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Abstract

It is more and more frequently the case in applications that the data we observe come
from one or more random variables taking values in an infinite dimensional space, e.g. curves.
The need to have tools adapted to the nature of these data explains the growing interest
in the field of functional data analysis. The model we study in this paper assumes a linear
dependence between a quantity of interest and several covariates, at least one of which
has an infinite dimension. To select the relevant covariates in this context, we investigate
adaptations of the Lasso method. Two estimation methods are defined. The first one
consists in the minimization of a Group-Lasso criterion on the multivariate functional space
H. The second one minimizes the same criterion but on a finite dimensional subspaces of H
whose dimension is chosen by a penalized least squares method. We prove oracle inequalities
of sparsity in the case where the design is fixed or random. To compute the solutions of
both criteria in practice, we propose a coordinate descent algorithm. A numerical study on
simulated and real data illustrates the behavior of the estimators.

1 Introduction

More and more often, the data we observe come from one or more random variables taking
their values in a space of infinite dimension. This is the case, for example, for data that can
be represented as curves. The need to develop tools adapted to the nature of the data explains
the growing interest in the field of functional data analysis (Ramsay and Silverman, 2005; Fer-
raty and Vieu, 2006; Ferraty and Romain, 2011). It has proven to be very fruitful in many
applications, for example in spectrometry (see for example Pham et al., 2010), in the study of
electroencephalograms (Di et al., 2009), in biomechanics (Sørensen et al., 2012) and in econo-
metrics (Laurini, 2014).

In some contexts, and more and more often, the data are a finite number of curves. We call
this case multidimensional functional data. This is the case in Aneiros-Pérez et al. (2004) where
the objective is to predict the ozone concentration of the next day from the ozone concentration
curve, the NO concentration curve, the NO2 concentration curve, the wind speed curve and
the wind direction of the current day. Another example comes from nuclear safety problems
where the risk of failure of a nuclear reactor vessel in case of a loss of coolant accident is studied
as a function of the evolution of the temperature, pressure and heat transfer parameter in the
vessel (Roche, 2018). It can also happen, perhaps more often, that the observed quantities are
of different natures (curves and vectors or scalars). This case has motivated the study of partial
linear models (see for example Shin 2009; Wang et al. 2021; Xu et al. 2020) where a quantity of
interest Y depends both on vectors and on functional covariates.

1

roche@ceremade.dauphine.fr


In the case where the number of covariates, especially functional or infinite dimensional
covariates, is large, it may be necessary to select the most relevant covariates for prediction,
either to solve the computational problems posed by the complexity of the data or to obtain an
interpretable prediction procedure.

The objective of this paper is to study the link between a real response Y and a vector
of covariates X = (X1, ..., Xp) which can be of different nature (curves or vectors or scalar
quantities). We assume that, for all j = 1, ..., p, i = 1, ..., n, Xj

i ∈ Hj where (Hj , ‖·‖j , 〈·, ·〉j) is a
separable Hilbert space. Our covariate {Xi}1≤i≤n is then in the product space H = H1× ...×Hp,
which is also a separable Hilbert space equipped with its natural scalar product

〈f ,g〉 =

p∑
j=1

〈fj , gj〉j for all f = (f1, ..., fp),g = (g1, ..., gp) ∈ H

and usual norm ‖f‖ =
√
〈f , f〉.

We suppose that our observations follow the multivariate functional linear model,

Yi =

p∑
j=1

〈β∗j , X
j
i 〉j + εi = 〈β∗,Xi〉+ εi, (1)

where, β∗ = (β∗1, ...,β
∗
p) ∈ H is unknown and {εi}1≤i≤n ∼i.i.d. N (0, σ2). The covariates

{Xi}1≤i≤n can be either fixed elements of H (fixed design) or i.i.d centered random variables in
H (random design) independent of {εi}1≤i≤n.

Note that our model does not require the Hj ’s to be functional spaces, we can have Hj = R or
Hj = Rd, for some j ∈ {1, ..., p}. The case where Hj = R, for all j = 1, . . . , p exactly corresponds
to the classical multivariate regression model.

The functional linear model, which corresponds to the case p = 1 in the equation (1), has
been widely studied. It has been defined by Cardot et al. (1999) who proposed an estimator
based on principal component analysis. Splines estimators have also been proposed by Ramsay
and Dalzell (1991); Cardot et al. (2003); Crambes et al. (2009) as well as estimators based on the
decomposition of the slope function β in the Fourier domain (Ramsay and Silverman, 2005; Li
and Hsing, 2007; Comte and Johannes, 2010) or in a general basis (Cardot and Johannes, 2010;
Comte and Johannes, 2012). In a similar context, we also mention the work of Koltchinskii and
Minsker (2014) on Lasso. In this paper, it is assumed that the function β is well represented as
a sum of a small number of well separated spikes. In the case where p = 2, H1 a functional space
and H2 = Rd, the model (1) is called partial functional linear regression model and has been
studied for example by Shin (2009); Shin and Lee (2012) who proposed principal component
regression and ridge regression approaches for the estimation of the two coefficients of the model.

Few works have been devoted to the multivariate functional linear model which corresponds
to the case where p ≥ 2 and the Hj are function spaces for all j = 1, . . . , p. To the best of
our knowledge, the model was first mentioned in the work of Cardot et al. (2007) under the
name multiple functional linear model. An estimator of β is defined with an iterative backfitting
algorithm and applied to the ozone prediction dataset initially studied by Aneiros-Pérez et al.
(2004). Variable selection is performed by testing all possible models and selecting the one that
minimizes the prediction error on a test sample. Let us also mention the work of Chiou et al.
(2016) who consider a multivariate linear regression model with functional output. They define
a consistent and asymptotically normal estimator based on the multivariate functional principal
components initially proposed by Chiou et al. (2014).

In the case where the covariates are finite dimensional and p is large, the usual approach to
select variables is to use a penalty of type `1. This case has been widely studied, with many
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variations and improvements. One of the most common variable selection methods, the Lasso
(Tibshirani, 1996; Chen et al., 1998), consists of the minimization of a least squares criterion
with an `1 penalty. The statistical properties of the Lasso estimator are now well understood.
Sparsity oracle inequalities have been obtained for predictive losses in particular in standard
multivariate or nonparametric regression models (see for example Bunea et al., 2007; Bickel
et al., 2009; Koltchinskii, 2009; Bertin et al., 2011).

The Group-Lasso (Lin and Zhang, 2006; Yuan and Lin, 2006; Chesneau and Hebiri, 2008)
addresses the case where the set of covariates can be partitioned into a number of groups. To
take into account the group structure in the data, our model can be rewritten as Hj = Rdj ,
j = 1, . . . , p, where p is the number of groups and dj is the cardinal of the j-th group. Huang
and Zhang (2010) show that, under certain conditions called strong group sparsity, the Group-
Lasso penalty is more efficient than the Lasso penalty. Lounici et al. (2011) proved oracle
inequalities for the prediction and `2 estimation error that are optimal in the minimax sense.
Their theoretical results also demonstrate that Group-Lasso can improve Lasso in prediction and
estimation. van de Geer (2014) proved sharp oracle inequalities for general weakly decomposable
regularization penalties, including Group-Lasso penalties. This approach has proven fruitful in
many settings such as time series (Chan et al., 2014), generalized linear models (Blazère et al.,
2014) in particular Poisson regression (Ivanoff et al., 2016) or logistic regression (Meier et al.,
2008; Kwemou, 2016), the study of panel data (Li et al., 2016), the prediction of breast or
prostate cancer (Fan et al., 2016; Zhao et al., 2016). The theoretical results were extended to
the case where the errors are heteroscedastic by Dalalyan et al. (2013).

Drawing inspiration from Lounici et al. (2011) we define two criteria

β̂λ,∞ ∈ arg minβ=(β1,...,βp)∈H

 1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j

 , (2)

and

β̂λ,m ∈ arg minβ=(β1,...,βp)∈H(m)

 1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j

 , (3)

where λ = (λ1, ..., λp) are positive parameters and (H(m))m≥1 is a sequence of nested finite-
dimensional subspaces of H, to be specified later.

The case where the product space H is of finite dimension has been widely treated (see the
references above). However, few papers deal with the infinite-dimensional case. Most of the
literature in functional data analysis naturally focuses on dimension reduction methods (mainly
projection onto a spline basis or onto the principal component basis in Ramsay and Silverman
2005; Ferraty and Romain 2011) to reduce data complexity. More recently, clustering approaches
have been considered (see for example Devijver, 2017) as well as variable selection methods
using `1 penalties. (Kong et al., 2016) have proposed a Lasso type penalty allowing to select the
Karhunen-Loève coefficients of the functional variable simultaneously with the coefficients of the
vector variable in the partial functional linear model (case p = 2, H1 = L2(T ), H2 = Rd of the
Model (1)). Group-Lasso and adaptive Group-Lasso procedures have been proposed by Aneiros
and Vieu (2014, 2016) to select the important observation points t1, ..., tn (impact points) in
a regression model where the covariates are the discrete values (X(t1), ..., X(tp)) of a random
function X. Bayesian approaches have been proposed by Grollemund et al. (2019) in the case
where the β∗j are sparse step functions. The natural extension of the approaches developed in
the field of functional data analysis in our context leads to the projected version of the criterion
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defined in equation (3) with H(m) generated by a multivariate splines basis or an fPCA basis.
However, the projection step induces a bias that must be taken into account.

Some recent contributions (see for example Goia and Vieu, 2016; Sangalli, 2018) emphasize
the need to work at the interface between high-dimensional statistics, functional data analy-
sis, and machine learning to deal more effectively with specific problems of high-dimensional
or infinite-dimensional data. Indeed, the problem of infinite-dimensional variable selection is
also considered in the machine learning community, especially in the context of multiple-kernel
learning. Bach (2008); Nardi and Rinaldo (2008) proved the consistency of model estimation
and selection, as well as prediction and estimation bounds for the Group-Lasso estimator, when
the data belong to Reproducing Kernel Hilbert Spaces. In these papers, the criterion is mini-
mized on the whole product space H, leading to (2). However, imposing that the data be in a
Reproducing Kernel Hilbert Space is too restrictive in the domain of functional data because it
implies a constraint on the unknown regularity of the data. To the best of our knowledge, the
theoretical study of (2) has not been done when the data are in a general Hilbert space.

Our approach also covers the case where Yi depends on a single functional variable Zi : T → R
and we want to determine whether observing the entire curve {Zi(t), t ∈ T} is useful to predict
Yi or whether it is sufficient to observe it on some subsets of T . For this purpose, we define
T1, . . . , Tp a partition of the set T into subintervals and consider the restrictions Xj

i : Tj → R of

Zi on Tj . If the corresponding coefficient β∗j is zero, we know that Xj
i is, a priori, irrelevant to

predict Yi and, therefore, that the behavior of Zi on the interval Tj has no significant influence
on Yi. The idea of using a Lasso type criterion or a Danzig selector in this context, called the
FLIRTI method (for Functional LInear Regression That is Interpretable) has been developed by
James et al. (2009).

Contribution of the paper

The properties of the solution of the Group-Lasso problem (2) have been studied for example
by Lounici et al. (2011) under restricted eigenvalue type assumptions in the finite-dimensional
case. Bellec and Tsybakov (2017) have improved these results by obtaining sharp versions of
the sparsity oracle inequalities. The aim of this paper is to study the case where dim(H) = +∞
and to answer the following questions: are we able to obtain sharp oracle inequalities when
dim(H) = +∞? How to compute the solution of a Lasso problem in this infinite-dimensional
context ?

To answer the first question, we must first define a restricted eigenvalue condition (or an
equivalent). Unfortunately, the question of the restricted eigenvalue assumption in an infinite
dimensional space turns out to be a complex issue. Indeed, we first prove in Section 2 that no
such hypothesis can be verified on the entire space H in infinite dimension, or even when the

data dimension is too large. We consider as an alternative, the minimal ratio κ̃
(m)
n (s) between

the empirical norm and the norm of H on the cone

{δ ∈ H(m),∃J ⊂ {1, . . . , p}, |J | ≤ s,
∑
j /∈J

λj ‖δj‖j ≤ 3
∑
j∈J

λj ‖δj‖j}.

