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Abstract

We consider the compact space of pairs of nested partitions of N, where by analogy with models
used in molecular evolution, we call “gene partition” the finer partition and “species partition” the
coarser one. We introduce the class of nondecreasing processes valued in nested partitions, assumed
Markovian and with exchangeable semigroup. These processes are said simple when each parti-
tion only undergoes one coalescence event at a time (but possibly the same time). Simple nested
exchangeable coalescent (SNEC) processes can be seen as the extension of Λ-coalescents to nested
partitions. We characterize the law of SNEC processes as follows. In the absence of gene coales-
cences, species blocks undergo Λ-coalescent type events and in the absence of species coalescences,
gene blocks lying in the same species block undergo i.i.d. Λ-coalescents. Simultaneous coalescence
of the gene and species partitions are governed by an intensity measure νs on (0, 1] ×M1([0, 1])
providing the frequency of species merging and the law in which are drawn (independently) the
frequencies of genes merging in each coalescing species block. As an application, we also study the
conditions under which a SNEC process comes down from infinity.

Keywords and phrases: Lambda-coalescent; exchangeable; partition; coming down from infinity;

random tree; gene tree; population genetics; species tree; phylogenetics; evolution.
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1 Introduction

In the framework of population biology, one can see asexual organisms, but also DNA sequences or

even species, as replicating particles. The genealogical ascendance of co-existing replicating particles

can always be represented by a tree whose tips are labelled by the names of these particles [25, 27, 42].

Even if species are not strictly speaking replicating particles, ancestral relationships between species

are also usually represented by a tree whose nodes are interpreted as speciation events, i.e., the

emergence of two or more species from one single species. The inference of the so-called gene tree of

contemporary DNA sequences from their comparison has a decade-long history. It is considered as

a field in its own right, called molecular phylogenetics [19, 32], which relies heavily on the theory of

Markov processes. (This can be misleading, but the species tree, much more often than the gene tree,

is called a phylogeny.)

When one type of replicating particle is physically embedded in another type of particle, like a virus

in its host, their common history can be depicted as a tree within a tree [14, 29, 34]: tree of dividing

parasites inside the tree of dividing hosts, tree of paralogous genes (i.e. distinct DNA segments resulting

from gene duplication and coding for similar functions) inside the gene family tree, gene tree inside

the species tree. In many such cases, biologists are more interested in the coarser tree rather than

in the finer tree. Typically, the finer tree is a gene tree and is inferred thanks to methods developed

in molecular phylogenetics. One of the current methodological challenges in quantitative biology is

to devise fast statistical algorithms able to also infer the coarser tree. When the genes are sampled

from infecting pathogens of the same species (Influenza, HIV...), the coarser tree is the epidemic

transmission process [21, 45]. When the genes are sampled from (any kind of) different species, the

coarser tree is the species tree [22, 33, 43]. It is often required to use several gene trees nested in the

same species tree to infer the latter.

In terms of stochastic modeling, the standard strategy is to define the two nested trees in a hierarchical

model referred to as the multispecies coalescent model [12, 36] (see also [3, 18] for recent surveys on

general coalescent theory and applications to population genetics). First, the species tree is fixed

or drawn from some classic probability distribution (e.g., pure-birth process stopped at some fixed

time, viewed as present time). Second, each gene sequence is assigned to the contemporary species
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it is (supposed to be) sampled from. Recall that each contemporary species is in correspondence

with a tip of the species tree. Third, conditional on the species tree, each gene lineage can then

be traced backwards in time inside the species tree, starting from the tip species harboring it and

traveling through its ancestral species successively. In addition, gene lineages are assumed to coalesce

according to the censored Kingman coalescent [24], i.e., each pair of lineages lying in the same species

independently coalesces at constant rate.

In the case when the species tree is also distributed as a Kingman coalescent, the former two-type

coalescent process is a Markov process as time runs backward, that we call the nested Kingman

coalescent (or ‘Kingman-in-Kingman’) [8, 11, 28]. Our goal here is to display a much richer class of

Markov models for trees within trees, called simple nested exchangeable coalescent (SNEC) processes,

where multiple species lineages can merge into one single species lineage, and where simultaneously,

within those merging species, multiple gene lineages can merge into one single gene lineage. To make

this more precise, we show in the next display some valid and invalid coalescence events from an initial

state where six genes, labeled from 1 to 6, are grouped by pairs in three species lineages. We represent

this situation in the next display by a pair of partitions
(πs

πg

)
, as in the left-hand side of the display.

Event (A) is valid because the first two species merge and simultaneously, within these species, genes

labeled 1, 2 and 3 coalesce. On the contrary, event (B) is not a valid transition because there are two

distinct gene coalescences (1 with 2, and 3 with 4), which is proscribed, and event (C) is not valid

because the gene coalescence (5 with 6) is outside the species coalescence.

(
{ 1, 2 }{ 3, 4 }{ 5, 6 }

{ 1 }{ 2 }{ 3 }{ 4 }{ 5 }{ 6 }

)
→
(

{ 1, 2, 3, 4 }{ 5, 6 }

{ 1, 2, 3 }{ 4 }{ 5 }{ 6 }

)
(A)

6→
(

{ 1, 2, 3, 4 }{ 5, 6 }

{ 1, 2 }{ 3, 4 }{ 5 }{ 6 }

)
(B)

6→
(

{ 1, 2, 3, 4 }{ 5, 6 }

{ 1 }{ 2 }{ 3 }{ 4 }{ 5, 6 }

)
(C)

In brief, SNEC processes are the generalization of Λ-coalescents to processes valued, not in partitions

of N, but in pairs of nested partitions of N. The class of Λ-coalescents [35, 37], for which only one

coalescence event can occur at a time, is a subclass of Markov, exchangeable processes with possibly

non-binary nodes, called Ξ-coalescents, where several coalescence events can be simultaneous [4, 38].

Non-binary nodes in species trees can be interpreted as unresolved nodes (a sequence of binary nodes
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following each other too closely in time for their order to be inferred correctly) or radiation events

(periods of frequent speciations due to the opening of new ecological opportunities that can be exploited

by different, new species). In gene trees, non-binary nodes are increasingly recognized as a conspicuous

sign of natural selection both by biologists [30, 44] and by mathematicians and physicists [1, 10, 13,

16, 31, 41] ; it is also well understood that non-binary nodes could be consequences of bottlenecks as

well as large variance in offspring distributions [17, 40]. The class of SNEC processes includes all these

features. They can distinguish unresolved nodes (sequence of stochastically close, binary coalescences)

from radiations (multiple merger in the species tree). Under the interpretation of non-binary nodes

as a result of natural selection, SNEC processes can model the appearance of alleles responsible for

positive selection (multiple merger in the gene tree) or for divergent adaptation (multiple merger

simultaneously in the gene tree and in the species tree).

From a mathematical point of view as well, SNEC processes open up the door to many possible

new investigations. For example some of us are currently studying the speed of coming down from

infinity of SNEC processes [8, 28] as well as similar extensions [15] to fragmentation processes [4]. It

will be interesting to investigate how the nested trees generated by SNEC processes can be cast in

the frameworks of multilevel measure-valued processes [7, 11] and flows of bridges [5, 6] as well as

of exchangeable combs [20, 26]. It would also be natural to study the extension of Ξ-coalescents to

nested partitions.

Organization of the article. In Section 2, we introduce some notation, and give examples of nested

coalescent processes whose distributions are characterized by four parameters. Section 3 formally

defines our object of study, the SNEC processes. We prove our main result in Section 4, and show

in Section 5 how SNEC processes can be constructed from a collection of Poisson point processes.

Finally, Section 6 gives a necessary and sufficient condition under which SNEC processes come down

from infinity.

2 Statement of results and notation

2.1 Statement of results and examples

An exchangeable partition is a random partition of N whose law is invariant by permutations of N

(with finite support). A Λ-coalescent is a Markov process valued in the exchangeable partitions of
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N typically starting from the partition 0∞ of N into singletons, and such that only one coalescence

event can occur at a time. The generator of a Λ-coalescent R = (R(t), t ≥ 0) is characterized by a

σ-finite measure ν on (0, 1] called the coagulation measure and a non-negative real number a called

the Kingman coefficient. Then R can be constructed from a Poisson point process as follows.

For x ∈ (0, 1], let Px denote the law of a sequence of i.i.d. Bernoulli(x) r.v.’s and define

P :=
∫

(0,1]
ν(dx)Px

Also define Ki,i′ the (Dirac) law of the sequence with only zero entries except a 1 at positions i and i′

and set

K :=
∑

1≤i<i′
Ki,i′

Finally, let M be a Poisson point process with intensity measure dt ⊗ (P + aK). Roughly speaking,

at each atom (t, (Xi, i ≥ 1)) of M , R(t) is obtained from R(t−) by merging exactly the i-th block of

R(t−) together, for all i such that Xi = 1. The rigorous description is given through restrictions of R

to [n] := {1, . . . , n} and by applying Kolmogorov extension theorem. See [4] for details. Note that for

this description to apply (i.e., for restrictions of R to [n] to have positive holding times), one needs

the coagulation measure to satisfy ∫
(0,1]

x2 ν(dx) <∞. (2.1)

The finite measure x2 ν(dx) is usually denoted Λ(dx), hence the name Λ-coalescent.

We can now draw the parallel with the results obtained in this paper. We want to define a Markov

process R = ((Rs(t),Rg(t)), t ≥ 0) valued in exchangeable bivariate, nested partitions of N, in the

sense that the gene partition Rg(t) is finer than the species partition Rs(t) for all t a.s.

We now have to allow for coalescences in both the gene partition and the species partition. To this

aim, we will consider a doubly indexed array of 0’s and 1’s Z = (X, (Yi, i ≥ 1)) = (Xi, Yij , i, j ≥ 1).

