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Particle sedimentation under a turbulent flow is a fundamental problem that has numerous
applications in natural and industrial processes. In particular, the motion of anisotropic
particles yields complex dynamics whose features are not completely understood in the
presence of inertia. While inertia is generally introduced through a finite particle response
time, many processes involve particles with a low response time but a finite particle Reynolds
number. In this case, theoretical models are rather sparse, and their validity has never
been tested against controlled experiments. This work precisely proposes a careful testing
of fiber sedimentation and advection models at finite particle Reynolds number against
well-controlled two-dimensional experiments. We show that the slender body limit model
has strong limitations at finite aspect ratio and Reynolds number, and we identify the
main corrections that need to be incorporated into this basic model by expanding on the
work of Khayat and Cox [J. Fluid Mech. 209, 435 (1989)]. Additionally, we present the
different models under a uniform framework, providing a simpler and clearer use. Using
the validated inertial model, we show the importance of the ratio between the settling speed
and the typical flow velocity for describing the fiber motion.

DOI: 10.1103/PhysRevFluids.2.024306

I. INTRODUCTION

The motion of particles in turbulent flows is of fundamental importance in several industrial
and natural processes. While less documented than spherical particles, anisotropic particles are yet
present in many of these flows. Common examples include pulp and paper making, ice crystals in
turbulent clouds, and the transport of plankton in their complex flow environment. In many cases,
sedimentation is a dominant phenomenon. The anisotropy is then adding complexity because of the
coupling of the particle orientation and the center-of-mass settling velocity.

Anisotropic particles may come in many different shapes and sizes. This is particularly striking
for plankton, which include bacteria, archaea, algae, protozoa, and small animals that inhabit the seas
or areas of fresh water. Most of the recent studies have been nonetheless focused on the motion of
elongated particles such as rodlike particles or fibers. This interest lies in great part in the availability
of specific theoretical methods for slender bodies as well as in the occurrence of elongated particles
in many industrial and environmental applications such as those given in the examples mentioned
earlier. A key feature of these elongated particles is their tendency to adopt a preferential orientation
in a turbulent flow. Tracer fibers follow Lagrangian trajectories, while their rotation depends on
their orientation with respect to the local turbulent velocity gradient tensor. Conversely, fibers which
are not neutrally buoyant experience preferential concentration as well as significantly different
preferential alignment. An extensive review of the current literature and unresolved issues is given
by Voth and Soldati [1].

The dynamics of elongated fibers settling in a turbulent flow has not been completely deciphered,
as experimental studies on the dynamics of fibers under flow are rather sparse. It is only recently,
in particular due to progresses in imaging techniques, that experiments on fibers were conducted in
two- (2D) and three-dimensional (3D) situations [2,3]. In theses studies, the authors focused mainly
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on the rotation rates and compared them to those predicted theoretically at low particle inertia [4].
They showed that the low-inertia prediction is very accurate in different turbulent flows provided
the particles are not too long (less that seven times the Kolmogorov scale [5]). Conversely, there
is an abundant literature on numerical studies with fibers and ellipsoids of different aspect ratios
in turbulence. These studies have provided a better knowledge of the particle rotational dynamics,
showing a preferential alignment of rods with the local vorticity and of disks perpendicular to
vorticity in isotropic turbulence [6,7] as well as wall turbulence [8–10]. In most of these studies,
inertia is added to the problem by considering a finite Stokes number, characterizing the response
time of the particle compared to the flow time scale, while keeping a low particle Reynolds number.
This condition can be achieved only for heavy particles, which raises the issue of particle settling.
This feature is seldom treated with fibers, as most studies consider that the settling speed is much
lower than any other velocity scale in the problem.

Particle sedimentation in an external flow has been widely studied for spherical particles, in
particular in turbulence, pointing out important phenomena such as preferential sweeping [11] and
an increase of the average settling speed [12,13]. These results were first anticipated considering a
model cellular flow of counter-rotating vortices, initially used by Stommel [14] to study the motion
of plankton in Langmuir circulation observed in lakes or oceans. In the absence of inertia, the
velocity of the particle was found to be simply the sum of the local fluid velocity and its Stokes
settling velocity due to gravity. Stommel showed that spherical particles could be held in permanent
suspension provided the Stokes setting velocity was smaller than the maximum updraft velocity
in the flow, i.e., the vortex velocity. Inertia was later included by Maxey [15,16] and many other
authors [12,17,18], showing that spherical particles could not be held permanently in the vortices
and settled out. This behavior has been observed in recent experiments using a cellular flow field
created by electroconvection [19]. Interestingly, for Stokes number smaller than 0.1, added mass and
history forces were found to be negligible, and the velocity of the particle could be still described
by the sum of the fluid velocity and the particle settling velocity provided that the Stokes drag was
replaced by a nonlinear drag depending of the particles Reynolds number. In the case of ellipsoids,
however, Mallier and Maxey [20] considered only the Stokes regime but still found that suspension
in the vortex flow was less likely, in particular as the motion of these ellipsoids was observed to be
chaotic in many instances. They observed that ellipsoids settled slightly faster in this particular flow
than in a quiescent fluid, which has also been pointed out by recent numerical studies in decaying
isotropic turbulence [21]. The modifying effects of particle inertia on the fiber dynamics was not
fully addressed by Mallier and Maxey [20]. The authors simply suggested that inertia (introduced
through a finite response time) may reduce or even eliminate the chaotic motion, but no precise
comparison between these predictions and experiments has been undertaken so far.

