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EXPLICIT EXPRESSIONS RELATED TO DEGENERATE

CAUCHY NUMBERS AND THEIR GENERATING FUNCTION

FENG QI, AI-QI LIU, AND DONGKYU LIM

Abstract. In the paper, by virtue of the Faà di Bruno formula and two iden-

tities for the Bell polynomials of the second kind, the authors establish an ex-
plicit expression for degenerate Cauchy numbers and find explicit, meaningful,

and significant expressions for coefficients in a family of nonlinear differential

equations for the generating function of degenerate Cauchy numbers.

1. Motivations and main results

It is well known [4, 7, 8, 34, 39] that the Cauchy numbers of the first kind Cn
can be generated by

t

ln(1 + t)
=

∞∑
n=0

Cn
tn

n!
.

In [2], degenerate Cauchy numbers Cn(λ) were defined by

λ
[
e[(1+t)

λ−1]/λ − 1
]

(1 + t)λ − 1
=

∞∑
n=0

Cn(λ)
tn

n!
.

Because

lim
λ→0

(1 + t)λ − 1

λ
= ln(1 + t) or lim

λ→0
e[(1+t)

λ−1]/λ = 1 + t,

it follows that

lim
λ→0

Cn(λ) = Cn, n ≥ 0. (1)

In [2, Theorem 2.1], it was established that the family of nonlinear differential
equations

(1+t)n
[
(1+t)λ−1

]n
F

(n)
λ (t) = Fλ(t)

2n∑
i=1

ai(n, λ)(1+t)iλ+

2n−1∑
i=1

bi(n, λ)(1+t)iλ (2)
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formula.
Please cite this article as “Feng Qi, Ai-Qi Liu, and Dongkyu Lim, Explicit expressions re-

lated to degenerate Cauchy numbers and their generating function, In: J. Singh, D. Kumar, H.
Dutta, D. Baleanu, and S. Purohit (eds), Mathematical Modelling, Applied Analysis and Com-

putation, ICMMAAC 2018 (Jaipur, India, July 6-8, 2018), Springer Proceedings in Mathemat-
ics & Statistics, vol. 272, Chapter 2, pp. 41–52, Springer, Singapore, 2019; available online at
https://doi.org/10.1007/978-981-13-9608-3_2.”

1

https://doi.org/10.1007/978-981-13-9608-3_2


2 F. QI, A.-Q. LIU, AND D. LIM

for n ∈ N has the same solution

Fλ(t) =
e[(1+t)

λ−1]/λ − 1

(1 + t)λ − 1
, (3)

where ai(n, λ) for 1 ≤ i ≤ 2n and bi(n, λ) for 1 ≤ i ≤ 2n−1 are uniquely determined
by

a1(n, λ) = − 1

λ
〈n− 1− λ〉n+1, a2(n, λ) = 〈n− 1− 2λ〉n−1

− 1

λ

n−2∑
i=0

[λ− (λ+ 1)(n− i)]〈n− i− 2− λ〉n−i〈n− 1− 2λ〉i,

ai(n, λ) = [(i− 1)λ− (λ+ 1)n]ai(n− 1, λ)

+ai−2(n− 1, λ) + (n− 1− iλ)ai(n− 1, λ), 3 ≤ i ≤ 2n− 2,

a2n−1(n, λ) =
1

2
n[(λ− 1)(n− 1)− 2(λ+ 1)],

a2n(n, λ) = 1, b1(n, λ) = 〈n− 1− λ〉n−1,
bi(n, λ) = [(i− 1)λ− (λ+ 1)(n− 1)]bi−1(n− 1, λ)

+ai−1(n− 1, λ) + (n− 1− iλ)bi(n− 1, λ), 2 ≤ i ≤ 2n− 3,

b2n−2(n, λ) = (λ− 1)

(
n− 1

2

)
− 2(n− 1)− λ, b2n−1(n, λ) = 1

in terms of the falling factorials

〈x〉n =

n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1;

1, n = 0.

It is clear that the generating function Fλ(t) defined by (3) satisfies

lim
λ→0

[λFλ(t)] =
t

ln(1 + t)
.

It is obvious that

(1) the above expressions for ai(n, λ) and bi(n, λ) are recursive and can not be
computed easily;

(2) the original proof of [2, Theorem 2.1] is inductive, recursive, and long;
(3) there was no any application given in [2].

In this paper, by virtue of the Faà di Bruno formula (9) and two identities (10)
and (11) for the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1), we
will establish an explicit expression (4) for degenerate Cauchy numbers Cn(λ) and
find explicit, meaningful, and significant expressions (7) and (8) for coefficients
ai(n, λ) and bi(n, λ) in the family of nonlinear differential equations (2) related to
the generating function Fλ(t) of degenerate Cauchy numbers Cn(λ).

