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VARIABLE SELECTION AND ESTIMATION IN MULTIVARIATE
FUNCTIONAL LINEAR REGRESSION VIA THE LASSO

ANGELINA ROCHE

Abstract. In more and more applications, a quantity of interest may depend on several
covariates, with at least one of them infinite-dimensional (e.g. a curve). To select the
relevant covariates in this context, we propose an adaptation of the Lasso method. Two
estimation methods are defined. The first one consists in the minimisation of a criterion
inspired by classical Lasso inference under group sparsity (Yuan and Lin, 2006; Lounici
et al., 2011) on the whole multivariate functional space H. The second one minimises
the same criterion but on a finite-dimensional subspace of H which dimension is chosen
by a penalized leasts-squares method base on the work of Barron et al. (1999). Sparsity-
oracle inequalities are proven in case of fixed or random design in our infinite-dimensional
context. To calculate the solutions of both criteria, we propose a coordinate-wise descent
algorithm, inspired by the glmnet algorithm (Friedman et al., 2007). A numerical study
on simulated and experimental datasets illustrates the behavior of the estimators.

Keywords: Functional data analysis. Multivariate functional linear model. Variable se-
lection. Lasso. High-dimensional data analysis. Projection estimators.

1. Introduction

In more and more applications, the observations are measured over fine grids (e.g. time
grids). The approach of Functional Data Analysis (Ramsay and Silverman, 2005; Ferraty
and Vieu, 2006; Ferraty and Romain, 2011) consists in modeling the data as a set of
random functions. It has proven to be very fruitful in many applications, for instance
in spectrometrics (see e.g. Pham et al., 2010), in the study of electroencephalograms (Di
et al., 2009), biomechanics (Sørensen et al., 2012) and econometrics (Laurini, 2014).

In some contexts, and more and more often, the data is a vector of curves. This is the
case in Aneiros-Pérez et al. (2004) where the aim is to predict ozone concentration of the
day after from ozone concentration curve, NO concentration curve, NO2 concentration
curve, wind speed curve and wind direction of the current day. Another example comes
from nuclear safety problems where we study the risk of failure of a nuclear reactor vessel
in case of loss of coolant accident as a function of the evolution of temperature, pressure
and heat transfer parameter in the vessel (Roche, 2018). The aim of the article is to
study the link between a real response Y and a vector of covariates X = (X1, ..., Xp) with
observations {(Yi,Xi), i = 1, ..., n} where Xi = (X1

i , ..., X
p
i ) is a vector of covariates which

can be of different nature (curves or vectors).
We suppose that, for all j = 1, ..., p, i = 1, ..., n, Xj

i ∈ Hj where (Hj, ‖·‖j , 〈·, ·〉j) is a

separable Hilbert space. Our covariate {Xi}1≤i≤n then lies in the space H = H1× ...×Hp,
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2 A. ROCHE

which is also a separable Hilbert space with its natural scalar product

〈f ,g〉 =

p∑
j=1

〈fj, gj〉j for all f = (f1, ..., fp),g = (g1, ..., gp) ∈ H

and usual norm ‖f‖ =
√
〈f , f〉.

We suppose that our observations follow the multivariate functional linear model,

Yi =

p∑
j=1

〈β∗j , X
j
i 〉j + εi = 〈β∗,Xi〉+ εi, (1)

where, β∗ = (β∗1, ...,β
∗
p) ∈ H is unknown and {εi}1≤i≤n ∼i.i.d. N (0, σ2). We suppose

that {Xi}1≤i≤n can be either fixed elements of H (fixed design) or i.i.d centered random
variables in H (random design) and that it is independent of {εi}1≤i≤n.

Note that our model does not require the Hj’s to be functional spaces, we can have
Hj = R or Hj = Rd, for some j ∈ {1, ..., p}. However, our case of interest is when the
dimension of Hj is infinite, for at least one j ∈ {1, ..., p}. We precise that Model (1) also
handles the case where Yi depends on a unique functional variable Zi : T → R and we
want to determine if the observation of the entire curve {Zi(t), t ∈ T} is useful to predict
Yi or if it is sufficient to observe it on some subsets of T . For this, we define T1, . . . , Tp a

partition of the set T in subintervals and we consider the restrictions Xj
i : Tj → R of Zi

to Tj. If the corresponding coefficient β∗j is null, we know that Xj
i is, a priori, not relevant

to predict Yi and, hence, that the behavior of Zi on the interval Tj has no significant
influence on Yi. The idea of using Lasso type criterion or Dantzig selector in this context,
called the FLIRTI method (for Functional LInear Regression That is Interpretable) has
been developed by James et al. (2009).

The functional linear model, which corresponds to the case p = 1 in Equation (1), has
been extensively studied. It has been defined by Cardot et al. (1999) who have proposed
an estimator based on principal components analysis. Splines estimators have also been
proposed by Ramsay and Dalzell (1991); Cardot et al. (2003); Crambes et al. (2009) as
well as estimators based on the decomposition of the slope function β in the Fourier
domain (Ramsay and Silverman, 2005; Li and Hsing, 2007; Comte and Johannes, 2010)
or in a general basis (Cardot and Johannes, 2010; Comte and Johannes, 2012). In a
similar context, we also mention the work of Koltchinskii and Minsker (2014) on Lasso.
In this article, it is supposed that the function β is well represented as a sum of small
number of well-separated spikes. In the case p = 2, H1 a function space and H2 = Rd,
Model (1) is called partial functional linear regression model and has been studied e.g.
by Shin (2009); Shin and Lee (2012) who have proposed principal components regression
and ridge regression approaches for the estimation of the two model coefficients.

Little work has been done on the multivariate functional linear model which corresponds
to the case p ≥ 2 and the Hj’s are all function spaces for all j = 1, . . . , p. Up to
our knowledge, the model has been first mentioned in the work of Cardot et al. (2007)
under the name of multiple functional linear model. An estimator of β is defined with an
iterative backfitting algorithm and applied to the ozone prediction dataset initially studied
by Aneiros-Pérez et al. (2004). Variable selection is performed by testing all the possible
models and selecting the one minimising the prediction error over a test sample. Let us also
mention the work of Chiou et al. (2016) who consider a multivariate linear regression model
with functional output. They define a consistent and asymptotically normal estimator
based on the multivariate functional principal components initially proposed by Chiou
et al. (2014).
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A lot of research has been done on variable selection in the classical multivariate regres-
sion model. One of the most common method, the Lasso (Tibshirani, 1996; Chen et al.,
1998), consists in the minimisation of a leasts-squares criterion with an `1 penalisation.
The statistical properties of the Lasso estimator are now well understood. Sparsity oracle
inequalities have been obtained for predictive losses in particular in standard multivari-
ate or nonparametric regression models (see e.g. Bunea et al., 2007; Bickel et al., 2009;
Koltchinskii, 2009; Bertin et al., 2011).

There are now a lot of work about variations and improvements of the `1-penalisation.
We can cite e.g. the adaptive Lasso (Zou, 2006; van de Geer et al., 2011), the fused Lasso
(Tibshirani et al., 2005) and the elastic net (Zou and Hastie, 2005). Among them, the
Group-Lasso (Yuan and Lin, 2006) allows to handle the case where the set of covariables
may be partitionned into a number of groups. Huang and Zhang (2010) show that, under
some conditions called strong group sparsity, the Group-Lasso penalty is more efficient
than the Lasso penalty. Lounici et al. (2011) have proven oracle-inequalities for the pre-
diction and `2 estimation error which are optimal in the minimax sense. Their theoretical
results also demonstrate that the Group-Lasso may improve the Lasso in prediction and
estimation. van de Geer (2014) has proven sharp oracle inequalities for general weakly
decomposable regularisation penalties including Group-Lasso penalties. This approach
has revealed fruitful in many contexts such as times series (Chan et al., 2014), generalized
linear models (Blazère et al., 2014) in particular Poisson regression (Ivanoff et al., 2016) or
logistic regression (Meier et al., 2008; Kwemou, 2016), the study of panel data (Li et al.,
2016), prediction of breast or prostate cancers (Fan et al., 2016; Zhao et al., 2016).

Some recent contributions (see e.g. Goia and Vieu, 2016; Sangalli, 2018) highlight the
necessity to work at the interface between high-dimensional statistics, functional data
analysis and machine learning to face more effectively the specific problems of data of high
or infinite-dimensional nature. The literature of functional data analysis has first focused
naturally on dimension reduction methods (mainly splines projection or projection on the
principal components basis in Ramsay and Silverman 2005; Ferraty and Romain 2011) to
reduce the complexity of the data. More recently, the clustering approach has been also
considered (see e.g. Devijver, 2017) as well as variable selection methods using `1-type
penalizations. Kong et al. (2016) have proposed a Lasso type shrinkage penalty function
allowing to select the adequate Karhunen-Loève coefficients of the functional variable
simultaneously with the coefficients of the vector variable in the partial functional linear
model (case p = 2, H1 = L2(T ), H2 = Rd of Model (1)). Group-Lasso and adaptive
Group-Lasso procedures have been proposed by Aneiros and Vieu (2014, 2016) to select
the important discrete observations (impact points) on a regression model where the
covariates are the discretized values (X(t1), ..., X(tp)) of a random function X. Bayesian
approaches have also been proposed by Grollemund et al. (2019) in the case where the
β∗j ’s are sparse step functions. The problem of variable selection in infinite-dimensional
contexts is also considered in the machine learning community. Bach (2008); Nardi and
Rinaldo (2008) have then proven estimation and model selection consistency, prediction
and estimation bounds for the Group-Lasso estimator, including the case of multiple
kernel learning, which is infinite-dimensional.

Contribution of the paper. We consider the following estimators, which can be seen as
generalisations of the Lasso procedure in functional product spaces H, drawing inspiration
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from the Group-Lasso criterion

β̂λ ∈ arg minβ=(β1,...,βp)∈H

{
1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j

}
, (2)

and

β̂λ,m ∈ arg minβ=(β1,...,βp)∈H(m)

{
1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j

}
, (3)

where λ = (λ1, ..., λp) are positive parameters and (H(m))m≥1 is a sequence of nested
finite-dimensional subspaces of H, to be specified later. A data-driven dimension selection
criterion is proposed to select the dimension m, inspired by the works of Barron et al.
(1999) and their adaptation to the functional linear model by Comte and Johannes (2010,
2012); Brunel and Roche (2015); Brunel et al. (2016).

