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ON DISTRIBUTIONS OF EXPONENTIAL
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INDEPENDENT INCREMENTS

L. Vostrikova, LAREMA, Département de
Mathématiques, Université d’Angers, 2, Bd Lavoisier

49045, Angers Cedex 01

Abstract. The aim of this paper is to study the laws of the ex-
ponential functionals of the processes X with independent incre-
ments, namely

It =

∫ t

0

exp(−Xs)ds, t ≥ 0,

and also

I∞ =

∫ ∞

0

exp(−Xs)ds.

Under suitable conditions we derive the integro-differential equa-
tions for the density of It and I∞. We give sufficient conditions
for the existence of smooth density of the laws of these function-
als. In the particular case of Levy processes these equations can
be simplified and, in a number of cases, solved explicitly.

KEY WORDS : process with independent increments, exponential func-
tional, density, Kolmogorov-type equation.

MSC 2010 subject classifications: 60G51, 91G80

1. Introduction

This study was inspired by the questions arising in mathematical fi-
nance, namely by the questions related with the perpetuities containing
the liabilities, perpetuities subjected to the influence of the economi-
cal factors (see, for example, [19]), and also with the price of Asian
options and similar questions (see, for instance, [17], [31], and refer-
ences there). The study of exponential functionals are also important
in insurance, since the insurace companies invest the money on risky
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2 EXPONENTIAL FUNCTIONALS

assets. Then the distributions of these functionals appear very nat-
urally in ruin problem (see for example [2], [24], [18] and references
there).

In mathematical finance the non-homogeneous PII models are more
realistic, since price processes are not usually homogeneous processes.
For this reason, for example, several authors used for the modelling of
log price a process X such that

Xt =

∫ t

0

gs−dLs

where L is Levy process and g is independent from L cádlàg random
process for which the integral is well defined. In this case, the condi-
tional distribution of the process X given σ -algebra generated by g, is
a PII. Another important example is a Levy process L time changed
by an independent increasing process (τt)t≥0 (cf.[12]), i.e.

Xt = Lτt .

Again, conditionally to the process τ , the process X is PII.

In [26] we obtained the recurrent formulas for Mellin transform and
we use these formulas to calculate the moments of exponential func-
tionals of the processes with independent increments. In this paper we
obtain the equations for the densities, when they exist, of the laws of
exponential functionals It and I∞ of PII processes.

Exponential functionals for Levy processes was studied in a big number
of articles, the main part of them was related to the study of I∞. The
asymptotic behaviour of exponential functionals I∞ was studied in [11],
in particular for α-stable Levy processes. The authors also give an
integro-differential equation for the density of the law of exponential
functionals, when this density w.r.t. Lebesgue measure exists. The
questions related with the characterisation of the law of exponential
functionals by the moments was studied in [8].

In more general setting, related to the Lévy case, the following func-
tional

(1)

∫ ∞
0

exp(−Xs−)dηs

where X = (Xt)t≥0 and η = (ηt)t≥0 are independent Lévy processes,
was intensively studied. The conditions for finiteness of the integral
(1) was obtained in [14]. The continuity properties of the law of this
integral was studied in [7], where the authors give the condition for
absence of the atoms and also the conditions for absolute continuity
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of the laws of integral functionals w.r.t. the Lebesgue measure. Under
the assumptions about the existence of the smooth density of these
functionals, the equations for the density are given in [4], [5], [20].

In the papers [23] and [22], again for Levy process, the properties of
the exponential functionals Iτq killed at the independent exponential
time τq of the parameter q > 0, was investigated. In the article [22]
the authors studied the existence of the density of the law of Iτq , they
give an integral equation for the density and the asymptotics of the
law of I∞ at zero and at infinity, when X is a positive subordinator.
The results given in [23] involve analytic Wiener-Hopf factorisation,
Bernstein functions and contain the conditions for regularity, semi-
explicite expression and asymptotics for the distribution function of
Iτq . Despite numerous studies, the distribution properties of It and
I∞ are known only in a limited number of cases. When X is Brownian
motion with drift, the distributions of It and I∞ was studied in [13] and
for a big number of specific processes X and η, like Brownian motion
with drift and compound Poisson process, the distributions of I∞ was
given in [15].

Exponential functionals for diffusions stoped at first hitting time was
studied in [25], where authors derive Laplace transform of the function-
als and then, to find their laws, perform numerical inversion of Laplace
transform. The relations between hitting times and occupation times
for exponential functionals was considered in [27], where the versions of
identities in law such as Dufresne’s identity, Ciesielski-Taylor’s identity,
Biane’s identity, LeGall’s identity was given.

In this article we consider a real valued process X = (Xt)t≥0 with in-
dependent increments and X0 = 0, which is a semi-martingale with re-
spect to its natural filtration. We denote by (B,C, ν) a semi-martingale
triplet of this process, which can be chosen deterministic (see [16], Ch.
II, p.106). We suppose that B = (Bt)t≥0, C = (Ct)t≥0 and ν are
absolutely continuous with respect to Lebesgue measure, i.e.

(2) Bt =

∫ t

0

bs ds, Ct =

∫ t

0

cs ds, ν(dt, dx) = dtKt(dx)

with càdlàg functions b = (bs)s≥0, c = (cs)s≥0, K = (Ks(A))s≥0,A∈B(R).
We assume that the compensator of the measure of jumps ν verify the
usual relation: for each t ∈ R+

(3)

∫ t

0

∫
R
(x2 ∧ 1)Ks(dx) ds <∞.
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For the the main result we will suppose an additional technical condi-
tion that

(4)

∫ t

0

∫
|x|>1

e|x|Ks(dx) ds <∞.