Our main results can be stated as the following theorems.

Theorem 1. For n ≥ 0, degenerate Cauchy numbers Cn(λ) and the Cauchy num-
bers Cn can be explicitly and respectively computed by

Cn(λ) =

n∑
k=0

(−1)k

(k + 1)!λk

k∑
`=0

(−1)`
(
k

`

)
〈`λ〉n (4)
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and

Cn =

n∑
k=0

s(n, k)

k + 1
. (5)

Theorem 2. For n ∈ N, the generating function Fλ(t) and its derivatives of de-
generate Cauchy numbers Cn(λ) satisfy

F
(n)
λ (t) =

Fλ(t)

(1 + t)n
[
1− (1 + t)λ

]n 2n∑
i=1

αi(n, λ)(1 + t)iλ +

2n−1∑
i=1

βi(n, λ)(1 + t)iλ (6)

with

αi(n, λ) =
∑

k+m=i
1≤k≤n
0≤m≤n

(−1)mAk(n, λ)

min{n−m,k}∑
`=0

λ`

(k − `)!

(
n− `
m

)
(7)

for 1 ≤ i ≤ 2n and

βi(n, λ) =
∑

k+m=i
1≤k≤n

0≤m≤n−1

(−1)m+1Ak(n, λ)

min{k−1,n−m−1}∑
`=0

λ`

(k − `)!

(
n− `− 1

m

)
(8)

for 1 ≤ i ≤ 2n− 1, where

Ak(n, λ) =
(−1)k

λk

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`λ− q).

2. Lemmas

In order to obtain our main results, we need the following lemmas.

Lemma 1 ([1, pp. 134 and 139]). For n ≥ k ≥ 0, the Bell polynomials of the second
kind, denoted by Bn,k(x1, x2, . . . , xn−k+1), are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the
second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t)) Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (9)

Lemma 2 ([1, p. 135]). For n ≥ k ≥ 0, we have

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1), (10)

where a and b are any complex numbers.
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Lemma 3. For n ≥ k ≥ 0 and λ, α ∈ C, we have

Bn,k

(
1, 1−λ, (1−λ)(1− 2λ), . . . ,

n−k∏
`=0

(1− `λ)

)
=

(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`− qλ)

(11)
or, equivalently,

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
〈α`〉n. (12)

Proof. This explicit formula (11) was first established in [25, Remark 1] and then
was applied in [16, Section 2], [17, First proof of Theorem 2], [19, Lemma 2.2],
[22, Remark 6.1], [23, Lemma 4], and [32, Lemma 2.6]. The formula (12) and the
equivalence were presented in [33, Theorems 2.1 and 4.1]. �

3. Proofs of Theorems 1 and 2

We are now in a position to prove our main results.

Proof of Theorem 1. For n ≥ 0, applying u = h(t) = (1+t)λ−1
λ and f(u) = eu−1

u
to (9) and making use of (10) and (11) in sequence arrive at

dn[λFλ(t)]

d tn
=

n∑
k=0

dk

duk

(
eu − 1

u

)
Bn,k

(
λ(1 + t)λ−1

λ
,
λ(λ− 1)(1 + t)λ−2

λ
,

. . . ,
λ(λ− 1) · · · [λ− (n− k)](1 + t)λ−(n−k+1)

λ

)
=

n∑
k=0

dk

duk

( ∞∑
`=1

u`−1

`!

)
(1 + t)kλ−n Bn,k(1, λ− 1, . . . , (λ− 1) · · · [λ− (n− k)])

=

n∑
k=0

dk

duk

( ∞∑
`=0

u`

(`+ 1)!

)
(1 + t)kλ−n

× Bn,k

(
1, λ

(
1− 1

λ

)
, . . . , λn−k

(
1− 1

λ

)
· · ·
(

1− n− k
λ

))
=

n∑
k=0

[ ∞∑
`=0

dk

duk

(
u`

(`+ 1)!

)]
(1 + t)kλ−n

× λn−k Bn,k

(
1, 1− 1

λ
, . . . ,

(
1− 1

λ

)
· · ·
(

1− n− k
λ

))
=

n∑
k=0

[ ∞∑
`=k

`!

(`− k)!

u`−k

(`+ 1)!

]
(1 + t)kλ−nλn−k

(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(
`− q

λ

)

=

n∑
k=0

[ ∞∑
`=k

1

(`− k)!

u`−k

`+ 1

]
(1 + t)kλ−n

1

λk
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`λ− q)

→
n∑
k=0

1

k + 1

1

λk
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`λ− q)
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=

n∑
k=0

(−1)k

(k + 1)!λk

k∑
`=0

(−1)`
(
k

`

)
〈`λ〉n

as t→ 0 and, consequently, u→ 0. This implies that

Cn(λ) = λ lim
t→0

F
(n)
λ (t) =

n∑
k=0

(−1)k

(k + 1)!λk

k∑
`=0

(−1)`
(
k

`

)
〈`λ〉n.