The goal is to give a characterization and a Poissonian construction of R under the assumptions that

the semigroup of R is exchangeable and that both Rs and Rg undergo only one coalescence at a time

(but possibly the same time), as detailed in forthcoming Definition 2. Roughly speaking, and similarly

as previously, Xi will determine whether the i-th species block participates in the coalescence in the

species partition Rs, and Yij whether the j-th gene block of the i-th species block participates in the

coalescence in the gene partition Rg.

Let us start with the Kingman-type coalescences. Let Ksi,i′ be the (Dirac) law of the array Z with only

zero entries except Xi = Xi′ = 1 and let Kgi;j,j′ be the (Dirac) law of the array Z with only zero entries
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except Xi = Yij = Yij′ = 1. Finally, define

Ks =
∑

1≤i<i′
Ksi,i′ and Kg =

∑
1≤i

∑
1≤j<j′

Kgi;j,j′

Let us carry on with multiple gene mergers without simultaneous species coalescences. Let x ∈ (0, 1]

and i ∈ N. Let P gi,x be the distribution of the array Z with only zero entries except at row i, where

Xi = 1 and the (Yij , j ≥ 1) are i.i.d. Bernoulli(x) r.v.’s. Let us define

P gx :=
∑
i≥1

P gi,x

Finally, let us consider multiple species mergers, with possible simultaneous gene mergers. Let x ∈

(0, 1] and µ ∈ M1([0, 1]). Let (Xi, i ≥ 1) be a sequence of i.i.d. Bernoulli(x) r.v.’s and let (Qi, i ≥ 1)

be an independent sequence of i.i.d. r.v.’s of [0, 1] with distribution µ. Then for each i ≥ 1, conditional

on Xi and Qi, let (Yij , j ≥ 1) be an independent sequence of i.i.d. Bernoulli(Qi) r.v.’s. if Xi = 1 and

the null array otherwise. Let us write P sx,µ for the distribution of the array Z thus defined.

Our main result is that for any simple nested exchangeable coalescent (SNEC) process R, there are

• two non-negative real numbers as and ag;

• a σ-finite measure νg on (0, 1];

• a σ-finite measure νs on (0, 1]×M1([0, 1]),

such that R can be constructed from a Poisson point process M with intensity dt⊗ ν(dZ) where

ν := asKs + agKg +
∫

(0,1]
νg(dx)P gx +

∫
(0,1]×M1([0,1])

νs(dx, dµ)P sx,µ.

Similarly as explained previously, at each atom (t,Z) ofM , the double array Z prescribes which blocks

have to merge at time t. For the finite restrictions of R to have positive holding times, the measures

νs and νg are required to satisfy the forthcoming conditions (3.7) and (3.8) respectively, which are the

analogs to (2.1).

Note that coagulations of the Kingman type cannot occur simultaneously in the species partition and

in the gene partition.

We now give a couple of examples of SNEC processes.

If νs(dp, dµ) = ν ′s(dp) δδ0(dµ), species and genes never coalesce simultaneously and the nested coales-

cent is a multispecies coalescent (see Introduction), where the species tree is given by the Λ-coalescent
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with coagulation measure ν ′s and Kingman coefficient as, while the genes in the same species block

undergo independent Λ-coalescents with coagulation measure νg and Kingman coefficient ag. In par-

ticular, when ν ′s and νg are zero, the SNEC process is a nested Kingman coalescent (Kingman-in-

Kingman).

Whenever νs is not under the form νs(dp, dµ) = ν ′s(dp) δδ0(dµ), species blocks and gene blocks can

coalesce simultaneously. For example if νs(dp, dµ) = ν ′s(dp) δδx(dµ) for x ∈ (0, 1], at each species

coalescence event, a proportion x of gene blocks contained in the species blocks participating in the

coalescence event, are simultaneously merged together. In particular, if x = 1, the gene tree coincides

with the species tree on lineages situated after a species coalescence event. Recall that there are

conditions (see (3.7)) for νs to be a correct SNEC measure, which in this case translate to∫
(0,1]

ν ′s(dp) p2 <∞ and
∫

(0,1]
ν ′s(dp) p x2 <∞,

which is simply equivalent to ∫
(0,1]

ν ′s(dp) p <∞.

Otherwise the simplest sort of measure νs can be obtained by parameterizing its second component

µ, for example if µ is a Beta distribution µa,b(dq) = ca,b q
a−1(1 − q)b−1 dq, where a, b > 0 and ca,b =

Γ(a+b)
Γ(a) Γ(b) , we can consider νs under the form

νs(dp, dµ) = ν ′s(dp, da, db) δµa,b
(dµ).

In this case, the condition (3.7a) reads∫
(0,1]×(0,∞)×(0,∞)

ν ′s(dp, da, db) p2 <∞,

and (3.7b) becomes∫
(0,1]×(0,∞)×(0,∞)

ν ′s(dp, da, db) p
∫

[0,1]
ca,b q

a+1(1− q)b−1 dq <∞,

which can be rewritten ∫
(0,1]×(0,∞)×(0,∞)

ν ′s(dp, da, db)
pa(a+ 1)

(a+ b)(a+ b+ 1) <∞.

Note that the idea to use a Beta distribution here is inspired by the Λ-coalescent setting [35], where

Beta distributions appear as natural candidates for the parametrization of the measure Λ, as the

coalescence rate of each k-tuple of blocks among a total number of b blocks is expressed in the form∫ 1

0
xk−2(1− x)b−kΛ(dx).

7



2.2 Notation

For any n ∈ N̄ := N ∪ {+∞}, let Pn be the set of partitions of [n] . A partition π is called simple if

at most one of its non-empty blocks is not a singleton. We denote the set of simple partitions of [n]

by P ′n, that is,

P ′n = {π ∈ Pn, Card{i, |πi| > 1} ≤ 1}

where π1, π2, . . . denote the blocks of π ordered by their least element and |πi| stands for the number

of elements in the block πi. Recall that a partition π can be viewed as an equivalence relation, in the

sense that i π∼ j if and only if i and j belong to the same block of the partition π. If πg and πs belong

to Pn, we will say that the bivariate partition π = (πs, πg) is nested (or equivalently that πg is finer

than πs) when

i
πg

∼ j =⇒ i
πs

∼ j.

Note that this is defines a natural partial order on Pn, and we can write πg � πs if (πg, πs) is nested.

The set of nested partitions of [n] is denoted in the sequel by Nn. We will sometimes use the notation

1n := {[n]} for the coarsest partition of [n], and 0n := {{1}, {2}, . . .} for the finest partition of [n].

Example 1. An example of nested partition of {1, 2, . . . , 10} is given by

πs =
{
{1, 5, 7}, {2, 4, 8, 10}, {3, 6, 9}

}
πg =

{
{1}, {2, 4}, {3}, {5, 7}, {6, 9}, {8}, {10}

}
.

The notation (πs, πg) owes to our modeling inspiration (see Introduction) where gene lineages are

enclosed into species lineages.

Notation related to and properties of Pn can naturally be extended to the framework of bivariate

partitions. For the sake of completeness we specify here the ones we will use repeatedly. The number

of non-empty blocks of a bivariate partition π = (π1, π2) ∈ Pn1 × Pn2 is merely |π| := (|π1|, |π2|). If

m1 < n1 and m2 < n2, we write π|m1×m2 for the restriction of π to Pm1 × Pm2 , that is, π|m1×m2 =

(π1 |m1 , π2 |m2). If m ≤ min(n1, n2), we will write π|m := π|m×m for its restriction to P2
m := Pm × Pm.

A sequence π(1), π(2), ... of elements of P2
1 ,P2

2 , ... is called consistent if for all integers k′ ≤ k, π(k′)

coincides with the restriction of π(k) to [k′]2. Moreover, a sequence of partitions (π(n) : n ∈ N) is

consistent if and only if there exists π ∈ P2
∞ such that π|n = π(n) for every n ∈ N.

Given a nested partition we can use the coagulation operator Coag (more details in Chapter 3 in

Bertoin [4]) to write the species partition in terms of the labels of the gene partition. Recall that if
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π ∈ Pn and π̃ ∈ Pm with m ≥ |π|, then define π′ = Coag(π, π̃) as the partition of Pn such that

π′j =
⋃
i∈π̃j

πi.

For every n ∈ N̄, let π = (πs, πg) be an element of Nn and write m = |πg|. The unique partition

π̄ ∈ Pm such that πs = Coag(πg, π̄) is called the link partition of π. We sometimes say that π is linked

by π̄. To illustrate the previous definition, observe that the nested partition defined in Example 1 has

link partition π̄ = {{1, 4}, {2, 6, 7}, {3, 5}}.

We can next get a partition of Pn1 × Pn2 through the coagulation of two pairs of partitions. More

precisely, if (π1, π̃1) ∈ Pn1 × Pn′
1
and (π2, π̃2) ∈ Pn2 × Pn′

2
with n′1 ≥ |π1| and n′2 ≥ |π2|, then

(Coag(π1, π̃1),Coag(π2, π̃2)) is well defined and it is an element of Pn1×Pn2 . If we denote π = (π1, π2)

and π̃ = (π̃1, π̃2) we will say that the pair (π, π̃) is admissible and denote the latter operation by

Coag2(π, π̃). In the following we will sometimes call the partition π̃ as the recipe partition.

In the sequel, we are interested in the coagulation of a nested partition, say π = (πs, πg), with a

pair of simple partitions π̃ = (π̃s, π̃g). Nevertheless, we should observe that the resulting partition,

Coag2(π, π̃) is not necessarily nested. For instance, if we coagulate the partition π of Example 1,

with π̃s = {{1, 2}, {3}}, and π̃g = {{1, 3}, {2}, {4}, {5}, {6}, {7}} then Coag(πg, π̃g) is not nested in

Coag(πs, π̃s). In order to maintain the nested property while coagulating a nested partition we need

to watch out the way the gene blocks do merge together and if they respect the species structure. To

this end, for any n ∈ N̄ and π ∈ Nn, we can define the set P̃(π) ⊂ (P ′n)2 of simple recipe partitions

permitting a consistent merger of species and genes, i.e.