The last condition implies that E(|Xt|) <∞ for t > 0 (cf [28], Th. 25.3,
p.159) so that the truncation of the jumps is no more necessary.

We recall that the characteristic function of Xt

φt(λ) = E exp(iλXt)

is defined by the following expression: for λ ∈ R

φt(λ) = exp{iλBt −
1

2
λ2Ct +

∫ t

0

∫
R
(eiλx − 1− iλx)Ks(dx) ds}.

We recall also that X is a semi-martingale if and only if for all λ ∈ R the
characteristic function of Xt is of finite variation in t on finite intervals
(cf. [16], Ch.2, Th. 4.14, p.106 ). Moreover, the process X always can
be written as a sum of a semi-martingale and a deterministic function
which is not necessarily of finite variation on finite intervals.

The article is organized as follows. The part 2. is devoted to the
Kolmogorov type equation for the law of It. As known, the exponential
functional (It)t>0 is not a Markov process with respect to the filtration
generated by the process X. It is continuous increasing process, which
prevent the use of the stochastic calculus in an efficient way. For these
reasons we fix t and we introduce a family of stochastic processes V (t) =

(V
(t)
s )0≤s≤t indexed by t and such that It = V

(t)
t (P -a.s.) (see Lemma

1). The construction of such processes is made via the time reversion
of the process X at the fixed time t, and this gives us the process

Y (t) = (Y
(t)
s )0≤s≤t. We show that if X is PII then Y (t) is also PII, and

if X is Levy process, then Y (t) is so (see Lemma 2). We prove then
that V (t) is a Markov process with respect to the natural filtration of
the process Y (t) (see Lemma 3), we find the generator and we give
the Kolmogorov-type equations for V (t)(see Theorem 1). Supposing
the existence of the smooth density of the law of the process V (t) we
derive the integro-differential equation for the density of the laws of

V
(t)
s , 0 < s < t. The density of the law of V

(t)
t can be obtained just

by integration of the right-hand side of the equation for the density

of the law of V
(t)
s in s on the interval ]0, t[ since the laws of V

(t)
t and

V
(t)
t− coincide. The last fact follows from the absence of the predictable

jumps of the process X, and, hence, the ones of Y (t).
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In the part 3. we consider the question of existence of the smooth den-
sity of the process V (t). The question of the existence of the density of

the law of V
(t)
s , 0 ≤ s ≤ t, of the class C1,2(]0, t[,R+,∗) is rather difficult

question, which was open question in all cited papers on exponential
functionals. We remark that in the case of Levy processes the laws of

V
(t)
t and It coincide. We will give in Proposition 2 sufficient conditions

for the existence of the density of the class C∞(]0, t[,R+,∗) when X is
Levy process. For non-homogeneous diffusions we give a partial answer
on this question in Corollary 1.

The part 4 is devoted to Levy processes. When X is Levy process, the
equations for the density of It can be simplified due to the homogeneity
(see Proposition 1). We present also the equations for the distribution
functions of the laws of It and I∞, since these versions have the explicit
boundary conditions, which gives the advantages from numerical point
of view (cf. Corollary 2). In Corollary 3 we consider very known
Brownian case. In Corollary 4 we give the equations for the case of
Levy processes with integrable jumps, and in Corollary 5, we consider
the case of exponential jumps.

2. Kolmogorov type equation for the density of the law
of It

We introduce, for fixed t > 0, a time reversal process Y = (Ys)0≤s≤t
with

Ys = Xt −X(t−s)−.

Of course, this process depends on the parameter t, but we will omit
it for simplicity of the notations.

For convenience of the readers we present here Lemma 1 and Lemma
2 proved in [26]. First result establish the relation between It and the
process Y = (Ys)0≤s≤t.

Lemma 1. For t > 0 (P-a.s.)

It = e−Yt
∫ t

0

eYsds.

Proof We write, using the definition of the process Y and the assump-
tion that X0 = 0:

e−Yt
∫ t

0

eYsds =

∫ t

0

e−Yt+Ysds =

∫ t

0

e−X(t−s)−+X0ds =

∫ t

0

e−Xsds = It.
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The last equality holds after time change noticing that the integration
of left-hand version and right-hand version of some càdlàg process w.r.t.
Lebesgue measure gives the same result. 2

In the following lemma we claim that Y is PII and we precise its semi-
martingale triplet. For that we introduce the functions b̄ = (b̄u)0≤u≤t,
c̄ = (c̄u)0≤u≤t and K̄ = (K̄u)0≤u≤t putting

(5) b̄u = 1{t}(u)(bt − b0) + bt−u,

(6) c̄u = 1{t}(u)(ct − c0) + ct−u,

(7) K̄u(x) = 1{t}(u)(Kt(x)−K0(x)) +Kt−u(x)

where 1{t} is indicator function. It means, for instance for b̄ = (b̄u)0≤u≤t
that

b̄u =

{
bt−u if 0 ≤ u < t,
bt if u = t.

So, the function b̄ can have a discontinuity at t, since in general b0 6= bt.

Lemma 2. (cf. [26]) The process Y is a process with independent
increments, it is a semi-martingale with respect to its natural filtration,
and its semi-martingale triplet (B̄, C̄, ν̄) is given by: for 0 ≤ s ≤ t,

(8) B̄s =

∫ s

0

b̄udu, C̄s =

∫ s

0

c̄udu, ν̄(du, dx) = K̄u(dx) du

To obtain an integro-differential equation for the density, we introduce
two important processes related with the process Y , namely the process
V = (Vs)0≤s≤t and J = (Js)0≤s≤t with

(9) Vs = e−YsJs, Js =

∫ s

0

eYudu.