The primary objective of this paper is to present an experimental investigation of the settling
of rodlike particles in a cellular flow field which mimics turbulence. Following Ref. [19], we
use electroconvection to generate a 2D array of controlled vortices and track settling fibers using
two cameras to measure the full fiber orientation. The fiber trajectories are compared to models
which go beyond the Stokes regimes and the assumption of infinitely large aspect ratio. Statistical
results regarding the mean velocity and preferential concentration or orientation are also presented.
A secondary but nonetheless central objective of the paper is to present and discuss the existing
theoretical models and their range of applicability. In particular, the case of finite Reynolds number
will be thoroughly addressed as it can significantly impact the dynamics of settling fibers.

II. THEORETICAL MODELS

In this section, we summarize the existing models that describe the flow effect on a slender
cylindrical fiber, with a special emphasis on the effect of particle inertia. Three nondimensional
numbers characterize particle inertia: the Stokes number St, which compares the particle response
time to the flow time scale, and two particle Reynolds numbers, one based on the local shear Reγ̇ and
another on the particle velocity relative to the flow (namely, the settling velocity) Re�. Considering
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a fiber defined by its aspect ratio A = �/a � 1, where � is its half-length and a its radius, settling
at a typical velocity Ws under a flow characterized by a length scale L0 and a velocity scale U0, the
Stokes and Reynolds numbers can be defined as

St = 1

3

a2ρp

με

U0

L0
, Reγ̇ = ρf �2U0

μL0
, Re� = ρf Ws�

μ
, (1)

where ρf and ρp are the fluid and particle densities, and μ the fluid viscosity. The parameter ε

introduced here after Batchelor’s work [22] is related to the aspect ratio through ε = 1/ ln(A).
This small parameter for slender rods plays a key role in scaling the drag; its effect will be
discussed in the next sections. The expression for the Stokes number is obtained from the
particle advection equation normalized by the flow scales; a detailed derivation is provided in
Appendix A. The parameters St, Reγ̇ , and Re� are related to each other through the other
nondimensional quantities of the problem, such as the mass ratio, R = ρp/ρf , the relative size
of the particles, λ = �/L0, and the nondimensional reference settling velocity, w0 = Ws/U0, so that
St = Reγ̇ R/A2ε = Re� λR/A2εw0 (disregarding the 1/3 factor).

As mentioned in the introduction, inertia is often introduced in this type of problems by
considering a finite Stokes number at low particle Reynolds numbers. This condition can be achieved
only if R � A2ε � 1 and � � [μ2/(ρ2

f g)]1/3. The first condition cannot be satisfied in a typical
liquid such as water but can be met only in a gas while the second condition imposes a limit on the
particle size. This last criterion enforces that the fiber length should be smaller than about 10 μm
in air, which is a strong constraint (ice crystals in clouds are generally larger than 100 μm except in
very cold clouds [23]). Introducing inertia by considering a finite Stokes number but small Reynolds
numbers is therefore quite restrictive and difficult to achieve in the laboratory using a regular fluid. In
the present study, we decided to consider the opposite scenario where inertia is introduced through
a finite settling Reynolds number Re� while keeping the Stokes number small and without any
constraint on the shear Reynolds number. The expressions for the fluid drag and torque derived
at low inertia must therefore be modified when the particle Reynolds number Re� is finite. This
finite-Re� regime is more amenable to precise experimental examination, and this enables a direct
comparison between the experiments and the theoretical models.

A. Drag force on a fiber

The forces exerted on a slender fiber under an external flow have been derived initially by
Batchelor [22] and Cox [24] in the absence of inertia. Batchelor’s slender body theory is valid for a
body of infinite aspect ratio. When the aspect ratio is finite, the forces on the body are determined
as an expansion on the small parameter ε = 1/ ln A [24]. Later, Khayat and Cox [25] derived the
forces on a slender body for a finite Reynolds number based on the body length, using a matched
asymptotic expansion on both ε and the Reynolds number. These models are summarized below.

We consider a cylindrical fiber as sketched in Fig. 1 submitted to an external force F along e1,
translating at a velocity W relative to the fluid. The fiber orientation is given by a unit vector p
that forms an angle φ with the force direction. Throughout the paper we will consider only the 2D
problem as shown in Fig. 1.

1. Limit in the absence of inertia

In the absence of inertia, the velocity of a slender cylinder W is a linear function of the
external force F, so that Wi = MijFj using the Einstein summation convention. The coefficients
Mij characterize the mobility matrix and read

Mij = M‖pipj + M⊥(δij − pipj ), (2)
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FIG. 1. Slender fiber submitted to an external force F, resulting in a translation at a velocity W.

where

M‖ = 1

4πμ�ε
[1 + (ln 4 − 3/2)ε + O(ε2)], (3)

M⊥ = 1

8πμ�ε
[1 + (ln 4 − 1/2)ε + O(ε2)]. (4)

The leading order [M‖ = (4πμ�ε)−1,M⊥ = (8πμ�ε)−1] was derived initially by Batchelor [22]. In
this limit it is interesting to note that M‖ = 2M⊥, which means that the velocity of a fiber aligned
with the force (φ = 0) is twice that of a perpendicular fiber (φ = π/2). In the following, this model
will be referred to as the slender body limit and will be denoted M0. The first order corrections in ε

introduced by Cox [24] account for the particle finite aspect ratio; this finite aspect ratio model will
be denoted M1. These corrections result in a reduced velocity ratio compared to the slender body
limit. Note that a general expression of this velocity ratio had been given for spheroidal particles by
Bretherton [26].