This quantity, supposed to be constant in finite dimension in the works of Lounici et al. (2011);
Bellec and Tsybakov (2017), is seen here as a sequence which decreases towards 0 when m =
dim(H(m)) increases, at a rate which will determine the convergence rate of the final estimator.
This rate of convergence thus plays the role of a regularity parameter. This is, to our knowledge,
a new approach to the problem.
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We prove in section 3 a sharp oracle inequality for both criteria (2) and (3) without any
assumption other than noise normality. The proofs and results are similar to those of Lounici
et al. (2011); Bellec and Tsybakov (2017) except that we have to deal with the remaining term
due to the violation of the restricted eigenvalue assumption for the solution of (2) and the bias
due to the projection for the solution of (3). The results are true for both fixed and random
designs. We find, as expected, that the properties of the projected estimator (3) depend strongly
on the choice of the projection dimension m. A data-driven criterion for selecting the dimension
m, inspired by the work of Barron et al. (1999) and their adaptation to the functional linear
model by Brunel et al. (2016), is proposed. In Section 4, we obtain a sparsity oracle inequality
for the theoretical prediction error under certain assumptions of sub-Gaussianity of the data
distribution. The sections 5 and 6 are devoted to the numerical properties of the solution. If the
solution of the criterion (3) can be computed directly from the coefficients of the data in a basis
of the space H(m) with tools dedicated to multivariate data, it is not the same for the solution of
the criterion (2) which requires solving an infinite dimensional optimization problem. We then
define a computational algorithm allowing to minimize the criterion (2) directly in the space H,
without projecting the data. This computational algorithm is also used to solve the criterion (3)
to facilitate comparisons. The properties of the estimators are studied numerically in section 6
on simulated data sets. We then applied both estimation procedures to the prediction of energy
consumption of household appliances.

Notations

Throughout the paper, we denote, for all J ⊆ {1, ..., p} the sets

HJ :=
∏
j∈J

Hj .

Consider that the data X1, . . . ,Xn has been centered, we also define

Γ̂ : β ∈ H 7→ 1

n

n∑
i=1

〈β,Xi〉Xi,

the empirical covariance operator associated to the data and its restricted versions

Γ̂J,J ′ : β = (βj , j ∈ J) ∈ HJ 7→

 1

n

n∑
i=1

∑
j∈J
〈βj , Xj

i 〉jX
j′

i


j′∈J ′

∈ HJ ′ ,

defined for all J, J ′ ⊆ {1, ..., p}. For simplicity, we also denote Γ̂J := Γ̂J,J , Γ̂J,j := Γ̂J,{j} and

Γ̂j := Γ̂{j},{j}.

For β = (β1, ...,βp) ∈ H, we denote by J(β) := {j, βj 6= 0} the support of β and |J(β)| its
cardinality.

We also denote by PX(·) = P(·|X1, . . . ,Xn) the conditional probability with respect to the
design if it is random or PX(·) = P if the design is fixed.

2 Discussion on the restricted eigenvalues assumption
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2.1 The restricted eigenvalues assumption does not hold if dim(H) = +∞

Sparsity oracle inequalities are usually obtained under conditions on the design matrix. One
of the most common is the restricted eigenvalues property (Bickel et al., 2009; Lounici et al.,
2011). Translated to our context, this assumption may be written as follows.

(ARE(s)): There exists a positive number κ = κ(s) such that

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H\{0},
∑
j /∈J

λj ‖δj‖j ≤ c0

∑
j∈J

λj ‖δj‖j

 ≥ κ,
with ‖f‖n :=

√
1
n

∑n
i=1〈f,Xi〉2 the empirical norm on H naturally associated with our problem.

As explained in Bickel et al. (2009, Section 3), this assumption can be seen as a ”positive
definiteness” condition on the Gram matrix restricted to sparse vectors. In the finite dimensional
context, van de Geer and Bühlmann (2009) have proven that this condition covers a large class
of design matrices.

The next lemma, proven in Section A.1, shows that this assumption does not hold when
dim(HJ) is too large for a subset J of {1, . . . , p}.

Lemma 1. Suppose that there exists J ⊂ {1, . . . , p} such that dim(HJ) > rk(Γ̂J), then, for all
s ≥ |J |, for all c0 > 0

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H\{0},
∑
j /∈J

λj ‖δj‖j ≤ c0
∑
j∈J

λj ‖δj‖j

 = 0.

Remark that, since Im(Γ̂J) = span{(Xj
i )j∈J , i = 1, . . . , n}, rk(Γ̂J) ≤ n. Then the condition

dim(HJ) > rk(Γ̂J) is unfortunately always verified if dim(H) = +∞.

2.2 Finite-dimensional subspaces and restriction of the restricted eigenvalues
assumption

The infinite-dimensional nature of the data is the main obstacle here. To circumvent the di-
mensionality problem, we restrict the assumption to finite-dimensional spaces. In the sequel,
we focus on spaces spanned by the m-first elements of an orthonormal basis (ϕ(k))k≥1 i.e.
H(m) := span

{
ϕ(1), . . . ,ϕ(m)

}
. To obtain sparsity oracle inequalities, we suppose fulfilled the

following condition of support compatibility of the basis. We denote by

πj : f = (f1, . . . , fp) ∈ H 7→ (0, . . . , 0, fj , 0, . . . , 0)

the projection operator into the j-th coordinates and

Πm : f ∈ H 7→
m∑
j=1

〈f ,ϕ(k)〉ϕ(k)

the projection operator into H(m).

(Csupp)

For all m ≥ 1, j ∈ {1, . . . , p}, the operator Πm commutes with πj .
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Condition (Csupp) appears necessary to obtain the sparsity oracle inequality. It is a condition
on the basis (ϕ(k))k≥1. It is the case for instance if, for all k ≥ 1, |J(ϕ(k))| = 1. Indeed, this
means that πjϕ

(k) = 1{j∈J(ϕ(k))}ϕ
(k) for all f ∈ H

πjΠmf = πj

m∑
k=1

〈f ,ϕ(k)〉ϕ(k) =

m∑
k=1

〈f ,ϕ(k)〉πjϕ(k) =

m∑
k=1

1{j∈J(ϕ(k))}〈fj , ϕ
(k)
j 〉jϕ

(k)

and we deduce that

Πmπjf =
m∑
k=1

〈πjf ,ϕ(k)〉ϕ(k) =
m∑
k=1

〈fj , ϕ(k)
j 〉jϕ

(k) = πjΠmf .

It is possible now to define a restricted eigenvalues property on the projection on the data
on the finite-dimensional space H(m). We would like to emphasize first that the viewpoint is
different. In finite-dimensional contexts (see e.g. Bickel et al. 2009; Lounici et al. 2011), the
restricted eigenvalue property is an assumption on the design matrix. In infinite-dimensional
contexts, it seems more natural, since, there is no a priori dimension for the data, to define a

sequence (κ̃
(m)
n )m≥1 depending on the sparsity level s ∈ {1, . . . , p} as follows

κ̃(m)
n (s) :=

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H(m)\{0},
∑
j /∈J

λj ‖δj‖j ≤ 3
∑
j∈J

λj ‖δj‖j

 . (4)

The quantities κ̃
(m)
n (s) are linked with the spectral radius of restrictions of the empirical covari-

ance operator Γ̂ by the following relationship

min
J⊆{1,...,p};|J |≤s

ρ
(
Γ̂
−1/2

J |m

)−1

≥ κ̃(m)
n (s) ≥ ρ

(
Γ̂
−1/2

m

)−1

, (5)

where Γ̂J |m =
(
〈Γ̂Jϕ(k)

J ,ϕ
(k′)
J 〉J

)
1≤k,k′≤m

where ϕ
(k)
J = (ϕ

(k)
j , j ∈ J) ∈ HJ and 〈f ,g〉J =∑

j∈J〈fj , gj〉j is the usual scalar product of HJ .
Since it has been proven by Cardot and Johannes (2010) that the rate of decrease of the

eigenvalues of the covariance operator influences the minimax rates in functional linear regres-

sion, we may assume that the rate of decrease of κ̃
(m)
n (s) to 0 influences the rate, which is

confirmed by our results.

2.3 Behavior of the sequence (κ̃
(m)
n )m≥1 in some examples

In this section, we detail three examples of spaces H on which we will illustrate the theoretical
results of the paper. The two first examples are illustrative ones and the third one is close to
the electricity consumption case presented in Section 6.5.

Example 1: finite-dimensional space verifying the restricted eigenvalues assumption
We first consider, as an illustrative example, the case where dim(H) = d < +∞. In that case,
without loss of generality, we can consider that dim(Hj) = Rdj with d1 + . . .+dp = d. Moreover,
we suppose in this example, that the restricted eigenvalues assumption (ARE(s)) written in
Section 2.1 holds with c0 = 3. This case match with the model described in Bellec and Tsybakov
(2017); Lounici et al. (2011) (with, eventually, c0 = 7 instead of c0 = 3 in Lounici et al. 2011)
and we can see easily that, for any nested sequence H(1) ⊂ . . . ⊂ H(d−1) ⊂ H(d) = H of H,

κ̃(1)
n (s) ≥ . . . κ̃(d−1)

n (s) ≥ κ̃(d)
n (s) ≥ κ > 0.
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Example 2: simple semi-functional linear model We suppose that p = 2 and H1 =

L2([0, 1]) and H2 = R. We consider a basis (ê
(1)
k )k≥1 that diagonalizes the empirical covariance

operator Γ̂1 of the functional data (X1
1 , . . . , X

1
n) and we denote by (µ̂

(1)
k )k≥1 the associated non-

increasing eigenvalues sequence. Remark that the orthonormal system {(ê(1)
k , 0), k ≥ 1; (0, 1)} is

a basis of H that diagonalizes the operator Γ̂. We construct for a rank r ∈ N\{0},

H(m) = span{(ê(1)
k , 0), k = 1, . . . ,m} for m < r,

H(m) = span{(ê(1)
k , 0), k = 1, . . . ,m− 1; (0, 1)} for m ≥ r.

For s = 1, we remark that, for m < r,

κ̃(m)
n (1) = µ̂(1)

m

the m-largest eigenvalue of Γ̂1. For m ≥ r, we also take into account the interaction between

the two variables and we can see that κ̃
(m)
n (1) is the smallest eigenvalue of the covariance matrix

of the data matrix containing the coefficients of the projection of the data onto H(m) which is

(〈X1
i , e

(1)
1 〉1, . . . , 〈X1

i , e
(1)
m−1〉1, X2

i )i=1,...,n.

Example 3: fully multivariate functional linear model Now we consider the example of

p an integer and Hj = L2([0, 1]). We define, for all j = 1, . . . , p, a basis (ê
(j)
k )k≥1 that diagonalizes

the empirical covariance operator Γ̂j of the data (Xj
1 , . . . , X

j
n) and we denote by (µ̂

(j)
k )k≥1 the

associated eigenvalues sequence. To simplify the definitions, we set m = Lp, with L ∈ N\{0}
and writes

H(m) = S
(1)
L × . . .× S

(p)
L with S

(j)
L = span{ê(j)

k , k = 1, . . . , L}, j = 1, . . . , p.

In that case, the matrix Γ̂|m is a block matrix

Γ̂|m =


Γ̂L1,1 Γ̂L1,2 . . . Γ̂L1,p
Γ̂L1,2 Γ̂L2,2 . . . Γ̂L2,p

...
. . .

Γ̂L1,p . . . Γ̂Lp−1,p Γ̂Lp,p


where Γ̂Lj,j′ =

(
1
n

∑n
i=1〈X

j
i , ê

(j)
k 〉〈X

j′

i , ê
(k′)
j′ 〉

)
k,k′=1,...,L

is the correlation matrix between the pro-

jections of Xj into S
(L)
j and Xj′ into S

(L)
j′ . We remark that the matrices Γ̂Lj,j are diagonal

matrices, with diagonal coefficients {µ̂(j)
k }k=1,...,L. Equation (5) can be rewritten in that case

min
j=1,...,p

µ̂
(L)
j ≥ κ̃(m)

n (1) ≥ κ̃(m)
n (2) ≥ . . . ≥ κ̃(m)

n (p) = ρ
(
Γ̂
−1/2

m

)−1

,

with equality in the case where the extra-diagonal correlation matrices Γ̂Lj,j′ = 0 for all j 6= j′.

3 Sharp sparsity oracle-inequalities for the empirical prediction
error

In this section, the design X1, . . . ,Xn is supposed to be either fixed or random. The results of the
section are obtained under the unique assumption of Gaussianity of the noise and no assumption
on the design. We prove the following sharp sparsity-oracle inequality for the solutions of both
problems (2) and (3).
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Proposition 1. Let q > 0 be fixed and choose

λj = rn

(
1

n

n∑
i=1

‖Xj
i ‖

2
j

)1/2

with rn = Aσ

√
q ln(p)

n
(A ≥ 4

√
2). (6)

With probability larger than 1− p1−q, for all m ≥ 1,

∥∥∥β̂λ,m − β∗∥∥∥2

n
≤ min
β∈H(m),|J(β)|≤s

‖β − β∗‖2n +
9

4(κ̃
(m)
n )2

∑
j∈J(β)

λ2
j

 (7)

and ∥∥∥β̂λ,∞ − β∗∥∥∥2

n
≤ min

m≥1
min

β∈H(m),|J(β)|≤s

‖β − β∗‖2n +
9

4(κ̃
(m)
n )2

∑
j∈J(β)

λ2
j +Rn,m

 , (8)

with

Rn,m :=

√ ∑
j∈J(β)

λ2
j

(∥∥∥β̂(⊥m)

λ,∞

∥∥∥+
3

κ
(m)
n

∥∥∥β̂(⊥m)

λ,∞

∥∥∥
n

)
,

where β̂
(⊥m)

= β̂ − β̂
(m)

the orthogonal projection onto (H(m))⊥ and using the convention

1/0 = +∞ in the case where κ̃
(m)
n = 0.