We start in Section 2 with a discussion on the restricted eigenvalues assumption in
functional spaces. We prove in Section 3 a sparsity oracle inequality for the empirical
prediction error in the case of fixed or random design. In Section 4 a sparsity oracle
inequality for the (theoretical) prediction error in the case of random design, under some
assumptions on the design distribution, as well as convergence rates of the projected
estimator, are given. In Section 5, a computational algorithm, inspired by the glmnet

algorithm (Friedman et al., 2010), is defined for the estimator β̂λ, allowing to minimise
Criterion (3) directly in the space H, without projecting the data. The estimation and
support recovery properties of the estimators are studied in Section 6 on simulated dataset
and applied to the prediction of energy use of appliances.

Notations. Throughout the paper, we denote, for all J ⊆ {1, ..., p} the sets

HJ :=
∏
j∈J

Hj.

We also define

Γ̂ : β ∈ H 7→ 1

n

n∑
i=1

〈β,Xi〉Xi,

the empirical covariance operator associated to the data and its restricted versions

Γ̂J,J ′ : β = (βj, j ∈ J) ∈ HJ 7→

(
1

n

n∑
i=1

∑
j∈J

〈βj, Xj
i 〉jX

j′

i

)
j′∈J ′

∈ HJ ′ ,

defined for all J, J ′ ⊆ {1, ..., p}. For simplicity, we also denote Γ̂J := Γ̂J,J , Γ̂J,j := Γ̂J,{j}

and Γ̂j := Γ̂{j},{j}.
For β = (β1, ...,βp) ∈ H, we denote by J(β) := {j, βj 6= 0} the support of β and
|J(β)| its cardinality.

2. Discussion on the restricted eigenvalues assumption

2.1. The restricted eigenvalues assumption does not hold if dim(H) = +∞.
Sparsity oracle inequalities are usually obtained under conditions on the design matrix.
One of the most common is the restricted eigenvalues property (Bickel et al., 2009; Lounici
et al., 2011). Translated to our context, this assumption may be written as follows.
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(ARE(s)): There exists a positive number κ = κ(s) such that

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H\{0},
∑
j /∈J

λj ‖δj‖j ≤ 7
∑
j∈J

λj ‖δj‖j

 ≥ κ,

with ‖f‖n :=
√

1
n

∑n
i=1〈f,Xi〉2 the empirical norm on H naturally associated with our

problem.
As explained in Bickel et al. (2009, Section 3), this assumption can be seen as a ”positive

definiteness” condition on the Gram matrix restricted to sparse vectors. In the finite
dimensional context, van de Geer and Bühlmann (2009) have proven that this condition
covers a large class of design matrices.

The next lemma, proven in Section A.1, shows that this assumption does not hold in
our context.

Lemma 1. Suppose that dim(H) = +∞, then, for all s ∈ {1, ..., p}, for all c0 > 0

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H\{0},
∑
j /∈J

λj ‖δj‖j ≤ c0

∑
j∈J

λj ‖δj‖j

 = 0.

2.2. Finite-dimensional subspaces and restriction of the restricted eigenvalues
assumption. The infinite-dimensional nature of the data is the main obstacle here. To
circumvent the dimensionality problem, we restrict the assumption to finite-dimensional
spaces. We need first to define a sequence of subspaces of H ”stable” (in a certain sense)
by the map J . We first define an orthonormal basis (ϕ(k))k≥1 of H such that, for all
β ∈ H, for all m ≥ 1,

J(β(m)) ⊆ J(β(m+1)) ⊆ J(β) (4)

where, for allm ≥ 1, β(m) is the orthonormal projection onto H(m) := span
{
ϕ(1), . . . ,ϕ(m)

}
.

An exemple of construction of such basis is given in Section 5.3.
We set

κ(m)
n := inf

β∈H(m)\{0}

‖β‖n
‖β‖

.

By definition, the sequence (κ
(m)
n )m≥1 is nonincreasing, we then define

Mn := max
m≥1

{
κ(m)
n > 0

}
= max

m≥1

{
H(m) ∩Ker(Γ̂) = {0}

}
.

We remark that κ
(m)
n is the smallest eigenvalue of the matrix Γ̂

1/2

|m where Γ̂|m :=(
〈Γ̂ϕ(k),ϕ(k′)〉

)
1≤k,k′≤m

and we can see easily that

κ(m)
n ≤

√
µ̂m,

where (µ̂k)k≥1 are the eigenvalues of Γ̂ sorted in decreasing order, with equality in the

case where (ϕ̂(k))k≥1 are the associated eigenfunctions. Since Γ̂ is an operator of rank at

most n (its image is included in span{Xj
i , i = 1, ..., n} by definition), we have necessarily

Mn ≤ n.
We could also consider an alternative restricted eigenvalues assumption as it appears

in Jiang et al. (2019) and suppose that there exists two positive numbers κ1 and κ2 such
that

‖β‖n ≥ κ1‖β‖ − κ2‖β‖1, for all β ∈ H,
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where we denote

‖β‖1 :=

p∑
j=1

‖βj‖j for β = (β1, ..., βp) ∈ H.

This assumption does not suffer from the curse of dimensionality as the assumption ARE(s)

does. However, contrary to the finite-dimensional case, it has not been proven yet that
the assumption could hold with high probability in the random design case.

Another alternative consists in considering the following definition for κ
(m)
n :

κ̃
(m)
n (s) :=

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H(m)\{0},
∑
j /∈J

λj ‖δj‖j ≤ c0

∑
j∈J

λj ‖δj‖j

 .

The results of Proposition 1, Theorem 1 and 2 are similar, except for Proposition 2 which
is not true any more and can be replaced by a control of the upper-bound of the following
inequality (the lower-bound being controlled by Proposition 2):

min
J⊆{1,...,p};|J |≤s

ρ
(
Γ̂
−1/2

J |m

)−1

≥ κ̃
(m)
n (s) ≥ ρ

(
Γ̂
−1/2

m

)−1

= κ(m)
n ,

where Γ̂J |m =
(
〈Γ̂Jϕ

(k)
J ,ϕ

(k′)
J 〉J

)
1≤k,k′≤m

where ϕ
(k)
J = (ϕ

(k)
j , j ∈ J) ∈ HJ and 〈f ,g〉J =∑

j∈J〈fj, gj〉j is the usual scalar product of HJ .

3. Sparsity oracle-inequalities for the empirical prediction error

In this section, the design is supposed to be either fixed or random. We prove the
following inequality.

Proposition 1. Let

A =

p⋂
j=1

Aj with Aj :=


∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

≤ λj
2

 .

If A is verified, then, for all m = 1, ...,Mn, for all β ∈ H(m), for all η̃ > 0,∥∥∥β̂λ,m − β∗
∥∥∥2

n
≤ (1 + η̃) min

β∈H(m)

2 ‖β − β∗‖2
n +

C(η̃)

(κ
(m)
n )2

∑
j∈J(β)

λ2
j

 (5)

and∥∥∥β̂λ − β∗
∥∥∥2

n
≤ (1 + η̃) min

1≤m≤Mn

min
β∈H(m)

2 ‖β − β∗‖2
n +

C(η̃)

(κ
(m)
n )2

∑
j∈J(β)

λ2
j +Rn,m

 , (6)

with C(η̃) = 16(η̃−1 + 1) and

Rn,m := 4
∑
j∈J(β)

λj

(∥∥∥β̂(⊥m)
∥∥∥+

1

κ
(m)
n

∥∥∥β̂(⊥m)
∥∥∥
n

)
,

with β̂
(⊥m)

= β̂ − β̂
(m)

the orthogonal projection onto (H(m))⊥.
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Moreover, let q > 0 and choose

λj = rn

(
1

n

n∑
i=1

‖Xj
i ‖2

j

)1/2

with rn = Aσ

√
q ln(p)

n
(A ≥ 4

√
2), (7)

we have
P (Ac) ≤ p1−q.

The results of Proposition 1 give us an oracle-inequality for the projected estimator

β̂λ,m. However, the upper-bound can be quite large if m is not well chosen.

• When m is small the distance ‖β∗−β‖n between β∗ and any β ∈ H(m) is generally
large.
• When m is sufficiently large, we know the distance ‖β∗ − β‖n is small but the

term C(η̃)

(κ
(m)
n )2

∑
j∈J(β) λ

2
j may be very large since κ

(m)
n is close to 0 when m is close

to Mn.

The estimator β̂λ, which is not projected, partially resolves the issues of the projected
estimator. However, the price is the addition of the term Rn,m that is hardly controlable.

To counter the drawbacks of both estimators, a model selection procedure, in the spirit
of Barron et al. (1999), is introduced. We select

m̂ ∈ arg minm=1,...,min{Nn,Mn}

{
1

n

n∑
i=1

(
Yi − 〈β̂λ,m,Xi〉

)2

+ κσ2m log(n)

n

}
, (8)

where κ > 0 is a constant which can be calibrated by a simulation study or selected from
the data by methods stemmed from slope heuristics (see e.g. Baudry et al. 2012) and

Nn := max{m ≤ n, µm ≥
√

log3(n)/n}.
We obtain the following sparsity oracle inequality for the selected estimator β̂λ,m̂.

Theorem 1. Let q > 0 and λ = (λ1, . . . , λp) chosen as in Equation (7). There exists
a minimal value κmin and a constant CMS > 0 such that, with probability larger than
1− p1−q − CMS/n, if κ > κmin,

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

n
≤ min

m=1,...,min{Nn,Mn}
min

β∈H(m)

C ‖β − β∗‖2
n +

C ′

(κ
(m)
n )2

∑
j∈J(β)

λ2
j

+C ′′κ log(n)σ2m

n

}
,

with C,C ′, C ′′ > 0 some constants.

Theorem 1 implies that, with probability larger than 1− p1−q − C(Knoise)/n,∥∥∥β̂λ,m̂ − β∗
∥∥∥2

n
≤ min

m=1,...,min{Nn,Mn}

C ∥∥∥β(∗,⊥m)
∥∥∥2

n
+

C ′

(κ
(m)
n )2

∑
j∈J(β∗)

λ2
j + C ′′κ log(n)

m

n

 ,

(9)

where, for all m, β(∗,⊥m) is the orthogonal projection of β∗ onto (H(m))⊥. The upper-
bound in Equation (9) is then the best compromise between two terms:

• an approximation term
∥∥∥β(∗,⊥m)

∥∥∥2

n
which decreases to 0 when m→ +∞;

• a second term due to the penalization and the projection which increases to +∞
when m→ +∞.
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4. Oracle-inequalitie for prediction error

We suppose in this section that the design X1, . . . ,Xn is a sequence of i.i.d centered
random variables in H. The aim is to control the estimator in terms of the norm associated
to the prediction error of an estimator β̂ defined by

‖β∗ − β̂‖2
Γ = E

[(
E[Y |X]− 〈β̂,X〉

)2

|(X1, Y1), . . . , (Xn, Yn)

]
= 〈Γ(β∗ − β̂),β∗ − β̂〉.

where (X, Y ) follows the same distribution as (X1, Y1) and is independent of the sample.