2. Inertial corrections

Khayat and Cox [25] proposed a derivation of the forces exerted on a slender body under a
uniform flow using a matched asymptotic expansion in both ε and Reynolds number, assuming that
the Reynolds number Re� = ρf W�/μ based on the body half-length is finite, but that the Reynolds
number based on the radius Rea remains small. The resulting force on a fiber translating with a given
velocity W is then expressed as a nonlinear function of Re� and the pitch angle denoted α in Fig. 1.

Here we are interested in the fiber velocity when submitted to an external force, as sketched in
Fig. 1. In this problem we need only to determine the velocity magnitude W and the pitch angle α

for a given fiber orientation φ. As derived in Ref. [25], one needs to solve the following system:

W (2 − cos2α)[1 + FD(Re�,α)ε] − f cos(φ − α) = 0, (5)

−W sin α cos α[1 + FL(Re�,α)ε] + f sin(φ − α) = 0, (6)

where f = F/(4πμ�ε), and FD and FL are nonlinear functions of α and Re� described in Ref. [25];
see their Eqs. (6.9) and (6.11) in the general case and their Eqs. (6.20) and (6.21) in the low Re�

limit. Solving this nonlinear system gives the velocity of a fiber under an external force in the general
case, but at a high computational cost as this nonlinear system must be solved at each time step.

In order to avoid this issue, we propose in this work a simpler approach for solving this problem.
Since the Reynolds number corrections are computed using Oseen’s solution for a line force
distribution, the final problem is not reversible in time but is still linear. Assuming therefore that
the linear relation Wi = MijFj still holds with a modified mobility matrix that accounts for the
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FIG. 2. Velocity of a fiber (A = 10) submitted to an external force, computed using the different models
presented in the paper. (a) Evolution of the velocity averaged over all orientations φ as a function of the Reynolds
number: slender body limit M0 (blue dotted line) [22], first order corrections in ε M1 (red dash-dotted line)
[24], low-inertia corrections M2 (yellow dashed line), and general inertial corrections M3 (green line) [25].
(b) Error between linear calculation and full resolution of Ref. [25] relative to the velocity norm W at Re� = 5
as a function of the angle φ, for the velocity perpendicular to the force (W⊥, top) and parallel to the force
(W‖, bottom): M2 (yellow dashed line) and M3 (green line).

Reynolds corrections, we can compute the mobility coefficients for φ = 0 and φ = π/2,

M‖ = 1

4πμ�ε
[1 − F‖ε + O(ε2)], (7)

M⊥ = 1

8πμ�ε
[1 − F⊥ε + O(ε2)], (8)

noting F‖ = FD(Re�,α = 0) and F⊥ = FD(Re�,α = π/2). Note that α = φ in these two limit cases
by symmetry. The full expressions of these functions are given in Eq. (B9) in Appendix B. However,
simpler expressions emerge at low Reynolds number:

M‖(Re�) = 1

4πμ�ε

[
1 + (ln 4 − 3/2 − Re�/4)ε + O

(
ε2,Re2

�ε
)]

, (9)

M⊥(Re�) = 1

8πμ�ε

[
1 + (ln 4 − 1/2 − Re�/2)ε + O

(
ε2,Re2

�ε
)]

. (10)

It is interesting to note that the inertial corrections affect only the O(ε) terms and not the leading
order term. For Re� = 0, Eqs. (3) and (4) are recovered. In the following, the linear model based on
the low Reynolds number expressions of Eqs. (9) and (10) will be denoted M2, whereas the linear
model using the expressions of Eqs. (7) and (8) will be denoted M3.

A comparison of the different models is presented in Fig. 2, showing the velocity of a fiber
(A = 10) under an external constant force F , computed with the different models M0, M1, M2,
and M3. In Fig. 2(a), the velocity averaged over all orientations φ is computed as a function of
the Reynolds number and normalized by f . One can readily see the influence of both finite size
corrections with ε and inertia. For Re� � 0.1, the effect of inertial corrections becomes significant
and may change the fiber motion. The validity of the linear formulation proposed in Eqs. (7) and
(8) is tested in Fig. 2(b), where the errors between the linear calculation and the solution of the full
problem using Eqs. (5) and (6) are shown as a function of the angle φ at a fixed Reynolds number
(Re� = 5), relative to the norm of the fiber velocity. These errors are small and thus validate the
linear model proposed here. The linear models can therefore be used for computing the inertial
corrections, reducing significantly the computational cost.
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B. Torque on a fiber

In this section we summarize some existing models for the flow-induced torque at zero and small
but finite particle Reynolds number.

1. Limit in the absence of inertia

Under shear, a fiber rotates following the so-called Jeffery orbits, which are a class of closed
trajectories, the choice of a particular trajectory being determined by the initial conditions [4]. The
equation describing the rotation rate of the particle was derived exactly for ellipsoids [4,27], and an
experimental correction for cylindrical fibers was provided in Ref. [28]. A fiber rotates fully with
the rate of rotation of the flow (i.e., the rate-of-rotation tensor �∞) and only with a fraction βc of the
rate of extension (i.e., the rate-of-strain tensor E∞) of the flow, so that the fiber orientation vector
follows

dp
dt

= �∞ · p + βc[E∞ · p − (p · E∞ · p) p], (11)

where βc = (A2
c − 1)/(A2

c + 1) and Ac = 0.8A is the experimental correction found in Ref. [28];
this expression is the same as that for an ellipsoid, with the only change in A [29]. Note that we have
followed the notations used in Eq. (3.49) in Ref. [29], where �∞ and E∞ are tensors. The seemingly
nonlinear term in Eq. (11) is here to enforce the condition that the norm of the orientation vector p
is equal to 1. A second version of Eq. (11) can be particularly useful in 2D problems. Introducing
the rotation vector �0 = 1