We underline that the both processes depend of the parameter t, since
it is so for the process Y .

We notice that according to Lemma 1, It = Vt, and then they have
the same laws. As we will see, the process V = (Vs)0≤s≤t is a Markov
process with respect to the natural filtration FY = (FYs )0≤s≤t of the
process Y and this fact will help us very much to find the equation for
the density of the law of It.

Lemma 3. The process V = (Vs)0≤s≤t is a Markov process with respect
to the natural filtration FY = (FYs )0≤s≤t of the process Y .
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Proof. We write that for h > 0

Vs+h = e−Ys+h
∫ s+h

0

eYudu = e−(Ys+h−Ys) [Vs +

∫ s+h

s

eYu−Ysdu]

Then for all measurable bounded functions f

E(f(Vs+h) | FYs ) = E

(
f(e−(Ys+h−Ys)[Vs +

∫ s+h

s

eYu−Ysdu]) | FYs
)

=

E

(
f(e−(Ys+h−Ys)[x+

∫ s+h

s

eYu−Ysdu])

)
|x=Vs

since Y is a process with independent increments. Hence, E(f(Vs+h) | FYs )
is a measurable function of Vs and we conclude that V is Markov pro-
cess with respect to the filtration generated by Y . �

We define the set of functions

C = {f ∈ C2
b | sup

y∈R+

|f ′(y)y| <∞, sup
y∈R+

|f ′′(y)y2| <∞}

and such that f(0) = f ′(0) = 0. For 0 ≤ s ≤ t we put

(10) as = −bs +
1

2
cs +

∫
R
(e−x − 1 + x)Ks(dx)

We notice that the conditions (3) and (4) imply that ( λ-a.s.)∫
R
|e−x − 1 + x|Ks(dx) <∞,

so that, as is ( λ-a.s.) well-defined. We introduce also for f ∈ C the
generator (AVs )0≤s<t of the process V via

(11) AVs (f)(y) =

(1+y as) f
′(y)+

1

2
cs f

′′(y) y2+

∫
R

[
f(ye−x)− f(y)− f ′(y)y(e−x − 1)

]
Ks(dx)

Theorem 1. Let us suppose that the conditions (2),(3) and (4) are
verified. Then the infinitesimal generator (AVs )0≤s<t of the Markov
process V is defined by (11). In addition, for 0 ≤ s ≤ t and f ∈ C

(12) E(f(Vs)) =

∫ s

0

E(AVu (f)(Vu) )du

where AVt = lims→t−AVs . If for 0 < s ≤ t the density ps w.r.t.
Lebesgue measure λ of the law of Vs exists and belongs to the class
C1,2(]0, t[×R+,∗), then λ-a.s.

(13)
∂

∂s
ps(y) =

1

2
c̄s
∂2

∂y2
(y2 ps(y))− ∂

∂y
((ās y + 1) ps(y))+
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R

[
exps(ye

x)− ps(y) + (e−x − 1)
∂

∂y
(yps(y))

]
K̄s(dx)

and the density pt of the law of It verify:

(14) pt(y) =

∫ t

0

{
1

2
c̄s
∂2

∂y2
(y2 ps(y))− ∂

∂y
((ās y + 1) ps(y))+

∫
R

[
exps(ye

x)− ps(y) + (e−x − 1)
∂

∂y
(yps(y))

]
K̄s(dx)

}
ds

Remark 1. The existence and the uniqueness of the solution of the
integro-differential equation given in Theorem 1 follows from the possi-
bility to identify the characteristics of the corresponding process from
the equation. Since the law of PII process, which is a semi-martingale,
is uniquely defined by its characteristics, the solution of such equation
exists and is unique.

Proof of Theorem 1. The proof of Theorem 1 will be divided in three
parts : in the first part we prove a decomposition (20), then using
limit passage we prove (12), and finally, in the third part we obtain the
equations (13), (14) for the densities.

1) Proof of (20). For f ∈ C and 0 ≤ s ≤ t we write the Ito formula:

(15) f(Vs) = f(V0) +

∫ s

0

f ′(Vu−)dVu +
1

2

∫ s

0

f ′′(Vu−)d < V c >u +∫ s

0

∫
R

(f(Vu− + x)− f(Vu−)− f ′(Vu−)x)µV (du, dx),

where µV is the measure of jumps of the process V . From the definition
of the process V we can easily find that

dVs = ds+ Js d( e−Ys )

and that

(16) dV c
s = −e−Ys−Js dY c

s = −Vs− dY c
s ,

d < V c >s= (e−Ys−Js)
2 d < Y c >s= V 2

s− d < Y c >s,

∆Vs = Vs − Vs− = e−Ys−Js(e
−∆Ys − 1) = Vs−(e−∆Ys − 1).

At the same time, again by the Ito formula we get the following de-
composition

(17) e−Ys = e−Y0 + As +Ns.
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In this decomposition the process (As)s≥0 is defined via

(18) As =

∫ s

0

e−Yu− [−b̄u +
1

2
c̄u +

∫
R
(e−x − 1 + x)K̄u(dx)] du

and it is a process of locally bounded vatiation on bounded intervals.
In fact, let us introduce a sequence of stopping times: for n ≥ 1

τn = inf{0 ≤ s ≤ t | e−Ys ≥ n}

with inf{∅} = ∞. We notice that this sequence of stopping times
tends to +∞ as n → ∞. Then, since eYs− < n on the stochastic
interval [[0, τn[[, we get from (2), (3) and (4) that

Var(A)s∧τn ≤ n

∫ t

0

[
|b̄u|+

1

2
c̄u +

∫
R
|e−x − 1 + x|Ku(dx)

]
du <∞.