We first prove some results on the sequence (κ
(m)
n )m≥1 and then derive an oracle-type

inequality for the risk associated to the prediction error.

4.1. Theoretical results on κ
(m)
n in the random design case. We prove a lower

bound on Mn which holds with large probability under the following assumptions. First
denote by Γ : f ∈ H 7→ E [〈f ,X1〉X1] the theoretical covariance operator and (µk)k≥1 the
eigenvalues of Γ sorted in decreasing order.

(HΓ) There exists a decreasing sequence (vj)j≥1 of positive numbers and a constant
c1 > 0 such that, for all f ∈ H,

c−1
1 ‖f‖v ≤ ‖Γ1/2f‖ ≤ c1‖f‖v,

with ‖f‖2
v :=

∑
j≥1 vj〈f , ϕ(j)〉2, and

inf
k≥1

vk
µk

=: Rv,µ > 0.

(H
(1)
Mom) There exists a constant b > 0 such that, for all ` ≥ 1,

sup
j≥1

E

[
〈X, ϕ(j)〉2`

ṽ`j

]
≤ `!b`−1 where ṽj := Var(〈Xi,ϕ

(j)〉).

Assumption (HΓ) has also been considered in Comte and Johannes (2012) and allows
to handle the case when the basis considered for estimation does not diagonalise the
operator Γ (note however that in that case, the assumption is verified with vk = µk).
Remark that it implies that Ker(Γ) = {0} which is a necessary and sufficient condition
for the identifiability of model (1).

Assumption (H
(1)
Mom) is necessary to apply exponential inequalities and is verified e.g.

by Gaussian or bounded processes.

Proposition 2. Suppose (HΓ) and (H
(1)
Mom) are verified. Let for all m ≥ 1, µ̃m the

smallest eigenvalue of the matrix

Γ|m :=
(
〈Γϕ(k),ϕ(k′)〉

)
1≤k,k′≤m

.

We have, for all m, for all ρ ∈]0, 1[;

P
(√

1 + ρ
√
µ̃m ≥ κ(m)

n ≥
√

1− ρ
√
µ̃m

)
≥ 1− 4m2 exp

(
−c∗(ρ)nµ2

m

)
, (10)

with c∗(ρ) = c−2
1 Rv,µρ

2/(b(4 + ρ)tr(Γ)2). Hence, recalling that Nn = max{m ≤ n, µm ≥√
log3(n)/n}, we have

P (Mn ≥ Nn) ≥ 1− 2N2
ne
−c∗(ρ) log3(n). (11)
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Equation (10) is a generalization of Brunel and Roche (2015, Lemma 4). Similar results
can be found in Comte and Johannes (2012) under different assumptions.

Similar bounds could also be derived from the theory developed in Mas and Ruymgaart

(2015) (see e.g. Brunel et al. 2016, Lemma 6) in the case where
{
ϕ(k)

}
k≥1

diagonalises Γ̂

(basis of principal components).
Equation (11) links the lower bounds on Mn with the decreasing rate of the eigenvalues

of the operator Γ. For instance, if the µk’s decreases at polynomial rate i.e. there exists
a > 1, such that µk � k−a, we have

Nn � log−3/2a(n)n1/2a,

where for two sequences (ak)k≥1 and (bk)k≥1 we denote ak � bk if there exists a constant
c > 0 such that, for all k ≥ 1, c−1ak ≤ bk ≤ cak. For an exponential rate, i.e. if there
exists a > 0 such that µk � exp(−ka) we have

Nn � log1/a(n).

4.2. Sparsity oracle inequality. To control more precisely the prediction error, we add
the following assumption.

(H
(2)
Mom) There exists two constants vMom > 0 and cMom > 0, such that, for all ` ≥ 2,

E
[
‖X‖2`

]
≤ `!

2
v2
Momc

`−2
Mom.

Theorem 2. Suppose (HΓ) and (H
(1)
Mom). Suppose also that q > 0 and λ = (λ1, . . . , λp)

verify the conditions of Equation (7). Then, there exists quantities CN , C > 0 depending
only on tr(Γ), Rv,µ and v1, such that, with probability larger than 1−p1−q−(CMS+CN)/n,
if κ > κmin,

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

Γ
≤ C ′ min

m=1,...,min{Nn,Mn}
min

β∈H(m)

‖β − β∗‖2
Γ +

1(
κ

(m)
n

)2

∑
j∈J(β)

λ2
j

+κ
log n

n
σ2m+

∥∥∥β∗ − β(∗,m)
∥∥∥2

Γ
+
∥∥∥β∗ − β(∗,m)

∥∥∥2

n

}
. (12)

Suppose, moreover, that Assumption (H
(2)
Mom) is verified. Then, there exists CMom > 0

(depending only on vMom and cMom) such that the following inequality holds with proba-
bility larger than 1− p1−q − (CMS + CN + CMom)/n,

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

Γ
≤ C ′ min

m=1,...,min{Nn,Mn}
min

β∈H(m)

‖β − β∗‖2
Γ +

1(
κ

(m)
n

)2

 ∑
j∈J(β)

λ2
j +

log2(n)

n


+κ

log n

n
σ2m+

∥∥∥β∗ − β(∗,m)
∥∥∥2

Γ
+
(
κ(m)
n

)2
∥∥∥β∗ − β(∗,m)

∥∥∥2
}
. (13)

From Theorem 2, we derive an upper-bound on the convergence rates of the estimator

β̂λ,m̂. For this we need to introduce some regularity assumption on β∗ and Γ. We
introduce, for a sequence b = (bk)k≥1 and R > 0, the notation

Eb(R) :=

{
β ∈ H,

∑
k≥1

bk〈β,ϕ(k)〉2 ≤ R2

}
,

for an ellipsoid of H.



10 A. ROCHE

Corollary 1 (Rates of convergence). We suppose that all assumptions of Theorem 2 are
verified and we choose, for all j = 1, . . . , p,

λj = Aσ

√
ln(n) + ln(p)

n

√√√√ 1

n

n∑
i=1

‖Xj
i ‖2

j ,

with A > 0 a numerical constant.
We also suppose that there exist c2, c3, c4 > 0, γ ≥ γ′ ≥ 1/2 and b > 0, such that

c−1
3 k−2γ ≤ µk ≤ c3k

−2γ, c−1
2 k−2γ′ ≤ vk ≤ c2k

−2γ′ and c−1
3 k2b ≤ bk ≤ c3k

2b.

Then, there exist two quantities C,C ′ > 0, such that, if β∗ ∈ Eb(R) and |J(β∗)| ≤ s, with
probability larger than 1− C/n,

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

Γ
≤ C ′

(
s(ln(p) + ln(n)) + ln2(n)

n

)− b+γ′
b+γ+γ′

.

The proof relies on the results of Theorem 2 and Bernstein’s inequality (Proposition 4,
p. 30). Since mathematical considerations are similar to the ones of the proof of Theorem 2
itself, the details are omitted.

Both regularity assumptions on β∗ and Γ are quite usual (see e.g. Cardot and Johannes
2010; Comte and Johannes 2012; Mas and Ruymgaart 2015). For example, in the case
p = 1, with H = H1 = L2([0, 1]) (equipped with its usual scalar product) and (ϕ(k))k≥1

the Fourier basis, the ellipsoid Eb(R) when bk = kb if k odd and (k − 1)b if k even
corresponds to the set of all 1-periodic b differentiable functions f , such that f (b−1) is
absolutely continuous and ‖f (b)‖ ≤ π2bR2 (see Tsybakov, 2009, Proposition 1.14).

The polynomial decrease of the eigenvalues (µk)k≥1 of the operator Γ is also a usual
assumption. The Brownian bridge and the Brownian motion on H = H1 = L2([0, 1])
verify it with γ = 1.

We simply precise that the rate of convergence of the selected estimator β̂λ,m̂ is the

same as the one of β̂λ,m∗ where m∗ has the same order as the optimal value of m in the
upper-bound of Equation (5), namely

m∗ ∼
(

n

s(ln(n) + ln(p)) + ln2(n)

) 1
2(b+γ′+γ)

.

Note that, however, Comte and Johannes (2010) have proven that the minimax rate of the
functional linear model under our assumptions is n−2(b+γ)/(2b+2γ′+1). The upper-bounds
of Proposition 1 and Theorem 2 do not allow to determine if the minimax rate can be

achieved by either β̂λ,m or β̂λ. A completely different method, which does not rely on
projection, is under investigation. However, it is not obvious that it is possible to achieve
minimax rates while maintaining the sparsity properties of the solution.

Similar results could be obtained replacing κ
(m)
n by κ̃

(m)
n (s). In that case, if we suppose

that, with large probability,

c−1m−2γ′′(s) ≤ κ̃
(m)
n (s) ≤ cm−2γ′′(s),

with c > 0 a constant and γ′′(s) > 0 a quantity that measures the degree of ill-possedness

of the inversion of operators Γ̂J for |J | ≤ s. Note that since, by definition, κ̃
(m)
n (1) ≥
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κ̃
(m)
n (2) ≥ . . . ≥ κ̃

(m)
n (p) ≥ κ

(m)
n , we have necessarily γ′′(1) ≤ γ′′(2) ≤ . . . ≤ γ′′(p) ≤ γ. We

obtain in that case a rate of order
(
s(ln(p)+ln(n))+ln2(n)

n

)− b+γ′
b+γ′′(s)+γ′

.

5. Computing the Lasso estimator

5.1. Computational algorithm. We propose the following algorithm to compute the
solution of (2) (or (3)). The idea is to update sequentially each coordinate β1, ...,βp in
the spirit of the glmnet algorithm (Friedman et al., 2010) by minimising the following
criterion

β
(k+1)
j ∈ arg minβj∈Hj

 1

n

n∑
i=1

(
Yi −

j−1∑
`=1

〈β(k+1)
` , X`

i 〉` − 〈βj, X
j
i 〉j −

p∑
`=j+1

〈β(k)
` , X`

i 〉`

)2

+2λj ‖βj‖j
}
.