The explicit formula (4) is thus proved.
It is well known [1, Theorem A] that the Stirling numbers of the first kind s(n, k)

can be generated by

〈x〉n =

n∑
k=0

s(n, k)xk.

Hence, by the L’Hôspital rule, we have

lim
λ→0

1

λk

k∑
`=0

(−1)`
(
k

`

)
〈`λ〉n = lim

λ→0

1

λk

k∑
`=0

(−1)`
(
k

`

) n∑
m=0

s(n,m)(`λ)m

=
1

k!
lim
λ→0

k∑
`=0

(−1)`
(
k

`

) n∑
m=0

s(n,m)〈m〉k`k(`λ)m−k

=
1

k!

k∑
`=0

(−1)`
(
k

`

)
s(n, k)〈k〉k`k = s(n, k)

k∑
`=0

(−1)`
(
k

`

)
`k = (−1)kk!s(n, k).

Combining this with (1) and (4) gives

Cn = lim
λ→0

Cn(λ) =

n∑
k=0

(−1)k

(k + 1)!
lim
λ→0

1

λk

k∑
`=0

(−1)`
(
k

`

)
〈`λ〉n =

n∑
k=0

s(n, k)

k + 1
.

The explicit formula (5) follows. The proof of Theorem 1 is complete. �

Proof of Theorem 2. For n ∈ N, applying u = h(t) = (1+t)λ−1
λ and f(u) = eu−1

u
to (9) and making use of (10) and (11) in sequence arrive at

dn[λFλ(t)]

d tn
=

n∑
k=1

dk

duk

(
eu − 1

u

)
Bn,k

(
λ(1 + t)λ−1

λ
,
λ(λ− 1)(1 + t)λ−2

λ
,

. . . ,
λ(λ− 1) · · · [λ− (n− k)](1 + t)λ−(n−k+1)

λ

)
=

n∑
k=1

[
k∑
`=0

(
k

`

)
(eu − 1)(`)

(
1

u

)(k−`)
]

(1 + t)kλ−n

× Bn,k(1, λ− 1, . . . , (λ− 1) · · · [λ− (n− k)])

=

n∑
k=1

[
(−1)kk!(eu − 1)

uk+1
+

k∑
`=1

(
k

`

)
eu

(−1)k−`(k − `)!
uk−`+1

]
(1 + t)kλ−n

× Bn,k

(
1, λ

(
1− 1

λ

)
, . . . , λn−k

(
1− 1

λ

)
· · ·
(

1− n− k
λ

))
=

n∑
k=1

[
λFλ(t)

k∑
`=0

(
k

`

)
(−1)k−`(k − `)!

uk−`
+

k∑
`=1

(
k

`

)
(−1)k−`(k − `)!

uk−`+1

]
(1 + t)kλ−n
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× λn−k Bn,k

(
1, 1− 1

λ
, . . . ,

(
1− 1

λ

)
· · ·
(

1− n− k
λ

))
=

n∑
k=1

[
λFλ(t)

k∑
`=0

(
k

`

)
(−1)k−`λk−`(k − `)!

[(1 + t)λ − 1]k−`
+

k∑
`=1

(
k

`

)
(−1)k−`λk−`+1(k − `)!

[(1 + t)λ − 1]k−`+1

]

× (1 + t)kλ−nλn−k
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(
`− q

λ

)

=
1

(1 + t)n

n∑
k=1

[
λFλ(t)

k∑
`=0

(
k

`

)
(−1)`λ``!

[(1 + t)λ − 1]`
+

k−1∑
`=0

(
k

`

)
(−1)`λ`+1`!

[(1 + t)λ − 1]`+1

]

× (1 + t)kλ

λk
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`λ− q).

Accordingly, we have

(1 + t)n
[
(1 + t)λ − 1

]n
F

(n)
λ (t) =

n∑
k=1

[
(1 + t)kλ

λk
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`λ− q)

]

×

[
Fλ(t)

k∑
`=0

(
k

`

)
(−1)`λ``![(1 + t)λ − 1]n−` +

k−1∑
`=0

(
k

`

)
(−1)`λ``![(1 + t)λ − 1]n−`−1

]

=

n∑
k=1

[
(−1)k

λk

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`λ− q)

]
(1 + t)kλ

×

[
Fλ(t)

k∑
`=0

(−1)`λ`

(k − `)!

n−∑̀
m=0

(
n− `
m

)
(1 + t)mλ(−1)n−`−m

+

k−1∑
`=0

(−1)`λ`

(k − `)!