2∇×U + βc p × (E∞. p), with ∇×U the flow vorticity [27], this can be
written as dp

dt
= �0 × p. In the present 2D problem in the (e1,e2) plane, the rotation vector has only

one component along the normal direction, �0 = �0 e3. Noting that p = cos φ e1 + sin φ e2, the
evolution of the fiber orientation is then given by a single scalar equation

dφ

dt
= �0. (12)

2. Inertial corrections

When inertial effects are included, two corrections must be added to the rotation rate. The first
one, denoted �1, accounts for the presence of a nonzero torque under a uniform flow [25]. The total
torque exerted by the fluid on the fiber is then the sum of the torque in the absence of inertia that
leads to Jeffery orbits (see, e.g., Ref. [30]) and this inertial contribution. Solving the problem of a
torque-free fiber, the rotation rate due to inertia under a uniform flow reads

�1 = −3

4

W

�
FG(Re�,α)ε, (13)

where FG is a nonlinear function introduced in Ref. [25]; its general expression is given in Eq. (B10)
of Appendix B. At low Reynolds number, this expression simplifies to

�1 = 5

16

W

�
sin(2α) Re� ε. (14)

It is interesting to note that this correction, as that for the fluid force, acts at first order in ε. As
an example, an inertial fiber settling in quiescent fluid no longer settles with a constant orientation
as in the inertialess limit but rotates towards a stable equilibrium orientation αeq = π/2, which
corresponds to a horizontal position (φeq = αeq).

A second inertial correction to the rotation rate is due to the effect of local shear [31,32]. This
effect induces an additional rotation rate that scales as

�2 ∼ γ̇ Reγ̇ ε with Reγ̇ = ρf γ̇ �2

μ
, (15)
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where γ̇ is the shear rate. The total rotation rate should be in the general case a superposition of
the inertialess rotation rate �0 and these two additional effects. In the next section, we consider
these models in the framework of our present study and identify the different corrections that may
significantly change the fiber dynamics.

C. Application to the present study

1. Nondimensional parameters and orders of magnitude

The different expansions summarized above imply two key parameters. The first one denoted
ε is related to the high slenderness of the fiber. However, the logarithmic dependence of ε on the
aspect ratio is very restrictive as ε ∼ 0.1 corresponds to an extremely slender body (A ∼ 104).
This is almost never achieved experimentally, where the typical aspect ratios range from A = 10
(ε ≈ 0.4) to A = 100 (ε ≈ 0.2). We therefore expect the first order corrections in ε to be significant
in our problem, as shown in Fig. 2. The second parameter is the Reynolds number based on the
fiber half-length, which has no specified value, provided the Reynolds number based on the radius
Rea is small. However, it is important to note that the two Reynolds numbers are related through
Re� = ARea , so that Re� cannot take arbitrary values independently of the aspect ratio. These orders
of magnitude must be considered carefully, as higher order terms in O(ε2) can possibly be larger
than O(Re�ε) terms.

In the present work, we will consider a fiber settling in a cellular flow. The reference settling
velocity is taken as that given by the leading order expression for the sedimentation velocity of a
fiber perpendicular to gravity, Ws = (ρp − ρf )a2g/(4με). This yields a nondimensional reference
velocity w0 ∈ [0.5; 2] in all experiments. Among the different dimensionless parameters that
characterize the problem, only the fiber Reynolds number Re� = ρf Ws�/μ will play a significant
role, ranging from 0.1 to 10. The flow Reynolds number Re will modify the cellular flow, and its
effect will be discussed in the next section. The maximum Stokes number is 10−3, the mass ratio R

is kept slightly larger than 1, and the relative size λ is lower than 0.25. The effect of the aspect ratio
A (from 10 to 30) is mainly observable through the particle Reynolds number and not through ε,
which does not vary significantly for these aspect ratios (ε ∈ [0.3; 0.4]).

The different corrections to the rotation rate can now be compared in terms of characteristic time
scales. We call t0 the time scale associated with the zero-Reynolds number rotation rate �0. Noting
t1 the time scale associated with the rotation rate �1 induced by inertial effects in a uniform flow
and t2 the correction to the shear contribution associated with the rotation rate �2, we have

t1

t0
= λ

ε w0 Re�

,
t2

t1
=

(
w0

λ

)2

. (16)

Since t2/t1 > 10 in the present study, the corrections due to inertia on the shear-induced rotation
rate �2 are negligible compared to those associated with �1. Conversely, since t1/t0 ∈ [0.1; 10], the
correction due to inertial effects under a uniform flow can occur on a similar time scale as �0 and
must therefore be taken into account.

2. Equations of the problem

Similarly to what has been shown for spheres [14,19], we consider that, at low Stokes number,
the fiber velocity V is given by the superimposition of the external flow U and the settling speed in a
fluid at rest W. We consider in the following a fiber settling in the (y,z) plane, z being the direction
of gravity, oriented upwards (g = −gez). The fiber is described by its orientation vector p, which
forms an angle θ with the horizontal axis ey, so that p = cos θ ey + sin θ ez (θ ∈ [−π/2; π/2]).
Considering the general notations of Fig. 1, we have now e1 = −ez and φ = θ + π/2 [see Fig. 3(c)].
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Camera 2

Camera 1

(a) (b)

(c)

FIG. 3. (a) Experimental setup: tank, cameras for velocimetry, and fiber tracking. The two carbon electrodes
are represented in black, creating an electric current j. The magnetic field is generated by a checkerboard of
magnets place behind the back wall of the tank. (b) Sketch of the flow generation in the (y,z) plane: in the
presence of a magnetic field B, the electric current (green arrows) gives rise to an electromagnetic force in the
fluid (red arrows), resulting in a flow of counter-rotating vortices (blue arrows). (c) Parameters with definition
of the axes for the settling fiber.

