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Computing flooding of crossroads with obstacles using a 2D numerical model 17 

ABSTRACT 18 

Typical urban flood flow features are usually computed using two-dimensional numerical models. How such 19 

modelling can be implemented in dense urban areas with obstacles is investigated. A strategy for representing 20 

the effect of urban obstacles in various flow conditions is defined. The comparison between the available 21 

laboratory measurements and the model results show that if the water depth is high enough and the flow remains 22 

subcritical, two-dimensional modelling with constant eddy viscosity provides the effect of the obstacles on the 23 

flow distribution accurately, even with a coarse mesh; moreover, an over-simplified representation of the 24 

sidewalks averaging the street cross section elevations seems sufficient. Oppositely, if the water depth is low 25 

and/or the flow becomes supercritical, the description of the flow is not relevant enough and it generates errors in 26 

the flow distribution at the crossroads.  27 

 28 
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1 Introduction 31 

According to the European Environment Agency report (EEA, 2010), floods have caused 1126 deaths 32 

in the period 1998-2009. Besides, floods remain the most costly natural hazard, with cumulated 33 

damages evaluated to EUR 52 billion in the same period. Actually, most of the human losses and 34 

economic damages occur in the urban areas that concentrate a large part of the stakes: population, 35 

economic activities and industries, historical centres, road networks… because cities are often located 36 

in flood-prone areas such as river floodplains and coastal areas.  37 

When considering a dense urban area, the flood can be assumed to occur mainly in the street 38 

network so that surface flow models can be restrained to this network (e.g. Leandro, Chen, Djordjevic, 39 

& Savic, 2009; Mignot, Paquier, & Haider, 2006; Mignot, Paquier, & Ishigaki, 2006). The standard 40 

approach to simulate these events relies on a depth averaged two-dimensional model (2D) solving the 41 

full shallow water equations which provides the global flood extent and the spatial distribution of the 42 

maximum water levels, along with detailed time series of local flow depths and velocities. The ability 43 

of standard 2D models to represent the global surface flow pattern during urban floods has been 44 

assessed by comparing numerical simulations and laboratory experiments for idealized and well-45 

controlled urban configurations corresponding to flooded urban crossroads (El Kadi Abderrezzak, 46 

Lewicki, Paquier, Riviere, & Travin 2011; Ghostine et al., 2010; Mignot, Paquier, & Riviere, 2008) or 47 

schematic flooded urban areas (Mignot, Paquier, & Ishigaki, 2006; Soares-Frazão, & Zech 2008; Van 48 

Emelen et al., 2012).  49 



 

Nevertheless, obstacles of dimensions much smaller than the buildings such as bus-stops, trees 50 

or parked cars, that are common street furniture, are never included in the flood simulations even if 51 

these obstacles may strongly modify the flow pattern and thus the risk distribution in the city. 52 

Moreover, given the increasing computing capacities and spatial data acquisition methods from 53 

existing GIS databases or Lidar land survey, such introduction of urban details is not a limiting 54 

process anymore. 55 

Mignot et al. (2013) recently measured and computed (using a 3D code solving the unsteady 56 

Reynolds-averaged Navier-Stokes equations with a Spalart-Allmaras model for turbulence closure) the 57 

impact of obstacles located in a crossroad on flow distribution to the downstream streets. The chosen 58 

geometry was an idealized subcritical 3-branch dividing flow. The main results in terms of impact on 59 

the flow distribution are listed below: 60 

 The impact of the obstacle on the discharge distribution is strongly dependent on its location 61 

with regards to the crossroad. Indeed, obstacles located within the upstream channel increase 62 

the streamwise flow velocity and thus tend to reduce the lateral and increase the downstream 63 

discharges. Oppositely obstacles located within the downstream channel tend to block off the 64 

flow in this channel and to reduce the corresponding discharge while increasing the lateral 65 

discharge. Finally for obstacles located within the branch channel, their impact depends on the 66 

side of the channel in which they are introduced. 67 

 This impact is a direct consequence of the modifications when introducing the obstacle of the: 68 

(i) streamwise and centrifugal flow acceleration, (ii) width of the recirculation zone and (iii) 69 

wake downstream the obstacle. 70 

 The impact of an obstacle appears to increase as the upstream Froude number increases while 71 

the modification of the normalized water depth hardly affects the results and the impact of the 72 

initial flow distribution depends on the obstacle location. 73 

Given the potential impacts of a single obstacle located in the vicinity of the bifurcation 74 

(modification of the flow distribution up to 12%), the present paper aims at verifying the capacities of 75 

operational 2D numerical models to reproduce these impacts. 76 

2D modelling of subcritical dividing flows in a three branch bifurcation without obstacle was 77 

carried out by Shettar and Murthy (1996) and Khan, Cadavid, and Wang (2000). Both models proved 78 

an excellent ability to compute the discharge distribution. In particular, Shettar and Murthy (1996) 79 

performed an extensive validation of the numerical model, using vertically-averaged velocity fields, 80 

water surface profiles at the intersection, as well as more global flow characteristics such as the size of 81 

the branch separation zone and the energy loss in the junction.  82 

On the other hand, simulations of flows around obstacles in the literature mainly concern 83 

flows around bridge piers or groynes and are preferably computed using 3D numerical models (as in 84 