P̃(π) =
{
π̃ = (π̃s, π̃g) ∈ (P ′n)2, i

π̃g

∼ j =⇒ i
π̄∼ j, or k π̃s

∼ l, where πgi ⊂ π
s
k and πgl ⊂ π

s
l

}
,

where π̄ denotes as usual the link partition of π. Simply put, P̃(π) is the subset of (P ′n)2 such that

π̃ ∈ P̃(π) ⇐⇒ Coag2(π, π̃) ∈ Nn.

Finally the natural partial order on partitions can be extended to bivariate partitions by defining

(π1,s, π1,g) � (π2,s, π2,g) ⇐⇒ π1,s � π2,s and π1,g � π2,g. This partial order allows us to see

coalescent processes as nondecreasing processes in the space of nested partitions.

3 Simple nested exchangeable coalescents

In the aim to describe the joint dynamics of the species and gene partitions, we will now define

a nondecreasing process with values in the nested partitions, called nested coalescent process. In
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this work we are only interested in simple nested coalescents in the sense that at any jump event,

called coalescence event, all blocks undergoing a modification merge into one single block. Simple

exchangeable coalescent processes were first introduced independently by Pitman [35] and Sagitov

[37], and are usually called in the literature Λ-coalescents (see Introduction). Here we use the term

simple as in [4], to denote the analog of a Λ-coalescent process in the case of (nested) bivariate

partitions.

Note that for any partition π ∈ P∞ and any injection σ : N→ N, there is a partition σ(π) defined by

i
σ(π)∼ j ⇐⇒ σ(i) π∼ σ(j).

For bivariate partitions we define in the same way σ(πs, πg) := (σ(πs), σ(πg)). For random partitions,

exchangeability is usually defined as invariance under the action of permutations σ : N → N. Here,

to avoid degenerate processes we will define our processes as being invariant under the action of all

injections σ : N → N. Indeed, by making this assumption we avoid dependence on, for instance, the

total number of blocks of the partition. An example of what we consider here a degenerate process

with values in P∞ would be a modified Kingman coalescent where any pair of blocks merge at rate

a = a(n), a function of n the total number of blocks. While this process would be invariant under

permutations of N, it is in general not invariant under injections, as their action can change the total

number of blocks in a partition of N. Furthermore, given (Π(t), t ≥ 0) such a process and n an integer,

the restriction (Π(t)|n, t ≥ 0) would not be a Markov process, as the jump rates of Π(t)|n depend on

the whole partition Π(t). Invariance under injections ensures us that processes can be consistently

defined, i.e. that (Π(t)|n, t ≥ 0) will always be a Markov process. It will also be useful in forthcoming

proofs to consider invariance under injections rather than only permutations.

Since we consider processes with values in the space P∞, let us endow it with the natural topology

generated by the sets of the form {π′ ∈ P∞, π′|n = π} for n ∈ N and π ∈ Pn. It is readily checked that

this topology is metrizable and makes P∞ compact. Also, note that the product topology on P2
∞, and

that induced on N∞ also makes them compact.

Definition 2. Let R := ((Rs(t),Rg(t)), t ≥ 0) be a càdlàg Markov process with values in P2
∞. This

process is called a simple nested exchangeable coalescent, SNEC for short, if

i) For any t ≥ 0, R(t) is nested;

ii) The process (R(t), t ≥ 0) evolves with simple coalescence events, that is for any time t ≥ 0 such

that R(t−) 6= R(t), there is a random bivariate partition R̃(t) = (R̃s(t), R̃g(t)) taking values in
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P̃(R(t−)) such that

R(t) = Coag2(R(t−), R̃(t));

iii) The semigroup of the process (R(t), t ≥ 0) is exchangeable, in the sense that for any t, t′ ≥ 0

and any injection σ : N→ N,

(
σ(R(t+ t′)) | R(t) = π

) (d)=
(
R(t+ t′) | R(t) = σ(π)

)
. (3.2)

To start the analysis of SNEC processes we would like to make some observations related to Definition

2. First note that R is a N∞-valued process such that for every t, t′ ≥ 0, the conditional distribution

of R(t+ t′) given R(t) = π is the law of Coag2(π, π̃), where π̃ ∈ P̃(π), hence the law of π̃ depends on

t′ but also on π. Also, it will be clear from our main result (see Theorem 5) that (Rs(t), t ≥ 0) is

an exchangeable coalescent, however (Rg(t), t ≥ 0) is not a Markov process in general, because the

distribution of Rg(t+ t′) may depend on Rs(t).

We now turn to investigate the transitions of the restrictions of a SNEC to finite partitions, which

relies on the following lemma.

Lemma 3 (Projective Markov property). Let R = (R(t), t ≥ 0) be a process with values in N∞ and

for every integer n, write R|n = (R|n(t), t ≥ 0) for its restriction to Nn. Then R is a SNEC in N∞
if and only if for all n ∈ N, R|n is a continuous-time Markov chain on the space Nn satisfying the

analog of statements i) – iii) of Definition 2, namely:

i) For all t ≥ 0, R|n is nested;

ii) For %, π ∈ Nn, the rate from % to π is zero if π can not be obtained from a simple coalescence

event;

iii) The Markov chain (R|n(t), t ≥ 0) is exchangeable, in the sense that for any t, t′ ≥ 0, %, π ∈ Nn
and σ permutation of n, the rate from % to π is equal to that from σ(%) to σ(π).

Proof. Let R be a SNEC in N∞ and let n ∈ N. Let us prove that R|n satisfies the claimed properties.

Let % ∈ Nn. Pick %? ∈ N∞ such that %?|n = %, and which contains an infinite number of species blocks,

each of which containing an infinite number of gene blocks, each of them being an infinite subset of

N. Now for any %′ ∈ N∞ such that %′|n = %, there is an injection σ : N→ N such that σ(%?) = %′ and
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such that σ|[n] = id[n], so for any t, t′ ≥ 0,

(R|n(t+ t′) | R(t) = %′) (d)= (R|n(t+ t′) | R(t) = σ(%?))
(d)= (σ(R)|n(t+ t′) | R(t) = %?)
(d)= (R|n(t+ t′) | R(t) = %?).

Since this is valid for any %′ such that %′|n = %, this conditional distribution depends only on {R|n(t) =

%}, which proves thatR|n is a Markov process. Now the assumption thatR has càdlàg paths ensures us

that the process R|n stays some positive time in each visited state a.s. Therefore R|n is a continuous-

time Markov chain. Now statements i) – iii) are easily deduced from Definition 2.

Conversely, let R = (R(t), t ≥ 0) be a process with values in N∞ such that for all n ∈ N, R|n is a

Markov chain satisfying i) – iii) of the lemma. Then i) and ii) of Definition 2 follow immediately, and

it remains to check that for any injection σ : N→ N, the equality in distribution (3.2) holds.

Let σ : N → N be an injection and fix n ∈ N. Define N = max{σ(1), σ(2), . . . , σ(n)}, and consider

σ̃ : [N ] → [N ] a permutation such that for all 1 ≤ i ≤ n, σ̃(i) = σ(i). For instance, one can define

inductively for n+ 1 ≤ i ≤ N ,

σ̃(i) := min([N ] \ {σ(1), σ(2), . . . , σ(i− 1)}).

Now notice that for any t ≥ 0 and any π ∈ N∞,

σ(π)|n = σ̃(π|N )|n,

which enables us to write, for any t, t′ ≥ 0,

(σ(R)|n(t+ t′) | R(t) = π) (d)= (σ̃(R|N (t+ t′))|n | R(t) = π)
(d)= (R|N (t+ t′)|n | R|N (t) = σ̃(π|N ))
(d)= (R|n(t+ t′) | R|n(t) = σ̃(π|N )|n)
(d)= (R|n(t+ t′) | R|n(t) = σ(π)|n)
(d)= (R|n(t+ t′) | R(t) = σ(π)).

The passage to the second line in the last display is a consequence of iii) of the lemma, and we used

the fact that restrictions are Markov chains, i.e. (R|n(t+ t′) | R|n(t) = π|n) (d)= (R|n(t+ t′) | R(t) = π).

Since n is arbitrary in

(σ(R)|n(t+ t′) | R(t) = π) (d)= (R|n(t+ t′) | R(t) = σ(π)),

12



we have shown (3.2), concluding the proof.

This key lemma enables us to give the following first properties of SNEC processes.

Proposition 4. Let R be a SNEC.

• If the process R starts from an exchangeable nested partition R(0), then for any t ≥ 0, Rg(t)

and Rs(t) are exchangeable partitions.

• The process R is a Feller process, so in particular it satisfies the strong Markov property.

• Conditional on R(t), if R̄(t) denotes the link partition of R(t) then for any t, t′ ≥ 0, the dis-

tribution of Rg(t + t′) is the law of Coag(Rg(t), π̃g), where π̃g is a random partition such that

σ(π̃g) d= π̃g for any permutation σ preserving R̄(t) i.e., such that

i
R̄(t)∼ j ⇒ σ(i) R̄(t)∼ σ(j). (3.3)

Another property is that the process (Rs(t), t ≥ 0) is a simple exchangeable coalescent process, but

we do not prove it at this point as it will be clear from Theorem 5.

Proof. The first point of the proposition is immediate considering iii) of Definition 2.

As for the second point, recall that N∞ is endowed with the topology generated by the sets of the

form {π ∈ N∞, π|n = π̂}, for n ∈ N, π̂ ∈ Nn. It is easy to see that this topology is metrized by

d(π, π′) := (sup{n ∈ N, π|n = π′|n})
−1 (with (supN)−1 = 0) and that (N∞, d) is compact.

We need to show that for any continuous (then bounded) function f : N∞ → R, the function Ptf :

π 7→ Eπf(R(t)) (where Eπ(·) = E(· |R(0) = π)) is continuous, and that Ptf(π) → f(π) as t → 0.

By definition the process is càdlàg so we have almost surely f(R(t)) → f(R(0)) so clearly by taking

expectations Ptf(π) → f(π) as t → 0. Now to show that Ptf is continuous, consider n ∈ N and

let {π̂1, . . . , π̂k} be an enumeration of Nn. We pick π1, . . . , πk ∈ N∞ such that πi|n = π̂i, and define

f̂n : N∞ → R by

f̂n(π) = f(πi) if π|n = π̂i.