In (17) the process N = (Ns)s≥0 is defined by

(19) Ns = −
∫ s

0

e−Yu−dM̄u+∫ s

0

∫
R
e−Yu−(e−x − 1 + x)(µY (du, dx)− K̄u(dx)du)

In the relation (19), the process M̄ is the martingale component of the
semi-martingale decomposition of Y : Ys = B̄s + M̄s, and µY is the
measure of jumps of the process Y . It should be noticed that since Y
is a process with independent increments and B̄ is deterministic, M̄ is
a martingale (see [30], Th. 58, p. 45) as well as its pure discontinuous
part M̄d. Then, the process (Ns∧τn)0≤s≤t is a local martingale as a
stochastic integral of a bounded function w.r.t. a martingale.

We put (16),(17),(18) and (19) into (15) to obtain a final decomposition
for f(Vs). To present this final decomposition we put for y ≥ 0 and
x ∈ R

F (y, x) = f(ye−x)− f(y)− f ′(y)y(e−x − 1)

and also

BV
s =

∫ s

0

[
f ′(Vu−)(1 + āu Vu−) +

1

2
f ′′(Vu−)V 2

u− c̄u +

∫
R
F (Vu−, x)K̄u(dx)

]
du

and

NV
s =

∫ s

0

f ′(Vu−)Vu−[−dM̄u+

∫
R
(e−x−1+x)(µY (du, dx)−K̄u(dx) du]+∫ s

0

∫
R
F (Vu−, x)(µY (du, dx)− K̄u(dx) du).



10 EXPONENTIAL FUNCTIONALS

Finally, we get a decomposition

(20) f(Vs) = f(V0) +BV
s +NV

s

In this decomposition BV is a process with locally bounded variation
and NV is a local martingale. In fact, let us use the same sequence of
stopping times τn as previously and let

D = sup
y∈R

max(|f(y)|, |f ′(y)|, |f ′(y)y|, |f ′′(y)y2|).

Then,

Var(BV )s∧τn ≤ D

∫ t

0

(
1 + |b̄u|+ c̄u +

∫
R
|e−x − 1 + x|Ku(x)dx

)
du

+

∫ t

0

∫
R
|F (Vu−, x)|K̄u(dx) du

The first term of the r.h.s. is finite since the functions (B̄s)0≤s≤t and
(C̄s)0≤s≤t have finite variation on finite intervals and since (4) holds.
Now, using the Taylor-Lagrange formula of the second order, we find
that for y > 0 and |x| ≤ 1

|F (y, x)| = 1

2
|f ′′(y(1 + θ(e−x − 1)))|y2(e−x − 1)2 ≤ D(e−x − 1)2

2[1 + θ(e−x − 1)]2

where 0 < θ < 1. Since for |x| < 1, 1 + θ(e−x − 1) ≥ 1
e

and |e−x − 1| ≤
e|x|, we find that |F (Vu−, x)| ≤ 1

2
De4x2 .

For |x| > 1 we use Taylor-Lagrange formula of the first order to get

|F (y, x)| = |(f ′(y(1 + θ(e−x − 1)))− f ′(y))y(e−x − 1)| ≤

D
[
|1 + θ(e−x − 1)|−1 + 1

]
|e−x − 1|

Again, for x > 1, 1+θ(e−x−1) ≥ e−x, and for x < −1, 1+θ(e−x−1) ≥ 1.
Moreover, for x > 1, |e−x − 1| ≤ 1 and for x < −1, |e−x − 1| ≤ e−x.
Finally,

|F (y, x)| ≤ C
(
e|x|1{|x|>1} + x2 1{|x|≤1}

)
with some positive constant C. Then, the conditions (3) and (4) implies
that ∫ t

0

∫
R
|F (Vu−, x)|K̄u(dx) du <∞.

Using above results we see that (NV
s∧τn)0≤s≤t is a local martingale as an

integral of a bounded function w.r.t. a martingale.
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2) Proof of (12). Let (τ ′n)n∈N be the localising sequence for NV and
τ̄n = τn ∧ τ ′n. Let s ∈ [0, t[ and δ > 0 such that s + δ ≤ t. Then, from
previous decomposition using the localisation we get:

E(f(V(s+δ)∧τ̄n)− f(Vs∧τ̄n) | FYs ) = E(BV
(s+δ)∧τ̄n −B

V
s∧τ̄n | F

Y
s )

Since f is bounded function and limn→∞ τ̄n = +∞, we can pass to the
limit in the l.h.s. by the Lebesgue convergence theorem. The same can
be done on the r.h.s. since the process BV = (BV

s )0≤s≤t is a process of
bounded variation on bounded intervals, uniformly in s and n. After
taking a limit as n→ +∞ we get that

E(f(Vs+δ)− f(Vs) | FYs ) = E(BV
s+δ −BV

s | FYs )

Now, we write the expression for BV
s+δ −BV

s :

BV
s+δ −BV

s =

∫ s+δ

s

[f ′(Vu−)(1 + āu Vu−)+

1

2
f ′′(Vu−)V 2

u− c̄u +

∫
R
F (Vu−, x)K̄u(dx) ]du

We remark that

lim
δ→0

BV
s+δ −BV

s

δ
= f ′(Vs−)(1+ās Vs−)+

1

2
f ′′(Vs−)V 2

s− c̄s+

∫
R
F (Vs−, x)K̄s(dx)