Mignot et al., 2013), but 2D models are also used along with adequate turbulence closure models. 85 



 

Yulistiyanto, Zech, and Graf (1998) used a 2D model to simulate the flow around an emerging 86 

cylinder using a specific treatment of the dispersion stresses due to vertical velocity profiles and their 87 

simulations appear to fairly predict the velocities and water depths around the cylinder, without any 88 

calibration. Jiang, Yang, and Liang (2009) performed 2D modelling of the flow past a vertical plate, 89 

and proved that an eddy viscosity model computed via the friction velocity can achieve reasonable 90 

prediction of the velocity field. Stansby (2006) performed simulations of the flow past a conical island 91 

with a 2D model, including a horizontal mixing-length turbulence eddy viscosity model and the ability 92 

of the model was found to depend on the wake type, with discrepancies increasing when predicting the 93 

occurrence and length of stable wakes. 94 

Nevertheless, operational 2D numerical models used for urban flood modelling rarely consider 95 

turbulence effects, or use simple turbulence models because accurate modelling of turbulence would 96 

require computational efforts that are not affordable for large-scale flood studies. Moreover, the 97 

modellers often neglect the presence of obstacles and simply do not consider them in the 98 

geometry/meshing process. Then the present paper aims at modelling the impact in the crossroad of 99 

obstacles from Mignot et al. (2013) and sidewalks from Bazin (2013) using a 2D operational 100 

numerical model with a very simple turbulence model, as used when modelling the urban flood events, 101 

in order to reveal that the consideration of such obstacle could improve the usual urban flood 102 

calculation. This model is thus much simpler than the 3D model previously used by Mignot et al. 103 

(2013) to compute these flows but this latter model could not be applied to urban flooding 104 

calculations. The objective is here twofold: 1) to identify for which obstacle location and flow 105 

configuration a 2D operational model is able to fairly estimate the large-scale effects (mostly the effect 106 

of the discharge distribution to the downstream branches) of an impervious obstacle or a sidewalk in 107 

the vicinity of a 3-branch open-channel bifurcation and 2) to identify which meshing strategy (method 108 

for including obstacles and selected mesh dimensions) is required to achieve this fair estimate. The 109 

first section presents experimental data used herein along with the 2D numerical model and its 110 

application in cases where no obstacle is included, the second section presents the calculation of flows 111 

in bifurcations with each obstacle configuration and then with the sidewalks. 112 

2 Experimental data and numerical model 113 

2.1 Experimental data  114 

The experimental data are derived from measurements performed by Mignot et al. (2013) and Bazin 115 

(2013). The chosen geometry was an idealized subcritical 3-branch dividing flow with one inlet named 116 

“upstream channel” with subscript “u” and two outlets, one aligned with the inlet named “downstream 117 

channel” with subscript “d” and the second forming a 90° angle, named “branch channel” with 118 

subscript “b”. The experiments included 14 flow configurations listed in Table 1 with varying 119 

dimensionless parameters Fu0 (series S1), Rq0 (S2) and hu0/b (S3), where F is the Froude number, Rq= 120 



 

Qb/Qu is the flow distribution with Q the discharge, b is the channel width, h is the water depth and 121 

with the 0 subscript referring to the case without obstacle. For each of these 14 flows, the discharge 122 

distribution Rq was measured without obstacle (denoted as Rq0) and after adding one obstacle at each 123 

of the 7 locations sketched in Fig. 1, replacing the subscript 0 (without obstacle) by the subscripts 1 to 124 

7 corresponding to the obstacle location number. The obstacles are square shape impervious and 125 

emerging blocks of base dimensions 5 cm x 5 cm. Note that Mignot et al. (2013) also measured 126 

configurations with two obstacles but these configurations are not considered herein. However, for the 127 

same 14 flows, sidewalks (of dimensions 6cm x 2cm, Fig. 1b) were also added (without obstacles) by 128 

Bazin (2013) and this additional configuration is referred to by the subscript 10 as sketched in Fig.1. 129 

In the end, a total of 14 flows times 9 cases were measured (1 without obstacle, 7 with one obstacle 130 

and 1 with sidewalk), that is 126 flow configurations. Additionally, the 2D horizontal velocity field 131 

was measured at one selected elevation (z=3cm, z/h=0.71) for flow 6 (Table 1) without obstacle, with 132 

all obstacles, and finally with the sidewalks. All these experimental configurations can be considered 133 

to be representative of a crossroad of narrow streets in a city at scale 1/25 (Mignot et al., 2013). 134 

2.2 Equations and numerical model 135 

The Rubar20 code solves the 2D shallow water equations including the continuity equation (Eq. 1) and 136 

the conservation of momentum along orthogonal axes x and y (Eqs 2 and 3): 137 
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where t is the time, h is the water depth, u and v are the depth averaged velocities along respectively x 141 

and y axis, g is the gravity acceleration, Zb is the bottom elevation, Ks is the Strickler coefficient with 142 