n−`−1∑
m=0

(
n− `− 1

m

)
(1 + t)mλ(−1)n−`−1−m

]

= (−1)n
n∑
k=1

[
(−1)k

λk

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`λ− q)

]
(1 + t)kλ

×

[
Fλ(t)

k∑
`=0

λ`

(k − `)!

n−∑̀
m=0

(−1)m
(
n− `
m

)
(1 + t)mλ

+

k−1∑
`=0

λ`

(k − `)!

n−`−1∑
m=0

(−1)m+1

(
n− `− 1

m

)
(1 + t)mλ

]

= (−1)nFλ(t)

n∑
k=1

Ak(n, λ)

k∑
`=0

λ`

(k − `)!

n−∑̀
m=0

(−1)m
(
n− `
m

)
(1 + t)(k+m)λ

+ (−1)n
n∑
k=1

Ak(n, λ)

k−1∑
`=0

λ`

(k − `)!

n−`−1∑
m=0

(−1)m+1

(
n− `− 1

m

)
(1 + t)(k+m)λ.
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Since

n∑
k=1

Ak(n, λ)

k∑
`=0

λ`

(k − `)!

n−∑̀
m=0

(−1)m
(
n− `
m

)
(1 + t)(k+m)λ

=

n∑
k=1

Ak(n, λ)

k∑
`=0

λ`

(k − `)!

n∑
m=0

(−1)m
(
n− `
m

)
(1 + t)(k+m)λ

=

n∑
k=1

Ak(n, λ)(1 + t)kλ
n∑

m=0

(−1)m

[
k∑
`=0

λ`

(k − `)!

(
n− `
m

)]
(1 + t)mλ

=

n∑
k=1

Ak(n, λ)(1 + t)kλ
n∑

m=0

(−1)m

[
min{n−m,k}∑

`=0

λ`

(k − `)!

(
n− `
m

)]
(1 + t)mλ

=

n∑
k=1

Ak(n, λ)

n∑
m=0

(−1)m

[
min{n−m,k}∑

`=0

λ`

(k − `)!

(
n− `
m

)]
(1 + t)(k+m)λ

=

2n∑
i=1


∑

k+m=i
1≤k≤n
0≤m≤n

(−1)mAk(n, λ)

min{n−m,k}∑
`=0

λ`

(k − `)!

(
n− `
m

) (1 + t)iλ

and

n∑
k=1

Ak(n, λ)

k−1∑
`=0

λ`

(k − `)!

n−`−1∑
m=0

(−1)m+1

(
n− `− 1

m

)
(1 + t)(k+m)λ

=

n∑
k=1

Ak(n, λ)

k−1∑
`=0

λ`

(k − `)!

n−1∑
m=0

(−1)m+1

(
n− `− 1

m

)
(1 + t)(k+m)λ

=

n∑
k=1

Ak(n, λ)

n−1∑
m=0

(−1)m+1

[
k−1∑
`=0

λ`

(k − `)!

(
n− `− 1

m

)]
(1 + t)(k+m)λ

=

n∑
k=1

Ak(n, λ)

n−1∑
m=0

(−1)m+1

[
min{k−1,n−m−1}∑

`=0

λ`

(k − `)!

(
n− `− 1

m

)]
(1 + t)(k+m)λ

=

2n−1∑
i=1


∑

k+m=i
1≤k≤n

0≤m≤n−1

(−1)m+1Ak(n, λ)

min{k−1,n−m−1}∑
`=0

λ`

(k − `)!

(
n− `− 1

m

) (1 + t)iλ,

where an empty sum is understood to be 0 and
(
p
q

)
= 0 for q > p ≥ 0, the

equation (6) and the formulas (7) and 8 are thus proved. The proof of Theorem 2
is complete. �

4. Remarks

Finally, we list several remarks on our main results and closely related things.
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Remark 1. Comparing (6) with (2) reveals that

ai(n, λ) = (−1)nαi(n, λ) and bi(n, λ) = (−1)nβi(n, λ).

Remark 2. It is easy to see that explicit expressions (7) and (8) for αi(n, λ) and
βi(n, λ) are more meaningful and more significant than those in [2, Theorem 2.1]
for ai(n, λ) and bi(n, λ) mentioned above.

Remark 3. The formula (5) was derived in [3] and mentioned in [4, 8].

Remark 4. Per requests of anonymous referees, the preprint [17] is split into and
simplified as two formally published papers [18, 29].

Remark 5. The motivations in the papers [5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20,
21, 24, 25, 26, 27, 30, 31, 32, 38, 35, 36, 37, 40, 41, 42] are same as the one in this
paper.

Remark 6. This paper is a slightly revised version of the preprint [28].
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