Now since f is continuous on (N∞, d) which is compact, f is uniformly continuous, which means that

ωn := sup
π∈N∞

|f(π)− f̂n(π)| → 0 as n→∞.

For t > 0 and π, π′ ∈ N∞, we have

|Ptf(π)− Ptf(π′)| ≤
∣∣∣Eπf̂n(R(t))− Eπ′ f̂n(R(t))

∣∣∣+ 2ωn. (3.4)
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Now suppose π|n = π′|n. Since f̂n depends only on π|n and by Lemma 3 the process R|n has the same

distribution under Pπ or Pπ′ , we have the equality Eπf̂n(R(t)) = Eπ′ f̂n(R(t)), and plugging that into

(3.4), we get

sup{|Ptf(π)− Ptf(π′)|, π, π′ ∈ N∞, π|n = π′|n} ≤ 2ωn → 0 as n→∞,

showing that Ptf is continuous.

For the third point of the proposition, Rg(t + t′) is clearly of the form Coag(Rg(t), π̃g), where π̃ =

(π̃s, π̃g) is a random recipe partition whose distribution depends on R(t) and t′. Let us show that the

conditional distribution of π̃ given R(t) is invariant under the action of permutations preserving R̄(t).

Without loss of generality, we can work under the conditioning {R(t) = (%,0∞)}, where % is any

partition and 0∞ is the partition into singletons, so that for all π, we have Coag(Rg(t), π) = π. In

particular, note that in this case we have Rg(t+ t′) = π̃g, and R̄(t) = %. Let σ be a permutation such

that σ(%) = %. The problem then reduces to showing that

(
σ(Rg(t+ t′)) | R(t) = (%,0∞)

) (d)=
(
Rg(t+ t′) | R(t) = (%,0∞)

)
,

which is now an immediate consequence of iii) in Definition 2.

Let us now investigate the transition rates of the Markov chains R|n appearing in Lemma 3, for every

n ∈ N. In this direction fix n ∈ N, let % ∈ N∞ and π ∈ Nn and denote the jump rate of R|n from %|n

to π by

qn(%, π) := lim
t→0+

1
t
P%(R|n(t) = π) (3.5)

where P%(·) = P(· |R(0) = %). The index n is not necessary in the notation as it can be read in the

partition π. However we keep it as it will ease reading. Remind that qn(%, π) only depends on % through

%|n. As is remarked in Lemma 3, qn(%, π) equals zero if π is not obtained from %|n by coagulating

blocks according to a partition in P̃(%|n), that is by merging some species blocks of %s|n into one and

some gene blocks of the new species into one. Also observe that the rates do not depend on the sizes

of the gene blocks in the starting configuration so there is no loss of generality if we consider that

%g = 0∞, the trivial partition made of singletons. Of course changing the starting partition % has some

effect on the arrival partition π. This is why we will need to write transition rates in another way,

giving more emphasis on the dependence of the coagulation mechanism upon the starting partition.

Fix n ∈ N̄ and suppose that R|n starts from n singleton gene blocks allocated into b species. Since

labels of genes do not affect the transition rates, we will keep the data of the number of genes in
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each species in a vector g = (g1, . . . , gb). This vector suffices to describe the starting position. Indeed

|g| = b gives the number of species and
∑b
i=1 gi = n gives the number of genes.

Now the coagulation mechanism will be described by two terms. We will say that a gene block

participates in the coalescence event if it merges with other gene blocks. We will say that a species

block participates in the coalescence event if it merges with other species blocks or if it contains gene

blocks that participate in the coalescence event.

The behaviour of the species blocks will be encoded in a vector s = (s1, . . . , sb) with coordinates taking

values in {0, 1}. Namely, si = 1 if the i-th species participates in the coalescence event and si = 0

otherwise. The total number of species involved in the event is k =
∑b
i=1 si.

The behaviour of the gene blocks will be encoded by an array c = (c1, . . . , cb) where ci is a vector

describing which gene blocks in the i-th species participate in the coalescence event. If si = 1 (i-th

species block participating in the coalescence event), then ci = (ci1, . . . , cigi) is such that cij = 1 if

j-th gene block inside i-th species block participates in the coalescence event and cij = 0 otherwise.

If si = 0, the i-th species block is not participating in the event and so neither will the gene blocks

within it. In this case we set ci = (0, 0, . . . , 0) = 0 and nothing happens at the gene level. Note that

the number of gene blocks participating in the coalescence event is
∑
i,j cij .

Note that all such arrays (g, s, c) do not necessarily code for observable coalescence events, so we will

define a restricted set of arrays of interest for our study. First, note that one needs to have
∑
i si ≥ 2

in order to observe a species merger. If
∑
i si = 1, then there is a gene coalescence if and only if∑

i,j cij ≥ 2. Also, we will restrict ourselves to the arrays (g, s, c) such that
∑
i,j cij 6= 1, because a

sole gene coalescing is not distinguishable from no gene coalescing.

Formally, we consider finite arrays (g, s, c) satisfying the assumptions

If |g| = b, then s ∈ {0, 1}b and c = (c1, . . . , cb), ci ∈ {0, 1}gi ,

with si = 0 =⇒ ∀j, cij = 0
(H1)

∑
i,j

cij < 2 =⇒
∑
i

si ≥ 2, (H2)

and
∑
i,j

cij 6= 1. (H3)

We denote by C the set of arrays (g, s, c) satisfying (H1), (H2) and (H3).

We then denote the transition rate of R|n from a partition described by g (such that
∑
gi = n) to a
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new partition obtained by merging species and genes according to s and c by

qb,k(g, s, c).

Here again indices b and k are not necessary but permit to read easily the coalescence event at the

species level (k =
∑
si species merging among b = |g|). We insist on the fact that we consider

only arrays (g, s, c) ∈ C when we study the rates qb,k(g, s, c), and that these quantities determine

uniquely the law of a SNEC R, since they describe completely the rates associated to each finite-space

continuous-time Markov chain R|n.

We introduce a notation that we will use in the next result for ease of writing. For µ a probability

on [0, 1], consider any probability space where Z1, Z2, . . . are i.i.d. with distribution µ and denote the

expectation Eµ. Now take a vector (gi, i ∈ S) of integers, where S is a finite subset of N. We define

U(µ, (gi, i ∈ S)) = Eµ
[∑
i∈S

giZi(1− Zi)gi−1 ∏
j∈S : j 6=i

(1− Zj)gj

]
=
∑
i∈S

gi

∫
[0,1]

µ(dq)q(1− q)gi−1 ∏
j∈S : j 6=i

∫
[0,1]

µ(dq)(1− q)gj .
(3.6)

This can be thought of as the probability that a random array (cij , i ∈ S, 1 ≤ j ≤ gi) does not satisfy

(H3), where conditional on (Zi, i ∈ S) the variables (cij) are independent, and for all i, j, cij = 1

with probability Zi. We can now state our main result.

Theorem 5. There exist two non-negative real numbers as, ag ≥ 0 and two measures:

• νs on E = (0, 1]×M1([0, 1]);

• νg on (0, 1];

such that ∫
E
νs(dp, dµ)p2 <∞, (3.7a)∫

E
νs(dp, dµ)p

∫
[0,1]

µ(dq)q2 <∞, (3.7b)

and
∫

(0,1]
νg(dq)q2 <∞, (3.8)
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and such that for any array (g, s, c) ∈ C such that |g| = b,
∑
i si = k and

∑
j cij = li,

qb,k(g, s, c) =
∫
E
νs(dp, dµ)pk(1− p)b−k

( ∏
i : si=1

∫
[0,1]

µ(dq)qli(1− q)gi−li

+ 1{c = 0}U(µ, (gi, 1 ≤ i ≤ b with si = 1))
)

+ as1{k = 2, c = 0}

+ 1{k = 1}
(
ag1{lI = 2}+

∫
(0,1]

νg(dq)qlI (1− q)gI−lI

)
,

(3.9)

where the functional U is defined in (3.6) and I = I(g, s, c), in the case k = 1, is the unique index in

{1, 2, . . . , b} such that sI = 1.

Furthermore, this correspondence between laws of SNEC processes and quadruplets (as, ag, νs, νg) sat-

isfying (3.7) and (3.8) is bijective.

Remark 6. We will show the surjective part of the theorem’s last statement in Section 5, using an

explicit Poissonian construction. For now we prove the existence and uniqueness of the characteristics

(as, ag, νs, νg).

4 Proof of Theorem 5

Consider a SNEC process R = ((Rs(t),Rg(t)), t ≥ 0) with values in N∞ and recall its jump rates

qn(%, π) defined in (3.5). Also recall the alternative notation qb,k(g, s, c). Here, g is a vector of size

b such that
∑
gi = n, s is a vector having the same size as g with coordinates in {0, 1} such that∑

si = k, and c is a family of |g| elements denoted by c1, c2 . . . where ci is a vector of {0, 1}gi if si = 1

and ci = 0 if si = 0.

Lemma 7. For any initial value % = (%s, %g) ∈ N∞, there exists a unique measure µ% on N∞ such

that

µ%({%}) = 0 and ∀n ≥ 1, µ%(Π|n 6= %|n) <∞ (4.10)

and such that the transition rate of the Markov chain R|n from %|n to π ∈ Nn is given by

qn(%, π) = µ%(Π|n = π). (4.11)

Furthermore, for any permutation σ : N→ N,

µ%(σ(Π) ∈ ·) = µσ(%)(Π ∈ ·). (4.12)

17



Note that we write µ%(Π ∈ A) instead of µ%(A) because we implicitly work on the canonical space N∞
and we denote by Π the generic element of N∞.