(14)

However, in the Group-Lasso context, this algorithm is based on the so-called group-wise
orthonormality condition, which, translated to our context, amounts to suppose that the

operators Γ̂j (or their restrictions Γ̂j|m) are all equal to the identity. This assumption is

not possible if dim(Hj) = +∞ since Γ̂j is a finite-rank operator. Without this condition,
Equation (14) does not admit a closed-form solution and, hence, is not calculable. We
then propose the GPD (Groupwise-Majorization-Descent) algorithm, initially proposed
by Yang and Zou (2015), to compute the solution paths of the multivariate Group-Lasso
penalized learning problem, without imposing the group-wise orthonormality condition.
The GPD algorithm is also based on the principle of coordinate-wise descent but the
minimisation problem (14) is modified in order to relax the group-wise orthonormality

condition. We denote by β̂
(k)

the value of the parameter at the end of iteration k.
During iteration k + 1, we update sequentially each coordinate. Suppose that we have
changed the j − 1 first coordinates (j = 1, ..., p), the current value of our estimator is

(β̂
(k+1)
1 , ..., β̂

(k+1)
j−1 , β̂

(k)
j , ..., β̂

(k)
p ). We want to update the j-th coefficient and, ideally, we

would like to minimise the following criterion

γn(βj) :=
1

n

n∑
i=1

(
Yi −

j−1∑
`=1

〈β̂(k+1)
` , X`

i 〉` − 〈βj, X
j
i 〉j −

p∑
`=j+1

〈β̂(k)
` , X`

i 〉`

)2

+ 2λj‖βj‖2
j .

We have

γn(βj)− γn(β̂
(k)
j ) = − 2

n

n∑
i=1

(Yi − Ỹ j,k
i )〈βj − β̂(k)

j , Xj
i 〉j +

1

n

n∑
i=1

〈βj, Xj
i 〉2j

− 1

n

n∑
i=1

〈β̂(k)
j , Xj

i 〉2j + 2λj(‖βj‖j −
∥∥∥β̂(k)

j

∥∥∥
j
),

with Ỹ j,k
i =

∑j−1
`=1〈β̂

(k+1)
` , X`

i 〉` +
∑p

`=j+1〈β̂
(k)
` , X`

i 〉`, and

1

n

n∑
i=1

〈βj, Xj
i 〉2j −

1

n

n∑
i=1

〈β̂(k)
j , Xj

i 〉2j = 〈Γ̂jβj, βj〉j − 〈Γ̂jβ̂(k)
j , β̂

(k)
j 〉j

= 〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j + 2〈Γ̂jβ̂(k)
j , βj − β̂(k)

j 〉.
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Hence

γn(βj) = γn(β̂
(k)
j )− 2〈Rj, βj − β̂(k)

j 〉j + 〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j + 2λj(‖βj‖j −
∥∥∥β̂(k)

j

∥∥∥
j
)

with

Rj =
1

n

n∑
i=1

(Yi − Ỹ j,k
i )Xj

i + Γ̂jβ̂
(k)
j =

1

n

n∑
i=1

(Yi − Ŷ j,k
i )Xj

i ,

where, for i = 1, ..., n, Ŷ j,k
i = Ỹ j,k

i + 〈β̂(k)
j , Xj

i 〉j =
∑j−1

`=1〈β̂
(k+1)
` , X`

i 〉` +
∑p

`=j〈β̂
(k)
` , X`

i 〉` is

the current prediction of Yi. If Γ̂j is not the identity, we can see that the minimisation
of γn(βj) has no explicit solution. To circumvent the problem the idea is to upper-bound
the quantity

〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j ≤ ρ(Γ̂j)
∥∥∥βj − β̂(k)

j

∥∥∥2

j
≤ Nj

∥∥∥βj − β̂(k)
j

∥∥∥2

j
,

where Nj := 1
n

∑n
i=1

∥∥Xj
i

∥∥2

j
is an upper-bound on the spectral radius ρ(Γ̂j) of Γ̂j. Instead

of minimising γn we minimise its upper-bound

γ̃n(βj) = −2〈Rj, βj〉j +Nj

∥∥∥βj − β̂(k)
j

∥∥∥2

j
+ 2λj ‖βj‖j .

The minimisation problem of γ̃n has an explicit solution

β̂
(k+1)
j =

(
β̂

(k)
j +

Rj

Nj

)1− λj∥∥∥Njβ̂
(k)
j +Rj

∥∥∥
j


+

. (15)

After an initialisation step (β
(0)
1 , ...,β(0)

p ), the updates on the estimated coefficients are
then given by Equation (15).

Remark that, for the case of Equation (2), the optimisation is done directly in the
space H and does not require the data to be projected. Consequently, it avoids the loss
of information and the computational cost due to the projection of the data in a finite
dimensional space, as well as, for data-driven basis such as PCA or PLS, the computational
cost of the calculation of the basis itself.

5.2. Choice of smoothing parameters (λj)j=1,...,p. We follow the suggestions of Propo-

sition 1 and take λj = λj(r) = r
(

1
n

∑n
i=1 ‖X

j
i ‖2

j

)1/2
, for all j = 1, ..., p. This allows to

restrain the problem of the calibration of the p parameters λ1, ..., λp to the calibration of

only one parameter r. In this section, we precise λ(r) = (λ1(r), . . . , λp(r)) and β̂λ(r) the
corresponding minimiser of criterion (2) (we consider here, as an example, the projection-
free estimator but the proposed methods also apply to the projected one).

Drawing inspiration from Friedman et al. (2010), we consider a pathwise coordinate
descent scheme starting from the following value of r,

rmax = max
j=1,...,p


∥∥ 1
n

∑n
i=1 YiX

j
i

∥∥
j√

1
n

∑n
i=1

∥∥Xj
i

∥∥2

j

 .

It can be proven that, taking r = rmax, the solution of the minimisation problem (2) is

β̂λ(rmax) = (0, ..., 0). Starting from this value of rmax, we choose a grid decreasing from
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rmax to rmin = δrmax of nr values equally spaced in the log scale i.e.

R =

{
exp

(
log(rmin) + (k − 1)

log(rmax)− log(rmin)

nr − 1

)
, k = 1, ..., nr

}
= {rk, k = 1, ..., nr}.

For each k ∈ {1, ..., nr−1}, the minimisation of criterion (2) with r = rk is then performed
using the result of the minimisation of (2) with r = rk+1 as an initialisation. As pointed
out by Friedman et al. (2010), this scheme leads to a more stable and faster algorithm.
In practice, we chose δ = 0.001 and nr = 100. However, when r is too small, the algo-
rithm does not converge. We believe that it is linked with the fact that the optimisation
problem (2) has no solution as soon as dim(Hj) = +∞ and λj = 0 for a j ∈ {1, ..., p}.

In the case where the noise variance is known, Theorem 1 suggests the value rn =
4
√

2σ
√
p ln(q)/n. We recall that Equation (6) is obtained with probability 1 − p1−q.

Hence, if we want a precision better than 1 − α, we take q = 1 − ln(α)/ ln(p). However,
in practice, the parameter σ2 is usually unknown. We propose three methods to choose
the parameter r among the grid R and compare them in the simulation study.

5.2.1. V -fold cross-validation. We split the sample {(Yi,Xi), i = 1, ..., n} into V sub-

samples {(Y (v)
i ,X

(v)
i ), i ∈ Iv}, v = 1, ..., V , where Iv = b(v − 1)n/V c + 1, ..., bvn/V c,

Y
(v)
i = Yb(v−1)n/V c+i, X

(v)
i = Xb(v−1)n/V c+i and, for x ∈ R, bxc denotes the largest integer

smaller than x.
For all v ∈ V , i ∈ Iv, r ∈ R let

Ŷ
(v,r)
i = 〈β̂

(−v)

λ(r) ,Xi〉

be the prediction made with the estimator of β∗ minimising criterion (2) using only the

data
{

(X
(v′)
i , Y

(v′)
i ), i ∈ Iv′ , v 6= v′

}
.

We choose the value of rn minimising the mean of the cross-validated error:

r̂(CV )
n ∈ arg minr∈R

{
1

n

V∑
v=1

∑
i∈Iv

(
Ŷ

(v,r)
i − Y (v)

i

)2
}
.

5.2.2. Estimation of σ2. We propose the following estimator of σ2:

σ̂2 =
1

n

n∑
i=1

(
Yi − 〈β̂λ(r̂min),Xi〉

)2

,

where r̂min is an element of r ∈ R.
In practice, we take the smallest element of R for which the algorithm converges.

Indeed, if λj = 0 and dim(Hj) = +∞, problem (2) has no solution (the only possible

solution is Γ̂
−1

∆̂ and Γ̂ is not invertible). Hence, if λj is too close to 0, the algorithm
does not converge.

We set

r̂(σ̂2)
n := 4

√
2σ̂
√
p ln(q)/n with q = 1− ln(5%)/ ln(p).

5.2.3. BIC criterion. We also consider the BIC criterion, as proposed by Wang et al.
(2007); Wang and Leng (2007),

r̂(BIC)
n ∈ arg minr∈R

{
log(σ̂2

r) + |J(β̂r)|
log(n)

n

}
,
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the corresponding values of λ will be denoted respectively by λ̂
(CV )

:= λ(r̂
(CV )
n ), λ̂

(σ̂2)
:=

λ(r̂
(σ̂2)
n ) and λ̂

(BIC)
:= λ(r̂

(BIC)
n ).

The practical properties of the three methods are compared in Section 6.

5.3. Construction of the projected estimator. The projected estimator relies mainly
on the choice of the basis (ϕ(k))k≥1. To verify the support stability property (4), a

possibility is to proceed as follows. Let, for all j = 1, . . . , p, (e
(k)
j )1≤j≤dim(Hj) (we recall

here that dim(Hj) can be either finite or infinite), be an orthonormal basis of Hj and

σ :
N\{0} → {(j, k) ∈ {1, . . . , p} × N\{0}, k ≤ dim(Hj)} ⊆ N2

k 7→ (σ1(k), σ2(k))

a bijection. We define

ϕ(k) := (0, . . . , 0, e
(σ2(k))
σ1(k) , 0, . . . , 0) =

(
e

(σ2(k))
σ1(k) 1{j=σ1(k)}

)
1≤j≤p

.

There are many ways to choose the basis (e
(k)
j )1≤j≤dim(Hj), j = 1, . . . , p as well as the

bijection σ. We follow in Section 6 an approach based on the principal components

basis (PCA basis). Let, for j = 1, . . . , p, (ê
(k)
j )1≤k≤dim(Hj) the PCA basis of {Xj

i , i =
1, . . . , n}, that is to say a basis of eigenfunctions (if Hj is a function space) or eigenvectors

(if dim(Hj) < +∞) of the covariance operator Γ̂j. We denote by (µ̂
(k)
j )1≤k≤dim(Hj) the

corresponding eigenvalues. The bijection σ is defined such that (µ̂
(σ

(k)
2 )

σ1(k) )k≥1 is sorted in

decreasing order.
Since the elements of the PCA basis are data-dependent, but depend only on the Xi’s,

the results of Section 3 hold but not the results of Section 4. Similar results for the PCA
basis could be derived from the theory developed in Mas and Ruymgaart (2015); Brunel
et al. (2016) at the price of further theoretical considerations which are out of the scope
of the paper. Depending on the nature of the data, non-random basis, such as Fourier,
splines or wavelet basis, could also be considered.