The proof of this result can be found in Section A.2. It is based on the ones of Bellec and
Tsybakov (2017, Proposition 5) and Lounici et al. (2011, Theorem 3.1) with some adjustments
linked with the infinite-dimensional nature of the data. In particular, we need a concentration
inequality that remains true in Hilbert spaces (see Proposition 2).

In the case where dim(H) < +∞ (Example 1 in Section 2.3) , we remark that when m =
d = dim(H) the problematic remaining term Rm,n disappears and the result of Proposition 1
cöıncides with

• the result of Bellec and Tsybakov (2017, Proposition 5) in the case λj = λ for all j =
1, . . . , p with the same constants,

• the result of Lounici et al. (2011, Theorem 3.1) with better constants (9/4 instead of 96
in the term due to the penalty and 1 replaced by 2 in the bias term).

However, in the case where dim(H) = +∞ we have to deal either with the remaining term
Rn,m for β̂λ,∞ or with the choice of an optimal dimension m for β̂λ,m. Up to now, it seems
difficult to know the exact convergence rate of Rn,m. On the contrary, the choice of dimension

m for the estimator β̂λ,m is linked with a classical bias-variance compromise.

• When m is small the distance ‖β∗−β‖n between β∗ and any β ∈ H(m) is generally large.

• When m is sufficiently large, we know the distance ‖β∗ − β‖n is small but the term
3

(κ
(m)
n )2

∑
j∈J(β) λ

2
j may be very large since κ

(m)
n is close to 0 when m is close to rk(Γ̂).

To achieve the best trade-off between these two terms, a model selection procedure, in the
spirit of Barron et al. (1999), is introduced. We select

m̂ ∈ arg minm=1,...,Nn

{
1

n

n∑
i=1

(
Yi − 〈β̂λ,m,Xi〉

)2
+ κσ2m log(n)

n

}
, (9)
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where κ > 0 is a constant which can be calibrated by a simulation study or selected from the
data by methods stemmed from slope heuristics (see e.g. Baudry et al. 2012) and Nn ≤ n.

We obtain the following sparsity oracle inequality for the selected estimator β̂λ,m̂.

Theorem 1. Let q > 0 and λ = (λ1, . . . , λp) chosen as in Equation (6). There exist a minimal
value κmin and a universal constant CMS > 0 such that, with probability larger than 1− p1−q −
CMS/n, if κ > κmin, for all η̃ > 0,

∥∥∥β̂λ,m̂ − β∗∥∥∥2

n
≤ (1 + η̃) min

m=1,...,Nn
min

β∈H(m),|J(β)|≤s

‖β − β∗‖2n +
9

4(κ̃
(m)
n (s))2

∑
j∈J(β)

λ2
j

+C(η̃)κ log(n)σ2m

n

}
,

with C(η̃) = (η̃ + 2)/(η̃ + 1), κ is the penalty constant appearing in Eq. (9) and κ̃
(m)
n is the

restricted eigenvalue quantity of Eq. (4).

The proof of Theorem 1 can be found in Section A.3. It is based on the control of an empirical
process naturally associated with our problem given in Lemma 2. Both quantities κmin and CMS

are universal constants.

Theorem 1 implies that, with probability larger than 1− p1−q − CMS/n, if |J(β∗)| ≤ s,

∥∥∥β̂λ,m̂ − β∗∥∥∥2

n
≤ (1 + η̃) min

m=1,...,min{Nn,Mn}

∥∥∥β(∗,⊥m)
∥∥∥2

n
+

9

4(κ̃
(m)
n (s))2

∑
j∈J(β∗)

λ2
j

+C(η̃)κ log(n)
m

n

}
,

(10)

where, for all m, β(∗,⊥m) is the orthogonal projection of β∗ onto (H(m))⊥. The upper-bound in
Equation (10) is then the best compromise between two terms:

• an approximation term
∥∥∥β(∗,⊥m)

∥∥∥2

n
which decreases to 0 when m→ +∞;

• a second term due to the penalization and the projection which increases to +∞ when
m→ +∞.

4 Oracle-inequality for prediction error

The aim of this section is to prove sparsity-oracle inequalities for the theoretical counterpart
of the empirical prediction error and to derive convergence rates under appropriate regularity
assumptions.

We suppose in this section that the design X1, . . . ,Xn is a sequence of i.i.d centered random
variables in H. The aim is to control the estimator in terms of the norm associated to the
prediction error of an estimator β̂ defined by

‖β∗ − β̂‖2Γ = E
[(

E[Y |X]− 〈β̂,X〉
)2
|(X1, Y1), . . . , (Xn, Yn)

]
= 〈Γ(β∗ − β̂),β∗ − β̂〉.

where (X, Y ) follows the same distribution as (X1, Y1) and is independent of the sample.

10



4.1 Moment assumptions and definitions

First denote by Γ : f ∈ H 7→ E [〈f ,X1〉X1] the theoretical covariance operator and define a

theoretical version of κ̃
(m)
n ,

κ(m)(s) :=

min

 ‖δ‖Γ√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H(m)\{0},
∑
j /∈J

λj ‖δj‖j ≤ 3
∑
j∈J

λj ‖δj‖j

 .

we also denote by (µk)k≥1 the eigenvalues of Γ sorted in decreasing order.

(H
(1)
Mom) There exists a constant b > 0 such that, for all ` ≥ 1,

sup
j≥1

E

[
〈X, ϕ(j)〉2`

ṽ`j

]
≤ `!b`−1 where ṽj := Var(〈Xi,ϕ

(j)〉).

(H
(2)
Mom) There exist two constants vMom > 0 and cMom > 0, such that, for all ` ≥ 2,

E
[
‖X‖2`

]
≤ `!

2
v2
Momc

`−2
Mom.

Both assumptions (H
(1)
Mom) and (H

(2)
Mom) are necessary to apply exponential inequalities and

are verified e.g. by Gaussian or bounded processes.

4.2 Sparsity oracle inequality

Theorem 2. Suppose that both (H
(1)
Mom) and (H

(2)
Mom) are verified. Suppose also that q > 0 and

λ = (λ1, . . . , λp) verify the conditions of Equation (6).

Then, there exist CMS , cmax > 0 (depending only on tr(Γ) and ρ(Γ)) and CMom > 0 (de-
pending only on vMom and cMom) such that the following inequality holds with probability larger
than 1− p1−q − (CMS + CMom)/n+ 2n2 exp(−cmaxn),

∥∥∥β̂λ,m̂ − β∗∥∥∥2

Γ
≤ C ′ min

m=1,...,Nn
min

β∈H(m)

‖β − β∗‖2Γ +
1(

κ
(m)
n (s)

)2

 ∑
j∈J(β)

λ2
j +

log2(n)

n


+κ

log n

n
σ2m+

∥∥∥β∗ − β(∗,m)
∥∥∥2

Γ
+
(
κ(m)
n (s)

)2 ∥∥∥β∗ − β(∗,m)
∥∥∥2
}
.

where C > 0 is a universal constant.

The proof is based on concentration inequalities of ratio of norms that can be found in
Proposition 4 and that relies mainly on Bernstein’s inequality (for real and functional random
variables). It can be found in Section A.4

4.3 Convergence rates

From Theorem 2, we derive an upper-bound on the convergence rates of the estimator β̂λ,m̂.
For this we need some regularity assumptions on β∗ and Γ.
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For a sequence v = (vj)j≥1 of positive real numbers, we define a weighted norm as follows

‖f‖2v :=
∑
k≥1

vk〈f ,ϕ(k)〉2, f ∈ H.

We introduce two sequences b = (bk)k≥1 and v = (vk)k≥1 of positive real numbers and
R, c > 0 and note

Eb(R) := {β ∈ H, ‖β‖b ≤ R} ,

and

Nv(c) := {T ∈ L(H), ‖Γ1/2f‖ ≤ c‖f‖v, for all f ∈ H},

for the regularity classes of β∗ and Γ.

Let us explain the regularity assumptions on β and Γ in the three examples of section 2.3. In

order to simplify the presentation, we replace in examples 2 and 3, for all j, the basis (ê
(j)
k )k≥1 by

its theoretical counterpart (e
(j)
k )k≥1 which is the basis that diagonalizes Γj and write it example

2’ (resp. example 3’) instead of example 2 (resp. example 3).

In example 1, since dim(H) < +∞, we can remark that, for any sequence b ∈ (R∗+)N\{0},

H =
⋃
R>0

Eb(R).

Similarly, it is easily seen that for all sequence v ∈ (R∗+)N\{0}, there exists c = ρ(Γ1/2)/minj{v1/2
j } >

0 such that Γ ∈ Nv(c).
In example 2’, remark that, for all f = (f1, f2) ∈ H = L2([0, 1])× R,

‖f‖2v = vrf
2
2 +

∑
k 6=r

vk〈f1, ê
(1)
k 〉

2.

Then, for all β = (β1, β2) ∈ Eb(R), there exists R′ > 0 such that
∑

k 6=r vk〈β, ê
(1)
k 〉

2 ≤ R′ (and
conversely). The assumption is therefore an ellipsoidal regularity assumption on the functional
element of the vector β. This ellispöıdal regularity assumption is very classical in non-parametric
minimax estimation (Tsybakov, 2009) and in particular in a functional data framework (Cardot
and Johannes, 2010; Comte and Johannes, 2012; Brunel et al., 2016). Concerning the hypothesis
on Γ, we have the following characterization : there exists c > 0 such that Γ ∈ Nv(c) if and only

if µ
(1)
k . vk where (µ

(1)
k )k≥1 is the sequence of eigenvalues of the covariance operator Γ1, sorted

in non increasing order.

Concerning the more complex example 3’, there is a link between the regularity of beta β

and the regularity of its coordinates. Remark that, defining ϕ(jp+k) = (e
(j)
k 1`=j)`=1,...,p we have,

for all β = (β1, . . . , βp) ∈ H,

‖β‖2b =

p∑
j=1

∑
k≥1

bpj+k〈β,ϕ(pj+k)〉2 =

p∑
j=1

∑
k≥1

bpj+k〈βj , e
(j)
k 〉

2
j .

Then, if each coordinate βj is in an ellipsöıd of L2([0, 1]) i.e. there exist b1, . . . , bp > 0 and R > 0
such that, ∑

k≥1

kbj 〈βj , e(j)
k 〉

2
j ≤ R,
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then, denoting, b = (kmaxj=1,...,p{bj})k≥1 we have

β ∈ Eb(pR).

Then, the index bj accounting for the regularity of the function βj , the vector of functions β has
the worst regularity of all its coordinates. Regarding the regularity class Nv(c) a similar result
may be obtained. We can see that, for all f = (f1, . . . , fp) ∈ H,

‖Γ1/2f‖2 = Var(〈X, f〉) = Var

 p∑
j=1

〈Xj , fj〉j

 ≤ p∑
j=1

Var
(
〈Xj , fj〉j

)
=

p∑
j=1

‖Γ1/2
j fj‖2j ,

and finally, if there exists c > 0 such that µ
(j)
k ≤ cvjp+k

‖Γ1/2f‖2 =

p∑
j=1

∑
k≥1

µ
(j)
k 〈fj , e

(j)
k 〉

2
j ≤ c

∑
k≥1

vk〈f ,ϕ(k)〉2

meaning that Γ ∈ Nv(pc).

Corollary 1 (Rates of convergence). We suppose that all assumptions of Theorem 2 are verified
and we choose, for all j = 1, . . . , p,

λj = Aσ

√
ln(n) + ln(p)

n

√√√√ 1

n

n∑
i=1

‖Xj
i ‖2j ,

with A > 0 a numerical constant.
We also suppose that there exist γ ≥ 1/2 and b > 0, such that

vk = k−2γ and bk � k2b.

and that there exists γ(s) ≥ 1/2 such that

κ(m)(s) � m−2γ(s).

