal to:

   a(y) = y(-b 0 + 1 2 c 0 -R (e -z -1 + z)K 0 (dz)) + 1, b(y) = y √ c 0 , c(y, z) = y(e -z -1).
We consider now the process V x with x > 0. This process satisfy the same equation as V with the replacement of V u-and V s by V x u-and V x s , and also with the replacement of the functions a s (y), b s (y) and c s (y, z) by a(y), b(y), c(y, s) with y ≥ x.

We see that the Assumption (A-r) is satisfied for all r ≥ 1 with G = K 0 , as well as the Assumption (SB-(ζ, θ)) putting ǫ = x 2 c 0 and (SCbis) taking ζ = 1 2 e -A . Then the map (s, x, y) → p s (x, y) is of class C ∞ (]0, t], [x, +∞[×[x, +∞[), and the map (s, y) → p s (x, y + x) is of class C ∞ (]0, t], R +, * × R +, * ). As a conclusion, the map (s, y) → p s (y) is of class C ∞ (]0, t], R +, * ).

For non-homogeneous diffusion we obtain the following partial result.

Corollary 1. Let s > 0 be fixed. Suppose that (1)

s 0 cu du > 0, (2) s 0 z<-1 e -pz K s (dz) < ∞ for p ≥ 2, (3) there exist a constant A > 0 such that K s (]A, +∞[) = 0 for all 0 < s ≤ t.
Then, the law of V s has a density p s such that the map y → p s (y) is of class C ∞ (R +, * ).

Proof. We notice that the law of Y s coincide with the law of the Levy process with the triplet ( 1 s Bs , 1 s Cs , 1 s s 0 R Ks (dz)du) at the time s. Then the previous proposition can be applied and it gives the claim.

When X is Levy process

In this section we consider a particular case of Levy processes. Namely, let X be Levy process with the parameters (b 0 , c 0 , K 0 ). As before we suppose that

(28) R (x 2 ∧ 1)K 0 (dx) < ∞ and |x|>1 e |x| K 0 (dx) < ∞
and we put

a 0 = -b 0 + 1 2 c 0 + R (e -x -1 + x)K 0 (dx).
Due to the homogeneity of Levy process, the equation for the density can be simplified as we can see from the following proposition.

Proposition 3. Suppose that (28) holds and the density of the law of I t exists and belongs to the class C In particular case, when I ∞ < ∞ (P -a.s.) and the density p ∞ of the law of I ∞ exists and belongs to the class C 2 (R +, * ), we have

(30) 1 2 c 0 d 2 dy 2 (y 2 p ∞ (y)) - d dy ((a 0 y + 1) p ∞ (y))+ R e x p ∞ (ye x ) -p ∞ (y) + (e -x -1) d dy (yp ∞ (y)) K 0 (dx) = 0
Proof. In the case of Lévy processes we write that (P -a.s.)

V s = e -Ys J s = e -Xt+X (t-s)- s 0 e Xt-X (t-u)-du = s 0 e X (t-s)--X (t-u)-du = s 0 e X (t-s) -X (t-u) du.

Due to the homogeneity of the Lévy processes we have the following identity in law:

L((X t-u -X t-s ) 0≤s≤t ) = L((X s-u ) 0≤s≤t ) Then, L( s 0 e X (t-s) -X (t-u) du) = L( s 0 e -X (s-u) du) = L( s 0 e -Xu du)
where the last equality is obtained by time change. As a conclusion, L(V s ) = L(I s ) for 0 ≤ s ≤ t, and, hence, (p s ) 0<s≤t are the densities of the laws of (I s ) 0<s≤t . In addition, again due to the homogeneity, for all 0

≤ s ≤ t, bs = b t-s = b 0 , cs = c t-s = c 0 , Ks (dx) = K t-s (dx) = K 0 (dx).
Then, from the Theorem 1 we obtain [START_REF] Salminen | Perpetual Integral Functionals as Hitting and Occupation Times[END_REF].

Again due to the homogeneity, for 0 < s ≤ t, the generator

A V s (f ) = A(f ) where A(f )(y) = (1 + y a 0 ) f ′ (y)+ 1 2 c 0 f ′′ (y) y 2 + R f (ye -x ) -f (y) -f ′ (y)y(e -x -1) K 0 (dx)
and it does not depend on s. Moreover, L((V s ) 0≤s≤t ) = L((I s ) 0≤s≤t ) and the equality [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF] become

Ef (I s ) = s 0 EA(f )(I u )du.
We divide the both sides of the above equality by s and we let s go to infinity. Since f is bounded, we get zero as a limit on the l.h.s.. Since I t P -p.s.