Proof. Let n < m. We first note that since R|m and R|n = (R|m)|n are Markov chains, the transition

rates can be expressed, for any π ∈ Nn \ {%|n},

qn(%, π) =
∑

π′∈Nm : π′
|n=π

qm(%, π′). (4.13)

Let us now check that this consistency property along with Carathéodory’s extension theorem ensures

us that there exists a measure µ% on N∞ \ {%} satisfying (4.11).

Here the family A :=
{
{Π|n = π}, n ∈ N, π ∈ Nn \ {%|n}

}
∪ {∅} clearly forms a semi-ring of subsets

of N∞, and it remains to check that the functional µ̃ : A → [0,+∞], defined by

µ̃(∅) := 0 and µ̃({Π|n = π}) := qn(%, π),

is a pre-measure. Equation (4.13) shows that µ̃ is finitely additive, and the only difficulty lies in

understanding that µ̃ is countably additive. Now observe that the topology of N∞ \ {%} is generated

by A, and that each of the non-empty sets in A is both open and closed (thus compact), because

N∞ \ {Π|n = π} =
⋃

%∈Nn\{π}
{Π|n = %}.

This implies that if (An)n≥1 is a family of pairwise disjoint elements of A such that
⋃
nAn ∈ A, then

at most a finite number of the An are non-empty (because since
⋃
nAn is compact, there is a finite

subcover), so countable additivity reduces to finite additivity. Therefore Carathéodory’s extension

theorem applies, hence the existence of a measure µ% on N∞ \ {%} satisfying (4.11).

Considering µ% as a measure on N∞ such that µ%({%}) = 0, we check easily (4.10) by noticing that

µ%(Π|n 6= %|n) =
∑

π∈Nn\{%|n}
qn(%, π) <∞.

Furthermore, for any n, π ∈ Nn \ {%|n} and σ : N → N permutation, we have by the exchangeability

property (3.2) of a SNEC, that

µ%(σ(Π)|n = π) = lim
t→0

1
t
P%(σ(R(t))|n = π) = lim

t→0

1
t
Pσ(%)(R|n(t) = π) = µσ(%)(Π|n = π),

which proves that (4.12) holds on A. Since the topology of N∞ is generated by A, the proof is

complete.
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The latter lemma implies that there exists a family of exchangeable measures on N∞ characterizing

(i.e. acting as an analog of a Markov kernel for continuous-space pure-jump Markov chains) the

SNEC process R. Furthermore, since we are dealing with a simple coalescent, it is clear from the

characterization (4.11) that µ% is simple in the sense that it is supported by all the possible bivariate

partitions obtained from a simple coalescence from %. To put it simply,

µ%
(
N∞ \ {Coag2(%, π̃), π̃ ∈ P̃(%)}

)
= 0.

The measure µ% can be translated as a measure on arrays of random variables in {0, 1}. Informally,

we can associate to each species in % a 1 entry if it participates in the coalescence and a 0 entry

otherwise. Inside the species participating to the coalescence event, we can also associate a 1 entry to

the genes participating in the coalescence event and a 0 entry otherwise. To tally with the definition

of the SNEC we will need a certain partial exchangeability structure for this array. This picture can

be formalized as follows. Let ((Xi, (Yij , j ∈ N)), i ∈ N) be an array of Bernoulli random variables

and denote by Zi the i-th line vector (Xi, (Yij , j ∈ N)). We say that this array is hierarchically

exchangeable if

(A1) the family (Zi, i ∈ N) is exchangeable;

(A2) for any i ∈ N, the family (Xi, (Yij , j ∈ N)) is invariant under any permutation over the j’s.

We also naturally extend this definition to measures on the space ({0, 1} × {0, 1}N)N. We say that

such a measure µ is hierarchically exchangeable if it is invariant both under the permutations of the

rows, and the permutations within a row.

For an initial state % = (%s, %g) ∈ N∞ and an arrival state π = Coag2(%, π̃) ∈ N∞, with π̃ a simple

bivariate partition π̃ = (π̃s, π̃g) ∈ (P ′∞)2, define the array Z(%, π) = (X,Y1,Y2, . . .) by

Xi = 1 if the i-th block in %s has coalesced in π,

Yij = 1 if the I(i, j)-th block in %g has coalesced in π,
(4.14)

where I(i, j) := k if the k-th block of %g is the j-th gene block of the i-th species block.

Now choose a state % with an infinite number of species blocks, each containing an infinite number of

gene blocks. Let ν be the push-forward of µ% by the application

π 7−→ Z(%, π).

Then the exchangeability property of µ% (4.12) implies that ν is a hierarchically exchangeable measure
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on ({0, 1} × {0, 1}N)N, and (4.10) implies that

ν(Z = 0) = 0, and ν

 n∑
i=1

Xi ≥ 2 or ∃i ≤ n,
n∑
j=1

Yij ≥ 2

 <∞, (4.15)

where 0 denotes the null array on ({0, 1}×{0, 1}N)N. Also, note that the application (µ%, % ∈ N∞) 7→ ν

is one-to-one. Indeed, we can conversely define for any Z and any nested partition % ∈ N∞, the

nested partition C(%,Z) ∈ N∞ obtained from % by merging exactly the blocks that participate in the

coalescence where

• The i-th block of %s participates iff Xi = 1;

• The j-th block in %g of the i-th block of %s participates iff Xi = 1 and Yij = 1.

With this definition, µ% is obtained as the push-forward of ν by the map Z 7→ C(%,Z).

Now recall the alternative notation qb,k(g, s, c) for the transition rate of R|n (where n =
∑
i gi) from

a nested partition with b species blocks and g1, . . . , gb gene blocks inside them, to a nested partition

obtained by merging k species blocks according to the vector s and gene blocks inside those species

according to the array c. For any array (g, s, c) ∈ C, note that (4.11) translates in terms of our

push-forward ν in the following way:

qb,k(g, s, c) = ν
(
∀1 ≤ i ≤ b, Xi = si, and ∀1 ≤ j ≤ gi, Yij = cij

)
+ 1{c=0}ν

∀1 ≤ i ≤ b, Xi = si, and
b∑
i=1

gi∑
j=1

Yij = 1

 . (4.16)

Indeed, the first line is quite straightforward and comes from our representation of coalescence events

by those arrays (g, s, c) ∈ C (see Section 3) which basically means that blocks participating in a

coalescence event are those associated with a 1. However in the case when c = 0, there is an additional

probability to observe the coalescence of species blocks associated to s with no coalescence of gene

blocks (the case when all the Yij ’s are 0 is included in the first term), which is when exactly one of

the Yij ’s is equal to 1. This gives rise to the second line of (4.16).

We now have to establish a de Finetti representation of hierarchically exchangeable arrays to express

the measure of an event of the form {∀1 ≤ i ≤ b, Xi = si, and ∀1 ≤ j ≤ gi, Yij = cij}. Note that we

consider random measures in the following, but only on Borel spaces (S,S) (i.e. spaces isomorphic to a

Borel subset of R endowed with the Borel σ-algebra), which will enable us to use de Finetti’s theorem

[23]. For this we writeM1(S) for the space of probability measures on S, which is endowed with the

σ-algebra generated by the maps µ 7→ µ(B) for all B ∈ S. The spaces (S,S) that we consider will be
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for instance [0, 1] with its Borel sets or {0, 1}N equipped with the product σ-algebra, which are clearly

Borel spaces.

Proposition 8. Let Z = (Zi, i ∈ N) = ((Xi, (Yij , j ∈ N)), i ∈ N) be a hierarchically exchangeable

array (with variables in {0, 1}). Then there exists a unique probability measure Λ on E′ = [0, 1] ×

M1([0, 1])×M1([0, 1]) (and we will write any element µ of E′ as (p, µ0, µ1)) such that for all n ≥ 1

P(Xi = xi, Yij = yij , i, j ∈ [n])

=
∫
E′

Λ(dµ)
n∏
i=1

[
(p1{xi=1} + (1− p)1{xi=0})

∫
[0,1]

µxi(dqi)
n∏
j=1

(qi1{yij=1} + (1− qi)1{yij=0})
]
.

(4.17)

Proof. Let us first observe that if a sequence (X, (Yj , j ∈ N)) satisfies Hypothesis (A2), then, condi-

tional on X = x ∈ {0, 1}, the sequence (Yj , j ∈ N) is exchangeable. We can thus apply de Finetti’s

theorem: conditional on X = x there is a unique probability measure µx giving the distribution of

the asymptotic frequency q of the variables (Yj , j ∈ N), and conditional on q they are i.i.d. Bernoulli

with parameter q. This implies that, for any {0, 1}-valued finite sequence (x, y1, y2, . . . , yk),

P(X = x, Y1 = y1, . . . , Yk = yk)

= P(X = x)
∫

[0,1]
µx(dq)

k∏
j=1

(q1{yj=1} + (1− q)1{yj=0}). (4.18)

Also observe that sinceX is binary, there exists p ∈ [0, 1] such that P(X = x) = p1{x=1}+(1−p)1{x=0}.

As a consequence of Hypothesis (A1), we can apply once again de Finetti’s theorem: there exists

a unique law Λ̃ on M1({0, 1}N) such that the law of (Zi, i ∈ N) equals
∫
M1({0,1}N) Λ̃(dµ̃)

⊗
i≥1 µ̃.

Furthermore it has been seen that µ̃ can be expressed as in (4.18).

Now let F stand for the measurable mapping such that F (µ̃) = (p, µ0, µ1) ∈ E′ and let Λ be the

push-forward of Λ̃ by the mapping F . We obtain that if A and (Bi, i ∈ A) are finite subsets of N,

then

P(Xi = xi, Yiji = yiji , i ∈ A, ji ∈ Bi)

=
∫
E′

Λ(dµ)
∏
i∈A

[
(p1{xi=1} + (1− p)1{xi=0})

∫
[0,1]

µxi(dqi)
∏
ji∈Bi

(qi1{yiji
=1} + (1− qi)1{yiji

=0})
]
.
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This ends the proof.