We show that the quantities
BVs+δ−B

V
s

δ
are uniformly bounded, for small

δ > 0, by a constant. In fact, we can write that

| BV
s+δ −BV

s |
δ

≤ C

δ

∫ s+δ

s

[(
1 + āu +

1

2
c̄u

)
+

∫
R
|F (Vu−, x)|K̄u(dx)

]
du

Then, using the estimations for |F (Vs−, x)| obtained previously, and
the fact that the sequences

1

δ

∫ s+δ

s

āudu,
1

δ

∫ s+δ

s

c̄udu,
1

δ

∫ s+δ

s

∫
R

(
x2I{|x|≤1} + e|x|I{|x|>1}

)
K̄u(dx)du

are uniformly bounded, for small values of δ > 0, by a constant, we

deduce that the quantities
|BVs+δ−B

V
s |

δ
are uniformly bounded for small δ

by a constant, too. Under these conditions we can exchange the limit
and the conditional expectation and it gives us the expression for the
generator of V at 0 ≤ s < t. As a conclusion, we get that for 0 ≤ s < t

(21)
d

ds
E(f(Vs)) = EAVs (f)(Vs−)
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Let us prove that we can replace Vs− by Vs in the above expression. In
fact, for λ ∈ R

E(e
iλ ln( Vs

Vs−
)
) = E(e−iλ∆Ys) = lim

h→0+
E(e−iλ(Ys+h−Ys)) = 1

since the characteristics of Y are continuous in time. Hence, Vs− = Vs
(P-a.s.) and they have the same laws.

Then after the replacement of Vs− by Vs in (21) and the integration
w.r.t. s we obtain (12). For s = t we take lims→t− in (12).

3) Proof of (13) and (14). We denote by Ps the law of Vs. Then from
(12) we get that for 0 ≤ s ≤ t

(22)

∫ s

0

∫ ∞
0

[
f ′(y)(1 + y āu) +

1

2
f ′′(y)y2 c̄u+∫

R

(
f(ye−x)− f(y)− f ′(y)y(e−x − 1)

)
K̄u(x)dx

]
Pu(dy) du =

∫ ∞
0

f(y)Ps(dy)

Moreover, since for s > 0, the law Ps of Vs has a density ps w.r.t.
Lebesque measure, it gives

(23)

∫ s

0

∫ ∞
0

[
f ′(y)(1 + y āu) +

1

2
f ′′(y)y2 c̄u+∫

R

(
f(ye−x)− f(y)− f ′(y)y(e−x − 1)

)
K̄u(x)dx

]
pu(y)dy du

=

∫ ∞
0

f(y)ps(y)dy

To obtain the equation for the density, we consider the set of con-
tinuously differentiable functions on compact support C2

K ⊆ C. We
differentiate the above equation with respect to s to get

(24)

∫ ∞
0

[
f ′(y)(1 + y ās) +

1

2
f ′′(y)y2 c̄s+∫

R

(
f(ye−x)− f(y)− f ′(y)y(e−x − 1)

)
K̄s(x)dx

]
ps(y)

=

∫ ∞
0

f(y)
∂

∂s
ps(y) dy

Using the integration by part formula we deduce that∫ ∞
0

f ′(y) ps(y)dy = −
∫ ∞

0

∂

∂y
(ps(y)) f(y)dy∫ ∞

0

f ′(y) y ps(y)dy = −
∫ ∞

0

∂

∂y
(y ps(y)) f(y)dy
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0

f ′′(y) y2 ps(y)dy =

∫ ∞
0

∂2

∂y2
(y2 ps(y)) f(y)dy

By the change of the variables and by the integration by parts we obtain∫ ∞
0

∫
R
ps(y)

[
f(ye−x)− f(y)− f ′(y)y(e−x − 1)

]
K̄s(dx)dy =∫ ∞

0

(∫
R
[exps(ye

x)− ps(y) + (e−x − 1)
∂

∂y
(yps(y)] K̄s(dx)

)
f(y)dy

The mentioned relations together with the equation (24) gives that for
all f ∈ C2

K :∫ ∞
0

f(y)

[
− ∂

∂s
ps(y) +

1

2
c̄s
∂

∂y
(y2ps(y))− ∂

∂y
((āsy + 1)ps(y)

+

∫
R
exps(ye

x)− ps(y) + (e−x − 1)
∂

∂y
(yps(y))K̄s(dx)

]
= 0

and it proves our claim about the equation for ps.

We integrate the equation for ps on the interval ]0, t− δ[ for δ > 0 and
we pass to the limit as δ → 0. Since the laws of Vt− and Vt coincide,
we get in this way the equation for pt. 2

3. Some results about the existence of the smooth
density

The question of the existence of the density of the law of Vs, 0 ≤ s ≤ t,
of the class C1,2(]0, t[,R) is rather difficult question, which was open
question in all cited works on exponential functionals. We will give
here a partial answer on this question via the known result on Malliavin
calculus given in [9]. For the convenience of the readers we present this
result here in the one-dimensional case.

We consider the following stochastic differential equation:

Xx
t = x+

∫ t

0

a(Xx
s−) ds+

∫ t

0

b(Xx
s−)dWs+

∫ t

0

∫
R
c(Xx

s−, z)(µ−ν)(ds, dz)

where x ∈ R, a, b, c are measurable functions on R and R2 respectively,
W is standard Brownian motion, and µ and ν are jump measure and
its compensator of Xx. It is assumed that the solution of this equation
exists and is unique, and also that the following assumptions hold.