The nondimensional fiber velocity and rotation rate read

v = u + w, (17)

θ̇ = ω0 + ω̃(w,λ,α,ε,Re�), (18)

where lower-case letters denote nondimensional quantities. Here

wy =−w0 cos θ sin θ Gy(ε,Re�), (19)

wz =−w0(1 + sin2θ ) Gz(ε,Re�,θ ). (20)

with w0 = Ws/U0, ω0 = �0/(U0/L0), w is the norm of the nondimensional slip velocity (equal to
the settling velocity), and α is the fiber angle of attack relative to the fluid. The functions Gy , Gz,
and ω̃ depend on the different models used. In the following, we will compare the experimental
results to the computations using four different models: (1) slender body limit (M0), (2) first order
corrections on ε without inertia (M1), (3) first order corrections on ε and inertial corrections in the
low Reynolds number limit (M2), and (4) first order corrections on ε and inertial corrections in the
general case (M3). The detailed expressions of Gy , Gz, and ω̃ are given in Appendix B for each
model. It should be stressed that for models M2 and M3 the rotational velocity is that given in Ref.
[25] whereas the translational velocity is a linear version of their formulation involving a mobility
matrix as defined in Eq. (2).

III. EXPERIMENTAL SETUP AND METHOD

The experimental setup is the same as that of Ref. [19] and is shown in Fig. 3. It consists of a tank
made of Plexiglas R© (of 50 cm height, 38 cm width, and 4 cm depth) filled with an aqueous mixture
of citric acid and Ucon Oil

R©
. The vortical flow is activated by electromagnetic forcing, i.e., an array

of Laplace forces j×B where j is the electrical current density and B is the magnetic field. The
magnetic field is produced by a checkerboard of permanent square magnets (NdFeB, Br ≈ 1.3 T,
2×2 cm2) placed against the back wall of the tank of 2 mm thickness. The electrical current is driven
between two carbon electrodes placed on opposite sides of the tank. Since the electrical current
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FIG. 4. Evolution of the vortex intensity U0 as a function of the distance to the back wall for a fluid Reynolds
number Re = 0.2.

density j is uniform, the spatial distribution of the electromagnetic forcing is determined by the
position and size of the magnets, see Fig. 3(b).

The flow characterization is performed by particle image velocimetry (PIV) using the
MatlabTMPIV software DPIVsoft [33]. The fluid is seeded with hollow particles used as fluid
tracers (Dantec Measurement Technology, with diameter ≈15 μm and density ≈1.4 g cm−3). The
tank is illuminated by a green laser sheet (Laser Lasever LSR-NL, 532 nm, 500 mW) aligned with
the vertical plane (y,z). Two digital cameras (Pike F210B and Prosilica GX1910, Allied Vision
Technologies, 1920×1080 pixels2) are used, one placed at a right angle to the light sheet in front
of the tank, and the other placed below the tank at a right angle with the horizontal plane. For
the PIV measurements, the camera is focused on the illuminated particles, which scatter the light.
Two images separated in time by typically 1/31 to 4/31 s are then recorded and processed using
cross-correlations to find the velocity-vector map of the flow field. The spatial resolution of the
measurement is given by the correlation window size (from 1/10 to 1/5 of the vortex size), while
the flow-velocity resolution is given by the time separation between the two images.

The flow generated by this setup is a periodic flow of counter-rotating vortices in the (y,z) plane,
the intensity of which reaches a maximum at about x ≈ 5 mm and then decays rapidly; see Fig. 4.
At x ≈ 5 mm, the flow component normal to the back wall is negligible compared to the vortex
intensity, resulting in a quasi-2D flow. It is interesting to note that this flow is very similar to the
Taylor-Green cellular flow described by the stream function

ψ = U0L0

π
sin

(
πy

L0

)
sin

(
πz

L0

)
, (21)

for the typical flow Reynolds numbers considered in the experiments [19]. At low fluid Reynolds
number Re the flow measured by PIV and that predicted by the Taylor-Green model are equivalent,
the computations are thus performed using the Taylor-Green vortex flow. At larger Re we use
an interpolation on the PIV measured flow since the cellular flow progressively departs from the
Taylor-Green model. This will be discussed in Sec. IV A.

Fibers are dropped from the top of the tank and settle through the cellular flow. The fibers are
made of nylon (fishing line) of diameter 2a = 280 ± 5 μm and density ρp = 1.15 ± 0.01 g cm−3.
Three different half-lengths � were used, � = 1.6, 3.2, and 4.8 mm, resulting in three typical aspect
ratios A = 11.5, 23, and 34.5. The fiber are immersed for a day before the experiment in order to
reduce the entrapment of air bubbles on the particles. This process did not alter their properties.
The fibers are then dropped one by one through a small tube located at x = 5 mm, and followed
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TABLE I. Dimensionless numbers for the different combinations of particles and fluids used in the
experiments.