This result is almost enough to express (4.16) but one has to be careful because the measure ν might

not be finite. However, it is σ-finite because by (4.15),

ν = lim
n→∞

↑ ν


n∑
i=1

Xi ≥ 2 or ∃i ≤ n,
n∑
j=1

Yij ≥ 2

 ∩ ·
 ,

and those events have finite measure. The idea behind the following lemma is to make use of those

events and hierarchical exchangeability to express ν as a limit of finite measures which, thanks to an

application of Proposition 8, have a representation under the form (4.17).

Let us introduce some notation that will enable us to make this argument formal. For a fixed vector

(g, s, c) ∈ C, such that |g| = b, let us examine the event

A = A(g, s, c) := {∀1 ≤ i ≤ b, Xi = si, and ∀1 ≤ j ≤ gi, Yij = cij}

and its measure ν(A). Let us define, for all n ≥ 1 the shifted random array

Zn := (Xi+n, Y(i+n)j , i, j ∈ N). (4.19)

We decompose naturally A = (A ∩ {Zb 6= 0}) ∪ (A ∩ {Zb = 0}), where b = |g|.

Recall that the array Z encodes which species blocks and which gene blocks are participating in a

coalescence. Therefore the event A∩ {Zb 6= 0} indicates that there are merging species blocks outside

of the first b blocks. In fact we will see that this implies that such merging blocks are infinitely many (a

random proportion p of them), and within each of these blocks, a random proportion q of gene blocks

are also participating in the coalescence event. The following technical lemma makes this statement

rigorous.

Lemma 9. For an array (g, s, c) satisfying assumptions (H1) and (H2), there exists a unique measure

νs on E = (0, 1]×M([0, 1]) such that

ν(A ∩ {Zb 6= 0}) =
∫
E
νs(dp, dµ)pk(1− p)b−k

∏
i : si=1

∫
[0,1]

µ(dq)qli(1− q)gi−li , (4.20)

where b := |g|, k :=
∑
i si and li :=

∑
j cij. Moreover, νs satisfies (3.7).
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Proof. We define some events that will be used to express ν(A ∩ {Zb 6= 0}).

An = An(g, s, c) := {∀1 ≤ i ≤ b, Xi+n = si, and ∀1 ≤ j ≤ gi, Y(i+n)j = cij}

Bn :=
{

n∑
i=1

Xi ≥ 2
}

B′n = B′n(g, s, c) :=


b+n∑
i=b+1

Xi ≥ 2

 .
Note that (g, s, c) satisfies (H1) and (H2), so we have A ⊂ {

∑m
i=1Xi ≥ 2 or

∑m
i,j=1 Yij ≥ 2} for m =

max(b, g1, . . . gb). Now because ν satisfies (4.15), necessarily ν(A) <∞, which implies that

ν(A ∩ {Zb ∈ ·})

is a finite hierarchically exchangeable measure on ({0, 1} × {0, 1}N)N. The de Finetti representation

(Proposition 8) implies that on the event A, Zb is either 0, or has an infinite number of entries with

value 1. In particular,

A ∩ {Zb 6= 0} = A ∩ {Zb has at least two entries at 1},

therefore, there is the equality

A ∩ {Zb 6= 0} =
⋃
n≥1

A ∩B′n,

where the union is increasing. Therefore,

ν(A ∩ {Zb 6= 0}) = lim
n→∞

ν(A ∩B′n).

= lim
n→∞

ν(Bn ∩An),

where we used the hierarchical exchangeability of ν to get the second equality. Now we know from

(4.15) and because ν is exchangeable that the measure

ν(Bn ∩ {Zn ∈ ·})

is a finite hierarchically exchangeable measure on ({0, 1}×{0, 1}N)N. Because it is finite we can apply

Proposition 8 to deduce that there exists a finite measure Λn on E′ = (0, 1]×M([0, 1])2 such that

ν(Bn ∩An) =
∫
E′

Λn(dp, dµ0, dµ1)
b∏
i=1

[
(p1{si=1} + (1− p)1{si=0})

∫
[0,1]

µsi(dqi)
gi∏
j=1

(qi1{cij=1} + (1− qi)1{cij=0})
]
.
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We can simplify this expression since ν is supported by the set {∀i ∈ N, Xi = 0 ⇒ ∀j ∈ N, Yij = 0}.

This implies that Λn-a.e. the measure µ0 is δ0 the Dirac measure at 0. Therefore we write Λ̃n for the

push forward measure on E := (0, 1] ×M([0, 1]) of Λn by the application (p, µ0, µ1) 7→ (p, µ1). We

now have

ν(Bn ∩An) =
∫
E

Λ̃n(dp, dµ)pk(1− p)b−k
∏

i : si=1

∫
[0,1]

µ(dq)qli(1− q)gi−li . (4.21)

To be able to pass to the limit, let us check that the sequence of measures (Λ̃n) is increasing. Indeed,

recall that Λn is obtained from two applications of de Finetti’s theorem to the exchangeable array Zn,

so the asymptotic parameters p and µ appearing in (4.21) are a deterministic, measurable functional

of Zn. Let us write this functional F (Zn) = (p, µ), so now Λ̃n is simply the measure

ν(Bn ∩ {F (Zn) ∈ ·}).

But p and µ are asymptotic quantities of the array Zn, which do not depend on the first row of Zn,

so F (Zn+1) = F (Zn) and we have

Λ̃n = ν(Bn ∩ {F (Zn) ∈ ·})

= ν(Bn ∩ {F (Zn+1) ∈ ·})

≤ ν(Bn+1 ∩ {F (Zn+1) ∈ ·})

= Λ̃n+1,

where the passage from the second to the third line is simply because Bn ⊂ Bn+1. Therefore there is

a limiting measure νs on E such that

ν(A ∩ {Zb 6= 0}) = lim
n→∞

ν(Bn ∩An) =
∫
E
νs(dp, dµ)pk(1− p)b−k

∏
i : si=1

∫
[0,1]

µ(dq)qli(1− q)gi−li ,

so we recover (4.20). To prove the uniqueness of this measure, consider any measure ν ′s on E such

that (4.20) holds. Then we have simply

Λ̃n(dp, dµ) = ν(Bn ∩ {F (Zn) ∈ (dp, dµ)}) = (1− (1− p)n − np(1− p)n−1)ν ′s(dp, dµ),

where the first equality is by definition and the second because we assumed that (4.20) holds for ν ′s.

Taking limits on both sides yields

νs(dp, dµ) = ν ′s(dp, dµ).

It remains to prove (3.7). Note that the condition (4.15) implies that

ν(X1 = X2 = 1) <∞ and ν(X1 = 1, Y1,1 = Y1,2 = 1) <∞.

Translating these conditions with the formula (4.20), we recover exactly (3.7).
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Let us now examine ν(A ∩ {Zb = 0}). Recall that the event A ∩ {Zb = 0} indicates that there are

no other merging species blocks than those within the first b blocks. The next lemma shows that

this implies that we are either in a Kingman-type coalescence (a pair of species blocks are merging,

occurring at rate as, or a pair of gene blocks within one species are merging, occurring at rate ag), or

in a multiple gene coalescence within a single species block (in which case a random proportion q of

gene blocks are merging).

The key idea is to use exchangeability and the σ-finiteness property (4.15) of the measure ν to show

by contradiction that ν(A ∩ {Zb = 0}) is zero in certain cases.

Lemma 10. For an array (g, s, c) satisfying assumptions (H1) and (H2), there exist unique real

numbers as, ag ≥ 0 and a unique measure νg on (0, 1] satisfying (3.8) such that

ν(A ∩ {Zb = 0}) = as1{k = 2, c = 0}

+ 1{k = 1}
(
ag1{lI = 2}+

∫
(0,1]

νg(dq)qlI (1− q)gI−lI

)
,

(4.22)

where b := |g|, k :=
∑
i si, li :=

∑
j cij and in the case k = 1, I is the unique index in {1, 2, . . . , b}

such that sI = 1.

Proof. The measure ν(X ∈ ·) is an exchangeable measure on {0, 1}N such that, because of (4.15),

ν(X1 = X2 = X3 = 1) <∞. Note that exchangeability implies that for any n, i ≥ 3,

ν({X1 = X2 = X3 = 1} ∩ {Zn = 0}) = ν({X1 = X2 = Xi = 1} ∩ {Zi = 0}), (4.23)

But the events ({X1 = X2 = Xi = 1}∩{Zi = 0}, i ≥ 3) are disjoint and all included in {X1 = X2 = 1},

so that ∑
i≥3

ν({X1 = X2 = Xi = 1} ∩ {Zi = 0}) ≤ ν({X1 = X2 = 1}) <∞.

From (4.23) we deduce ν({X1 = X2 = X3 = 1} ∩ {Zn = 0}) = 0. This implies immediately that for a

finite array (g, s, c) such that k =
∑
i si > 2, we have ν(A ∩ {Zb = 0}) = 0.

• In the case k = 2 (suppose s1 = s2 = 1), one must examine several cases.

– Suppose first c1,1 = c1,2 = 1. This means that the first two gene blocks of the first species

block coalesce while the first two species blocks coalesce. Then we note that for any n, i ≥ 2,

ν({X1 = X2 = 1, Y1,1 = Y1,2 = 1} ∩ {Zn = 0})

= ν({X1 = Xi = 1, Y1,1 = Y1,2 = 1} ∩ {Zi = 0}).
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However,

∑
i≥2

ν({X1 = Xi = 1, Y1,1 = Y1,2 = 1} ∩ {Zi = 0}) ≤ ν({Y1,1 = Y1,2 = 1}) <∞,

so that necessarily ν({X1 = X2 = 1, Y1,1 = Y1,2 = 1} ∩ {Zn = 0}) = 0. So in the case

c1,1 = c1,2 = 1, we have ν(A ∩ {Zb = 0}) = 0.