5.4. Tikhonov regularization step. It is well known that the classical Lasso estimator
is biased (see e.g. Giraud, 2015, Section 4.2.5) because the `1 penalization favors too
strongly solutions with small `1 norm. To remove it, one of the current method, called
Gauss-Lasso, consists in fitting a least-squares estimator on the sparse regression model
constructed by keeping only the coefficients which are on the support of the Lasso estimate.

This method is not directly applicable here because least-squares estimators are not
well-defined in infinite-dimensional contexts. Indeed, to compute a least-squares estimator

of the coefficients in the support Ĵ of the Lasso estimator, we need to invert the covariance

operator Γ̂Ĵ which is generally not invertible.
To circumvent the problem, we propose a ridge regression approach (also named Tikhonov

regularization below) on the support of the Lasso estimate. A similar approach has been
investigated by Liu and Yu (2013) in high-dimensional regression. They have shown the
unbiasedness of the combination of Lasso and ridge regression. More precisely, we consider
the following minimisation problem

β̃ = arg minβ∈H
J(β̂)

{
1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + ρ ‖β‖2

}
(16)
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Example 1 Example 2

j β∗,1
j β∗,2

j Xj

1 t 7→ 10 cos(2πt) t 7→ 10 cos(2πt) Brownian motion on [0, 1]

2 0 0 t 7→ a + bt + c exp(t) + sin(dt) with a ∼ U([−50, 50]), b ∼
U([−30, 30]), c ∼ ([−5, 5]) and d ∼ U([−1, 1]), a, b, c and d
independent (Ferraty and Vieu, 2000)

3 0 0 X2
2

4 0 (1,−1, 0, 3)t Z tA with Z = (Z1, ..., Z4), Zk ∼ U([−1/2, 1/2]), k = 1, ..., 4,

A =


−1 0 1 2
3 −1 0 1
2 3 −1 0
1 2 3 −1


5 0 0 N (0, 1)

6 0 0 ‖X2‖L2([0,1]) − E[‖X2‖L2([0,1])]

7 0 1 ‖ log(|X1|)‖L2([0,1]) − E[‖ log(|X1|)‖L2([0,1])]

Table 1. Values of β∗,k and X

with ρ > 0 a parameter which can be selected e.g. by V -fold cross-validation. We can see
that

β̃ = (Γ̂Ĵ + ρI)−1∆̂,

with ∆̂ := 1
n

∑n
i=1 YiΠĴXi, is an exact solution of problem (16) but need the inversion of

the operator Γ̂Ĵ + ρI to be calculated in practice. In order to compute the solution of
(16) we propose a stochastic gradient descent as follows. The algorithm is initialised at

the solution β̃
(0)

= β̂ of the Lasso and at each iteration, we do

β̃
(k+1)

= β̃
(k)
− αkγ′n(β̃

(k)
), (17)

where

γ′n(β) = −2∆̂ + 2(Γ̂Ĵ + ρI)β,

is the gradient of the criterion to minimise.
In practice we choose αk = α1k

−1 with α1 tuned in order to get convergence at reason-
able speed.

6. Numerical study

6.1. Simulation study. We test the algorithm on two examples :

Y = 〈β∗,k,X〉+ ε, k = 1, 2,

where p = 7, H1 = H2 = H3 = L2([0, 1]) equipped with its usual scalar product

〈f, g〉L2([0,1]) =
∫ 1

0
f(t)g(t)dt for all f, g, H4 = R4 equipped with its scalar product (a, b) = tab,

H5 = H6 = H7 = R, ε ∼ N (0, σ2) with σ = 0.01. The size of the sample is fixed to
n = 1000. The definitions of β∗,1, β∗,2 and X are given in Table 1.
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Figure 1. Plot of the norm of
[
β̂λ

]
j
, for j = 1, ..., 7 as a function of r.

Example 1 Example 2

λ̂
(CV )

λ̂
(σ̂2)

λ̂
(BIC)

λ̂
(CV )

λ̂
(σ̂2)

λ̂
(BIC)

Support recovery of β̂λ̂ (%) 0 100 0 2 100 4

Support recovery of β̂λ̂,m̂ (%) / 100 / / 100 /

Table 2. Percentage of times where the true support has been recovered
among 50 Monte-Carlo replications of the estimates.

6.2. Support recovery properties and parameter selection. In Figure 1, we plot

the norm of
[
β̂λ

]
j

as a function of the parameter r. We see that, for all values of r,

we have Ĵ ⊆ J∗, and, if r is sufficiently small Ĵ = J∗. We compare in Table 2 the
percentage of time where the true model has been recovered when the parameter r is
selected with the three methods described in Section 5.2. We see that the method based
on the estimation of σ̂2 has very good support recovery performances, but both BIC and
CV criterion do not perform well. Since the CV criterion minimises an empirical version
of the prediction error, it tends to select a parameter for which the method has good
predictive performances. However, this is not necessarily associated with good support
recovery properties and this may explain the bad performances of the CV criterion in
terms of support recovery. So the method based on the estimation of σ2 is the only one

which is considered for the projected estimator β̂λ,m̂ and in the sequel we will denote

simply λ = λ̂
(σ̂2)

.

6.3. Lasso estimators. In Figure 2, we plot the first coordinate
[
β̂λ

]
1

of Lasso estimator

β̂λ (right) and compare it with the true function β∗1. We can see that the shape of both
functions are similar, but in particular their norms are completely different. Hence, the
Lasso estimator recovers the true support but gives biased estimators of the coefficients
βj, j ∈ J∗.
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Figure 2. Plot of β∗1 (solid black line) and 50 Monte-Carlo replications

of
[
β̂λ

]
1

(blue lines).
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Figure 3. Bar charts of dimension selected m̂ over the 50 Monte Carlo
replications for the projected estimator β̂λ,m̂.

For the projected estimator β̂λ̂,m̂, as recommended by Brunel et al. (2016), we set the

value of the constant κ of criterion (8) to κ = 2. The selected dimensions are plotted in
Figure 3. We can see that the dimension selected are quite large, especially compared to
the dimension usually selected in the classical functional linear model which are around
15, and that the dimension selected for model 2 are larger than the one selected for model
1, which indicates that the dimension selection criterion adapts to the complexity of the
model. The resulting estimators are plotted in Figure 4. A similar conclusion as for the
projection-free estimator can be drawn concerning the bias problem, which is even more
acute in that case.

6.4. Final estimator. On Figure 5 we see that the Tikhonov regularization step reduces
the bias in both examples. We can compare it with the effect of Tikhonov regularization
step on the whole sample (i.e. without variable selection). It turns out that, in the case
where all the covariates are kept, the algorithm (17) converges very slowly leading to poor
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Figure 5. Plot of β∗1 (solid black line), the solution of the Tikhonov
regularization on the support of the Lasso estimator (dashed blue line) and
on the whole support (dotted red line).

Lasso + Tikhonov Proj. Lasso + Tikhonov Tikhonov without Lasso
Example 1 7.5 min 9.3 min 36.0 min
Example 2 7.1 min 16.6 min 36.1 min

Table 3. Computation time of the estimators.

estimates. The computation time of the estimators on an iMac 3,06 GHz Intel Core 2
Duo – with a non optimal code – are given in Table 3 for illustrative purposes.

6.5. Application to the prediction of energy use of appliances. The aim is to study
appliances energy consumption – which is the main source of energy consumption – in a
low energy house situated in Stambruges (Belgium). The data consists of measurements
of appliances energy consumption (Appliances), light energy consumption (light), tem-
perature and humidity in the kitchen area (T1 and RH1), in living room area (T2 and RH2),
in the laundry room (T3 and RH3), in the office room (T4 and RH4), in the bathroom (T5
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Figure 6. Plot of the norm of
[
β̂λ

]
j
, for j = 1, ..., 24 as a function of r.

and RH5), outside the building in the north side (T6 and RH6), in ironing room (T7 and
RH7), in teenager room (T8 and RH8) and in parents room (T9 and RH9) and also the tem-
perature (T out), pressure (Press mm hg), humidity (RH out), wind speed (Windspeed),
visibility (Visibility) and dew point temperature (Tdewpoint) from Chievres weather
station, which is the nearest airport weather station. Each variable is measured every 10
minutes from 11th january, 2016, 5pm to 27th may, 2016, 6pm.

The data is freely available on UCI Machine Learning Repository (archive.ics.
uci.edu/ml/datasets/Appliances+energy+prediction) and has been studied by Can-
danedo et al. (2017). We refer to this article for a precise description of the experiment and
a method to predict appliances energy consumption at a given time from the measurement
of the other variables.

Here, we focus on the prediction of the mean appliances energy consumption of one day
from the measure of each variable the day before (from midnight to midnight). We then
dispose of a dataset of size n = 136 with p = 24 functional covariates. Our variable of
interest is the logarithm of the mean appliances consumption. In order to obtain better
results, we divide the covariates by their range. More precisely, the j-th curve of the i-th
observation Xj

i is transformed as follows

Xj
i (t)←

Xj
i (t)

maxi′=1,...,n;t′ X
j
i′(t
′)−mini′=1,...,n;t′ X

j
i′(t
′)
.

The choice of the transformation above allows to get covariates of the same order (we
recall that usual standardisation techniques are not possible for infinite-dimensional data
since the covariance operator of each covariate is non invertible). All the variables are
then centered.

We first plot the evolution of the norm of the coefficients as a function of r. The results
are shown in Figure 6.

The variables selected by the Lasso criterion are the appliances energy consumption
(Appliances), temperature of the laundry room (T3) and temperature of the teenage
room (T8) curves. The corresponding slopes are represented in Figure 7. We observe that
all the curves take larger values at the end of the day (after 8 pm). This indicates that
the values of the three parameters that influence the most the mean appliances energy
consumption of the day after are the one measured at the end of the day.
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Figure 7. Plot of the coefficients
[
β̂λ

]
j

for j ∈ J(β̂λ) = {1, 7, 17} corre-

sponding to the coefficients associated to the appliance energy consumption
curve (Appliances), temperature of the laundry room (T3) and tempera-
ture of the teenage room (T8).
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Appendix A. Proofs

A.1. Proof of Lemma 1.

Proof. Let s ≥ 1 and c0 > 0 be fixed. If dim(H) = +∞, we can suppose without loss
of generality that dim(H1) = +∞. Let (e(k))k≥1 be an orthonormal basis of H1 and

δ(k) = (e(k), 0, ..., 0). Let also J = {1}. By definition, for all k ≥ 1, |J | = 1 ≤ s and∑
j /∈J λj

∥∥∥δ(k)
j

∥∥∥
j

= 0 ≤ c0

∑
j∈J λj

∥∥∥δ(k)
j

∥∥∥
j
.