Experiment 1A 1C 2A 2B 2C

Fluid 1 1 2 2 2
A 11.5 34.5 11.5 23 34.5
Re� 0.09 0.39 2.0 5.1 8.6
w0 [0.35; 0.85] [0.43; 0.93] [0.66; 1.3] [0.91; 1.4] [0.97; 1.8]
St 6.6×10−5 1.4×10−4 8.7×10−4 1.1×10−3 1.2×10−3

Re ∼2 ∼2 ∼25 ∼25 ∼25

using particle tracking with the two cameras synchronized by an external trigger. This provided
the capture of the full trajectory and orientation of each fiber. The sedimentation experiments were
conducted with two different fluids, one for the low inertia case (fluid 1: ρf = 1.092 g cm−3 and
μ = 11.2 mPa s), and a second for the inertial case (fluid 2: ρf = 1.108 g cm−3 and μ = 2.0 mPa s).
The dimensionless numbers corresponding to the different experiments are given in Table I.

Due to particle anisotropy, any perturbation orienting the fiber out of the (y,z) plane would result
in a fully 3D trajectory. This was limited by the dropping device but could not be completely avoided,
as can be seen in Fig. 5. In this figure, three typical experimental trajectories of settling fibers in

FIG. 5. Three typical trajectories of fibers settling in a cellular flow obtained for A = 11.5, Re� = 0.1. The
colors correspond to the distance to the back wall, and the trajectories projected in the horizontal plane are
shown at the bottom. Whereas the first two fibers on the left side experience a 3D trajectory, the third fiber on
the right side follows a 2D trajectory and is therefore suitable for comparison with 2D flow models.
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FIG. 6. Experimental trajectories (black) and modeled trajectories using the four models (M0: blue, dotted
line; M1: red, dash-dotted line; M2: yellow, dashed line; M3: green, solid line), for four values of the
Reynolds number: (a) Re� = 0.1 (case 1A, w0 = 0.60, time step between two successive positions �t = 7.5 s),
(b) Re� = 0.4 (1C, w0 = 0.48, �t = 5.8 s), (c) Re� = 2.0 (2A, w0 = 1.1, �t = 2.8 s), (d) Re� = 5.1 (2B,
w0 = 1.4, �t = 3.0 s).

the cellular flow are shown. The color coding (color online) corresponds to the distance to the back
wall, which is also visualized by the projected trajectories at the bottom of the plot. The first two
fibers (on the left side) follow a 3D trajectory, whereas the third fiber (on the right side) stays in a
fixed (y,z) plane. Since we do not have a full description of the flow generated in the tank but only
a 2D one, only 2D trajectories were selected from all experiments and used for comparison with the
theoretical models (i.e., the third fiber in Fig. 5), which represented approximately 50% of the total
number of fibers tested.

IV. COMPARISON OF THE MODELS WITH EXPERIMENTS

A. Individual trajectories

In this first section we are interested in comparing the four models presented above with individual
experimental trajectories. Figure 6 shows four different experiments at increasing Reynolds numbers
Re� = 0.1 (case 1A), 0.4 (1C), 2.0 (2A), and Re� = 5.1 (2B), compared to the theoretical predictions.
The experimental trajectories are represented in black by superimposing the fiber position at different
times, and each color (color online) corresponds to a different model (M0: blue, M1: red, M2: yellow,
M3: green). The trajectory of the center of mass is also represented with the same line style as in
Fig. 2. These simulations were based on the Taylor-Green flow model. The experimental trajectories
show that fibers tend to settle along the downstream flow regions in the periphery of the vortices. As
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FIG. 7. Time evolution of the error in altitude between numerical simulations and experiments �z =
znum − zexp normalized by the flow length scale for all models (M0: blue, dotted line; M1: red, dash-dotted
line; M2: yellow, dashed line; M3: green, solid line), for Re� = 0.1 (case 1A, w0 = 0.60) and Re� = 2.0 (2A,
w0 = 1.1).

inertia increases, this effect seems to be reduced. One can also observe that at large inertia [Figs. 6(c)
and 6(d)] fibers settle mostly horizontally, whereas they settle with a seemingly isotropic orientation
at low inertia.

Starting with the same initial conditions as in the experiments, the theoretical trajectories are
computed using the four different models. At low Re� [Figs. 6(a) and 6(b)], we see that all models
are in good agreement with experimental data except for the slender body limit M0. The finite
aspect ratio corrections are predominant, in particular for A = 11.5 [Fig. 6(a)]. As the aspect ratio
increases this effect should be reduced. This is actually observed in Fig. 6(b) where model M0
predicts a consistent trajectory during three vortices, before diverging from the experimental data.
This first result shows the important role played by the finite aspect ratio corrections for capturing
individual trajectories. In this low inertia cases, models M1, M2, and M3 predict similar trajectories
during the first three periodic cells (six vortices), but then the inertialess model (M1) diverges slightly
from the experimental results, whereas the two models accounting for both finite size effect and
inertia (M2 and M3) are in excellent agreement with the experimental trajectory. In this case, M2
and M3 give almost identical results, as M2 is simply a low Reynolds number formulation of M3.
Note that when the fibers are longer [Fig. 6(b)], they become very sensitive to the particular flow
used here, as the particle goes through a saddle point after each cell, and the direction followed is
strongly dependent on any type of perturbation. This limits the models accuracy, as the predictions
of models M2 and M3 eventually diverge from the experimental trajectory. As the Reynolds number
becomes larger than 1 [Figs. 6(c) and 6(d)] these trends tend to be more pronounced, and only the
trajectories predicted by models M2 and M3 are consistent with the experiments.