Ks=1/n, n being the Manning roughness coefficient, and K is the eddy viscosity coefficient. The eddy 143 

viscosity coefficient K represents effects of diffusion, depth-averaging of the velocities as well as 144 

turbulent stresses; it does not form an elaborate turbulence model but it offers a way to calibrate 145 

simulations in the case where turbulence effects have to be considered. The simplest formulation for K 146 

assumes a constant value in time and space. Use of such simple eddy viscosity model can lead to 147 

acceptable results once K is calibrated, as shown for flows including strong two-dimensional patterns 148 

such as separations zones (Bravo & Holly, 1996; Papanicolaou, Elhakeem, & Wardman, 2011). 149 

Depending on the experimental flow configurations, the flow regime is here either 150 

hydraulically smooth or in the transition toward fully rough flow. Therefore, as for Mignot, Paquier, 151 



 

and Rivière (2008), the following explicit approximation of the Colebrook-White formula given by 152 

Yen (2002) is considered for computing the friction factor f : 153 

 𝑓 =
1

4
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 (4) 154 

where R is the local Reynolds number calculated as 4h√𝑢2 + 𝑣2/withthe water kinematic 155 

viscosity, Rh is the hydraulic radius, taken here as the local water depth h and ks=0.1 mm the channel 156 

roughness height. The computed friction factor is then transformed in an equivalent Strickler 157 

coefficient for Eqs 2 and 3 using: 158 

 𝐾𝑠 = √
8𝑔

ℎ
1
3⁄ 𝑓

 (5) 159 

The usual range of equivalent Strickler coefficients is 85-105 m
1/3

s
-1

. Moreover, for cells 160 

located along solid boundaries (including the obstacles), wall friction is added, considering it equal to 161 

half the bottom friction for the same water depth (for simplicity and because the averaged water 162 

pressure along the wall should be half the water pressure at the bottom). Finally, the obstacles are 163 

represented as impervious cells in which no flow is calculated. The sidewalks are represented in the 164 

topography increasing the bottom elevation of all the points of the sidewalks by their elevation, i.e. by 165 

0.02 m. 166 

The numerical scheme is detailed in Mignot, Paquier, and Haider (2006). The computational 167 

mesh is made of quadrilaterals and triangles using an unstructured grid so that the mesh can be 168 

adapted to any complex obstacle shape. The code solves the above equations using an explicit second-169 

order finite-volume scheme, adapted from MUSCL approach. The numerical scheme can run with a 170 

fixed time step, or with an adaptive time step respecting a Courant number below 1 so that the scheme 171 

remains stable. Originally developed for simulations of dam-break waves, the code is robust for all the 172 

simulations of shallow flows. Treatment of the drying/wetting processes is by setting null water depths 173 

whenever the computed ones are lower than a threshold (0.001 mm for computations described in the 174 

present paper). The mass conservation is achieved with typical errors less than 0.01 % of the total 175 

mass. Code validation against experimental and field data includes simulations of dividing 176 

supercritical and transcritical flows (Mignot, Paquier, & Rivière, 2008; El Kadi Abderrezzak et al., 177 

2011), floods in dense urban areas (Mignot, Paquier, & Ishigaki, 2006) and dam-break type flows 178 

around obstacles (El Kadi Abderrezzak, Paquier, & Mignot, 2009). The main discrepancies observed 179 

in previous comparisons with laboratory measurements concern the exact prediction of the location 180 

and size of the hydraulic jumps. 181 

In the present study, the reference mesh consists of a square grid with a resolution of m = 3.5 182 

to 5 cm in the junction, leading to 7 cells across the channels. This mesh size is indeed representative 183 

of a model used for simulating urban flood events. This mesh permits to capture the time-averaged 184 

flow around each obstacle, but may not represent finer phenomenon such as vortex shedding (note that 185 



 

Lloyd & Stansby (1997) and Yulistiyanto et al. (1998) use around 30 cells across their obstacles). A 186 

refined mesh (m = 0.5 cm in the junction and 2 cm in the channels) is used for verifying the mesh 187 

influence on the results. The inlet flow discharge Qu0 experimentally measured in the pumping loop is 188 

imposed on the total width of the upstream channel inlet, with a uniform velocity distribution across 189 

the boundary. The downstream boundary conditions imposed at the outlet sections of the downstream 190 

and lateral branches are the experimental weir equations, i.e. the measured stage-discharge 191 

relationships Qb=f(Cb,hb) and Qd=f(Cd,hd) with C the weir crest height and h the water depth measured 192 

two channel widths upstream from the weir. 193 

2.3 Numerical validation: modelling flows without obstacles 194 

First of all, the measured channel roughness height equals 0.1 mm and it was verified (not shown here) 195 

that a variation of this parameter within the range of uncertainty (0.05 to 0.2 mm) does not impact the 196 

calculations. Now, the parameters subject to calibration and their acceptable ranges are the mesh size 197 