Assumption (A-r):
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(i) a and b are r-times differentiable with bounded derivatives of
all order from 1 to r,

(ii) c(·, z) is r-times differentiable and there exists a sigma-finite
measure G on R such that

(a) c(0, ·) ∈
⋂

2≤p<∞ L
p(R∗, G)

(b) for 1 ≤ n ≤ r, supy(
∂n

∂yn
(c(y, ·)) ∈

⋂
2≤p<∞ L

p(R∗, G)

Assumption (SB-(ζ, θ)): there exist ε > 0 and δ > 0 such that

b2(y) ≥ ε

1 + |y|δ

Assumption (SC-bis) : for all u ∈ [0, 1] there exists ζ > 0 such that

|1 + u
∂

∂y
c(y, z)| > ζ

Theorem 2.29 (cf. [9], p. 15) Suppose that the assumptions (A-
(2r+10)), (SB-(ζ, θ)) and (SC-bis) are satisfied. Then for t > 0 the
law of Xx

t has a density pt(x, y) w.r.t. Lebesgue measure and the map
(t, x, y)→ pt(x, y) is of class C r(]0, t]× R× R).

To apply this theorem let us write stochastic differential equation for
(Vs)0≤s≤t. For that we put for 0 ≤ s ≤ t as(y) = y(−b̄s + 1

2
c̄s +

∫
R(e−z − 1 + z)K̄s(dz) + 1,

bs(y) = y
√
c̄s,

cs(y, z) = y(e−z − 1).

Proposition 1. Suppose that∫ t

0

∫
R
|e−z − 1 + z|K̄s(dz) <∞

and that c̄s > 0 for 0 < s ≤ t. Then the process (Vs)0≤s≤t satisfy the
following stochastic differential equation:
(25)

Vs =

∫ s

0

au(Vu−)du−
∫ s

0

bu(Vu−)dWu+

∫ s

0

∫
R
cu(Vu−, z)(dµY−K̄u(dz)du)

where µY is the jump measure of Y and W is DDS Brownian motion
corresponding to the continuous martingale part Y c of Y .

Proof. We recall that Vs is defined by (9). Let us introduce the process

Ŷ via the relation : for 0 ≤ s ≤ t

(26) e−Ys = E(Ŷ )s
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where E(·) is Doléan-Dade exponential. Then,

Vs = E(Ŷ )s

∫ s

0

du

E(Ŷ )u

and we can see by the integration by part formula that (Vs)0≤s≤t is
unique strong solution of the equation

(27) dVs = Vs−dŶs + ds

with the initial condition V0 = 0. Using the definition of Doléan-Dade
exponential we see that (26) is equivalent to

e−Ys = eŶs−
1
2
<Ŷ c>

∏
0<u≤s

(1 + ∆Ŷu) e
−∆Ŷu

where Ŷ c is continuous martingale part of Ŷ . From this equality we
find that Ŷ c

s = −Y c
s , ln(1+∆Ŷs) = −∆Ys and that the semi-martingale

characteristics (B̂, Ĉ, ν̂) of Ŷ are: B̂s = −B̄s + 1
2
C̄s +

∫ s
0

∫
R(e−z − 1 + z)K̄u(dz)du

Ĉs = C̄s
ν̂(ds, dz) = (e−z − 1)K̄s(dz)ds

Since (B̄, C̄, ν̄) are absolutely continuous w.r.t. Lebesgue measure with
the derivatives (b̄, c̄, K̄) we get that

Ŷs =

∫ s

0

(−b̄u +
1

2
c̄u +

∫
R
(e−z − 1 + z)K̄u(dz))du−

∫ s

0

√
c̄u dWu+∫ s

0

∫
R
(e−z − 1)(µY (du, dz)− K̄u(dz)du)

where W is DDS Brownian motion corresponding to the continuous
martingale part of Y . Let us put this decomposition into (27) and we
obtain (25). �

To apply the Theorem 2.29 from [9] we suppose that Y is a Levy process
and we introduce the supplementary process

V x
s = x+ E(Ŷ )s

∫ s

0

du

E(Ŷ )u

with x > 0. We see that V x
s − x = Vs, and V 0

s = Vs, and also that
the density ps(x, y) of the law of V x

s w.r.t. Lebesgue measure and the
density ps(y) of the law of Vs exist or not at the same time and are
related: for all x > 0 and y > 0

ps(x, y + x) = ps(y).

So, the both densities are the same regularity w.r.t.(s, y).
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Proposition 2. Suppose that Y is Levy process with the triplet (b0, c0, K0)
and the following conditions are satisfied:

(1) c0 > 0,

(2)
∫
z<−1

e−pzK0(dz) <∞ for p ≥ 2,

(3) there exists a constant A > 0 such that K0(]A,+∞[) = 0.

Then, for s > 0, the law of Vs has a density ps and the map (s, y) →
ps(y) is of class C∞(]0, t],R+,∗).

Proof. When Y is Levy process, the functions as, bs, cs figured in (25)
are independent on s and are equal to: a(y) = y(−b0 + 1

2
c0 −

∫
R(e−z − 1 + z)K0(dz)) + 1,

b(y) = y
√
c0,

c(y, z) = y(e−z − 1).