Hence we have

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H\{0},
∑
j /∈J

λj ‖δj‖j ≤ c0

∑
j∈J

λj ‖δj‖j


≤ min

k≥1


∥∥∥δ(k)

∥∥∥
n√∑

j∈J

∥∥∥δ(k)
j

∥∥∥2

j

 . (18)

Recall that ∥∥δ(k)
∥∥2

n
=

1

n

n∑
i=1

〈δ(k),Xi〉2 =
1

n

n∑
i=1

〈e(k), X1
i 〉21,

since, for all i = 1, ..., n, ∥∥X1
i

∥∥2
=
∑
k≥1

〈X1
i , e

(k)〉2 < +∞,

then necessarily, limk→∞〈X1
i , e

(k)〉2 = 0 and consequently, limk→∞
∥∥δ(k)

∥∥2

n
= 0. Moreover∑

j∈J

∥∥∥δ(k)
j

∥∥∥2

j
=
∥∥e(k)

∥∥2

1
= 1,
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which implies that the upper-bound of equation (18) is null. �

A.2. Proof of Proposition 2.

Proof. The proof relies on the equivalence norm result of Proposition 5. We have

P
({√

1 + ρ
√
µ̃m ≥ κ(m)

n ≥
√

1− ρ
√
µ̃m

}c)
≤ P

(
κ(m)
n <

√
1− ρ

√
µ̃m

)
+ P

(
κ(m)
n >

√
1 + ρ

√
µ̃m

)
(19)

We first bound the first term of the upper-bound. From the definition of κ
(m)
n we know

that,

P
(
κ(m)
n <

√
1− ρ

√
µ̃m

)
= P

(
inf

β∈H(m)\{0}

‖β‖n
‖β‖

<
√

1− ρ
√
µ̃m

)
= P

(
∃β ∈ H(m)\{0}, ‖β‖

2
n

‖β‖2
< (1− ρ)µ̃m

)
= P

(
∃β ∈ H(m)\{0}, ‖β‖

2
n − ‖β‖2

Γ

‖β‖2
< (1− ρ)µ̃m −

‖β‖2
Γ

‖β‖2

)
,

with ‖β‖2
Γ = E [‖β‖2

n] = E [〈β,X〉2] = E [〈Γβ,β〉]. Now, for β =
∑m

k=1 bkϕ
(k) ∈

H(m)\{0}, denoting b := (b1, ..., bm)t,

‖β‖2
Γ

‖β‖2
=

∑m
k,k′=1 bkbk′〈Γϕ(k),ϕ(k′)〉

tbb
=

tbΓ|mb
tbb

≥ µ̃m.

Then

P
(
κ(m)
n <

√
1− ρ

√
µ̃m

)
≤ P

(
∃β ∈ H(m)\{0}, ‖β‖

2
n − ‖β‖2

Γ

‖β‖2
< −ρµ̃m

)
≤ P

(
∃β ∈ H(m)\{0},

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2

∣∣∣∣ > ρµ̃m

)
≤ P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2

∣∣∣∣ > ρµ̃m

)
.

From Proposition 5 we deduce

P
(
κ(m)
n <

√
1− ρ

√
µ̃m

)
≤ 2m2 exp

(
− nρ2µ̃2

m

b
∑m

k=1 ṽk (4
∑m

k=1 ṽk + ρµ̃m)

)
.

This implies

P
(
κ(m)
n <

√
1− ρ

√
µ̃m

)
≤ 2m2 exp

(
− nρ2µ̃2

m

b(4 + ρ) (
∑m

k=1 µ̃k)
2

)
,

since
m∑
k=1

ṽk =
m∑
k=1

E[〈ϕ(k),X1〉2] =
m∑
k=1

〈Γϕ(k),ϕ(k)〉 = tr(Γ|m) =
m∑
k=1

µ̃k.

Assumption (HΓ) implies that, for all f ∈ H(m)\{0},

c−1
1

‖f‖v
‖f‖

≤ ‖Γ
1/2f‖
‖f‖

≤ c1
‖f‖v
‖f‖

,
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and then√
µ̃m = inf

f∈H(m)\{0}

‖f‖Γ
‖f‖

≥ c−1
1 inf

f∈H(m)\{0}

‖f‖v
‖f‖

= c−1
1

√
vm ≥ c−1

1

√
Rv,µ
√
µm.

Moreover,
m∑
k=1

µ̃k = tr(Γ|m) =
m∑
k=1

〈Γϕ(k),ϕ(k)〉 ≤ tr(Γ),

which implies the expected result.
We turn now to the second term of Inequality (19). Recall that µ̃m is an eigenvalue of

the matrix Γ|m. We denote by v(m) = (v
(m)
1 , . . . , v

(m)
m )t ∈ Rm an associated eigenvector

such that (v(m))tv(m) = 1 and by

ψ̃
(m)

:=
m∑
k=1

v
(m)
k ϕ(m).

We remark that

E
[∥∥∥ψ̃(m)

∥∥∥2

n

]
= E

[
〈ψ̃

(m)
,Xi〉2

]
= 〈Γψ̃

(m)
, ψ̃

(m)
〉 = (v(m))tΓ|mv

(m) = µ̃m.

Now,

P
(
κ(m)
n >

√
1 + ρ

√
µ̃m

)
= P

(
inf

β∈H(m)\{0}

‖β‖2
n

‖β‖2
> (1 + ρ)µ̃m

)

≤ P

(
‖ψ̃

(m)
‖2
n

‖ψ̃
(m)
‖2

> (1 + ρ)µ̃m

)

= P
(
‖ψ̃

(m)
‖2
n − E

[∥∥∥ψ̃(m)
∥∥∥2

n

]
> ρµ̃m

)
≤ P

(
sup

β∈H(m)\{0}

‖β‖2
n − ‖β‖2

Γ

‖β‖2
> ρµ̃m

)
,

then Proposition 5 gives us the same bound than the one we had for the first term of
Inequality (19) which concludes the proof. �

A.3. Proof of Proposition 1.

Proof. We prove only (6), Inequality (5) follows the same lines. The proof below is largely

inspired by the proof of Lounici et al. (2011). By definition of β̂λ = ([β̂λ]1, ..., [β̂λ]p), we
have, for all m ≥ 1, for all β = (β1, ...,βp) ∈ H(m),

1

n

n∑
i=1

(
Yi − 〈β̂λ,Xi〉

)2

+ 2

p∑
j=1

λj

∥∥∥[β̂λ]j

∥∥∥
j
≤ 1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j . (20)

Since, for all i = 1, ..., n, Yi = 〈β∗,Xi〉+ εi, Equation (20) becomes,∥∥∥β∗ − β̂λ

∥∥∥2

n
≤ ‖β∗ − β‖2

n +
2

n

n∑
i=1

εi〈β̂λ − β,Xi〉+ 2

p∑
j=1

λj

(
‖βj‖j −

∥∥∥[β̂λ]j

∥∥∥
j

)
.
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We remark that

1

n

n∑
i=1

εi〈β̂λ − β,Xi〉 = 〈β̂λ − β,
1

n

n∑
i=1

εiXi〉 =

p∑
j=1

〈[β̂λ]j − βj,
1

n

n∑
i=1

εiX
j
i 〉j

≤
p∑
j=1

∥∥∥[β̂λ]j − βj
∥∥∥
j

∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

.

Now we suppose that we are on the set A. We have, since ‖βj‖j −
∥∥∥[β̂λ]j

∥∥∥
j
≤∥∥∥βj − [β̂λ]j

∥∥∥
j
,

∥∥∥β̂λ − β∗
∥∥∥2

n
≤ ‖β − β∗‖2

n + 4
∑
j∈J(β)

λj

∥∥∥[β̂λ]j − βj
∥∥∥
j

≤ ‖β − β∗‖2
n + 4

∑
j∈J(β)

λj

∥∥∥β̂λ − β
∥∥∥

≤ ‖β − β∗‖2
n + 4

∑
j∈J(β)

λj

(∥∥∥β̂(m)

λ − β
∥∥∥+

∥∥∥β̂(⊥m)
∥∥∥
λ

)
,

where β̂
(m)

λ denotes the orthogonal projection of β̂λ onto H(m) and β̂
(⊥m)

λ denotes the

orthogonal projection of β̂λ onto
(
H(m)

)⊥
.

If m ≤Mn, we have, by definition of κ
(m)
n = infβ∈H(m)\{0}

‖β‖n
‖β‖ ,∥∥∥β̂(m)

λ − β
∥∥∥ ≤ 1

κ
(m)
n

∥∥∥β̂(m)

λ − β
∥∥∥
n
≤ 1

κ
(m)
n

(∥∥∥β̂λ − β
∥∥∥
n

+
∥∥∥β̂(⊥m)

λ

∥∥∥
n

)
.

This implies, denoting

Rn,m := 4
∑
j∈J(β)

λj

(∥∥∥β̂(⊥m)

λ

∥∥∥+
1

κ
(m)
n

∥∥∥β̂(⊥m)

λ

∥∥∥
n

)
,

and using that, for all x, y ∈ R, η > 0, 2xy ≤ ηx2 + η−1y2,∥∥∥β̂λ − β∗
∥∥∥2

n
≤ ‖β − β∗‖2

n + 4
∑
j∈J(β)

λj

κ
(m)
n

∥∥∥β̂λ − β
∥∥∥
n

+Rn,m

≤ ‖β − β∗‖2
n + 4η−1

∥∥∥β̂λ − β
∥∥∥2

n
+ 4

η

(κ
(m)
n )2

∑
j∈J(β)

λ2
j +Rn,m.

Choosing η > 8, we get :∥∥∥β̂λ − β∗
∥∥∥2

n
≤ 1 + 8η−1

1− 8η−1
‖β − β∗‖2

n + 4
η

(1− 8η−1)(κ
(m)
n )2

∑
j∈J(β)

λ2
j

+
1

1− 8η−1
Rn,m,

and we get the expected result with η̃ = 16η−1/(1− 8η−1).
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We turn now to the upper-bound on the probability of the complement of the event
A =

⋂p
j=1Aj, with

Aj =


∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

≤ λj/2

 .