The comparison between the different models and the experiments can be also analyzed through
the instantaneous error between the altitude znum predicted by the models and the experimental one
zexp. This is shown in Fig. 7 for the cases at Re� = 0.1 and Re� = 2.0 of Fig. 6. At low particle
Reynolds number [Fig. 7(a)] all models predict a faster settling rate without clear distinctive trends
between different models. This inaccuracy is actually related to the experimental difficulties at low
inertia. Here the typical settling velocity is of 1 mm s−1, so that the particles are very sensitive to any
type of perturbation such as the vortex shape and velocity fluctuations or thermal convection in the
tank over these long times. Note that the typical relative error in settling velocity ranges from 15%
to 30% in these cases; this will be further discussed in Sec. IV B 2. As the particle inertia increases
[Fig. 7(b)] this systematic error vanishes, and clear trends emerge between the different models,
showing that only model M3 captures the instantaneous settling rate accurately.
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FIG. 8. Flow model effect at large Reynolds number Re� = 8.6 (case 2C): Experimental and modeled
trajectories as in Fig. 6 for A = 34.5, w0 = 1.5 and �t = 2.4 s, using (a) Taylor-Green model flow Eq. (21) and
(b) interpolation on the PIV measurements. (c) Time evolution of the errors �z = znum − zexp, �y = ynum − yexp,
and �θ = θnum − θexp between M3 model predictions and the experiment using Taylor-Green flow (dashed line)
and PIV measurements (solid line).

The experiments at large particle Reynolds number (Re� � 2) are conducted with the low viscosity
fluid (fluid 2), resulting in a large fluid Reynolds number (Re ≈ 25; see Table I). In this case, the
actual flow differs from the Taylor-Green model. In order to address this issue, the same simulations
were performed using first the Taylor-Green Vortex (TGV) flow, and then the flow measured by PIV.
In the latter a standard 2D cubic interpolation was used for computing the flow and corresponding
gradients at the fiber location. The comparison between these two methods is shown in Fig. 8
for a fiber settling at Re� = 8.6 (case 2C). In Figs. 8(a) and 8(b), the trajectories computed on
the TGV flow and PIV flow, respectively, are represented as in Fig. 6, showing the significant
differences between the theoretical models as well as the impact of the flow model used in the
computations. For this high Reynolds number case the differences between models are even more
pronounced, and discrepancies between models M2 and M3 are clearly visible. In this regime only
the model accounting for both finite size effect and inertia in the general case (M3) provides accurate
predictions, while the other models fail to predict consistent trajectories. Figure 8(c) shows the errors
between numerical simulations and experiments in z, y, and θ the angle with respect to the horizontal
axis as a function of time, comparing model M3 computed on the TGV flow (dashed line) and PIV
flow (solid line) with the experimental data. We see that the predictions based on the PIV flow are
in excellent agreement with the experiments, whereas the TGV model leads to some discrepancies,
in particular a slightly higher settling rate.

The comparison between the four models and experimental trajectories showed the importance of
finite size and inertial corrections for capturing individual trajectories. In particular at low Reynolds
number finite size corrections have a significant impact on the trajectories. Inertial corrections play
a small role for Re� < 1 but are of primary importance for Re� � 1 and must therefore be accounted
for. In the next section we turn to statistical results for a quantitative comparison between the different
models and the experiments.
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FIG. 9. Preferential concentration of fibers: particle surface density in a cell obtained by projection of each
position. The four models are compared to the experimental data for (a) Re� = 0.1 (w0 = 0.5), (b) Re� = 2.0
(w0 = 1), and (c) Re� = 8.6 (w0 = 1).

B. Statistical results

We are interested now in comparing the predictions of the different models with our experimental
results on preferential concentration and orientation as well as the average settling speed. Consistently
with what was observed on individual trajectories, the results presented for low inertia (Re� � 1) are
computed using the Taylor-Green model flow, whereas for Re� � 1 the calculations are performed
by interpolation on the PIV measurements.

1. Preferential concentration and orientation

An important feature observed for particles in an external flow is the existence of preferred
trajectories rather than a random sampling of the flow. Figure 9 shows these preferred regions
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FIG. 10. Probability density function of the angle with the horizontal axis θ for three values of the particle
Reynolds number Re� = 0.1, Re� = 2.0, and Re� = 8.6: experiments (bars) and numerical results (M0: blue
dotted line, M1: red dash-dotted line, M2: yellow dashed line, M3: green line).

predicted by the four different models and compared to the experimental measures for three typical
values of the particle Reynolds number: Re� = 0.1 (1A), 2.0 (2A), and 8.6 (2C). The simulations are
run over 1000 trajectories with random initial conditions in a periodic cell, and over 15 periodic cells
vertically for simulations at low Re� (TGV flow) and 11 periodic cells at large Re�. The resulting
trajectories are then projected in one periodic cell ([0; L0] on y and [0; 2L0] on z), and the surface
density is shown in color level with a logarithmic scale.

As observed previously on individual trajectories, the experimental data show that fibers settle
preferentially along the downflow regions. As inertia increases, this effect weakens but is still
observed. This effect is well captured by all four models at low inertia. The two models accounting
for inertia (M2 and M3) predict a narrower region of preferential concentration, which seems to
be more accurate than the broad region predicted by the inertialess models M0 and M1. As inertia
increases, the differences between models become significant, and inertial models show a much better
agreement with the experiments. At large inertia [Fig. 9(c)] only the complete model accounting for
finite size effects and inertial corrections in the general case (M3) captures well the region sampled
by the settling fibers.

