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In this work, we will presente a comparison of two formulation for the discretization of

elastodynamic contact problems. The first approach consists on a midpoint scheme and a

contact condition expressed in terms of velocity. This approach gives an energy conserving

scheme. The second one we propose is a new distribution of the solid mass. The problem

expressed with the new mass matrix is well posed, energy conserving and has a lipschitz

solution. Finally, some numerical results are presented.

1 Introduction

The contact problem attracts considerable attention from the computational
mechanics community, due in large part to its highly non-linear and disconti-
nous nature. Indeed, engineering analysts charged with solving such problems
will attest merely achieving convergence of non-linear solution schemes can be
difficult under many circumstances. This difficulties stem primary from the
fact that elastodynamic contact problems are not well posed [8].

For purely contact elastodynamic problems (hyperbolic problems), as far
as we now, existence result has been proved in a scalar two dimensional case
by Lebeau-Schatzman [4], Kim [3] and in the vector case with a modified
contact law by Renard-Paumier [9]. It seems that no energy conserving result
has been proved. In this work, we will present two numerical energy conserving
strategies for elastodynamic contact problems.

The plan of the paper is as follows. Section 2 we propose a semi-discretization
using a finite element method, give the equivalent contact condition and the
time integration scheme used and discuss the energy conserving of the algo-
rithm. Section 3 we consider an equivalent mass matrix so that the equivalent
finite element problem is energy conserving. Some numerical tests are pre-
sented in Section 4 to demonstrate performance of the two approaches.
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2 Method with the equivalent contact condition ECC

In elastodynamics, the classical contact condition is not sufficient to deal
with the problem correctly. Of course, in the enrergy analysis of any time
integration scheme for contact problems, we remark that a sort of contact
condition in terms of velocity appears. The stake is how to define this contact
condition which can replace the classical one. Then, many authors try to give
a new formulation for the contact condition: Laursen-Love [6], Moreau [7] and
obtain an interesting results. In this section, we deal with such condition.

We assume a vanishing initial gap between the structure and the rigid
foundation and we denote u0, u1 and T the given initial displacement, initial
velocity and time simulation respectively.

The space semi-discretization of the elastodynamic contact problem with
nodal contact condition is defined for a Lagrange finite element method as
follows. Find u : [0, T ] −→ R

d such that
⎧⎪⎪⎨
⎪⎪⎩

Mü + Ku = f +
∑
i∈I

C

λi
N

Ni, in [0, T ] × R
d,

λi
N
≤ 0, u.Ni ≤ 0, λi

N
(u.Ni) = 0,∀ i ∈ I

C
,

u(0) = u0, u̇(0) = u1,

(1)

where d is the number of degrees of freedom for the displacement u, the
notations M,K, f stend for the mass matrix, the stiffness matrix and the given
force densities respectively, I

C
is the set of the contact boundary indices. On

each node i ∈ IC
, we denote λi

N
and Ni the normal stress and the outward

unit normal respectively.
Problem (1) is not well posed (see [7]). However, uniqueness can be re-

covered, for rigid bodies, by introducing an impact law with a restitution
coefficient. This seems not to be completly satisfying for deformable bodies
because whatever the restitution coefficient value, the system tends to a global
restitution of energy when the mesh parameter goes to zero (more details will
be presented in [1]).

We replace the classical Signorini condition in Problem (1) by the following
condition {

u.Ni < 0 =⇒ λi
N

= 0,
u.Ni ≥ 0 =⇒ u̇.Ni ≤ 0, λi

N
≤ 0, λi

N
(u̇.Ni) = 0. (2)

The expression (2) in terms of velocity is very close to the one introduced
in [7] and corresponds to the one introduced in [5]. The velocity is to be
understood as a right derivative and the second condition implies in fact the
non-interpenetration.

We discretize the elastodynamic part in Problem (1) by a midpoint scheme
as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u0 et v0 donnés,
u1 = u0 + Δt v0 + Δt z(Δt )/ lim

Δt −→0
z(Δt ) = 0,

M

(
un+1 − 2un + un−1

Δt2

)
+ K

(
un+1 + 2un + un−1

4

)

= f +
∑
i∈I

C

λi,n
N

Ni,∀ n ≥ 1,

(3)

where Δt is the time parameter. The contact condition (2) is approximated
using a central difference scheme:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un.Ni < 0 =⇒ λi,n
N

= 0,

un.Ni ≥ 0 =⇒

⎧⎪⎨
⎪⎩

(un+1 − un−1).Ni

2Δt
≤ 0, λi,n

N
≤ 0,

λi,n
N

(
(un+1 − un−1).Ni

2Δt

)
= 0.

(4)

Theorem 1. The stability of scheme (3)-(4) is ensured by the fact that the
discrete energy

J(u, v) =
1
2

< Mv, v > +
1
2

< Ku, u > − < f, u > (5)

is conserved in the following sense

ΔJ = J(un+ 1
2 , vn+ 1

2 ) − J(un− 1
2 , vn− 1

2 ) = 0, (6)

with un+ 1
2 =

un+1 + un

2
, vn+ 1

2 =
un+1 − un

Δt
.

Proof. One has

ΔJ =
1
2

< M
(
vn+ 1

2 + vn− 1
2

)
, vn+ 1

2 − vn− 1
2 >

+
1
2

< K
(
un+ 1

2 + un− 1
2

)
, un+ 1

2 − un− 1
2 > − < f, un+ 1

2 − un− 1
2 > .