Then, there exist two quantities C,C ′ > 0, such that, if |J(β∗)| ≤ s, with probability larger than
1− C/n,

sup
β∗∈Eb(R),Γ∈Nv(c)

∥∥∥β̂λ,m̂ − β∗∥∥∥2

Γ
≤ C ′

(
s(ln(p) + ln(n)) + ln2(n)

n

) b+γ
b+γ(s)+γ

. (11)

The proof relies on the results of Theorem 2.
The polynomial decrease of the eigenvalues (µk)k≥1 of the operator Γ is also a usual assump-

tion. The Brownian bridge and the Brownian motion on H = H1 = L2([0, 1]) verify it with
γ = 1.

Remark that the rate of convergence of the selected estimator β̂λ,m̂ is the same as the one

of β̂λ,m∗ where

m∗ ∼
(

n

s(ln(n) + ln(p)) + ln2(n)

) 1
2b+2γ(s)+2γ

has the order of the optimal value of m in the upper-bound of Equation (7).
We do not know however the exact order of the minimax rate when the solution β∗ is sparse

and if it can be achieved by either β̂λ,m or β̂λ,∞.
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5 Computing the Lasso estimator

The purpose of this section is to explain how the estimators β̂λ,∞ and β̂λ,m̂ are computed. We

first describe an algorithm which allows to obtain an approximation of β̂λ,∞ by adapting to
infinite dimension an existing finite dimensional algorithm. We then explain, in subsection 5.2,
how we choose the parameter λ (both for β̂λ,∞ and β̂λ,m̂) and in subsection 5.3 how a projection

space H(m) can be chosen to construct the estimator β̂λ,m̂. Finally, we define a method to reduce
the usual bias of Lasso type estimators in subsection 5.4.

5.1 Computational algorithm

We propose the following algorithm to compute an approximation of β̂λ,∞. It can also be

adapted to obtain an approximation of β̂λ,m, even if, for this estimator, the usual algorithms of
vanilla group-Lasso can be used directly.

The idea is to update sequentially each coordinate β1, ...,βp in the spirit of the glmnet
algorithm (Friedman et al., 2010) by solving

β
(k+1)
j ∈ arg minβj∈Hj

 1

n

n∑
i=1

Yi − j−1∑
`=1

〈β(k+1)
` , X`

i 〉` − 〈βj , X
j
i 〉j −

p∑
`=j+1

〈β(k)
` , X`

i 〉`

2

+2λj ‖βj‖j
}
.

(12)

However, in the Group-Lasso context, this algorithm is based on the so-called group-wise or-
thonormality condition, which, translated to our context, amounts to suppose that the operators
Γ̂j (or their restrictions Γ̂j|m) are all equal to the identity. This assumption is not possible if

dim(Hj) = +∞ since Γ̂j is a finite-rank operator. Without this condition, Equation (12) does
not admit a closed-form solution and, hence, is not calculable. We then propose a variant of the
GPD (Groupwise-Majorization-Descent) algorithm, initially defined by Yang and Zou (2015)
for Group-Lasso type optimization problems, without imposing the group-wise orthonormality
condition. The GPD algorithm is also based on the principle of coordinate descent but the
minimisation problem (12) is modified in order to relax the group-wise orthonormality condi-

tion. We denote by β̂
(k)

the value of the parameter at the end of iteration k. During iteration
k + 1, we update sequentially each coordinate. Suppose that we have changed the j − 1 first

coordinates, the current value of our estimator is (β̂
(k+1)
1 , ..., β̂

(k+1)
j−1 , β̂

(k)
j , ..., β̂

(k)
p ). We want to

update the j-th coefficient and, ideally, we would like to minimise the following criterion

γn(βj) :=
1

n

n∑
i=1

Yi − j−1∑
`=1

〈β̂(k+1)
` , X`

i 〉` − 〈βj , X
j
i 〉j −

p∑
`=j+1

〈β̂(k)
` , X`

i 〉`

2

+ 2λj‖βj‖2j .

We have

γn(βj)− γn(β̂
(k)
j ) = − 2

n

n∑
i=1

(Yi − Ỹ j,k
i )〈βj − β̂(k)

j , Xj
i 〉j +

1

n

n∑
i=1

〈βj , Xj
i 〉

2
j

− 1

n

n∑
i=1

〈β̂(k)
j , Xj

i 〉
2
j + 2λj(‖βj‖j −

∥∥∥β̂(k)
j

∥∥∥
j
),
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with Ỹ j,k
i =

∑j−1
`=1〈β̂

(k+1)
` , X`

i 〉` +
∑p

`=j+1〈β̂
(k)
` , X`

i 〉`, and

1

n

n∑
i=1

〈βj , Xj
i 〉

2
j −

1

n

n∑
i=1

〈β̂(k)
j , Xj

i 〉
2
j = 〈Γ̂jβj , βj〉j − 〈Γ̂j β̂(k)

j , β̂
(k)
j 〉j

= 〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j + 2〈Γ̂j β̂(k)
j , βj − β̂(k)

j 〉j .

Hence

γn(βj) = γn(β̂
(k)
j )− 2〈Rj , βj − β̂(k)

j 〉j + 〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j + 2λj(‖βj‖j −
∥∥∥β̂(k)

j

∥∥∥
j
)

with

Rj =
1

n

n∑
i=1

(Yi − Ỹ j,k
i )Xj

i + Γ̂j β̂
(k)
j =

1

n

n∑
i=1

(Yi − Ŷ j,k
i )Xj

i ,

where, for i = 1, ..., n, Ŷ j,k
i = Ỹ j,k

i + 〈β̂(k)
j , Xj

i 〉j =
∑j−1

`=1〈β̂
(k+1)
` , X`

i 〉` +
∑p

`=j〈β̂
(k)
` , X`

i 〉` is the

current prediction of Yi. If Γ̂j is not the identity, we can see that the minimisation of γn(βj) has
no explicit solution. To circumvent the problem the idea is to upper-bound the quantity

〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j ≤ ρ(Γ̂j)
∥∥∥βj − β̂(k)

j

∥∥∥2

j
≤ Nj

∥∥∥βj − β̂(k)
j

∥∥∥2

j
,

where Nj := 1
n

∑n
i=1

∥∥∥Xj
i

∥∥∥2

j
is an upper-bound on the spectral radius ρ(Γ̂j) of Γ̂j . Instead of

minimising γn we minimise its upper-bound

γ̃n(βj) = −2〈Rj , βj〉j +Nj

∥∥∥βj − β̂(k)
j

∥∥∥2

j
+ 2λj ‖βj‖j .

The minimisation problem of γ̃n has an explicit solution

β̂
(k+1)
j =

(
β̂

(k)
j +

Rj
Nj

)1− λj∥∥∥Nj β̂
(k)
j +Rj

∥∥∥
j


+

. (13)

After an initialisation step (β
(0)
1 , ...,β

(0)
p ), the updates on the estimated coefficients are then

given by Equation (13).

Remark that, for the case of Equation (2), the optimisation is done directly in the space H
and does not require the data to be projected. Consequently, it avoids the loss of information
and the computational cost due to the projection of the data in a finite dimensional space, as
well as, for data-driven basis such as PCA or PLS, the computational cost of the calculation of
the basis itself.

5.2 Choice of smoothing parameters (λj)j=1,...,p

Following Proposition 1, we choose λj = λj(r) = r
(

1
n

∑n
i=1 ‖X

j
i ‖2j
)1/2

, for all j = 1, ..., p. This

allows to restrain the problem of the calibration of the p parameters λ1, ..., λp to the calibration

of only one parameter r. In this section, we write λ(r) = (λ1(r), . . . , λp(r)) and β̂λ(r),m the
corresponding minimiser of criterion (3) if m < +∞ or (2) if m = +∞.

15



Drawing inspiration from Friedman et al. (2010), we consider a pathwise coordinate descent
scheme starting from the following value of r,

rmax = max
j=1,...,p


∥∥∥ 1
n

∑n
i=1 YiX

j
i

∥∥∥
j√

1
n

∑n
i=1

∥∥∥Xj
i

∥∥∥2

j

 .

It can be proven that, taking r = rmax, the solution of the minimisation problem (2) is β̂λ(rmax) =
(0, ..., 0). Starting from this value of rmax, we choose a grid decreasing from rmax to rmin = δrmax

of nr values equally spaced in the log scale i.e.

R =

{
exp

(
log(rmin) + (k − 1)

log(rmax)− log(rmin)

nr − 1

)
, k = 1, ..., nr

}
= {rk, k = 1, ..., nr}.

For each k ∈ {1, ..., nr − 1}, the minimisation of criterion (2) (resp. (3)) with r = rk is then
performed using the result of the minimisation of (2) (resp. (3)) with r = rk+1 as an initialisation.
As pointed out by Friedman et al. (2010), this scheme leads to a more stable and faster algorithm.
In practice, we chose δ = 0.001 and nr = 100. However, when r is too small, the algorithm does
not always converge, in particular when the dimension is large or infinite. We believe that it is
linked with the fact that the optimisation problem (2) has no solution as soon as dim(H) ≥ rk(Γ̂)
and λ = 0.

In the case where the noise variance is known, Theorem 1 suggests the value

rn = 4
√

2σ
√
p ln(q)/n.

We recall that Equation (8) is obtained with probability 1− p1−q. Hence, if we want a precision
better than 1−α, we take q = 1− ln(α)/ ln(p). However, in practice, the parameter σ2 is usually
unknown. We propose three methods to choose the parameter r among the grid R and compare
them in the simulation study.

5.2.1 V -fold cross-validation

We split the sample {(Yi,Xi), i = 1, ..., n} into V subsamples {(Y (v)
i ,X

(v)
i ), i ∈ Iv}, v = 1, ..., V ,

where Iv = b(v − 1)n/V c + 1, ..., bvn/V c, Y (v)
i = Yb(v−1)n/V c+i, X

(v)
i = Xb(v−1)n/V c+i and, for

x ∈ R, bxc denotes the largest integer smaller than x.

For all v ∈ V , i ∈ Iv, r ∈ R let

Ŷ
(v,r)
i = 〈β̂

(−v)

λ(r),m,Xi〉

be the prediction made with the estimator of β∗ minimising criterion (2) (or (3)) using only the

data
{

(X
(v′)
i , Y

(v′)
i ), i ∈ Iv′ , v 6= v′

}
.

We choose the value of rn minimising the mean of the cross-validated error:

r̂(CV )
n ∈ arg minr∈R

{
1

n

V∑
v=1

∑
i∈Iv

(
Ŷ

(v,r)
i − Y (v)

i

)2
}
.
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5.2.2 Estimation of σ2

We propose the following estimator of σ2:

σ̂2 =
1

n

n∑
i=1

(
Yi − 〈β̂λ(r̂min),m,Xi〉

)2
,

where r̂min is an element of r ∈ R.

In practice, we take the smallest element of R for which the algorithm converges.

We set

r̂(σ̂2)
n := 4

√
2σ̂
√
p ln(q)/n with q = 1− ln(5%)/ ln(p).

5.2.3 BIC criterion

We also consider the BIC criterion, as proposed by Wang et al. (2007); Wang and Leng (2007),

r̂(BIC)
n ∈ arg minr∈R

{
log(σ̂2

r ) + |J(β̂λ(r),m)| log(n)

n

}
.

The corresponding values of λ will be denoted respectively by λ̂
(CV )

:= λ(r̂
(CV )
n ), λ̂

(σ̂2)
:=

λ(r̂
(σ̂2)
n ) and λ̂

(BIC)
:= λ(r̂

(BIC)
n ). The practical properties of the three methods are compared

in Section 6.

5.3 Construction of the projected estimator

The projected estimator relies mainly on the choice of the basis (ϕ(k))k≥1. To verify the support
stability condition Csupp, a possibility is to proceed as follows.

• Choose, for all j = 1, . . . , p an orthonormal basis of Hj , denoted by (e
(j)
k )1≤j≤dim(Hj).

• Choose a bijection

σ :
N\{0} → {(j, k) ∈ {1, . . . , p} × N\{0}, k ≤ dim(Hj)} ⊆ N2

k 7→ (σ1(k), σ2(k)).

• Define

ϕ(k) := (0, . . . , 0, e
(σ1(k))
σ2(k) , 0, . . . , 0) =

(
e

(σ1(k))
σ2(k) 1{j=σ1(k)}

)
1≤j≤p

.

There are many ways to choose the basis (e
(j)
k )1≤k≤dim(Hj), j = 1, . . . , p as well as the bijection

σ, depending on the nature of the spaces H1, . . . ,Hp. We give here some examples.