-→ I ∞ , we also get for f

∈ C lim s→∞ EA(f )(I s ) = EA(f )(I ∞ ).
Then, EA(f )(I ∞ ) = 0 and we obtain [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] in the same way as in Theorem 1, by the integration by parts and the time change.

Remark 2. Similar equation for the density of I ∞ in the case when R (|x| ∧ 1) K 0 (dx) < ∞ was obtained in [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF]. We recall that the condition on K 0 of [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF] is stronger at zero then our condition. It should be mentioned that the authors of [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF] did not obtained the equation for the density of I t .

Corollary 2. Under the conditions of Proposition 3, the distribution function F t of I t verify second order integro-differential equation

(31) ∂ ∂t F t (y) = 1 2 c 0 ∂ ∂y (y 2 ∂ ∂y F t (y)) -(a 0 y + 1) ∂ ∂y F t (y)+ R F t (ye x ) -F t (y) + (e -x -1) y ∂ ∂y F t (y)) K 0 (dx)
with following boundary conditions:

F t (0) = 0, lim y→+∞ F t (y) = 1.
When I ∞ < ∞, the similar equation is valid for the distribution function F ∞ of the law of I ∞ :

(32) 1 2 c 0 d dy (y 2 F ′ ∞ (y)) -(a 0 y + 1) F ′ ∞ (y)+ R F ∞ (ye x ) -F ∞ (y) + (e -x -1) y F ′ ∞ (y)) K 0 (dx) = 0 with similar boundary conditions: F ∞ (0) = 0, lim y→+∞ F ∞ (y) = 1.
Proof. We integrate each term of the equation of Theorem 1 on [0, y] and we use the fact that y 0 p t (u)du = F t (y) since F t (0) = 0. We take in account the fact that that the map (t, u) → p t (u) is of class C 1.2 (R +, * × R +, * ) to exchange the integration and the derivation. The same we do for F ∞ (y).

Corollary 3. (cf. [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF], [START_REF] Borodin | Handbook of Brownian motion -Facts and Formulae[END_REF]) Let us consider Brownian motion with drift, i.e.

dX t = b 0 dt + √ c 0 dW t where c 0 = 0 and b 0 > 0. Then the law of exponential functional I t associated with X has a density which verify :

∂ ∂t p t (y) = 1 2 c 0 ∂ 2 ∂y 2 (y 2 p t (y)) - ∂ ∂y ((a 0 y + 1) p t (y))
In particular, for I ∞ we get that

p ∞ (x) = 1 Γ( 2 b 0 c 0 ) x 2 c 0 x 2b 0 c 0 exp - 2 c 0 x
Proof. From the Proposition 3 we find the equation for p t . From Corollary 1 we get the equation for

F ∞ : 1 2 c 0 d dy (y 2 F ′ ∞ (y)) -(a 0 y + 1) F ′ ∞ (y) = 0 This equation is equivalent to 1 2 c 0 y 2 F ′′ ∞ (y) -((a 0 -c 0 )y + 1) F ′ ∞ (y) = 0
By the reduction of the order of the equation, we find that c 0 = 2b 0 c 0 , this gives us the final result. Remark 3. We recall that some rather complicated formulas related to the distribution of I t for Brownian motion with drift was given in [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] and in [START_REF] Borodin | Handbook of Brownian motion -Facts and Formulae[END_REF], formula 1.10.4, p. 264. Recently in [START_REF] Boguslawskaya | Revisiting integral functionals of geometric Brownian Motion[END_REF] where r 0 = a 0 -R (e -x -1) K 0 (dx) = -b 0 + 1 2 c 0 + R x K 0 (dx).

F ′ ∞ (y) = C y 2( a 0 c 0 -1) exp - 2 
Proof. We take the equation ( 31) and we rewrite it in the following form: Proof. We take in account that ν + (x) = 1 µ e -µx and ν -(x) = 0 for all x > 0 and this gives us the equation for p t in this particular case.

∂

∞ 0 f 0 f 0 ∂ 2 ∂y 2

 00022 ′ (y) p s (y)dy = -∞ 0 ∂ ∂y (p s (y)) f (y)dy ∞ 0 f ′ (y) y p s (y)dy = -∞ 0 ∂ ∂y (y p s (y)) f (y)dy ∞ ′′ (y) y 2 p s (y)dy = ∞ (y 2 p s (y)) f (y)dy By the change of the variables and by the integration by parts we obtain ∞ 0 R p s (y) f (ye -x )f (y)f ′ (y)y(e -x -1) Ks (dx)dy = ∞ 0 R [e x p s (ye x )p s (y) + (e -x -1) ∂ ∂y (yp s (y)] Ks (dx) f (y)dy