(from 0.5 cm to 3.5-5 cm) and the eddy viscosity (from 0 to 10
-3

 m
2
s

-1
). In order to validate the 198 

numerical model ability to simulate the discharge distribution and predict the general flow patterns 199 

before introducing the obstacles and to identify the best option for the two calibration parameters, 200 

seven parameter runs detailed in Table 2 are used to compute the 14 flows without obstacles (subscript 201 

0), considering the two mesh sizes and four values of eddy viscosity coefficient K. First, the measured 202 

water depths are compared to calculated ones resulting in an average difference of about 0.1 mm and a 203 

mean quadratic difference of 0.6 mm (not shown here), which can be considered as small compared to 204 

an average water depth of about 40 to 50 mm and the accuracy of the water depth measurements. 205 

Then, the capacity to predict the discharge distribution is assessed calculating the average δ and root 206 

mean square deviation σ of the relative error of the lateral discharge Q*b0 with: 207 

 𝑄𝑏0
∗ =

𝑄𝑏0,𝑆𝐼𝑀−𝑄𝑏0,𝑀𝐸𝑆

𝑄𝑏0,𝑀𝐸𝑆
 (6) 208 

 𝛿(𝑄𝑏0
∗ ) =

1

14
∑ 𝑄𝑏0

∗14
𝑘=1  (7) 209 

 𝜎(𝑄𝑏0
∗ ) = √∑ 𝑄𝑏0

∗ 214
𝑘=1

14
 (8) 210 

where Qb0,SIM and Qb0,MES are respectively the simulated and measured values of the branch channel 211 

flow discharge obtained without obstacles. These indicators included in columns 4-5 of Table 2 212 

confirm the capacities of the numerical model to estimate the discharge distribution, with typical 213 

errors about 2%, and a bias generally negative (δ(𝑄𝑏0
∗ )<0). These results do not promote a specific 214 

value for the eddy viscosity K (runs A-B-C or E1-E2-D-E3) and reveal that the mesh refinement (runs 215 

E1-E2-D-E3) only slightly improves the calculation adequacy with regards to the use of a coarser 216 

mesh (runs A-B-C). The optimum seems to be run B as it considers a coarser mesh (of same size as 217 

the obstacle dimension, that is the minimum size that could be used for simulations with obstacles) 218 



 

and a minimum σ(Q*b0). Nevertheless, the optimum run without obstacle may not be the optimum run 219 

when considering the obstacles. For instance, the computation of the wake created by the obstacle may 220 

require a finer mesh than that of run B. As a consequence, four runs are kept for future analysis with 221 

obstacles: the three cases with the coarse mesh with different eddy viscosity values (A, B and C) and a 222 

fourth one with the finer mesh (D) in order to verify whether a mesh refinement improves the 223 

calculations of the flow with obstacles. 224 

Figure 2 compares the horizontal measured and simulated velocity fields for flow number 6 225 

(Table 1). Note that experimental velocities are measured at the elevation z=3 cm (z/h~0.71), slightly 226 

above the mid elevation, which are likely to be representative of the depth-averaged velocity, whereas 227 

the computed velocities are depth-averaged velocities. Within this comparison framework, the data 228 

from the 4 parameter runs appear to be in fair agreement with experimental measurements both 229 

quantitatively and qualitatively except for the transverse extension (along x) of the recirculation cell in 230 

the downstream branch (Fig. 2b). The coarse mesh (runs A, B and C) leads to a coarse representation 231 

of the velocity field, but the global flow pattern remains well predicted without any clear advantage 232 

while varying the eddy viscosity coefficient.  233 

The recirculation area located along the upstream wall of the branch channel is a main flow 234 

structure in a subcritical dividing flow (Mignot et al., 2014). From the experimental and numerical 235 

data, the contour of the recirculation zone is computed, assuming it can be taken as the “zero-236 

discharge area”. Figure 3 shows the contour of this recirculation area for flow 6 (Table 1), for 237 

measured data and computed runs A and C (K=0 and K=10
-3

 m
2
s

-1
). For run A, the recirculation area 238 

almost reaches the downstream weir of the branch channel, whereas its length (along y axis) strongly 239 

decreases for run C. Oppositely, the maximum width of the recirculation appears to be similar for both 240 

K values.  241 

To conclude, the numerical model appears to predict the experimental flows without obstacle 242 

with enough accuracy to allow the introduction of obstacles and sidewalks in the next section. 243 