– Now suppose c1,1 = c2,1 = 1, and all the other cij are zero. From our previous point, note

that

ν({X1 = X2 = 1, Y1,1 = Y2,1 = 1, and ∃j ≥ 2, Y1,j = 1} ∩ {Zn = 0}) = 0,

which implies that the events ({X1 = X2 = 1, Y1,j = Y2,1 = 1}∩{Zn = 0}, j ≥ 1) are ν-a.e.

disjoint. Therefore for any n ≥ 2,

∑
j≥1

ν({X1 = X2 = 1, Y1,j = Y2,1 = 1} ∩ {Zn = 0}) ≤ ν({X1 = X2 = 1}) <∞,

So necessarily ν({X1 = X2 = 1, Y1,j = Y2,1 = 1} ∩ {Zn = 0}) = 0. This implies that in the

case c1,1 = c2,1 = 1, we have ν(A ∩ {Zb = 0}) = 0.

– The previous two points show that in the case k = 2, the only way to have ν(A ∩ {Zb =

0}) > 0 is if c = 0. In that case, define

as := ν({X1 = X2 = 1} ∩ {Z2 = 0})

= ν({X1 = X2 = 1} ∩ {Y = 0 and ∀k /∈ {1, 2}, Xk = 0}).

Then by exchangeability, for all i, j ∈ N with i 6= j, we have

as = ν({Xi = Xj = 1} ∩ {Y = 0 and ∀k /∈ {i, j}, Xk = 0}),

and in conclusion, for any array (g, s, c) such that k = 2, we have

ν(A ∩ {Zb = 0}) = 1{c=0}as.

• In the case k = 1, suppose that s1 = 1. On the event

{X1 = 1, X2 = X3 = · · · = Xb = 0} ∩ {Zb = 0},

we have simply Z1 = 0, and then the measure

ν ′ := ν
(
{(Y1,j)j∈N ∈ ·} ∩ {X1 = 1, Z1 = 0}

)
26



is an exchangeable measure on {0, 1}N such that for all n ∈ N, ν ′
(∑n

j=1 Yj ≥ 2
)
<∞. Therefore

(see for instance Bertoin [4]) there exist a unique constant ag ≥ 0 and νg a unique measure on

(0, 1] satisfying (3.8) such that ν ′ can be written

ν ′(Y1 = y1, Y2 = y2, . . . , Yn = yn) = ag1l=2 +
∫

(0,1]
νg(dq)ql(1− q)n−l,

for any vector (y1, y2, . . . , yn) ∈ {0, 1}n \ {0} such that l :=
∑
i yi ≥ 2.

Putting all the previous considerations together yields (4.22).

Now it remains to put together Lemma 9 and Lemma 10. Recall that we restricted the rate function q

to arrays in C, i.e. satisfying (H1) to (H3). The reason for assuming (H3) is that then we can always

write qb,k(g, s, c) as in (4.16), that is

qb,k(g, s, c) = ν
(
∀1 ≤ i ≤ b, Xi = si, and ∀1 ≤ j ≤ gi, Yij = cij

)
+ 1{c=0}ν

∀1 ≤ i ≤ b, Xi = si, and
b∑
i=1

gi∑
j=1

Yij = 1

 .
Using the previous two lemmas to decompose the two lines on the events {Zb 6= 0} and {Zb = 0}, we

obtain the formula (3.9), concluding the proof of Theorem 5.

5 Poissonian construction

The goal of the present section is to show how any simple nested exchangeable coalescent can be

constructed from a Poisson point process. Consider two real coefficients as, ag ≥ 0 and two measures:

νs on E = (0, 1] ×M1([0, 1]) satisfying (3.7), and νg on (0, 1], satisfying (3.8). Recall the measures

Ks, Kg, P gx and P sx,µ introduced in Section 2, and the measure ν(dZ) defined on the space Ê of doubly

indexed arrays of 0’s and 1’s Z = (X, (Yi, i ≥ 1)) = (Xi, Yij , i, j ≥ 1)

ν := asKs + agKg +
∫

(0,1]
νg(dx)P gx +

∫
(0,1]×M1([0,1])

νs(dx, dµ)P sx,µ.

Note that ν characterizes the distribution of the SNEC through the relation (4.16). The key idea of

the construction is that ν necessarily satisfies (4.15), which is easily shown using exchangeability and

conditions (3.7) and (3.8). First, note that ν(Z = 0) = 0 is trivial from our definitions, and that a
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straightforward union bound yields

ν
(∑n

i=1Xi ≥ 2 or ∃i ≤ n,
∑n
j=1 Yij ≥ 2

)
≤

∑
1≤i<i′≤n

ν(Xi = Xi′ = 1) +
n∑
i=1

∑
1≤j<j′≤n

ν(Xi = Yij = Yij′ = 1)

= n(n− 1)
2 ν(X1 = X2 = 1) + n2(n− 1)

2 ν(X1 = Y1,1 = Y1,2 = 1),

therefore we need only check that these two quantities are finite. Now by definition, we have

Ks(X1 = X2 = 1) = 1, Ks(X1 = Y1,1 = Y1,2 = 1) = 0,

Kg(X1 = X2 = 1) = 0, Kg(X1 = Y1,1 = Y1,2 = 1) = 1,

P gx (X1 = X2 = 1) = 0, P gx (X1 = Y1,1 = Y1,2 = 1) = x2,

P sx,µ(X1 = X2 = 1) = x2, P sx,µ(X1 = Y1,1 = Y1,2 = 1) = x

∫
[0,1]

µ(dq)q2.

Integrating the last two lines with respect to νg and νs and summing, we see that (3.7) and (3.8) imply

that both ν(X1 = X2 = 1) and ν(X1 = Y1,1 = Y1,2 = 1) are finite, proving (4.15).

Now to start the construction of our process, consider an initial partition π0 ∈ N∞. LetM be a Poisson

point process on (0,∞) × Ê with intensity dt ⊗ ν(dZ). We will construct on the same probability

space the processes Rn = (Rn(t), t ≥ 0), for n ∈ N thanks to M .

Recall that for any Z = (X, (Yi, i ≥ 1)) = (Xi, Yij , i, j ≥ 1) and any nested partition π ∈ Nn, we

denote by C(π,Z) the nested partition of Nn obtained from π by merging exactly the blocks that

participate in the coalescence where

• The i-th block of πs participates iff Xi = 1;

• The j-th block in πg of the i-th block of πs participates iff Xi = 1 and Yij = 1.

Fix n ∈ N, and let Mn denote the subset of M consisting of points (t,Z) such that
∑n
i=1Xi ≥ 2 or

∃i ≤ n, Xi
∑n
j=1 Yij ≥ 2. Because of (4.15), there are only a finite number of such points with t in

a compact set of [0,+∞). Therefore one can label the atoms of the set Mn := {(tk,Z(k)), k ∈ N} in

increasing order, i.e. such that 0 ≤ t1 ≤ t2 . . .

We set Rn(t) = (π0)|n for t ∈ [0, t1). Then define recursively

Rn(t) = C(Rn(ti−),Z(i)), for every t ∈ [ti, ti+1).

These processes are consistent in n as we show in the following result.
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Proposition 11. For every t ≥ 0, the sequence of random bivariate partitions (Rn(t), n ∈ N) is

consistent. If we denote by R(t) the unique partition of N∞ such that R|n(t) = Rn(t) for every n ∈ N,

then the process R = (R(t), t ≥ 0) is a SNEC started from π0, with rates given as in Theorem 5.

The proof uses similar arguments as in the proof of consistency of exchangeable coalescents given in

Proposition 4.5 of [4].

Proof. The key idea (basically (4.4) in [4]) is that by definition, the coagulation operator satisfies

Coag2(π, π̃)|n = Coag2(π|n, π̃) = Coag2(π|n, π̃|n) (5.24)

for any π, π̃ and n for which this is well defined.

Recall that we defined Mn as the subset of M consisting of points (t,Z) such that
∑n
i=1Xi ≥ 2 or

∃i ≤ n, Xi
∑n
j=1 Yij ≥ 2. Fix n ≥ 2 and write (t1,Z(1)) for the first atom ofMn on (0,∞)×Ê. Plainly,

Rn−1(t) = Rn|n−1(t) = (π0)|n−1 for every t ∈ [0, t1).

Consider first the case when
∑n−1
i=1 X

(1)
i ≥ 2 or ∃i ≤ n− 1, X(1)

i

∑n−1
j=1 Y

(1)
ij ≥ 2. Then (t1,Z(1)) is also

the first atom of Mn−1 and by definition and using (5.24), Rn−1(t1) = Rn|n−1(t).

Now suppose
∑n−1
i=1 X

(1)
i ≤ 1 and ∀i ≤ n−1, X(1)

i

∑n−1
j=1 Y

(1)
ij ≤ 1. This implies that at time t1, there is

no species (resp. genes) coalescence between the n−1 first species (resp. genes) of Rn(t1−). Therefore

the coalescence event in Rn at time t1 leaves the first n−1 blocks of Rn(t1−)s or Rn(t1−)g unchanged,

though there may be a coalescence involving the n-th block (in that case, necessarily a singleton {n})

and one of the n− 1 first blocks. So finally Rn(t1)|n−1 = Rn(t1−)|n−1 = Rn−1(t1).

In both cases we have Rn(t1)|n−1 = Rn−1(t1), and by an obvious induction this is true for any further

jump of the process Rn, so that for all t ≥ 0,

Rn(t)|n−1 = Rn−1(t).

This shows the existence of R such that for all n, R|n = Rn.

From this Poissonian construction Rn is a Markov process, and by definition the arrays Z(i)
|[n]2 are

hierarchically exchangeable, which implies thatRn is an exchangeable process. Clearly by construction

Rn(t) is nested for all t, and the only jumps of the process Rn are coalescence events. According to

Lemma 3, the process R is a SNEC process. Because the arrays Z, where (t,Z) ∈ M , are the same

arrays that appear in the proof of Theorem 5, it is clear that the jump rates of Rn are those given in

Theorem 5.
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6 Marginal coalescents – Coming down from infinity

Consider a SNEC processR = (Rs,Rg), with rates given as in Theorem 5 by two coefficients as, ag ≥ 0

and two measures, νs on E = (0, 1]×M1([0, 1]) and νg on (0, 1] satisfying (3.7) and (3.8).