Conditionally to X1, . . . ,Xn, since {εi}1≤i≤n ∼i.i.d N (0, σ2), the variable 1
n

∑n
i=1 εiX

j
i

is a Gaussian random variable taking values in the Hilbert (hence Banach) space Hj.
Therefore, from Proposition 3, we know that, denoting PX(·) = P(·|X1, . . . ,Xn) and
EX[·] = E[·|X1, . . . ,Xn],

PX(Acj) ≤ 4 exp

− λ2
j

32EX

[∥∥ 1
n

∑n
i=1 εiX

j
i

∥∥2

j

]
 = exp

(
− nr2

n

32σ2

)
,

since λ2
j = r2

n
1
n

∑n
i=1

∥∥Xj
i

∥∥2

j
and

EX

∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
2

j

 =
1

n2

n∑
i1,i2=1

EX

[
εi1εi2〈X

j
i1
, X2

i2
〉j
]

=
σ2

n

1

n

n∑
i=1

∥∥Xj
i

∥∥2

j
.

This implies that

P(Ac) ≤ p exp

(
− nr2

n

32σ2

)
≤ p1−q,

as soon as rn ≥ 4
√

2σ
√
q ln(p)/n.

�

A.4. Proof of Theorem 1.

Proof. By definition of m̂, we know that, for all m = 1, . . . ,min{Nn,Mn},

1

n

n∑
i=1

(
Yi − 〈β̂λ,m̂,Xi〉

)2

+ κσ2 m̂

n
log(n) ≤ 1

n

n∑
i=1

(
Yi − 〈β̂λ,m,Xi〉

)2

+ κσ2m

n
log(n).

Hence, using now the definition of β̂λ,m, for all β ∈ H(m),

1

n

n∑
i=1

(
Yi − 〈β̂λ,m̂,Xi〉

)2

+ κσ2 m̂

n
log(n) ≤ 1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖β‖j

−2

p∑
j=1

λj

∥∥∥β̂λ,m

∥∥∥
j

+ κσ2m

n
log(n). (21)

Now, for all β ∈ H, we decompose the quantity

1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 =
1

n

n∑
i=1

(〈β∗ − β,Xi〉+ εi)
2

= ‖β∗ − β‖2
n +

2

n

n∑
i=1

εi〈β∗ − β,Xi〉+
1

n

n∑
i=1

ε2
i .
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Gathering with (21) we obtain∥∥∥β̂λ,m̂ − β∗
∥∥∥2

n
≤ ‖β∗ − β‖2

n +
2

n

n∑
i=1

εi〈β̂λ,m̂ − β,Xi〉+ 2

p∑
j=1

λj

(
‖β‖j −

∥∥∥β̂λ,m

∥∥∥
j

)
+κσ2m

n
log(n)− κσ2 m̂

n
log(n). (22)

For the second-term of the upper-bound, we split

2

n

n∑
i=1

εi〈β̂λ,m̂ − β,Xi〉 =
2

n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉+
2

n

n∑
i=1

εi〈β̂λ,m − β,Xi〉.

On the set A, similarly as in the proof of Proposition 1, we have

2

n

n∑
i=1

εi〈β̂λ,m − β,Xi〉 ≤ 2

p∑
j=1

λj

∥∥∥[β̂λ,m]j − βj
∥∥∥
j
. (23)

Using the inequality 2xy ≤ 1
3
x2 + 3y2, which is true for all x, y ∈ R,

2

n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉 ≤
1

3

∥∥∥β̂λ,m̂ − β̂λ,m

∥∥∥2

n
+ 3ν2

n

 β̂λ,m̂ − β̂λ,m∥∥∥β̂λ,m̂ − β̂λ,m

∥∥∥
n

 ,

where ν2
n(·) := 1

n

∑n
i=1 εi〈·, Xi〉. Now, we define the set :

Bm :=
Nn⋂
m′=1

{
sup

f∈H(max{m,m′}),‖f‖n=1

ν2
n(f) <

κ

6
log(n)σ2 max{m,m′}

n

}
. (24)

On the set Bm, since β̂λ,m̂ − β̂λ,m ∈ H(max{m,m̂}),

2

n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉 ≤
1

3

∥∥∥β̂λ,m̂ − β̂λ,m

∥∥∥2

n
+ 3 sup

f∈H(max{m,m̂}),‖f‖2n=1

ν2
n(f)

≤ 2

3

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

n
+

2

3

∥∥∥β̂λ,m − β∗
∥∥∥2

n
+
κ

2
log(n)σ2 max{m, m̂}

n
.(25)

Gathering equations (22), (23) and (25), we get, on the set A ∩ Bm,

1

3

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

n
≤ ‖β∗ − β‖2

n +
2

3

∥∥∥β̂λ,m − β∗
∥∥∥2

n

+2

p∑
j=1

λj

(
‖β‖j −

∥∥∥β̂λ,m

∥∥∥
j

+
∥∥∥[β̂λ,m]j − βj

∥∥∥
j

)
(26)

+
κ

2
log(n)σ2 max{m, m̂}

n
+ κ log(n)σ2m

n
− κ log(n)σ2 m̂

n
. (27)

For the term (26), we have, as in the proof of Proposition 1, for all η > 0,

2

p∑
j=1

λj

(
‖β‖j −

∥∥∥∥[β̂λ,m

]
j

∥∥∥∥
j

+
∥∥∥[β̂λ,m]j − βj

∥∥∥
j

)
≤ 4η−1

∥∥∥β̂λ,m − β
∥∥∥2

n
+

4η

(κ
(m)
n )2

∑
j∈J(β)

λ2
j ,

and for the term (27), we have,

κ

2
log(n)σ2 max{m, m̂}

n
+ κ log(n)σ2m

n
− κ log(n)σ2 m̂

n
≤ 2κ log(n)σ2m

n
.
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Finally, on the set A ∩ Bm, for all η > 0,

1

3

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

n
≤ ‖β∗ − β‖2

n +

(
2

3
+ 4η−1

)∥∥∥β̂λ,m − β
∥∥∥2

n
+

4η

(κ
(m)
n )2

∑
j∈J(β)

λ2
j

+2κ log(n)σ2m

n
,

and the quantity
∥∥∥β̂λ,m − β

∥∥∥2

n
is upper-bounded in Proposition 1.

To conclude, since it has already been proven in Proposition 1 that P(Ac) ≤ p1−q, it
remains to prove that there exists a constant CMS > 0 such that

P (∪mm=1Bcm) ≤ CMS

n
.

We have

P (∪mm=1Bcm) ≤
Nn∑
m=1

Nn∑
m′=1

P

(
sup

f∈H(max{m,m′}),‖f‖n=1

ν2
n(f) ≥ κ

6
log(n)σ2 max{m,m′}

n

)
.

We apply Lemma 2 with t =
(
κ
6

log(n)− 1
)
σ2 max{m,m′}

n
≤ κ

6
log(n)σ2 max{m,m′}

n
and obtain

P

(
sup

f∈H(max{m,m′}),‖f‖n=1

ν2
n(f) ≥ κ

6
log(n)σ2 max{m,m′}

n

)

≤ exp

(
−2κ log(n) max{m,m′}min

{
κ log(n)

6912
,

1

1536

})
.

Suppose that κ log(n) > 6912/1536 = 9/2 (the other case could be treated similarly), we
have, since 1 ≤ m ≤ Nn ≤ n, and by bounding the second sum by an integral

Nn∑
m=1

Nn∑
m′=1

P

(
sup

f∈H(max{m,m′}),‖f‖n=1

ν2
n(f) ≥ κ

6
log(n)σ2 max{m,m′}

n

)

≤
Nn∑
m=1

(
m∑

m′=1

exp

(
−κ log(n)m

768

)
+

Nn∑
m′=m+1

exp

(
−κ log(n)m′

768

))

≤ Nn n exp

(
−κ log(n)

768

)
+

768Nn

κ log(n)
exp

(
−κ log(n)

768

)
.

Now choosing κ > 2304 we know that there exists a universal constant CMS > 0 such
that

P
(
∪Nnm=1Bcm

)
≤ CMS/n.

Note that the minimal value 2304 for κ is purely theoretical and does not correspond
to a value of κ which can reasonably be used in practice. �

A.5. Proof of Theorem 2.

Proof. In the proof, the notation C,C ′, C ′′ > 0 denotes quantities which may vary from
line to line but are always independent of n or m.

Let A the set defined in the statement of Proposition 1 and B =
⋂Nn
m=1 Bm the set

appearing in the proof of Theorem 1 (see Equation (24) p. 25). Following the proof of
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Theorem 1, we know that, on the set A ∩ B, for all m = 1, . . . ,min{Nn,Mn}, for all
β ∈ H(m) such that J(β) ≤ s,∥∥∥β̂λ,m̂ − β∗

∥∥∥2

n
≤ C‖β − β∗‖2

n +
C ′′(
κ

(m)
n

)2

∑
j∈J(β)

λ2
j + C ′′κ log(n)σ2m

n
. (28)

We also now that

P(Ac) ≤ p1−q and P(Bc) ≤ CMS

n
.

We define now the set

C :=

{
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2

∣∣∣∣ ≤ 1

2

}⋂{
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n

‖β‖2
Γ

− 1

∣∣∣∣ ≤ 1

2

}
.

We have

P(Cc) ≤ P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2

∣∣∣∣ > 1

2

)
+ P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
Γ

∣∣∣∣ > 1

2

)
.

(29)
From Proposition 5 in the Appendix, we have:

P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2

∣∣∣∣ > 1

2

)
≤ 2N2

n exp

− n/4

b
∑Nn

j=1 ṽj

(
4
∑Nn

j=1 ṽj + 1
2

)


≤ 2N2
n exp

(
− n

4btr(Γ)
(
4tr(Γ) + 1

2

)) , (30)

remarking that

m∑
k=1

ṽk =
m∑
k=1

E[〈ϕ(k),X1〉2] =
m∑
k=1

〈Γϕ(k), ϕ(k)〉 = tr(Γ|m) ≤ tr(Γ).