We consider the process V x with x > 0. We see that the Assumption
(A-r) is satisfied for all r ≥ 1 with G = K0, as well as the Assumption
(SB-(ζ, θ)) putting ε = x2c0 and (SC-bis) taking ζ = 1

2
e−A. Then the

map (s, x, y)→ ps(x, y) is of class C∞(]0, t],R+,∗×R+,∗), and the map
(s, y)→ ps(y) is of class C∞(]0, t],R+,∗) �

For non-homogeneous diffusion we obtain the following partial result.

Corollary 1. Let s > 0 be fixed. Suppose that

(1)
∫ s

0
c̄udu > 0,

(2)
∫ s

0

∫
z<−1

e−pzKs(dz) <∞ for p ≥ 2,

(3) there exist a constant A > 0 such that Ks(]A,+∞[) = 0 for all
0 < s ≤ t.

Then, the law of Vs has a density ps such that the map y → ps(y) is of
class C∞(R+,∗).

Proof. We notice that the law of Ys coincide with the law of Levy pro-
cess with the triplet (1

s
B̄s,

1
s
C̄s,

1
s

∫ s
0

∫
R K̄s(dz)du) at the time s. Then

the previous proposition can be applied and it gives the claim. �

4. When X is Levy process

In this section we consider a particular case of Levy processes. Namely,
let X be Levy process with the parameters (b0, c0, K0). As before we
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suppose that

(28)

∫
R
(x2 ∧ 1)K0(dx) <∞ and

∫
|x|>1

e|x|K0(dx) <∞

and we put

a0 = −b0 +
1

2
c0 +

∫
R
(e−x − 1 + x)K0(dx).

Due to the homogeneity of Levy process, the equation for the density
can be simplified as we can see from the following proposition.

Proposition 3. Suppose that (28) holds and the density of the law of
It exists and belongs to the class C1,2(]0, t] × R+,∗). Then this density
verify the following equation:

(29)
∂

∂t
pt(y) =

1

2
c0
∂2

∂y2
(y2 pt(y))− ∂

∂y
((a0y + 1) pt(y))+∫

R

[
expt(ye

x)− pt(y) + (e−x − 1)
∂

∂y
(ypt(y))

]
K0(dx)

In particular case, when I∞ < ∞ (P -a.s.) and the density p∞ of the
law of I∞ exists and belongs to the class C2(R+,∗), we have

(30)
1

2
c0
d2

dy2
(y2 p∞(y))− d

dy
((a0y + 1) p∞(y))+∫

R

[
exp∞(yex)− p∞(y) + (e−x − 1)

d

dy
(yp∞(y))

]
K0(dx) = 0

Proof. In the case of Lévy processes we write that (P -a.s.)

Vs = e−Ys Js = e−Xt+X(t−s)−

∫ s

0

eXt−X(t−u)−du =∫ s

0

eX(t−s)−−X(t−u)−du =

∫ s

0

eX(t−s)−X(t−u)du.

Due to the homogeneity of the Lévy processes we have the following
identity in law:

L((Xt−u −Xt−s)0≤s≤t) = L((Xs−u)0≤s≤t)

Then,

L(

∫ s

0

eX(t−s)−X(t−u)du) = L(

∫ s

0

e−X(s−u)du) = L(

∫ s

0

e−Xudu)

where the last equality is obtained by time change. As a conclusion,
L(Vs) = L(Is) for 0 ≤ s ≤ t, and, hence, (ps)0<s≤t are the densities of
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the laws of (Is)0<s≤t. In addition, again due to the homogeneity, for all
0 ≤ s ≤ t, b̄s = bt−s = b0, c̄s = ct−s = c0, K̄s(dx) = Kt−s(dx) = K0(dx).
Then, from the Theorem 1 we obtain (29).

Again due to the homogeneity, for 0 < s ≤ t, the generator AVs (f) =
A(f) where

A(f)(y) = (1 + y a0) f ′(y)+

1

2
c0 f

′′(y) y2 +

∫
R

[
f(ye−x)− f(y)− f ′(y)y(e−x − 1)

]
K0(dx)

and it does not depend on s. Moreover, L((Vs)0≤s≤t) = L((Is)0≤s≤t)
and the equality (12) become

Ef(Is) =

∫ s

0

EA(f)(Iu)du.

We divide the both sides of the above equality by s and we let s go to
infinity. Since f is bounded, we get zero as a limit on the l.h.s.. Since

It
P−p.s.−→ I∞ , we also get for f ∈ C

lim
s→∞

EA(f)(Is) = EA(f)(I∞).

Then, EA(f)(I∞) = 0 and we obtain (30) in the same way as in The-
orem 1, by the integration by parts and the time change. �

Remark 2. Similar equation for the density of I∞ in the case when∫
R(|x| ∧ 1)K0(dx) <∞ was obtained in [11]. We recall that the condi-

tion on K0 of [11] is stronger at zero then our condition. It should be
mentioned that the authors of [11] did not obtained the equation for
the density of It.

Corollary 2. Under the conditions of Proposition 3, the distribution
function Ft of It verify second order integro-differential equation

(31)
∂

∂t
Ft(y) =

1

2
c0
∂

∂y
(y2 ∂

∂y
Ft(y))− (a0y + 1)

∂

∂y
Ft(y)+∫

R

[
Ft(ye

x)− Ft(y) + (e−x − 1) y
∂

∂y
Ft(y))

]
K0(dx)

with following boundary conditions:

Ft(0) = 0, lim
y→+∞

Ft(y) = 1.