Example 1: fixed basis and fixed bijection σ Suppose H1 = . . . = Hp∞ = L2([0, 1]) and

Hj are finite-dimensional for all j = p∞ + 1, . . . , p. For j = 1, . . . , p∞ (e
(j)
k )k≥1 is e.g. the

Fourier basis

e
(j)
1 ≡ 1, e

(j)
2k (t) =

√
2 cos(2πkt) and e

(j)
2k+1(t) =

√
2 sin(2πkt),
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and, for j = p∞+1, . . . , p, (e
(j)
1 , . . . , e

(j)
dim(Hj)) is the canonical basis of the finite-dimensional

space Hj . Choosing the bijection σ(1) = (1, 1), σ(2) = (2, 1),...,σ(p) = (p, 1), σ(p+ 1) =
(1, 2), σ(p+ 2) = (2, 2),... leads to the basis

ϕ(1) := (e
(1)
1 , 0, . . . , 0)

ϕ(2) := (0, e
(2)
1 , 0, . . . , 0)

...

ϕ(p) := (0, . . . , 0, e
(p)
1 )

ϕ(p+1) := (e
(1)
2 , 0, . . . , 0)

ϕ(p+2) := (0, e
(2)
2 , 0, . . . , 0)

...

Example 2: fixed basis with random bijection σ A disadvantage of the previous example
is that it gives particular importance to the first variables which is not necessarily justified
by the data. A possible way to circumvent the problem is to define a random permutation
σ. Using the same notations as in Example 1, we can define e.g. σ as follows:

1. Choose σ1(1) uniformly in {1, . . . , p}.
2. If σ1(1) ≤ p∞, σ2(1) = 1, otherwise σ2(1) is chosen uniformly in {1, . . . ,dim(Hj)}.

Proceed in a similar way for k = 2, 3, ... respecting the constraint σ(k) 6= σ(k′) for k 6= k′.

Example 3: PCA basis with data-driven choice of the bijection σ Let, for j = 1, . . . , p,

(ê
(j)
k )1≤k≤dim(Hj) the PCA basis of {Xj

i , i = 1, . . . , n}, that is to say a basis of eigenfunctions
(if Hj is a function space) or eigenvectors (if dim(Hj) < +∞) of the covariance operator

Γ̂j . We denote by (µ̂
(j)
k )1≤k≤dim(Hj) the corresponding eigenvalues. This naturally provides

a data-driven choice of the bijection σ the can be defined such that (µ̂
(σ

(k)
1 )

σ2(k) )k≥1 is sorted
in decreasing order. Since the elements of the PCA basis are data-dependent, but depend
only on the Xi’s, the results of Section 3 hold but not the results of Section 4. Similar
results for the PCA basis could be derived from the theory developed in Mas and Ruym-
gaart (2015); Brunel et al. (2016) at the price of further theoretical considerations which
are out of the scope of the paper. We follow in Section 6 an approach based on the prin-
cipal components basis (PCA basis). Other data-driven basis such as the Partial Leasts
Squares (PLS, Preda and Saporta 2005; Wold 1975) can also be considered in practice.

5.4 Tikhonov regularization step

It is well known that the classical Lasso estimator is biased (see e.g. Giraud, 2015, Section 4.2.5)
because the `1 penalization favors too strongly solutions with small `1 norm. To remove it, one
of the current method, called Gauss-Lasso, consists in fitting a least-squares estimator on the
sparse regression model constructed by keeping only the coefficients which are on the support
of the Lasso estimate.

This method is not directly applicable here because least-squares estimators are not well-
defined in infinite-dimensional contexts. Indeed, to compute a least-squares estimator of the
coefficients in the support Ĵ of the Lasso estimator, we need to invert the covariance operator
Γ̂
Ĵ

which is generally not invertible.
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To circumvent the problem, we propose a ridge regression approach (also named Tikhonov
regularization below) on the support of the Lasso estimate. A similar approach has been investi-
gated by Liu and Yu (2013) in high-dimensional regression. They have shown the unbiasedness
of the combination of Lasso and ridge regression. More precisely, we consider the following
minimisation problem

β̃ = arg minβ∈H
J(β̂)

{
1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + ρ ‖β‖2
}

(14)

with ρ > 0 a parameter which can be selected e.g. by V -fold cross-validation. We can see that

β̃ = (Γ̂
Ĵ

+ ρI)−1∆̂,

with ∆̂ := 1
n

∑n
i=1 YiΠĴ

Xi, is an exact solution of problem (14) but need the inversion of the

operator Γ̂
Ĵ

+ ρI to be calculated in practice. In order to compute the solution of (14), we
define below a stochastic gradient descent algorithm. The algorithm is initialised at the solution

β̃
(0)

= β̂
λ(r̂

(σ̂2)
n ),m

(where m =∞ or m = m̂) of the Lasso and, at each iteration, we do

β̃
(k+1)

= β̃
(k)
− αkγ′n(β̃

(k)
), (15)

where

γ′n(β) = −2∆̂ + 2(Γ̂
Ĵ

+ ρI)β,

is the gradient of the criterion to minimise.
In practice we choose αk = α1k

−1 with α1 tuned in order to get convergence at reasonable
speed.

6 Numerical study

In this section, we study practical properties of both estimators β̂λ,∞ and β̂λ,m̂. We first consider
a context where the data are simulated and then an application to the prediction of electricity
consumption.

6.1 Simulation study

We test the algorithm on two examples :

Y = 〈β∗,k,X〉+ ε, k = 1, 2,

where p = 7, H1 = H2 = H3 = L2([0, 1]) equipped with its usual scalar product 〈f, g〉L2([0,1]) =∫ 1
0 f(t)g(t)dt for all f, g, H4 = R4 equipped with its scalar product (a, b) = tab, H5 = H6 =
H7 = R, ε ∼ N (0, σ2) with σ = 0.01. The size of the sample is fixed to n = 1000. The definitions
of β∗,1, β∗,2 and X are given in Table 1.

6.2 Support recovery properties and parameter selection

In Figure 1, we plot the norm of
[
β̂λ,∞

]
j

as a function of the parameter r. We see that, for all

values of r, we have Ĵ ⊆ J∗, and, if r is sufficiently small Ĵ = J∗. We compare in Table 2 the
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Example 1 Example 2

j β∗,1j β∗,2j Xj

1 t 7→ 10 cos(2πt) t 7→ 10 cos(2πt) Brownian motion on [0, 1]

2 0 0 t 7→ a+bt+c exp(t)+sin(dt) with a ∼ U([−50, 50]), b ∼ U([−30, 30]),
c ∼ ([−5, 5]) and d ∼ U([−1, 1]), a, b, c and d independent (Ferraty
and Vieu, 2000)

3 0 0 X2
2

4 0 (1,−1, 0, 3)t Z tA with Z = (Z1, ..., Z4), Zk ∼ U([−1/2, 1/2]), k = 1, ..., 4, A =
−1 0 1 2
3 −1 0 1
2 3 −1 0
1 2 3 −1


5 0 0 N (0, 1)

6 0 0 ‖X2‖L2([0,1]) − E[‖X2‖L2([0,1])]

7 0 1 ‖ log(|X1|)‖L2([0,1]) − E[‖ log(|X1|)‖L2([0,1])]

Table 1: Values of β∗,k and X
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Figure 1: Plot of the norm of
[
β̂λ,∞

]
j
, for j = 1, ..., 7 as a function of r.
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Example 1 Example 2

λ̂
(CV )

λ̂
(σ̂2)

λ̂
(BIC)

λ̂
(CV )

λ̂
(σ̂2)

λ̂
(BIC)

Support recovery of β̂
λ̂,∞ (%) 0 100 0 2 100 4

Support recovery of β̂
λ̂,m̂

(%) / 100 / / 100 /

Table 2: Percentage of times where the true support has been recovered among 50 Monte-Carlo
replications of the estimates.
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Figure 2: Plot of β∗1 (solid black line) and 50 Monte-Carlo replications of
[
β̂λ,∞

]
1

(blue lines).

percentage of time where the true model has been recovered when the parameter r is selected with
the three methods described in Section 5.2. We see that the method based on the estimation of
σ̂2 has very good support recovery performances, but both BIC and CV criterion do not perform
well. Since the CV criterion minimises an empirical version of the prediction error, it tends to
select a parameter for which the method has good predictive performances. However, this is
not necessarily associated with good support recovery properties which could explain the bad
performances of the CV criterion in terms of support recovery. As a consequence, the method
based on the estimation of σ2 is the only one which is considered for the projected estimator

β̂λ,m̂ and in the sequel we will denote simply λ̂ = λ̂
(σ̂2)

.

6.3 Lasso estimators

In Figure 2, we plot the first coordinate
[
β̂
λ̂,∞

]
1

of Lasso estimator β̂
λ̂,∞ (right) and compare

it with the true function β∗1. We can see that the shape of both functions are similar, but their
norms are completely different. Hence, the Lasso estimator recovers the true support but gives
biased estimators of the coefficients βj , j ∈ J∗.

For the projected estimator β̂
λ̂,m̂

, as recommended in Brunel et al. (2016), we set the value

of the constant κ of criterion (9) to κ = 2. The selected dimensions are plotted in Figure 3. We
can see that the dimension selected is quite large in general and that it is larger for model 2 than
for model 1, which indicates that the dimension selection criterion adapts to the complexity of
the model. The resulting estimators are plotted in Figure 4. A similar conclusion as for the
projection-free estimator can be drawn concerning the bias problem.
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Example 1 Example 2

19 20 21 22 23 24 25 36

Dimension selected

0
5

10
15

44 46 51 52 53

Dimension selected

0
5

10
15

20

Figure 3: Bar charts of dimension selected m̂ over the 50 Monte Carlo replications for the
projected estimator β̂

λ̂,m̂
.
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(blue lines).
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Example 1 Example 2
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Figure 5: Plot of β∗1 (solid black line), the solution of the Tikhonov regularization on the
support of the Lasso estimator (dashed blue line) and on the whole support (dotted red line).

Lasso + Tikhonov Proj. Lasso + Tikhonov Tikhonov without Lasso

Example 1 7.5 min 9.3 min 36.0 min
Example 2 7.1 min 16.6 min 36.1 min

Table 3: Computation time of the estimators.

6.4 Final estimator

On Figure 5 we see that the Tikhonov regularization step reduces the bias in both examples.
We can compare it with the effect of Tikhonov regularization step on the whole sample (i.e.
without variable selection). It turns out that, in the case where all the covariates are kept, the
algorithm (15) converges very slowly leading to poor estimates. The computation time of the
estimators on an iMac 3,06 GHz Intel Core 2 Duo – with a non optimal code – are given in
Table 3 for illustrative purposes.

6.5 Application to the prediction of energy use of appliances

The aim is to study appliances energy consumption – which is the main source of energy con-
sumption – in a low energy house situated in Stambruges (Belgium). The data are energy
consumption measurements of electrical appliances (Appliances), light (light), temperature
and humidity in the kitchen (T1 and RH1), in the living room (T2 and RH2), in the laundry room
(T3 and RH3), in the office (T4 and RH4), in the bathroom (T5 and RH5), outside the building on
the north side (T6 and RH6), in the ironing room (T7 and RH7), in the teenagers’ room (T8 and
RH8) and in the parents’ room (T9 and RH9) as well as the temperature (T out), the pressure
(Press mm hg), the humidity (RH out), wind speed (Windspeed), visibility (Visibility) and
dewpoint temperature (Tdewpoint) from the weather station of Chievres, which is the weather
station of the nearest airport.

Translated with www.DeepL.com/Translator (free version) Each variable is measured every
10 minutes from 11th january, 2016, 5pm to 27th may, 2016, 6pm.

The data is freely available on UCI Machine Learning Repository (archive.ics.uci.edu/
ml/datasets/Appliances+energy+prediction) and has been studied by Candanedo et al.
(2017). We refer to this article for a precise description of the experiment and a method to
predict appliances energy consumption at a given time from the measurement of the other
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Figure 6: Plot of the norm of
[
β̂
λ̂,∞

]
j
, for j = 1, ..., 24 as a function of r.

variables.
Here, we focus on the prediction of the mean appliances energy consumption of one day

from the measure of each variable the day before (from midnight to midnight). We then dispose
of a dataset of size n = 136 with p = 24 functional covariates. Our variable of interest is the
logarithm of the mean appliances consumption. In order to obtain better results, we divide the
covariates by their range. More precisely, the j-th curve of the i-th observation Xj

i is transformed
as follows

Xj
i (t)←

Xj
i (t)

maxi′=1,...,n;t′ X
j
i′(t
′)−mini′=1,...,n;t′ X

j
i′(t
′)
.

Recall that usual standardisation techniques are not possible for infinite-dimensional data since
the covariance operator of each covariate is non invertible. The choice of the above transforma-
tion allows us to obtain covariates of the same order. All the variables are then centered.