3 Modelling of flows with obstacles or sidewalks 244 

3.1 Introduction of obstacles 245 

Here below, the 14 flows are simulated with the 7 obstacles configurations from Fig. 1a and the 4 246 

parameter runs A, B, C and D, representing a total of 14x7x4=392 calculations. First, each simulation 247 

is assessed calculating the simulated and measured discharge distribution modification due to the 248 

obstacle: 249 

 ∆𝑅𝑞𝑖,𝑆𝐼𝑀 = 𝑅𝑞𝑖,𝑆𝐼𝑀 − 𝑅𝑞0,𝑆𝐼𝑀 (9) 250 

 ∆𝑅𝑞𝑖,𝑀𝐸𝑆 = 𝑅𝑞𝑖,𝑀𝐸𝑆 − 𝑅𝑞0,𝑀𝐸𝑆 (10) 251 



 

and then comparing the simulated and measured cases: 252 

 ∆𝑅𝑞𝑖 = ∆𝑅𝑞𝑖,𝑆𝐼𝑀 − ∆𝑅𝑞𝑖,𝑀𝐸𝑆 (11) 253 

with i=1…7 the obstacle number (Fig.1). Then, for each parameter set the average δ and root mean 254 

square deviation σ of these errors are computed over the 7 obstacle configurations and the 14 flow 255 

configurations, in a similar way as in Eqs. 7 and 8 and are indicated in columns 4-5 of Table 3. 256 

Moreover, the accuracy of the model to compute the discharge distribution with obstacle is included in 257 

columns 6-7 of Table 3 with: 258 

 𝛿(𝑄𝑏1−7
∗ ) =

1

14
∑ (

1

7
∑ 𝑄𝑏𝑖

∗7
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∑ ∑ (𝑄𝑏𝑖
∗ 2

)7
𝑖=1

14
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 (13) 260 

Table 3 reveals an overall fair ability to predict the discharge distribution when obstacles are 261 

included with a typical average error lower than 3% and a root mean square error of about 3%. It 262 

appears that: 263 

 using the fine (D) and coarse (B) meshes results in a similar agreement with the 264 

measurements. 265 

 the bias  decreases as the eddy viscosity coefficient decreases (C-B-A) which means that the 266 

calculated branch discharge is reduced  267 

 the higher values of the eddy viscosity coefficient (runs B-C) seem to be the best options 268 

although the differences using the three values remain weak. 269 

 the error of the simulation with obstacles is of the same order as the error for the flows without 270 

obstacles provided in Table 2 271 

Scatter plots comparing measured and simulated evolutions of the discharge distribution are 272 

shown on Fig.4 for runs B (coarse mesh) and D (fine mesh). A linear regression using a least-square 273 

method is carried out and the slope s is included, showing that the calculations fairly estimate the 274 

discharge distribution for most of the 98 calculations using each mesh. 275 

Still using runs B and D, Fig.5 details for each obstacle and each series from Table 1 the 276 

measured and simulated modifications of the discharge distribution as each obstacle is introduced. 277 

Figure 5 confirms that for both parameter runs (corresponding to both mesh refinements), most 278 

obstacle configurations (each line) and most flows (each column), the discharge distribution is well 279 

estimated by the numerical model; i.e. computed and measured symbols are in agreement. 280 

Discrepancies mainly occur for: 281 

 flow 1 with Fu0=0.79, which is the configuration with highest upstream Froude number, for 282 

which the flow without obstacle includes a significant part of supercritical regime in the 283 



 

junction. The simulation of this partially supercritical flow with obstacles 1, 2, 6 and 7 is less 284 

accurate than for other flows with lower Froude numbers. This limit is related to a slight 285 

uncertainty in the prediction of the actual hydraulic jump location, as already noticed by 286 

Mignot, Paquier, and Rivière (2008). 287 

 the upstream obstacle 2 for which |ΔRq2| is overestimated when computed with the fine mesh 288 

(run D) and underestimated when computed with the coarser one (run B).  289 

In order to gain information on the computational errors when introducing obstacle 2, Fig.6 290 

shows the horizontal velocity fields measured (at z=3cm) and computed (depth-averaged velocity 291 

field) for flow 6 with the 4 parameter runs (to be compared with the measured flow without obstacle in 292 

Fig.2). It appears that when using the coarse mesh (runs A to C), the size of the wake with small 293 

velocity downstream of the obstacle is strongly overestimated, which limits the flow capacity to rotate 294 

into the branch channel. Thus, there is an increased effect of obstacle 2, hence an increase of |ΔRq2| but 295 

the coarse mesh also smoothens the flow around obstacle 2, so that finally the effect of the obstacle on 296 

the discharge distribution is rather fairly estimated for this flow 6, as shown on Fig.5. Oppositely, the 297 

use of the fine mesh (D) on Fig.6a leads to a shorter wake and thus to a higher deviation of the flow 298 

towards the branch and thus a slightly better estimate of ΔRq2 shown on Fig.5. Moreover, Fig. 6b 299 

reveals that both meshes lead to a fair estimation of the velocity field within the intersection (x<0.3m 300 

and y<0.3m) but not to a precise extension of the recirculation zone, as already observed without 301 

obstacle (Fig. 2b). For this obstacle 2, additional simulations were carried out for all flows with the 302 

fine mesh using friction velocity-dependent eddy viscosity formulations. None of these additional runs 303 

achieved a better agreement with the measured discharge distribution (not shown here for the sake of 304 

scarcity).  305 

3.2 Introduction of sidewalks 306 

As the sidewalks containing vertical edges are submerged, the meshing challenge lies in an adequate 307 

representation of their topography. Cells slope in 2D models is limited by their dimensions for 308 

practical reasons (computation times), so an adaptation of the mesh is required. The mesh considered 309 

in the present section is made of regular 2 cm width square elements everywhere except on the 310 

sidewalks edges, where finer elements of 0.5 cm or 1 cm are used (Fig.7). Using this mesh, two 311 

different topographical representations are used (Fig. 7): 312 

 the reference topography (Ref) similar to the experimental geometry. 313 

 the simplified averaged topography (Avg), for which the whole channel bottom elevation is 314 

constant and equals the average elevation of the channel cross section, i.e. 315 

2x(6 cmx2 cm)/(30 cm) = 0.8 cm. This representation is the simpler representation of the 316 

topographical change induced by the sidewalks. 317 



 