When I∞ < ∞, the similar equation is valid for the distribution func-
tion F∞ of the law of I∞:

(32)
1

2
c0
d

dy
(y2 F ′∞(y))− (a0y + 1)F ′∞(y)+
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R

[
F∞(yex)− F∞(y) + (e−x − 1) y F ′∞(y))

]
K0(dx) = 0

with similar boundary conditions:

F∞(0) = 0, lim
y→+∞

F∞(y) = 1.

Proof. We integrate each term of the equation of Theorem 1 on [0, y]
and we use the fact that ∫ y

0

pt(u)du = Ft(y)

since Ft(0) = 0. We take in account the fact that that the map (t, u)→
pt(u) is of class C1.2(R+,∗ × R+,∗) to exchange the integration and the
derivation. The same we do for F∞(y). �

Corollary 3. (cf. [13], [10]) Let us consider Brownian motion with
drift, i.e.

dXt = b0dt+
√
c0dWt

where c0 6= 0 and b0 > 0. Then the law of exponential functional It
associated with X has a density which verify :

∂

∂t
pt(y) =

1

2
c0
∂2

∂y2
(y2 pt(y))− ∂

∂y
((a0y + 1) pt(y))

In particular, for I∞ we get that

p∞(x) =
1

Γ(2 b0
c0

)x

(
2

c0x

) 2b0
c0

exp

(
− 2

c0x

)
Proof. From the Proposition 3 we find the equation for pt. From Corol-
lary 1 we get the equation for F∞ :

1

2
c0
d

dy
(y2 F ′∞(y))− (a0y + 1)F ′∞(y) = 0

This equation is equivalent to

1

2
c0y

2 F ′′∞(y)− ((a0 − c0)y + 1)F ′∞(y) = 0

By the reduction of the order of the equation, we find that

F ′∞(y) = C y
2(
a0
c0
−1)

exp

(
− 2

c0y

)
with some positive constant C. Using boundary conditions we calculate

a constant C. We get that C = 1

Γ
(

1− 2a0
c0

) ( c0
2

)2
a0
c0
−1

where Γ(·) is gamma

function. Since 1− 2a0
c0

= 2b0
c0

, this gives us the final result. �
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Remark 3. We recall that the distribution of It for Brownian motion
with drift was obtained in [13] and in [10], formula 1.10.4, p. 264.

Let us denote by ν+ and ν− the Levy measure of positive and negative
jumps respectively, namely for x > 0

ν+([x,+∞[) =

∫ +∞

x

K0(du), ν−(]−∞,−x]) =

∫ −x
−∞

K0(du)

To simplify the notations we put also

ν+(x) = ν+([x,+∞[), ν−(x) = ν−(]−∞,−x])

Let us suppose in addition that∫
R
|x|K0(dx) <∞.

Corollary 4. Suppose that X is a Levy process with integrable jumps.
Then, under the conditions of Proposition 3, the density pt of It, verify :

∂

∂t
pt(y) =

1

2
c0
∂2

∂y2
(y2 pt(y))− ∂

∂y
((r0y + 1) pt(y))+∫ +∞

y

pt(z)ν+(ln(
z

y
)) dz +

∫ y

0

pt(z)ν−(− ln(
z

y
)) dz

where r0 = a0 −
∫
R(e−x − 1)K0(dx) = −b0 + 1

2
c0 +

∫
R xK0(dx).

Proof. We take the equation (31) and we rewrite it in the following
form:

∂

∂t
Ft(y) =

1

2
c0
∂

∂y
(y2 ∂

∂y
Ft(y))− (r0y + 1)

∂

∂y
Ft(y)+∫

R
[Ft(ye

x)− Ft(y) ]K0(dx)

Then we divide the integral over R in two parts integrating on ]0,+∞[
and ]−∞, 0[. We do the integration by parts :∫

R
[Ft(ye

x)− Ft(y)]K0(dx) =

∫ +∞

0

∂

∂x
Ft(ye

x) yex ν+(x)dx+

∫ 0

−∞

∂

∂x
Ft (yex) yex ν−(x)dx

and we change the variables z = yex. We differentiate the result w.r.t.
t and this gives us the claim. �
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Corollary 5. Suppose that for x ∈ R

K0(x) = e−µxI{x>0}

Then, under the assumptions of Proposition 3, the density pt of It,
verify :

∂

∂t
pt(y) =

1

2
c0
∂2

∂y2
(y2 pt(y))− ∂

∂y
((r0y + 1) pt(y)) +

yµ

µ

∫ ∞
y

pt(z)

zµ
dz

In particular, for the density p∞ of I∞ we have :

1

2
c0
∂2

∂y2
(y2 pt(y))− ∂

∂y
((r0y + 1) pt(y)) +

yµ

µ

∫ ∞
y

pt(z)

zµ
dz = 0

Proof. We take in account that ν+(x) = 1
µ
e−µx and ν−(x) = 0 for all

x > 0 and this gives us the equation for pt in this particular case. �
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[28] K. Sato. Lévy Processes and Infinitely Divisible Distributions, Cambridge Uni-
versity Press, second edition, 2013.

[29] A. N. Shiryaev. Essentials of Stochastic Finance: Facts, Models, Theory, World
Scientific, 1999, p. 834.

[30] A. N. Shiryaev, A. S. Cherny (2002) Vector Stochastic Integrals and the Fun-
damental Theorems of Asset Pricing, Proc. Steklov Inst. Math. 237, 6-49.

[31] J.Vecer (2000) A new approach for pricing arithmetic average Asian options.
Journal of Computational Finance.


	1. Introduction
	2. Kolmogorov type equation for the density of the law of It
	3. Some results about the existence of the smooth density
	4. When X is Levy process
	References
	Reference