We first plot the evolution of the norm of the coefficients as a function of r. The results are
shown in Figure 6.

The variables selected by the Lasso criterion are the appliances energy consumption (Appliances),
temperature of the laundry room (T3) and temperature of the teenage room (T8) curves. The
corresponding slopes are represented in Figure 7. We observe that all the curves take larger
values at the end of the day (after 8 pm). This indicates that the values of the three parameters
that influence the most the mean appliances energy consumption of the day after are the one
measured at the end of the day.

Concluding remarks

The objective of the paper was to study how the theoretical results obtained for Lasso and
Group-Lasso penalties can be adapted when the dimension of the covariates is infinite, which is,
in particular, the case of functional data.

Discussion on the theoretical results and open-questions As in finite dimension, the
main issue is to control the relationship between the empirical norm naturally associated with
the least squares criterion, related to the covariance matrix of the covariates, and the norm
inducing the sparsity appearing in the penalty. The main problem here is that, as we prove
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Figure 7: Plot of the coefficients
[
β̂
λ̂,∞

]
j

for j ∈ J(β̂
λ̂,∞) = {1, 7, 17} corresponding to the

coefficients associated to the appliance energy consumption curve (Appliances), temperature
of the laundry room (T3) and temperature of the teenage room (T8).

in Lemma 1, these two norms cannot be equivalent in infinite dimension. The unprojected
estimator seems to have very good performance in practice, and the solution can be computed
easily. However, the rates of convergence of this estimator remains an open question. On the
other hand, we prove sharp oracle inequalities for the projected estimator and we are able to
define a data-based dimension selection criterion that achieves the best trade-off between the
bias and the variance term. However, the rates of convergence of this estimator has not been
proven to be optimal. Intuitively, it is not, and it seems likely that an adaptive Lasso procedure
is needed to obtain an optimal rate in the minimax sense. These questions, which seem complex
questions to solve, are left for future work.

We could also consider an alternative restricted eigenvalues assumption as it appears in Jiang
et al. (2019) and suppose that there exist two positive numbers κ1 and κ2 such that

‖β‖n ≥ κ1‖β‖ − κ2‖β‖1, for all β ∈ H,

where we denote

‖β‖1 :=

p∑
j=1

‖βj‖j for β = (β1, ..., βp) ∈ H.

This assumption does not suffer from the curse of dimensionality as the assumption ARE(s)

does. However, contrary to the finite-dimensional case, the control of the probability that the
assumption holds in the random design case is, to our knowledge, still an open question.

Discussion on the numerical results From the simulation results, both methods seem to
estimate the support of the slope coefficient β∗ well. However, the projected method, which
gives us the most accurate theoretical results, is quite difficult to implement in practice, due
to the cost of constructing the spaces H(m). On the contrary, the unprojected estimator seems
to give interesting results, both in the simulation study and in the application on real data.
However, the theoretical results (see for instance the remark after Corollary 1) argue for the
choice of a finite value of m.

Discussion on the linearity assumption The linearity assumption may be too restrictive
in some contexts. A natural way to consider a nonlinear regression model is to assume that
Y = m(X) + ε where m : H → R is an unknown regression function. However, it has been
shown by Mas (2012) that, without additional structural assumptions on m, this model suffers
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from the curse of dimensionality which manifests itself here by a very low minimax rate of
convergence, typically logarithmic (see also the recent review by Ling and Vieu 2018 and the
discussion in Geenens 2011; Chagny and Roche 2016). This is also the case for additive models

Y = m1(X1) + . . .+mp(X
p) + ε,

with mj unknown functions mj : Hj → R, which could be natural models to consider the sparsity
problem.

This is the reason why semi-parametric models have been introduced and widely studied. In
this category, we can mention for example the partially linear models (Kong et al., 2016; Wong
et al., 2019),

Y = 〈β1, X
1〉1 + . . .+ 〈βp∞ , Xp∞〉p∞ +m1(Xp∞+1) + . . .+mp(X

p) + ε,

where we recall that Xp∞+1, . . . , Xp are scalar or vector covariates and X1, . . . , Xp∞ are func-
tional covariates. The approach developed in this paper could be directly extended to this model
by considering estimators by projection of mj , as in Bunea et al. (2007). However, this intro-
duces an additional bias that needs to be handled in the theoretical results and requires careful
selection of the projection spaces and their dimensions.

This model has been generalized, for example, to the case of single-index models (see Novo
et al. 2021 and references cited).

Y = g1(〈β1, X
1〉1) + . . .+ gp∞(〈βp∞ , Xp∞〉p∞) +m1(Xp∞+1) + . . .+mp(X

p) + ε,

where the gj ’s are unknown real functions. This type of model, poses theoretical questions more
difficult to solve than the previous one, because the coefficients βj do not depend linearly on the
observations.

Acknowledgements I would like to thank Vincent Rivoirard and Gaëlle Chagny for their
helpful advices and careful reading of the manuscript. The research is partly supported by the
french Agence Nationale de la Recherche (ANR-18-CE40-0014 projet SMILES).

A Proofs

A.1 Proof of Lemma 1

Proof. Let J ⊂ {1, . . . , p} such that dim(HJ) > rk(Γ̂J). This implies that dim(ker(Γ̂J)) ≥ 1
and then that there exists δJ = (δj)j∈J ∈ HJ\{0} such that Γ̂JδJ = 0. Define now from δJ ,
δ = (δ1, . . . , δp) ∈ H such that δj = 0 if j /∈ J .

Recall the definition of the operator

Γ̂J : HJ → HJ

β = (βj)j∈J 7→

 1

n

n∑
i=1

∑
j∈J
〈βj , Xj

i 〉jX
j′

i


j′∈J

,

and observe that
‖δ‖2n = 〈Γ̂δ, δ〉 = 0.

Moreover, δ satisfies the constraints

0 =
∑
j /∈J

λj‖δj‖j ≤ c0

∑
j∈J

λj‖δj‖j ,

for all choices of λ1, . . . , λp and for all c0 > 0 which ends the proof.
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A.2 Proof of Proposition 1

Proof. We prove only (8), Inequality (7) follows the same lines. The proof below is largely
inspired by the proof of Lounici et al. (2011), using the improvement of Bellec and Tsybakov
(2017) to obtain a sharp oracle inequality. First remark that some algebra gives us the following
result, true for all β ∈ H(m),

∥∥∥β̂λ,∞ − β∗∥∥∥2

n
− ‖β − β∗‖2n =

2

n

n∑
i=1

〈β̂λ,∞ − β∗,Xi〉〈β̂λ,∞ − β,Xi〉 −
∥∥∥β̂λ,∞ − β∥∥∥2

n
(16)

We can easily verify that the function

γ : β ∈ H 7→ 1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j = γ1(β) + γ2(β)

is a proper convex function. Hence, β̂λ,∞ is a minimum of γ over H if and only if 0 is a

subgradient ∂γ(β̂λ,∞) of γ at the point β̂λ,∞.

The function γ1 : β 7→ 1
n

∑n
i=1 (Yi − 〈β,Xi〉)2 is differentiable on H, with gradient,(

− 2

n

n∑
i=1

(Yi − 〈β, Xi〉)Xj
i

)
1≤j≤p

= − 2

n

n∑
i=1

(Yi − 〈β, Xi〉)Xi

and γ2 : β 7→ 2
∑p

j=1 λj ‖βj‖j is differentiable on D := {β = (β1, ...,βp) ∈ H, ∀j = 1, ..., p, βj 6=
0} with gradient (

2λj
βj
‖βj‖j

)
1≤j≤p

.

Since, for all j = 1, ..., p, the subdifferential of ‖·‖j at the point 0 is the closed unit ball of Hj ,
the subdifferential of γ2 : β 7→ 2

∑p
j=1 λj ‖βj‖j at the point β ∈ Dc, is the set

∂γ2(β) =

{
δ = (δ1, ..., δp) ∈ H, δj = 2λj

βj
‖βj‖j

if βj 6= 0, ‖δj‖j ≤ 2λj if βj = 0

}
. (17)

Hence, the subdifferential of γ at the point β = (β1, ...,βp) ∈ H is the set

∂γ(β) =

{
θ ∈ H, ∃δ ∈ ∂γ2(β), θ = − 2

n

n∑
i=1

(Yi − 〈β,Xi〉)Xi + δ

}
.

Then, since 0 ∈ ∂γ(β̂λ,∞), we know that there exists δ̂ = (δ̂1, . . . , δ̂p) ∈ ∂γ2(β̂λ,∞) such that

0 = − 2

n

n∑
i=1

(Yi − 〈β̂λ,∞,Xi〉)Xi + δ̂ = − 2

n

n∑
i=1

(〈β∗,Xi〉+ εi − 〈β̂λ,∞,Xi〉)Xi + δ̂.

Then
2

n

n∑
i=1

〈β̂λ,∞ − β∗,Xi〉Xi =
2

n

n∑
i=1

εiXi − δ̂
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which implies

2

n

n∑
i=1

〈β̂λ,∞ − β∗,Xi〉〈β̂λ,∞ − β,Xi〉 =
2

n

n∑
i=1

εi〈β̂λ,∞ − β,Xi〉+ 〈β − β̂λ,∞, δ̂〉. (18)

Now remark that, denoting [β̂λ,∞]j the j-th coordinate of β̂λ,∞ we have, by definition of δ̂,

〈β − β̂λ,∞, δ̂〉 =

p∑
j=1

〈βj − [β̂λ,∞]j , δ̂j〉j =

p∑
j=1

〈βj , δ̂j〉j − 2λj

∥∥∥[β̂λ,∞]j

∥∥∥
j

≤ 2

p∑
j=1

λj

(
‖βj‖j −

∥∥∥[β̂λ,∞]j

∥∥∥
j

)
.

(19)

Then inserting (18) and (19) in (16), we get

∥∥∥β̂λ,∞ − β∗∥∥∥2

n
− ‖β − β∗‖2n ≤ 2

n

n∑
i=1

εi〈β − β̂λ,∞,Xi〉+ 2

p∑
j=1

λj

(
‖βj‖j −

∥∥∥[β̂λ,∞]j

∥∥∥
j

)
−
∥∥∥β̂λ,∞ − β∥∥∥2

n
. (20)

Then the key result proven by Bellec et al. (2018, Lemma A.2) in a finite-dimensional context
also holds in our infinite-dimensional context.

We now deal with the term involving the εi’s. Remark that, writing β̂λ,∞ = β̂
(m)

λ,∞ +

β̂
(⊥m)

λ,∞ where β̂
(m)

λ,∞ denotes the orthogonal projection of β̂λ,∞ onto H(m) and β̂
(⊥m)

λ,∞ denotes

the orthogonal projection of β̂λ,∞ onto
(
H(m)

)⊥
,

1

n

n∑
i=1

εi〈β − β̂λ,∞,Xi〉 = 〈β − β̂λ,∞,
1

n

n∑
i=1

εiXi〉

= 〈β − β̂
(m)

λ,∞,
1

n

n∑
i=1

εiXi〉+ 〈β̂
(⊥m)

λ,∞ ,− 1

n

n∑
i=1

εiXi〉

≤
p∑
j=1

〈βj − [β̂
(m)

λ,∞]j ,
1

n

n∑
i=1

εiX
j
i 〉j +

∥∥∥β̂(⊥m)

λ,∞

∥∥∥∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
≤

p∑
j=1

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j

∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥ .
Let A =

⋂p
j=1Aj , with

Aj =


∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

≤ λj/2

 .

On the set A,

2

n

n∑
i=1

εi〈β − β̂λ,∞,Xi〉 ≤
p∑
j=1

λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j

+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
√√√√ p∑

j=1

λ2
j . (21)

28



Since the projector Πm verifies Csupp,∥∥∥[β̂
(m)
λ,∞]j

∥∥∥
j

=
∥∥∥πjΠmβ̂

(m)
λ,∞

∥∥∥ =
∥∥∥Πmπj β̂

(m)
λ,∞

∥∥∥ ≤ ∥∥∥πj β̂λ,∞∥∥∥ =
∥∥∥[β̂λ,∞]j

∥∥∥
j

and gathering equations (20) and (21),

∥∥∥β̂λ,∞ − β∗∥∥∥2

n
− ‖β − β∗‖2n +

p∑
j=1

λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j

≤ 2

p∑
j=1

λj

(∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j

+ ‖βj‖j −
∥∥∥[β̂λ,∞]j

∥∥∥
j

)
−
∥∥∥β̂λ,∞ − β∥∥∥2

n
+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
√√√√ p∑

j=1

λ2
j

≤ 2

p∑
j=1

λj

(∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j

+ ‖βj‖j −
∥∥∥[β̂

(m)
λ,∞]j

∥∥∥
j

)
−
∥∥∥β̂λ,∞ − β∥∥∥2

n
+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
√√√√ p∑

j=1

λ2
j

≤ 4
∑

j∈J(β)

λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j
−
∥∥∥β̂λ,∞ − β∥∥∥2

n
+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
√√√√ p∑

j=1

λ2
j ,

since ‖βj‖j −
∥∥∥[β̂

(m)
λ,∞]j

∥∥∥
j
≤
∥∥∥βj − [β̂

(m)
λ,∞]j

∥∥∥
j
. Finally

∥∥∥β̂λ,∞ − β∗∥∥∥2

n
− ‖β − β∗‖2n ≤ 3

∑
j∈J(β)

λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j
−
∑

j /∈J(β)

λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j

−
∥∥∥β̂λ,∞ − β∥∥∥2

n
+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
√√√√ p∑

j=1

λ2
j

(22)

We consider now two cases :

1. 3
∑

j∈J(β) λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j
≥
∑

j /∈J(β) λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j
.