4 parameter runs are defined in Table 4, using both topographical representations and two 318 

eddy viscosity coefficient values K. As for obstacles in Table 3, the average error δ and root mean 319 

square error σ of the predicted discharge distribution and evolution of the discharge distribution when 320 

including the sidewalks are included in Table 4, with the subscript 10 referring to the sidewalks. It 321 

appears that: 322 

 the model is able to predict the discharge distribution when sidewalks are included with a 323 

typical average error lower than 3% and a root mean square error of about 5%. 324 

 the simplified topographical representation Avg gives similar results as the reference 325 

configuration, without main deterioration of the results. 326 

 slightly better simulation results are obtained using a higher eddy viscosity coefficient K=10
-3

 327 

m
2
s

-1
.  328 

Figure 8 shows the measured and horizontal simulated velocity fields for flow 6, for parameter 329 

runs 1 and 2 from Table 4 carried out with the Ref topography (to be compared with the measured 330 

flow without sidewalk in Fig.2). The acceleration of the flow in the upstream channel central area is 331 

well simulated but this acceleration does not extend within the intersection in the numerical model, 332 

unlike in the measurements (Fig. 8b). Moreover, the lateral extension of the recirculation and adjacent 333 

acceleration zones in the branch channel are fairly (Fig. 8c) but not perfectly (Fig. 8b) estimated. 334 

Moreover, increasing the eddy viscosity (run 2) hardly affects the velocity distribution across the 335 

channel width, and only slightly changes the branch channel recirculation shape. 336 

Measured and simulated modifications of the discharge distribution due to the sidewalks are 337 

shown for each of the 14 flows on Fig.9 in the same way as for Fig.5. Results with the 4 runs appear to 338 

be close to each other, and stand well within the range of experimental uncertainties, except: 339 

 for flow 2 that has a large upstream channel Froude number. The discontinuity (sudden ΔRq 340 

decrease as Fu0 increases) observed in the experiments for Fu0~0.6-0.8 is rather occurring for 341 

Fu0~0.4-0.6 in the numerical simulations. Figure 10 shows that this discontinuity is due to the 342 

occurrence of an oblique hydraulic jump attached to the upstream corner of the junction 343 

(Mignot, Riviere, Perkins, & Paquier, 2008), which strongly affects the flow. The location of 344 

the hydraulic jump is not perfectly estimated by the numerical model and leads to the strong 345 

error in the discharge distribution for flow 2; but to a fair estimation for flows 1 and 3 (Fig. 9). 346 

This result confirms the conclusion raised by Mignot, Paquier, and Rivière (2008) that a slight 347 

error in the hydraulic jump location can (but not necessarily) lead to strong errors in the 348 

discharge distribution. 349 

 for flow 11 that is the shallowest flow configuration (hu0/b=0.08) for which the water depth 350 

(hu0=2.4cm) hardly exceeds the elevation of the sidewalk (z=2cm), so that the flow conditions 351 

do not fit the shallow water equations hypothesis. 352 



 

4 Conclusions 353 

Numerical simulations of experimental bifurcation flows have been carried out with the Rubar20 code 354 

that solves the two-dimensional shallow water equations. Comparison of simulation results with 355 

experimental measurements allowed to assess the code ability to model nine series (one without 356 

obstacle, seven with one single obstacle and one with sidewalks) of 14 subcritical dividing flows with 357 

varying Froude number, discharge distribution and water depths. The computation of the discharge 358 

distribution for the flows without obstacles/sidewalks was achieved with a fair accuracy (error 359 

typically less than 2%, Table 2), without specific calibration of the numerical model although better 360 

results are obtained using a small positive value of the eddy viscosity K (typically 5x10
-4

 to 10
-3

 m
2
/s 361 

for the cases considered herein). Therefore, the prediction of the discharge distribution for subcritical 362 

dividing flows with the shallow water equations (code Rubar20) appears to be more accurate than for 363 

supercritical (Mignot, Paquier, & Rivière, 2008) or transcritical flows (El Kadi Abderrezzak et al., 364 