We turn now to the second term of (29). Assumption (HΓ) implies that

P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
Γ

∣∣∣∣ > 1

2

)
≤ P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
v

∣∣∣∣ > c−2
1

1

2

)
We apply now again Proposition 5 and obtain, using again (HΓ),

P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
Γ

∣∣∣∣ > 1

2

)
≤ 2N2

n exp

− nc−4
1

4b
∑Nn

j=1
ṽj
vj

(
4
∑Nn

j=1
ṽj
vj

+ 1
2

)


≤ 2N2
n exp

(
− nc−4

1

4 b
vNn

tr(Γ)
(
4v−1

Nn
tr(Γ) + 1

2

))

≤ 2N2
n exp

(
− nc−4

1 vNn
4btr(Γ)

(
4tr(Γ) + v1

2

))

≤ 2N2
n exp

(
− nc−4

1 Rv,µµNn
4btr(Γ)

(
4tr(Γ) + v1

2

)) . (31)
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Combining equations (30) and (31), and the fact that Nn ≤ n and µNn ≥
√

log3(n)/n,

we get that

P(Cc) ≤ 4n2 exp

(
−max

{
c∗n; c∗∗

√
n log3 n

})
≤ 4n2 exp

(
−cmax

√
n log3 n

)
≤ CN/n,

for c∗ = (4btr(Γ)(4tr(Γ) + 1/2))−1 and c∗∗ = c−4
1 Rv,µ/(4btr(Γ)(4tr(Γ) + v1/2)) and a

quantity CN > 0 depending only on c∗ and c∗∗.
On the set A ∩ B ∩ C, we have then, for all m = 1, . . . , Nn,∥∥∥β̂λ,m̂ − β∗

∥∥∥2

Γ
≤ 2

∥∥∥β̂λ,m̂ − β(∗,m)
∥∥∥2

Γ
+ 2

∥∥∥β(∗,m) − β∗
∥∥∥2

Γ

≤ 4
∥∥∥β̂λ,m̂ − β(∗,m)

∥∥∥2

n
+ 2

∥∥∥β(∗,m) − β∗
∥∥∥2

Γ

From (28), we get

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

Γ
≤ C

‖β − β∗‖2
Γ +

1(
κ

(m)
n

)2

∑
j∈J(β)

λ2
j + κ

log n

n
σ2m

+
∥∥∥β∗ − β(∗,m)

∥∥∥2

Γ
+
∥∥∥β∗ − β(∗,m)

∥∥∥2

n

)
,

for a constant C > 0. This complete the proof of (12).
We turn now to the proof of (13). Defining now another set

D :=
Nn⋂
m=1

{
‖β(∗,⊥m)‖2

n ≤ ‖β(∗,⊥m)‖2
Γ + ζn,m

}
,

where we recall the notation β(∗,⊥m) = β∗ − β(∗,m). We give now an upper-bound on
P(Dc) which completes the proof. Remark that

‖β(∗,⊥m)‖2
n =

1

n

n∑
i=1

〈β(∗,⊥m),Xi〉2,

and that, for all i = 1, . . . , n,

E
[
〈β(∗,⊥m),Xi〉2

]
= ‖β(∗,⊥m)‖2

Γ,

we can rewrite

D :=
Nn⋂
m=1

{
1

n

n∑
i=1

(
〈β(∗,⊥m),Xi〉2 − E

[
〈β(∗,⊥m),X1〉2

])
≤ ζn,m

}
.

Hence

P(Dc) ≤
Nn∑
m=1

P

(
1

n

n∑
i=1

(
〈β(∗,⊥m),Xi〉2 − E

[
〈β(∗,⊥m),X1〉2

])
> ζn,m

)
.

We upper-bound the quantities above using Bernstein’s inequality (Proposition 4, p. 30).
We have, for ` ≥ 2,

E
[
〈β(∗,⊥m),Xi〉2`〉

]
≤ ‖β(∗,⊥m)‖2`E

[
‖Xi‖2`

]
≤ `!

2
‖β(∗,⊥m)‖2v2

Mom

(
‖β(∗,⊥m)‖cMom

)`−2

,
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applying Bernstein inequality, we get

P(Dcn) ≤
Nn∑
m=1

exp

(
−

nζ2
n,m/2

‖β(∗,⊥m)‖2v2
Mom + ζn,m‖β(∗,⊥m)‖cMom

)
.

Choosing now ζn,m = log(n)√
n
‖β(∗,⊥m)‖, we get, since Nn ≤ n,

P(Dcn) ≤ Nn exp

(
− log2(n)

2v2
Mom + log(n)√

n
cMom

)
≤ CMom

n
,

with CMom > 0 depending only on vMom and cMom.
Then, on A ∩ B ∩ C ∩ D, (12) becomes, for all m = 1, . . . , Nn,

∥∥∥β̂λ,m̂ − β∗
∥∥∥2

Γ
≤ C

‖β − β∗‖2
Γ +

1(
κ

(m)
n

)2

∑
j∈J(β)

λ2
j + κ

log n

n
σ2m

+2
∥∥∥β(∗,⊥m)

∥∥∥2

Γ
+ ζn,m

)
.

We then upper-bound ζn,m as follows

ζn,m ≤
(
κ(m)
n

)2
∥∥∥β(∗,⊥m)

∥∥∥2

+
log2(n)

n
(
κ

(m)
n

)2 .

�

Appendix B. Control of empirical processes

Lemma 2. For all t > 0, for all m,

PX

 sup
f∈H(m),‖f‖n=1

(
1

n

n∑
i=1

εi〈f ,Xi〉

)2

≥ σ2m

n
+ t


≤ exp

(
−min

{
n2t2

1536σ4m
;

nt

512σ2

})
,

where PX(·) := P(·|X1, . . . ,Xn) is the conditional probability given X1, . . . ,Xn.

Proof of Lemma 2. We follow the ideas of Baraud (2000). Let m be fixed, and

Sm :=
{
x = (x1, . . . , xn)t ∈ Rn, ∃f ∈ H(m),∀i, xi = 〈f ,Xi〉

}
.

We known that Sm is a linear subspace of Rn and that

sup
f∈H(m),‖f‖n=1

1

n

n∑
i=1

εi〈f ,Xi〉 =
1

n
sup

x∈Sm,xtx=n

εtx =
1√
n

sup
x∈Sm,xtx=1

εtx =
1√
n

√
εtPmε,

where ε = (ε1, . . . , εn)t and Pm is the matrix of the orthogonal projection onto Sm. This
gives us

PX

 sup
f∈H(m),‖f‖n=1

(
1

n

n∑
i=1

εi〈f ,Xi〉

)2

≥ σ2m

n
+ t

 = PX

(
εtPmε ≥ σ2m+ nt

)
.
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We apply now Bellec (2019, Theorem 3), with A = Pm and obtain the expected results,
since

E[εtPmε] = σ2tr(Pm) = σ2m,

and since the Frobenius norm ‖ · ‖F of Pm is equal to ‖Pm‖F =
√

tr(Πt
mΠm) =

√
m and

its matrix norm ‖Pm‖2 = 1. �

Appendix C. Tails inequalities

Proposition 3. Equivalence of tails of Banach-valued random variables (Ledoux
and Talagrand, 1991, Equation (3.5) p. 59).

Let X be a Gaussian random variable in a Banach space (B, ‖ · ‖). For every t > 0,

P (‖X‖ > t) ≤ 4 exp

(
− t2

8E [‖X‖2]

)
.

Proposition 4. Bernstein inequality (Birgé and Massart, 1998, Lemma 8).

Let Z1, . . . , Zn be independent random variables satisfying the moments conditions

1

n

n∑
i=1

E
[
|Zi|`

]
≤ `!

2
v2c`−2, for all ` ≥ 2,

for some positive constants v and c. Then, for any positive ε,

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − E [Zi]

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− nε2/2

v2 + cε

)
.

Proposition 5. Norm equivalence in finite subspaces.

Let X1, ...,Xn be i.i.d copies of a random variable X verifying assumptions (HΓ) and

(H
(1)
Mom).Then, for all t > 0, for all weights w = (w1, ..., wm) ∈]0,+∞[m,

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
w

∣∣∣∣ > t

)
≤ 2m2 exp

− nt2

b
∑m

j=1
ṽj
wj

(
4
∑m

j=1
ṽj
wj

+ t
)
 ,

where ‖β‖2
n = 1

n

∑n
i=1〈β,Xi〉2, ‖β‖2

Γ = E [‖β‖2
n], and ‖β‖2

w =
∑m

j=1 wj〈β,ϕ(j)〉2.

Proof of Proposition 5. We have, for all β ∈ H(m), ‖β‖2
n = 〈Γ̂β,β〉. Hence,

‖β‖2
n − ‖β‖2

Γ = 〈(Γ̂− Γ)β,β〉 =
m∑

j,k=1

〈β,ϕ(j)〉〈β,ϕ(k)〉〈(Γ̂− Γ)ϕ(j),ϕ(k)〉 = btΦmb,

with b :=
(
〈β,ϕ(1)〉, ..., 〈β,ϕ(m)〉

)t
and Φm =

(
〈(Γ̂− Γ)ϕ(j),ϕ(k)〉

)
1≤j,k≤m

which implies

sup
β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
w

∣∣∣∣ = ρ(W−1/2ΦmW
−1/2) ≤

√
tr(W−1ΦmΦt

mW
−1)

=

√√√√ m∑
j,k=1

〈(Γ̂− Γ)ϕ(j),ϕ(k)〉2
wjwk

,
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where ρ denotes the spectral radius, and W the diagonal matrix with diagonal entries
(w1, . . . , wm). We then have

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
w

∣∣∣∣ > t

)
≤ P

(
m∑

j,k=1

〈(Γ̂− Γ)ϕj,ϕk〉2

wjwk
> t2

)

≤ P

(
m⋃

j,k=1

{
〈(Γ̂− Γ)ϕ(j),ϕ(k)〉2

wjwk
> pj,kt

2

})
,

≤
m∑

j,k=1

P


∣∣∣〈(Γ̂− Γ)ϕ(j),ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt

 ,

where pj,k :=
ṽj ṽk
wjwk

(
∑m

`=1 ṽ`/w`)
−2

(remark that
∑m

j,k=1 pj,k = 1). Now, for all j, k =

1, ...,m,

P


∣∣∣〈(Γ̂− Γ)ϕ(j),ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt


= P

(∣∣∣∣∣ 1n
n∑
i=1

〈ϕ(j),Xi〉〈ϕ(k),Xi〉√
wjwk

− E
[
〈ϕ(j),Xi〉〈ϕ(k),Xi〉√

wjwk

]∣∣∣∣∣ > √pj,kt
)
.

By Cauchy-Schwarz inequality, for all ` ≥ 2,

E

[∣∣∣∣〈ϕ(j),Xi〉〈ϕ(k),Xi〉√
wjwk

∣∣∣∣`
]
≤

√
E [〈ϕ(j),X〉2`]E [〈ϕ(k),X〉2`]

√
wjwk

`

≤ `!b`−1

√
ṽj
wj

`√
ṽk
wk

`

=
`!

2
2b
ṽj
wj

ṽk
wk

(
b

√
ṽj
wj

√
ṽk
wk

)`−2

.

Hence, Bernstein’s inequality (Lemma 4) implies that

P


∣∣∣〈(Γ̂− Γ)ϕ(j),ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt

 ≤ 2 exp

− npj,kt
2/2

2b
ṽj ṽk
wjwk

+ b
√

ṽj
wj

√
ṽk
wk

√
pj,kt

 ,

and the definition of pj,k implies the expected result.
�
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