2. 3
∑

j∈J(β) λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j
<
∑

j /∈J(β) λj

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥
j
.

First remark that in case 2., the result is obvious. Now, in case 1., we have, by definition of

κ̃
(m)
n (s),

κ̃(m)
n (s) ≤

∥∥∥β̂(m)

λ,∞ − β
∥∥∥
n√∑

j∈J(β)

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥2

j

or equivalently √√√√ ∑
j∈J(β)

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥2

j
≤ 1

κ̃
(m)
n (s)

∥∥∥β̂(m)

λ,∞ − β
∥∥∥
n
.

Then, using twice the fact that, for all x, y ∈ R, 3xy ≤ x2 + (9/4)y2, Equation (22) becomes,
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∥∥∥β̂λ,∞ − β∗∥∥∥2

n
− ‖β − β∗‖2n

≤ 3

√ ∑
j∈J(β)

λ2
j

√√√√ ∑
j∈J(β)

∥∥∥[β̂
(m)
λ,∞]j − βj

∥∥∥2

j
−
∥∥∥β̂λ,∞ − β∥∥∥2

n
+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
√√√√ p∑

j=1

λ2
j ,

≤ 3

κ̃
(m)
n (s)

√ ∑
j∈J(β)

λ2
j

∥∥∥β̂(m)

λ,∞ − β
∥∥∥
n
−
∥∥∥β̂λ,∞ − β∥∥∥2

n
+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
√√√√ p∑

j=1

λ2
j ,

≤ 3

κ̃
(m)
n (s)

√ ∑
j∈J(β)

λ2
j

(∥∥∥β̂λ,∞ − β∗∥∥∥
n

+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
n

)

−
∥∥∥β̂λ,∞ − β∥∥∥2

n
+
∥∥∥β̂(⊥m)

λ,∞

∥∥∥
√√√√ p∑

j=1

λ2
j

≤
∥∥∥β̂λ,∞ − β∗∥∥∥2

n
+

9

4(κ̃
(m)
n (s))2

∑
j∈J(β)

λ2
j −

∥∥∥β̂λ,∞ − β∥∥∥2

n
+Rn,m

,

where we recall that

Rn,m =

(∥∥∥β̂(⊥m)

λ,∞

∥∥∥+
3

κ̃
(m)
n (s)

∥∥∥β̂(⊥m)

λ,∞

∥∥∥
n

)√√√√ p∑
j=1

λ2
j ,

which implies the expected result.

We turn now to the upper-bound on the probability of the complement of the event A.
Conditionally to X1, . . . ,Xn, since {εi}1≤i≤n ∼i.i.d N (0, σ2), the variable 1

n

∑n
i=1 εiX

j
i is a

Gaussian random variable taking values in the Hilbert (hence Banach) space Hj . Therefore, from
Proposition 2, we know that, denoting PX(·) = P(·|X1, . . . ,Xn) and EX[·] = E[·|X1, . . . ,Xn],

PX(Acj) ≤ 4 exp

− λ2
j

32EX

[∥∥∥ 1
n

∑n
i=1 εiX

j
i

∥∥∥2

j

]
 = exp

(
− nr2

n

32σ2

)
,

since λ2
j = r2

n
1
n

∑n
i=1

∥∥∥Xj
i

∥∥∥2

j
and

EX

∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
2

j

 =
1

n2

n∑
i1,i2=1

EX

[
εi1εi2〈X

j
i1
, X2

i2〉j
]

=
σ2

n

1

n

n∑
i=1

∥∥∥Xj
i

∥∥∥2

j
.

This implies that

P(Ac) ≤ p exp

(
− nr2

n

32σ2

)
≤ p1−q,

as soon as rn ≥ 4
√

2σ
√
q ln(p)/n.
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A.3 Proof of Theorem 1

Proof. By definition of m̂, we know that, for all m = 1, . . . , Nn,

1

n

n∑
i=1

(
Yi − 〈β̂λ,m̂,Xi〉

)2
+ κσ2 m̂

n
log(n) ≤ 1

n

n∑
i=1

(
Yi − 〈β̂λ,m,Xi〉

)2
+ κσ2m

n
log(n).

Now, we decompose the quantity, for all β ∈ H,

1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 =
1

n

n∑
i=1

(〈β∗ − β,Xi〉+ εi)
2

= ‖β∗ − β‖2n +
2

n

n∑
i=1

εi〈β∗ − β,Xi〉+
1

n

n∑
i=1

ε2
i .

and we obtain ∥∥∥β̂λ,m̂ − β∗∥∥∥2

n
≤

∥∥∥β̂λ,m − β∗∥∥∥2

n
+

2

n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉

+κσ2m

n
log(n)− κσ2 m̂

n
log(n). (23)

Let 1/2 > η > 0, since 2xy ≤ ηx2 + η−1y2 for all x, y ∈ R,

2

n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉 ≤ η
∥∥∥β̂λ,m̂ − β̂λ,m∥∥∥2

n
+ η−1ν2

n

 β̂λ,m̂ − β̂λ,m∥∥∥β̂λ,m̂ − β̂λ,m∥∥∥
n

 ,

where ν2
n(·) := 1

n

∑n
i=1 εi〈·, Xi〉. Now, we define the set :

Bm :=

Nn⋂
m′=1

{
sup

f∈H(max{m,m′}),‖f‖n=1

ν2
n(f) <

κ

2η−1
log(n)σ2 max{m,m′}

n

}
. (24)

On the set Bm, since β̂λ,m̂ − β̂λ,m ∈ H(max{m,m̂}),

2

n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉 ≤ η
∥∥∥β̂λ,m̂ − β̂λ,m∥∥∥2

n
+ η−1 sup

f∈H(max{m,m̂}),‖f‖2n=1

ν2
n(f)

≤ 2η
∥∥∥β̂λ,m̂ − β∗∥∥∥2

n
+ 2η

∥∥∥β̂λ,m − β∗∥∥∥2

n
+
κ

2
log(n)σ2 max{m, m̂}

n
. (25)

Gathering equations (23) and (25), we get, on the set A ∩ Bm,

(1− 2η)
∥∥∥β̂λ,m̂ − β∗∥∥∥2

n
≤ (1 + 2η)

∥∥∥β̂λ,m − β∗∥∥∥2

n

+
κ

2
log(n)σ2 max{m, m̂}

n
+ κ log(n)σ2m

n
− κ log(n)σ2 m̂

n
.

≤ (1 + 2η)
∥∥∥β̂λ,m − β∗∥∥∥2

n
+ 2κ log(n)σ2m

n
.

and the quantity
∥∥∥β̂λ,m − β∗∥∥∥2

n
is upper-bounded in Proposition 1. We obtain the expected

result with η̃ = (1 + 2η)/(1− 2η)− 1 > 0.
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To conclude, since it has already been proven in Proposition 1 that P(Ac) ≤ p1−q, it remains
to prove that there exists a constant CMS > 0 such that

P (∪mm=1Bcm) ≤ CMS

n
.

We have

P (∪mm=1Bcm) ≤
Nn∑
m=1

Nn∑
m′=1

P

(
sup

f∈H(max{m,m′}),‖f‖n=1

ν2
n(f) ≥ κ

2η−1
log(n)σ2 max{m,m′}

n

)
.

We apply Lemma 2 with t =
(

κ
2η−1 log(n)− 1

)
σ2 max{m,m′}

n ≤ κ
6 log(n)σ2 max{m,m′}

n and obtain

P

(
sup

f∈H(max{m,m′}),‖f‖n=1

ν2
n(f) ≥ κ

6
log(n)σ2 max{m,m′}

n

)

≤ exp

(
−2κ log(n) max{m,m′}min

{
κ log(n)

6912
,

1

1536

})
.

Suppose that κ log(n) > 6912/1536 = 9/2 (the other case could be treated similarly), we have,
since 1 ≤ m ≤ Nn ≤ n, and by bounding the second sum by an integral

Nn∑
m=1

Nn∑
m′=1

P

(
sup

f∈H(max{m,m′}),‖f‖n=1

ν2
n(f) ≥ κ

6
log(n)σ2 max{m,m′}

n

)

≤
Nn∑
m=1

(
m∑

m′=1

exp

(
−κ log(n)m

768

)
+

Nn∑
m′=m+1

exp

(
−κ log(n)m′

768

))

≤ Nn n exp

(
−κ log(n)

768

)
+

768Nn

κ log(n)
exp

(
−κ log(n)

768

)
.

Now choosing κ > 2304 we know that there exists a universal constant CMS > 0 such that

P
(
∪Nnm=1B

c
m

)
≤ CMS/n.

Note that the minimal value 2304 for κ is purely theoretical and does not correspond to a
value of κ which can reasonably be used in practice.

A.4 Proof of Theorem 2

Proof. In the proof, the notation C,C ′, C ′′ > 0 denotes quantities which may vary from line to
line but are always independent of n or m.

Let A the set defined in the statement of Proposition 1 and B =
⋂Nn
m=1 Bm the set appearing

in the proof of Theorem 1 (see Equation (24) p. 31). Following the proof of Theorem 1, we know
that, on the set A ∩ B, for all m = 1, . . . , Nn,Mn, for all β ∈ H(m) such that J(β) ≤ s, for all
η̃ > 0, ∥∥∥β̂λ,m̂ − β∗∥∥∥2

n
≤ (1 + η̃)‖β − β∗‖2n +

9

4
(
κ̃

(m)
n (s)

)2

∑
j∈J(β)

λ2
j + 2κ log(n)σ2m

n
, (26)
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since C(η̃) ≤ 2. We also now that

P(Ac) ≤ p1−q and P(Bc) ≤ CMS

n
.

We define now the set C = C1 ∩ C2 where

C1 :=

{
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2n‖β‖2Γ
− 1

∣∣∣∣ ≤ 1

2

}

C2 :=

{
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2n − ‖β‖2Γ‖β‖2

∣∣∣∣ ≤ 1

2

}
.

and prove that

P(Cc) ≤ 2n2 exp(−cmaxn), cmax = max
{

(4btr(Γ)(4tr(Γ) + 1/2))−1; r2
Γ/16b

}
, (27)

where rΓ > 0 depends only on Γ and is defined below.
We apply Proposition 4 to bound

P(Cc1) = P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2n − ‖β‖2Γ‖β‖2Γ

∣∣∣∣ > 1

2

)

≤ 2N2
n exp

− nρ2(Γ|Nn)

4b
∑Nn

j=1 ṽj

(
4
∑Nn

j=1 ṽj +
ρ(Γ|Nn )

2

)


≤ 2N2
n exp

(
−

nρ2(Γ|Nn)

16btr2(Γ|Nn)

)
. (28)

We remark that

ρ(Γ|m) = sup
f∈H(Nn)\{0}

‖Γ|Nnf‖
‖f‖

−→
m→+∞

ρ(Γ) and tr(Γ|m) =

Nn∑
k=1

〈Γϕ(k),ϕ(k)〉 −→
m→+∞

tr(Γ),

then
ρ(Γ|m)

tr(Γ|m)
−→

m→+∞

ρ(Γ)

tr(Γ)
> 0,

and there exists a constant rΓ > 0 such that, for all m,

ρ(Γ|m)

tr(Γ|m)
≥ rΓ.

Then from Equation (28), and the fact that Nn ≤ n, we get that

P(Cc1) ≤ 4n2 exp
(
−rΓn

16b

)
.