2011). 365 

The simulations of the flows with obstacle proved the capacities of the code to fairly predict 366 

the effects of one obstacle on the flow (deflections, contractions and accelerations) and the 367 

consequences on the discharge distribution to the downstream channels. It appeared that a relatively 368 

coarse mesh (3.5 to 5 cm cells, i.e. of same size as the typical size of the obstacle) is sufficient to fairly 369 

compute the large-scale effects (mostly the flow distribution to the downstream branches) of the 370 

obstacle. Deeper analysis shows that errors mainly arise i) when hydraulic jumps take place in the 371 

crossroad and/or ii) when the obstacle is introduced in the upstream channel (obstacles 1 and 2), the 372 

wake of which strongly impacts the flow in the area where it is deflected towards the branch channel. 373 

Improving this calculation may require the use of a finer mesh and a more elaborate turbulence model, 374 

but both aspects would be too costly to be included when simulating urban floods in large urban areas. 375 

The authors wish to warn any potential user of the present model that, regarding the test 376 

functions  and  indicated in Tables 2 and 3, the model appears to be substantially insensitive to the 377 

calibrated parameters within their range of variations considered herein. Nevertheless, we showed that 378 

these parameters do affect specific details of the flow patterns such as the recirculation zone (an 379 

increasing K value tends to reduce its length as shown in Fig. 3) or the wake downstream the obstacle 380 

(a refined mesh tends to reduce the wake streamwise extension in Fig. 6a and leads to a better estimate 381 

of the discharge distribution in Fig. 5). 382 

Modelling of flows with sidewalks was performed with two topographical models and both 383 

fairly predict the impact of the sidewalks on the discharge distribution. The calculations with the 384 

simplified geometry show that the simulation of the average flow acceleration in a channel section is 385 

sufficient to predict the impact of the sidewalks. The main discrepancies appear to be related to 1) the 386 

occurrence of supercritical flows in the crossroad or 2) a very limited water depth over the sidewalk. 387 

This suggests that the effect of the sidewalks is mainly related to the upstream flow acceleration, and 388 



 

that there is no significant impact on the mechanism of flow division (except when the flow in the 389 

junction becomes supercritical). 390 

Finally, the potential change in flow distribution due to obstacles of typical dimension equal to 391 

1/6 of the street in a subcritical flow with aspect ratios ranging between 0.08 and 0.22 can exceed 392 

10%. These results are likely to be generalized to a large set of urban cases because the laboratory 393 

experiments are scaled to a specific crossroad in a city and are using physically based shallow water 394 

equations. On the other hand, the literature (Mignot, Paquier, & Haider, 2006; Paquier & Bazin, 2014) 395 

showed that the uncertainty associated to other parameters of the urban flood calculation such as the 396 

hydrographs, neglecting the sewage network, some open areas within blocks, or the rain falling on the 397 

computed domain may lead to comparable levels of uncertainty. Because the inclusion of obstacles 398 

does not require a more detailed mesh, modellers could easily explicitly integrate such obstacles into 399 

their urban flood models, which would improve the calculation of the flow distribution and the 400 

representation of the local flow patterns. Nevertheless, the error made when neglecting obstacles of 401 

smaller dimensions should be lower than 10%. The decision to include obstacles or not will depend on 402 

the exact order of magnitude of the other sources of uncertainty, the number, size and location of the 403 

obstacles and finally the availability of obstacles data.  404 

Notation 405 

b = channel width (m) 406 

C = weir crest height (m) 407 

f = friction factor (-) 408 

F = Froude number (-) 409 

g = constant of gravity (m s
-2

) 410 

h = water depth (m) 411 

K = eddy viscosity coefficient (m
2
 s

-1
) 412 

Ks = Strickler coefficient (m
1/3

 s
-1

) 413 

ks = roughness height (m) 414 

m = mesh resolution (cm) 415 

n = Manning roughness coefficient (s m
-1/3

) 416 

Q = discharge (m
3
 s

-1
) 417 

Q* = discharge distribution error (%) 418 

R = Reynolds number (-) 419 

Rh = hydraulic radius (m) 420 

Rq = discharge distribution (-) 421 

t = time (s) 422 

u, v = velocity components (m s
-1

) 423 



 

Zb = bottom elevation (m) 424 

z = elevation (m) 425 

 = average 426 

υ = kinematic viscosity (m
2
 s

-1
) 427 

 = root mean square deviation 428 

Rq = discharge modification (%) 429 

 430 

Subscripts 431 

u = upstream channel 432 

d = downstream channel 433 

b = branch channel 434 

0 = without obstacle 435 

1-7 = obstacle number 436 

10 = with sidewalks 437 

SIM = simulated 438 

MES = measured 439 

 440 
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Table 1: Main parameters of the 14 flow configurations without obstacles. 499 

Series Flow  
Qu0 Fu0 Rq0 hu0/b 

Ls
-1

 - - - 

S1 

1 6.01 0.79 0.39 0.13 

2 4.99 0.60 0.39 0.14 

3 4.01 0.45 0.39 0.15 

4 3.00 0.33 0.39 0.15 

5 2.51 0.28 0.40 0.15 

6 2.00 0.23 0.38 0.14 

S2 

7 4.00 0.44 0.23 0.15 

3 4.01 0.45 0.39 0.15 

8 4.00 0.45 0.51 0.15 

9 4.00 0.44 0.65 0.15 

10 3.99 0.45 0.80 0.15 

S3 

11 1.66 0.44 0.40 0.08 

12 2.77 0.45 0.38 0.12 

3 4.01 0.45 0.39 0.15 

13 5.38 0.45 0.39 0.18 

14 7.00 0.45 0.39 0.22 

 500 

Table 2: Numerical parameters for the 7 runs and simulation quality indicators without obstacle. 501 