  θ)): there exist ǫ > 0 and δ > 0 such that b 2 (y) ≥ ǫ 1 + |y| δ Assumption (SC-bis) : for all u ∈ [0, 1] there exists ζ > 0 such that |1 + u ∂ ∂y c(y, z)| > ζ Theorem 2.29 (cf. [9], p. 15) Suppose that the assumptions (A-(2r+10)), (SB-(ζ, θ)) and (SC-bis) are satisfied. Then for t > 0 the law of X x t has a density p t (x, y) w.r.t. the Lebesgue measure and the map (t, x, y)

- 1 )

 1 Ks (dz)ds Since ( B, C, ν) are absolutely continuous w.r.t. the Lebesgue measure with the derivatives ( b, c, K) we get that Ŷs = s 0

- 1

 1 c 0 y with some positive constant C. Using boundary conditions we calculate a constant C. We get that C = where Γ(•) is gamma function. Since 1 -2a 0

  we obtained the Laplace transform for the density of the exponential integral functional of the Brownian motion with drift pλ (y) = +∞ 0 e -λs p s (y)ds where λ > 0. More precisely pλ (M is the confluent hypergeometric function of the first kind known as Kummer's function. The Laplace transform in this case can be inverted in the usual way by the Bromwich-Mellin formula p s (y) = λ 0 +∞ λ 0 -i∞ e λs pλ (y)dλ for any fixed λ 0 > 0 and s > 0.Let us denote by ν + and ν -the Levy measure of the positive and the negative jumps respectively, namely for x > 0ν + ([x, +∞[) = +∞ x K 0 (du), ν -(] -∞, -x]) = -x -∞ K 0 (du)To simplify the notations we put alsoν + (x) = ν + ([x, +∞[), ν -(x) = ν -(] -∞, -x])Let us suppose in addition that R |x| K 0 (dx) < ∞.

Corollary

  

  the density p s w.r.t. the Lebesgue measure λ of the law of V s exists and belongs to the class C 1,2 (]0, t[×R +, * ), then λ-a.s.

	(13)	∂ ∂s	p s (y) =	1 2	cs	∂ 2 ∂y 2 (y 2 p s (y)) -	∂ ∂y	((ā s y + 1) p s (y))+
		R	e x p s (ye x ) -p s (y) + (e -x -1)	∂ ∂y	(yp s (y)) Ks (dx)
	and the density p t of the law of I t verify:
	(14)	p t (y) =	0	t	1 2	cs	∂ 2 ∂y 2 (y 2 p s (y)) -	∂ ∂y	((ā

s y + 1) p s (y))+ R e x p s (ye x )p s (y) + (e -x -1) ∂ ∂y (yp s (y)) Ks (dx) ds Remark 1.

  [START_REF] Behme | Exponential functionals of Lévy Processes with Jumps, ALEA[END_REF]. Suppose that X is a Levy process with integrable jumps. Then, under the conditions of Proposition 3, the density p t of I t , verify :

	∂ ∂t	p t (y) =	1 2	c 0	∂ 2 ∂y 2 (y 2 p t (y)) -	∂ ∂y	((r 0 y + 1) p t (y))+
	y	+∞	p t (z)ν + (ln(	z y	)) dz +	0	y	p t (z)ν -(-ln(	z y	)) dz

  (ye x ) ye x ν + (x)dx + (ye x ) ye x ν -(x)dx and we change the variables z = ye x . We differentiate the result w.r.t. t and this gives us the claim.Corollary 5. Suppose that for x ∈ R K 0 (x) = e -µx I {x>0}Then, under the assumptions of Proposition 3, the density p t of I t , verify :In particular, for the density p ∞ of I ∞ we have :

	∂t +∞ F t ∂ F t (y) = 1 2 c 0 ∂ ∂y (y 2 ∂ ∂y F t (y)) -(r 0 y + 1) 0 ∂ ∂x F t 0 -∞ ∂ ∂x ∂t p t (y) = 1 2 c 0 ∂ 2 ∂y 1 2 c 0 ∂ 2 ∂y 2 (y 2 p t (y)) -∂ ∂y ((r 0 y + 1) p t (y)) + y µ µ y	∂ ∂y ∞ p t (z) F t (y)+ z µ dz = 0

R

[F t (ye x ) -F t (y) ] K 0 (dx) Then we divide the integral over R in two parts integrating on ]0, +∞[ and ] -∞, 0[. We do the integration by parts :

R [F t (ye x ) -F t (y)]K 0 (dx) = 2 (y 2 p t (y)) -∂ ∂y ((r 0 y + 1) p t (y)) + y µ µ ∞ y p t (z) z µ dz
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