We turn now to the upper-bound on the probability of Cc2 and apply again Proposition 4

P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2n − ‖β‖2Γ‖β‖2

∣∣∣∣ > 1

2

)
≤ 2N2

n exp

− n/4

b
∑Nn

j=1 ṽj

(
4
∑Nn

j=1 ṽj + 1
2

)


≤ 2N2
n exp

(
− n

4btr(Γ)
(
4tr(Γ) + 1

2

))
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and the upper-bound (27) comes from the fact that

Nn∑
k=1

ṽk =

Nn∑
k=1

E[〈ϕ(k),X1〉2] =

Nn∑
k=1

〈Γϕ(k),ϕ(k)〉 = tr(Γ|Nn) ≤ tr(Γ).

On the set A ∩ B ∩ C, we have then, for all m = 1, . . . , Nn,∥∥∥β̂λ,m̂ − β∗∥∥∥2

Γ
≤ 2

∥∥∥β̂λ,m̂ − β(∗,m)
∥∥∥2

Γ
+ 2

∥∥∥β(∗,m) − β∗
∥∥∥2

Γ

≤ 4
∥∥∥β̂λ,m̂ − β(∗,m)

∥∥∥2

n
+ 2

∥∥∥β(∗,m) − β∗
∥∥∥2

Γ

From (26), we get

∥∥∥β̂λ,m̂ − β∗∥∥∥2

Γ
≤ C

‖β − β∗‖2n +
1(

κ̃
(m)
n (s)

)2

∑
j∈J(β)

λ2
j + κ

log n

n
σ2m

+
∥∥∥β∗ − β(∗,m)

∥∥∥2

Γ

)
,

for a constant C > 0. Now remark that, on the set C1∥∥∥β(∗,m) − β
∥∥∥2

n
≤ 3

2

∥∥∥β(∗,m) − β
∥∥∥2

Γ

and, for all J ⊂ {1, . . . , p}, for all δ ∈ H(m), such that
∑

j∈J ‖δj‖2j 6= 0,

1

2

‖δ‖2Γ√∑
j∈J ‖δj‖2j

≤ ‖δ‖2n√∑
j∈J ‖δj‖2j

≤ 3

2

‖δ‖2Γ√∑
j∈J ‖δj‖2j

,

which implies
1

2
κ(m)
n (s) ≤ κ̃(m)

n (s) ≤ 3

2
κ(m)
n (s).

We obtain

∥∥∥β̂λ,m̂ − β∗∥∥∥2

Γ
≤ C ′ min

m=1,...,Nn
min

β∈H(m),|J(β)|≤s

‖β − β∗‖2Γ +
1(

κ
(m)
n (s)

)2

∑
j∈J(β)

λ2
j

+κ
log n

n
σ2m+

∥∥∥β∗ − β(∗,m)
∥∥∥2

Γ
+
∥∥∥β∗ − β(∗,m)

∥∥∥2

n

}
. (29)

Now, let ζn,m = log(n)√
n
‖β(∗,⊥m)‖ and

D :=

Nn⋂
m=1

{
‖β(∗,⊥m)‖2n ≤ ‖β(∗,⊥m)‖2Γ + ζn,m

}
,

where we recall the notation β(∗,⊥m) = β∗ − β(∗,m). We give now an upper-bound on P(Dc)
which completes the proof. Remark that

‖β(∗,⊥m)‖2n =
1

n

n∑
i=1

〈β(∗,⊥m),Xi〉2,
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and that, for all i = 1, . . . , n,

E
[
〈β(∗,⊥m),Xi〉2

]
= ‖β(∗,⊥m)‖2Γ,

we can rewrite

D :=

Nn⋂
m=1

{
1

n

n∑
i=1

(
〈β(∗,⊥m),Xi〉2 − E

[
〈β(∗,⊥m),X1〉2

])
≤ ζn,m

}
.

Hence

P(Dc) ≤
Nn∑
m=1

P

(
1

n

n∑
i=1

(
〈β(∗,⊥m),Xi〉2 − E

[
〈β(∗,⊥m),X1〉2

])
> ζn,m

)
.

We upper-bound the quantities above using Bernstein’s inequality (Proposition 3, p. 36).

We have, for ` ≥ 2,

E
[
〈β(∗,⊥m),Xi〉2`〉

]
≤ ‖β(∗,⊥m)‖2`E

[
‖Xi‖2`

]
≤ `!

2
‖β(∗,⊥m)‖2v2

Mom

(
‖β(∗,⊥m)‖cMom

)`−2
,

applying Bernstein inequality, we get

P(Dcn) ≤
Nn∑
m=1

exp

(
−

nζ2
n,m/2

‖β(∗,⊥m)‖2v2
Mom + ζn,m‖β(∗,⊥m)‖cMom

)
.

We get, since Nn ≤ n,

P(Dcn) ≤ Nn exp

− log2(n)

2v2
Mom + log(n)√

n
cMom

 ≤ CMom

n
,

with CMom > 0 depending only on vMom and cMom.

Then, on A ∩ B ∩ C ∩ D, (29) becomes, for all m = 1, . . . , Nn,

∥∥∥β̂λ,m̂ − β∗∥∥∥2

Γ
≤ C

‖β − β∗‖2Γ +
1(

κ
(m)
n (s)

)2

∑
j∈J(β)

λ2
j + κ

log n

n
σ2m

+
∥∥∥β(∗,⊥m)

∥∥∥2

Γ
+ ζn,m

)
.

We then upper-bound ζn,m as follows

ζn,m ≤
(
κ(m)
n (s)

)2 ∥∥∥β(∗,⊥m)
∥∥∥2

+
log2(n)

n
(
κ

(m)
n (s)

)2 .
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B Control of empirical processes

Lemma 2. For all t > 0, for all m,

PX

 sup
f∈H(m),‖f‖n=1

(
1

n

n∑
i=1

εi〈f ,Xi〉

)2

≥ σ2m

n
+ t


≤ exp

(
−min

{
n2t2

1536σ4m
;

nt

512σ2

})
,

where PX(·) := P(·|X1, . . . ,Xn) is the conditional probability given X1, . . . ,Xn.

Proof of Lemma 2. We follow the ideas of Baraud (2000). Let m be fixed, and

Sm :=
{
x = (x1, . . . , xn)t ∈ Rn, ∃f ∈ H(m), ∀i, xi = 〈f ,Xi〉

}
.

We known that Sm is a linear subspace of Rn and that

sup
f∈H(m),‖f‖n=1

1

n

n∑
i=1

εi〈f ,Xi〉 =
1

n
sup

x∈Sm,xtx=n
εtx =

1√
n

sup
x∈Sm,xtx=1

εtx =
1√
n

√
εtPmε,

where ε = (ε1, . . . , εn)t and Pm is the matrix of the orthogonal projection onto Sm. This gives
us

PX

 sup
f∈H(m),‖f‖n=1

(
1

n

n∑
i=1

εi〈f ,Xi〉

)2

≥ σ2m

n
+ t

 = PX

(
εtPmε ≥ σ2m+ nt

)
.

We apply now Bellec (2019, Theorem 3), with A = Pm and obtain the expected results, since

E[εtPmε] = σ2tr(Pm) = σ2m,

and since the Frobenius norm ‖ · ‖F of Pm is equal to ‖Pm‖F =
√

tr(Πt
mΠm) =

√
m and its

matrix norm ‖Pm‖2 = 1.

C Tails inequalities

Proposition 2. Equivalence of tails of Banach-valued random variables (Ledoux and
Talagrand, 1991, Equation (3.5) p. 59).

Let X be a Gaussian random variable in a Banach space (B, ‖ · ‖). For every t > 0,

P (‖X‖ > t) ≤ 4 exp

(
− t2

8E [‖X‖2]

)
.

Proposition 3. Bernstein inequality (Birgé and Massart, 1998, Lemma 8).

Let Z1, . . . , Zn be independent random variables satisfying the moments conditions

1

n

n∑
i=1

E
[
|Zi|`

]
≤ `!

2
v2c`−2, for all ` ≥ 2,

for some positive constants v and c. Then, for any positive ε,

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − E [Zi]

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− nε2/2

v2 + cε

)
.
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Proposition 4. Norm equivalence in finite subspaces.

Let X1, ...,Xn be i.i.d copies of a random variable X verifying Assumption (H
(1)
Mom).Then,

for all t > 0, for all weights w = (w1, ..., wm) ∈]0,+∞[m,

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2n − ‖β‖2Γ‖β‖2w

∣∣∣∣ > t

)
≤ 2m2 exp

− nt2

b
∑m

j=1
ṽj
wj

(
4
∑m

j=1
ṽj
wj

+ t
)
 , (30)

where ‖β‖2n = 1
n

∑n
i=1〈β,Xi〉2, ‖β‖2Γ = E

[
‖β‖2n

]
, and ‖β‖2w =

∑m
j=1wj〈β,ϕ(j)〉2 and

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2n − ‖β‖2Γ‖β‖2Γ

∣∣∣∣ > t

)
≤ 2m2 exp exp

− nρ2(Γ|m)t2

b
∑m

j=1 ṽj

(
4
∑m

j=1 ṽj + tρ(Γ|m)
)
 .

(31)

Proof of Proposition 4. We have, for all β ∈ H(m), ‖β‖2n = 〈Γ̂β,β〉. Hence,

‖β‖2n − ‖β‖2Γ = 〈(Γ̂− Γ)β,β〉 =
m∑

j,k=1

〈β,ϕ(j)〉〈β,ϕ(k)〉〈(Γ̂− Γ)ϕ(j),ϕ(k)〉 = btΦmb,

with b :=
(
〈β,ϕ(1)〉, ..., 〈β,ϕ(m)〉

)t
and Φm =

(
〈(Γ̂− Γ)ϕ(j),ϕ(k)〉

)
1≤j,k≤m

which implies

sup
β∈H(m)\{0}

∣∣∣∣‖β‖2n − ‖β‖2Γ‖β‖2w

∣∣∣∣ = ρ(W−1/2ΦmW
−1/2) ≤

√
tr(W−1ΦmΦt

mW
−1)

=

√√√√ m∑
j,k=1

〈(Γ̂− Γ)ϕ(j),ϕ(k)〉2
wjwk

,

where ρ denotes the spectral radius, andW the diagonal matrix with diagonal entries (w1, . . . , wm).
We then have

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2n − ‖β‖2Γ‖β‖2w

∣∣∣∣ > t

)
≤ P

 m∑
j,k=1

〈(Γ̂− Γ)ϕj ,ϕk〉2

wjwk
> t2


≤ P

 m⋃
j,k=1

{
〈(Γ̂− Γ)ϕ(j),ϕ(k)〉2

wjwk
> pj,kt

2

} ,

≤
m∑

j,k=1

P


∣∣∣〈(Γ̂− Γ)ϕ(j),ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt

 ,

where pj,k :=
ṽj ṽk
wjwk

(
∑m

`=1 ṽ`/w`)
−2 (remark that

∑m
j,k=1 pj,k = 1). Now, for all j, k = 1, ...,m,

P


∣∣∣〈(Γ̂− Γ)ϕ(j),ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt


= P

(∣∣∣∣∣ 1n
n∑
i=1

〈ϕ(j),Xi〉〈ϕ(k),Xi〉√
wjwk

− E

[
〈ϕ(j),Xi〉〈ϕ(k),Xi〉√

wjwk

]∣∣∣∣∣ > √pj,kt
)
.
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By Cauchy-Schwarz inequality, for all ` ≥ 2,

E

∣∣∣∣∣〈ϕ(j),Xi〉〈ϕ(k),Xi〉√
wjwk

∣∣∣∣∣
`
 ≤

√
E
[
〈ϕ(j),X〉2`

]
E
[
〈ϕ(k),X〉2`

]
√
wjwk

`

≤ `!b`−1

√
ṽj
wj

`√
ṽk
wk

`

=
`!

2
2b
ṽj
wj

ṽk
wk

(
b

√
ṽj
wj

√
ṽk
wk

)`−2

.

Hence, Bernstein’s inequality (Lemma 3) implies that

P


∣∣∣〈(Γ̂− Γ)ϕ(j),ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt

 ≤ 2 exp

− npj,kt
2/2

2b
ṽj ṽk
wjwk

+ b
√

ṽj
wj

√
ṽk
wk

√
pj,kt

 ,

and the definition of pj,k implies Equation (30).

We proceed similarly to prove Equation (31) from the upper-bound

sup
β∈H(m)\{0}

∣∣∣∣‖β‖2n − ‖β‖2Γ‖β‖2Γ

∣∣∣∣ = ρ(Γ
−1/2
|m ΦmΓ

−1/2
|m ) ≤ ρ(Φm)ρ(Γ−1

|m ) = ρ(Φm)ρ(Γ|m)−1

Following the same reasoning as above with w1 = . . . = wm = 1, we get, for all t > 0,

P (ρ(Φm) > t) ≤ 2m2 exp

− nt2

b
∑m

j=1 ṽj

(
4
∑m

j=1 ṽj + t
)
 ,

which proves Equation (31).
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