Run 
m K δ(Q*b0) σ(Q*b0) 

cm m
2
s

-1 
% % 

A 3.5-5 0 -1.88 2.50 

B 3.5-5 5.0x10
-4

 -1.73 2.34 

C 3.5-5 1.0x10
-3

 -1.71 2.36 

E1 0.5 0 -0.98 1.75 



 

E2 0.5 2.0x10
-4

 -1.19 2.14 

D 0.5 5.0x10
-4

 -0.99 1.99 

E3 0.5 1.0x10
-3

 -1.11 1.97 

 502 

Table 3: Numerical parameters for the 4 runs and simulation quality indicators with obstacle. 503 

Run  

m K δ(ΔRq1-7) σ(ΔRq1-7) δ(𝑄𝑏1−7
∗ ) σ(𝑄𝑏1−7

∗ ) 

cm m
2
 s

-1 
% % % % 

A 3.5-5 0 -0.37 1.13 -2.80 3.79 

B 3.5-5 5.0x10
-4

 -0.01 0.86 -1.70 2.71 

C 3.5-5 1.0x10
-3

 0.17 0.85 -1.21 2.67 

D 0.5 5.0x10
-4

 -0.08 0.71 -1.27 2.50 

 504 

 505 

Table 4: Numerical parameters and indicators on the discharge distribution evolution for the 506 

simulations of flows with sidewalks 507 

Run Topography 
K δ(ΔRq10) σ(ΔRq10) δ(𝑄𝑏10

∗ ) σ(𝑄𝑏10
∗ ) 

m
2
s

-1 
% % % % 

1 Ref 5.0x10
-4

 -0.21 2.08 -2.24 5.72 

2 Ref 1.0x10
-3

 0.01 1.88 -1.14 5.28 

3 Avg 5.0x10
-4

 -0.48 2.05 -2.90 5.58 

4 Avg 1.0x10
-3

 -0.37 1.99 -2.30 5.32 

 508 

  509 



 

 510 

Figure 1: Obstacles (a) and sidewalks (b) configurations 511 

 512 

Figure 2 : a: Measured velocities at elevation z = 3 cm (Exp) and simulated depth averaged velocities 513 

(runs A, B, C, D) around the crossroad for flow 6 without obstacle. For the fine mesh run, only a 514 

selection of the computed velocities is shown. b: Comparison of the measured and simulated (using 515 

runs B and D) of the streamwise (u) and transverse (v) mean velocity components along the x=0.15m 516 

profile. 517 

 518 

Figure 3: Extent of the recirculation zones measured at z=3cm (Exp) and computed (depth averaged) 519 

for runs A (K=0) and C (K=10
-3

 m
2
 s

-1
), for flow 6 without obstacles. 520 

 521 

Figure 4: Comparison of simulated (SIM) and measured (MES) evolutions of discharge distribution for 522 

each obstacle for runs B (coarse mesh) and D (fine mesh). Result of the linear regression is indicated 523 

with the grey line, along with its slopes. 524 

 525 

Figure 5: Measured (■) and simulated (runs B with coarse mesh (∆) and D with fine mesh (о)) 526 

evolutions of the discharge distribution for each obstacle configuration (7 lines) and each flow 527 

grouped according to the 3 series (3 columns). 528 

 529 

Figure 6: a: Measured velocities at elevation z=3 cm (Exp) and simulated depth averaged velocities 530 

(runs A, B, C and D) around the crossroad for flow 6 with obstacle 2. b: Comparison of the measured 531 

and simulated (using runs B and D) of the streamwise (u) and transverse (v) mean velocity 532 

components along the x=0.15m profile; note that runs A and C exhibit quite similar velocity profiles as 533 

run B and were thus omitted for sake of simplicity. 534 

 535 

Figure 7: Top view of the mesh (left) and cross section (right, shown along the dotted line on the left 536 

plot) with the channel bottom elevation used in models Ref and Avg for flows with sidewalks 537 

simulations. 538 

 539 

Figure 8: Measured at z=3cm (Exp) and simulated (depth averaged, with runs 1 and 2) flow velocity 540 

magnitude for flow 6 with sidewalks: around the junction (a), 2D velocity components along the 541 

x=0.15m profile (b) and extent of the recirculation zones (c). 542 



 

 543 

Figure 9: Measured (Exp) and simulated (runs 1, 2, 3 and 4) evolution of the flow discharge 544 

distribution for the 14 flows with sidewalks 545 

 546 

Figure 10: Computed (with run 1) water levels around the junction for flows 1, 2 and 3 without 547 

sidewalks (top) and with sidewalks (bottom). Supercritical flow areas (F>1) are shown as hashed. 548 

 549 