It is obvious from Proposition 11 that (Rs(t), t ≥ 0) is a simple coalescent process, with Kingman

coefficient as and coagulation measure ν̂s satisfying (2.1) which is the push-forward of νs(dp, dµ) by

the application (p, µ) 7→ p. Let us call this univariate coalescent the (marginal) species coalescent of

the SNEC process R.

Now, notice that under an initial condition with a unique species block (i.e., Rs is constant to the

coarsest partition 1∞), the process (Rg(t), t ≥ 0) also behaves as a simple coalescent process, with

Kingman coefficient ag and coagulation measure ν̂g defined by

∀B Borel set of (0, 1], ν̂g(B) := νg(B) +
∫

(0,1]×M1([0,1])
νs(dp, dµ)p µ(B).

We call the simple coalescent thus defined the (marginal) gene coalescent of the SNEC process R.

Equivalently, in terms of Λ-coalescents, the marginal species coalescent is a Λs-coalescent with Λs
defined by

∀B Borel set of [0, 1], Λs(B) = asδ0(B) +
∫
B×M1([0,1])

νs(dp, dµ)p2, (6.25)

and the marginal gene coalescent is a Λg-coalescent with Λg defined for all B Borel set of [0, 1] by

Λg(B) = agδ0(B) +
∫
B
νg(dq)q2 +

∫
(0,1]×M1([0,1])

νs(dp, dµ)p
∫
B
µ(dq)q2. (6.26)

These two marginal processes allow us to express properties of the initial bivariate SNEC process.

Consider an initial state %0 ∈ N∞ with infinitely many species blocks, each containing infinitely many

gene blocks. In a way analogous to the one-dimensional case, recalling that |Rg(t)| ≥ |Rs(t)| for all

t ≥ 0, we will say that a SNEC comes down from infinity (CDI) if for all t > 0

|Rg(t)| <∞ P%0-a.s.

In the univariate case, characterizing which coalescent processes come down from infinity has been

solved [39] for Λ-coalescents, with the following necessary and sufficient condition for coming down

from infinity: ∑
n≥2

(
n∑
k=2

(k − 1)
(
n

k

)∫
[0,1]

Λ(dp)pk−2(1− p)n−k
)−1

<∞.
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Note that the previous condition is true as soon as Λ has an atom at 0 (Λ({0}) is the Kingman

coefficient of the process). An equivalent criterion (see [6], and [2] for a probabilistic proof) is the

integrability of 1/ψ near +∞, where

ψ(q) :=
∫

[0,1]

(
e−qx − 1 + qx

)
x−2 Λ(dx). (6.27)

We will now see that in the case of simple nested coalescents, we can give a general characterization

of the different CDI properties of a SNEC process, depending only on the properties of the marginal

species and marginal gene coalescents.

First notice that if the marginal gene coalescent does not CDI, then any species block with infinitely

many gene blocks at some time t clearly keeps infinitely many gene blocks for any t′ ≥ t. Also in any

case the process Rs has the distribution of the marginal species coalescent, so determining whether

the number of species comes down from infinity is trivial.

Proposition 12. We assume here that ν̂s({1}) = ν̂g({1}) = 0 and that the marginal gene coalescent

comes down from infinity (CDI). Then we have the following three cases.

i) If the marginal species coalescent CDI as well, then R CDI.

ii) If the marginal species coalescent does not CDI but
∫

[0,1]
ν̂s(dx)x = ∞, then for any initial

condition with infinitely many species blocks and for each time t > 0, the number of gene blocks

in each species block of R(t) is infinite a.s.

iii) If the marginal species coalescent does not CDI and
∫

[0,1]
ν̂s(dx)x < ∞, then for any initial

condition and for each time t > 0, the number of gene blocks in each species block of R(t) is

finite a.s.

As a consequence of this proposition, it is clear that R comes down from infinity if and only if both

the marginal species coalescent and the marginal gene coalescent come down from infinity.

A simple example of a SNEC process coming down from infinity is the nested Kingman coalescent

(‘Kingman in Kingman’), given by its marginal rates as, ag > 0, defined so that each pair of species

coalesces at rate as independently of the others, and each pair of genes within the same species

coalesces at rate ag independently of the rest. Since the marginal coalescents are precisely two Kingman

coalescents, they both come down from infinity.

Note that the Bolthausen-Sznitman coalescent [9] (denoted U -coalescent in [35] because the measure

Λ is uniform on [0, 1]) satisfies the conditions of the peculiar case ii). So for a SNEC R defined by a
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Kingman gene coalescent evolving within a species U -coalescent, at each positive time the number of

gene blocks within a species block is infinite (if the initial state %0 has an infinite number of species

blocks).

Case iii) can easily be obtained by considering a “slow” species coalescent, such as a δx-coalescent

for x ∈ (0, 1), or any β(a, b)-coalescent with a > 1, b > 0 (that is a Λ-coalescent with Λ(dx) =

ca,bx
a−1(1− x)b−1dx).

Proof. i) Suppose both marginal coalescents come down from infinity, and consider an initial state

% ∈ N∞ with infinitely many species blocks, each containing infinitely many gene blocks.

Choose t > 0. Since Rs comes down from infinity, we have P%(|Rs(t/2)| < ∞) = 1, and necessar-

ily, Rs stays constant on an interval [t/2, T [, where T is its next jump time. Now on the interval

[t/2,min(T, t)[, within each of the |Rs(t/2)| species block, the gene blocks undergo independent co-

alescent processes which CDI, therefore there are finitely many gene blocks in each species at time

min(T, t), which implies

P%(|Rg(t)| <∞) = 1.

Let us say a few words before proving ii) and iii). Pick t > 0 and focus on the species containing 1

(the first species). To this aim, write M(t) for the number of genes within the first species, at time

t. By exchangeability, to show ii) it is sufficient to show P%(M(t) =∞) = 1, for any initial condition

% with infinitely many species blocks, and to show iii) it is sufficient to show P%(M(t) <∞) = 1, for

any initial condition %.

ii) Suppose
∫

[0,1] ν̂s(dx)x = ∞. First, note that since the species coalescent does not CDI and

ν̂s({1}) = 0, there are at all times t ≥ 0 infinitely many species blocks (see for instance [35, Proposition

23]). Now let us fix δ ∈ (0, t] and ε ∈ (0, 1], and investigate the random number of coalescence events in

the time interval [t−δ, t] involving the first species and at least a proportion ε of all other species. More

precisely, we consider the number of atoms (s,Z) in the Poissonian construction such that s ∈ [t−δ, t],

X1 = 1 and limn→∞
∑n
i=1Xi/n ≥ ε. From the Poissonian construction, it is easy to see that this

number is a Poisson random variable with mean

δ

∫
[ε,1]

ν̂s(dx)x.

Pick any A ∈ N and η > 0. We will show P%(M(t) ≤ A) < 2η, which is sufficient to conclude that

M(t) =∞ a.s. Note that we assumed that the marginal gene coalescent CDI, so for Π = (Π(t), t ≥ 0)

a version of this univariate coalescent started from 0∞, we have P(|Π(δ)| < ∞) = 1 for all δ > 0.
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In addition, Π is right-continuous, so |Π(δ)| ↑ ∞ as δ → 0. Therefore, one can choose δ > 0 small

enough, and then ε > 0 such that

P(|Π(δ)| ≤ A) < η and e(ε) :=
∫

[ε,1]
ν̂s(dx)x ≥ − log(η)

δ
. (6.28)

Now consider the stopping time defined by

T := inf{s ≥ t− δ, the first species participates at time s in a coalescence event

involving at least a proportion ε of other species}.

By the Poisson construction, T − (t − δ) is an exponential random variable with parameter e(ε), so

from (6.28) we deduce

P%(T ≥ t) ≤ η.

Now since T is a coalescence time for the first species, we have M(T ) = ∞ almost surely. Indeed,

the assumption ν̂g({1}) = 0 implies that not every gene participates in the coalescence. But since

an infinite number of species participate in the coalescence, the law of large numbers implies that in

the newly formed species, there is an infinite number of genes which do not coalesce at time T . Since

M(T ) = ∞, we can define a random injection σ : N → N mapping k to the first element of the k-th

gene of the first species at time T . We then define Π̃(u) := σ(Rg(T + u)), which has by the strong

Markov property the distribution of a marginal gene coalescent started from 0∞, independent of T .

Furthermore, by construction we have M(T + u) ≥ |Π̃(u)| a.s., so that finally

P%(M(t) ≤ A) ≤ P%(T > t) + P%(t− δ ≤ T ≤ t)P%(|Π̃(t− T )| ≤ A | t− δ ≤ T ≤ t)

≤ P%(T > t) + P(|Π(δ)| ≤ A)

≤ 2η.

iii) Now supposing
∫

[0,1] ν̂s(dx)x <∞, with the same argument as previously, the first species partic-

ipates in coalescence events at some random times 0 < T1 < T2 < . . ., distributed as a Poisson process

with parameter
∫

[0,1] ν̂s(dx)x, and all these events involve infinitely many species blocks (recall the

marginal species coalescent does not CDI and so in particular has as = 0). Let T0 := 0 by convention

and for each i, we can define a random injection σi : N→ N mapping k to the first element of the k-th

gene of the first species at time Ti. Now because the first species does not change during the intervals

[Ti, Ti+1), the process Π̃i defined by

Π̃i(u) := σi(Rg(Ti + u))
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is a marginal gene coalescent (and so CDI by assumption), which is independent of Ti, and there is

the following equality between processes, for u < Ti+1 − Ti,

M(Ti + u) = Π̃i(u).

Finally, we have for any t > 0, and any initial % ∈ N∞,

P%(M(t) <∞) =
∑
i≥0

P%(Ti < t < Ti+1)P%(M(t) <∞ | Ti < t < Ti+1)

=
∑
i≥0

P%(Ti < t < Ti+1)P%(Π̃i(t− Ti) <∞ | Ti < t < Ti+1)

=
∑
i≥0

P%(Ti < t < Ti+1) = 1,

which concludes the proof.
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