Then, using the definition of un+ 1
2 and vn+ 1

2 , we obtain:

ΔJ =
1

2Δt 2
< M

(
un+1 − 2un + un−1

)
, un+1 − un−1 >

+
1
8

< K
(
un+1 + 2un + un−1

)
, un+1 − un−1 > −1

2
< f, un+1 − un−1 > .

Hence, from (3):

ΔJ =
1
2

<
∑
i∈I

C

λi,n
N

Ni, u
n+1 − un−1 >= Δt

∑
i∈I

C

λi,n
N

(
un+1.Ni − un−1.Ni

2Δt

)
.

Finally, (4) leads to ΔJ = 0. Then, the first approach is energy conserving.
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Remark.

• The major difficulty with scheme proposed in [5] is that the contact con-
dition (2) is discretized using a central diffence scheme.

• In this section, we proved conservation energy of the discretized contact
elastodynamic problem using an appropriate scheme and a choice of con-
tact condition in terms of velocity. But this condition, as it was approxi-
mated, allows some interpenetration. Then, we opt for an other approach
which can take in acounte our no-iterpenetration property and conserve
energy. This is what we are going to do in the following section.

3 Equivalent mass matrix method (EMM)

The non-well-posedness of Problem (1) comes from the fact that the nodes
on the contact boundary have their own inertia. This leads to instabilities
especially for energy conserving schemes. We propose here to introduce a new
distribution of the mass with the same total mass, center of gravity and iner-
tia momenta. This distribution of the mass is done so that there is no inertia
for the contact nodes (similarly to what happens in the continuous case). We
refer the reader to [1] for further details. We assume that the modified mass
matrix is still denoted M such that Ni

T MNj = 0,∀ i, j ∈ I
C
. Then, the two

following results hold.

Theorem 2. Problem (1) with the equivalent mass matrix is well posed and
has a Lipschitz continuous solution.

Proof. If we order the degrees of freedom such that the last ones are the nodes
on the contact boundary, we can split each matrix and vector in interior part
and contact boundary part as follows:

M =
(

M̄ 0
0 0

)
, K =

(
K̄ CT

C D

)
, Ni =

(
0
Ñi

)
and u =

(
ū
ũ

)
.

Then, Problem (1) becomes:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M̄ ¨̄u + K̄ū = f + CT ũ,

Dũ + Cū =
∑
i∈I

C

λi
N

Ñi,

λi
N
≤ 0, u.Ni ≤ 0, λi

N
(u.Ni) = 0,∀ i ∈ I

C
,

u(0) = u0, u̇(0) = u1.

(7)

The second equation together with the contact condition uniquely define ũ as
soon as ū is given. Furthermore, ũ depends Lipschitz continuously on ū. The
first equation is a lipschitz ordinary differential equation.
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Fig. 1. A disc before and during the first contact.

Theorem 3. Problem (1) with the equivalent mass matrix is energy conserv-
ing.

We refer to [1] for a completely proof. This result comes from the fact
that ūi, ũi, and λi

N
satisfy ūi ∈ C2([0, T ], R), ũi ∈ W 1,∞([0, T ], R) and

λi
N
∈ W 1,∞([0, T ], R).

4 Numerical results

In this section, we study the dynamic contact of an elastic disc (see Fig. 1)
the properties of which are summerized in Tab. 1. We denote A the lowest
point of the disc (the first point which will be in contact).

Table 1. Characteristics of the elastic disc and the resolution method

Disc property Value Property of the resolution method Value

ρ, diameter 6 10−6kg/cm3, 20 cm Time step 10−4s

Lamé coefficients λ = 10 GP , μ = 5 GP Simulation time 0.3 s

u0, v0 1 cm, −100 cm/s Mesh parameter � 2 cm

The results of simulations for the midpoint scheme with the equivalent
contact condition ECC are presented in Fig. 2. The energy is indeed constant,
however the normal stress in point A is very noisy and inexploitable. Concern-
ing Problem (1) with a modified mass matrix, the simulations are done using
a Newmark scheme with β = γ = 0.5. Fig. 3 shows that the normal stress in A
for the second approach is more regular than for the first one. Moreover, there
is very small fluctuations in the energy evolution which is quasi-conserved.

5



0 500 1000 1500 2000 2500 3000
111.2

111.3

111.4

111.5

111.6

111.7

111.8

111.9

112

Time

T
ot

al
 e

ne
rg

y

Evolution of energy in time

Fig. 2. Energy, normal stress and displacement evolution for the midpoint scheme
with ECC condition.
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Fig. 3. Energy, normal stress and displacement evolution for the Newmark scheme
with EMM method.
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5 Concluding remarks

In this work, we proved the stability of elastodynamic contact problem us-
ing an appropriate time integration scheme. The first approach we presented
ensure conservation of energy but allows a small interpenetration and the
computed normal stress is badely approximated. It could be interesting to see
that this scheme is well adapted for rigid bodies. The second approach is very
simple to implement and gives a good approximation of normal stress. For
both approaches, adding a Coulomb friction condition is not a difficulty from
the stability view point. However, this condition could be badly approximated
for the first approach because it depends on the normal stress.
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