Considering now the probability density functions of the orientation θ shown in Fig. 10 at the
same three Re�, we see that the experimental distribution is almost isotropic at low inertia, with two
slightly dominant orientations at θ = 0 and θ = ±π/2, corresponding, respectively, to horizontal
and vertical orientations. However, as inertia increases, the distribution becomes clearly anisotropic
with a strong peak at θ = 0, showing that fibers settle mainly horizontally. This corresponds to the
stable orientation of a fiber settling at finite inertia in a quiescent fluid. The experimental orientation
distributions are well captured only by the models accounting for inertial effects, even at low
Reynolds number. Again, as inertia increases, only M3 provides accurate predictions compared to
the experiments. In particular, models M0, M1, and M2 predict a peak at θ = ±π/2 (corresponding
to a vertical fiber), which is inconsistent with the distributions observed experimentally.

2. Settling rate

Predicting the average settling speed is particularly important in many ecological and industrial
applications. We therefore perform a last comparison between the different models by computing
the effective settling velocity. Figure 11 shows the settling velocity across a cell averaged along all
cells 〈Vz〉 and normalized by the reference settling speed Ws . The experimental results show that the
effective settling velocity decreases as w0 increases, i.e., as the flow velocity decreases. At low w0

and low particle inertia, settling is strongly enhanced by the vortices, as fibers settle more than two
times faster than the reference velocity Ws . At larger w0 and particle inertia, we observe that the ratio
〈Vz〉/Ws tends to 1, corresponding to the settling velocity of a horizontal fiber without any external
flow. This is consistent with the previous observations on the preferred orientation and suggests that
in such regime the flow does not affect significantly the fiber dynamics.
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FIG. 11. Effective settling velocity averaged over each cell 〈Vz〉 normalized by the reference settling speed
Ws , as a function of w0, for three values of the particle Reynolds number Re� = 0.1, Re� = 2.0, and Re� = 8.6:
experiments (black circles) and numerical results (M0: blue dotted line, M1: red dash-dotted line, M2: yellow
dashed line, M3: green line).

A first observation when comparing with the different models is that at low inertia, all models
give almost identical predictions. This is even more surprising as the settling velocity is correctly
computed using the inertialess slender body limit (M0). The experimental results agree well with
these calculation, especially considering that the experimental trajectories are generally short (8–
10 vortices) and the resulting statistics hardly converged. When inertia increases, the differences
between models become significant, with a predicted settling speed that can be changed by a factor
two to four between M2 and M0. Once again, only the complete model M3 is in good agreement
with the experiments in all regimes.

V. DISCUSSION AND CONCLUSION

In this work we studied the effect of inertia on fiber sedimentation in a cellular flow made of
counter-rotating vortices. Using 2D experiments and numerical simulations, we compared different
theoretical models and identified the importance of finite size and inertial corrections in theoretical
predictions.

A first important result that was highlighted by considering individual trajectories is that the
slender body limit model (M0) is never able to predict consistent trajectories, for aspect ratios up
to 34.5, which are representative of most natural and industrial slender objects. Accounting for
first order corrections in the aspect ratio—through the parameter ε in models M1, M2, and M3—is
therefore crucial for modeling individual trajectories. The comparison of individual trajectories also
suggests that inertial corrections need to be included only above a particle Reynolds number of
order 1. The low inertia approximation of model M2 appears to be valid up to Re� ∼ 5 for the
trajectories but underestimates the instantaneous settling speed. Only the full model M3 captures
well the trajectories and instantaneous settling rate above Re� = 1.

We then turned to the concentration of fibers in preferential regions, also referred to as preferential
sweeping. For describing this effect, all models (including M0) proved to be equivalent at low particle
Reynolds number Re� = O(0.1). As inertia increases, discrepancies between the different models
become significant, and only inertial models capture correctly the region explored by the fibers. In
the experiments, only the case w0 = O(1) was studied because it presented the most interesting
phenomenology. We can explore the issue of preferential sweeping further by considering the effect
of the reference settling speed w0. Figure 12 presents the particle density in a cell for three values of
the reference velocity w0 = Ws/U0 = 0.1, 1, and 10, for particle Reynolds numbers of Re� = 10−2

and 10; these results were computed using model M3 on the Taylor-Green model flow. At low w0

the fibers converge to a narrow region along the downward flow at the periphery of the vortices.
It is important to note that contrary to what has been observed for spheres [14,19], this effect
is independent of the Reynolds number and occurs even in the absence of inertia (Re� = 10−2),
resulting from the rotational dynamics and the anisotropic drag.
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FIG. 12. Effect of the nondimensional settling velocity w0 on preferential concentration of fibers: particle
surface density in a cell for w0 = 0.1, w0 = 1, and w0 = 10, for (a) Re� = 10−2 and (b) Re� = 10.

Note that the Reynolds number affects this feature only by making the preferred region narrower.
As the reference settling speed increases, the preferred region persists but moves from the vortices
periphery to their center, while being still located in the downflow regions. This is consistent with
the experimental results in Fig. 9. However, as w0 � 1, a transition occurs from a narrow region
to a broad sampling of the flow. In that case, the settling speed is too high for the particles to be
significantly deviated by the flow and therefore fibers settle almost regardless of the vortices.

The next comparison focused on the orientation distribution of the fibers. Whereas all models
predict similar particle preferential concentration at low inertia, only models accounting for inertial
effects were able to capture correctly the orientation distribution, even for Re� = 0.1. Indeed, the
peak at θ = 0 corresponding to a horizontal fiber results mainly from inertia through �1 [Eq. (13)].
As inertia increases, the peak around θ = 0 becomes more important and the one at θ = ±π/2
vanishes; these two effects are well captured only by the full model M3. In order to go beyond the
experimental case at w0 = O(1), Fig. 13 shows the role of w0 on the orientation distribution, for
Re� = 1. By comparison with the experimental results in Fig. 10 one can observe that w0 plays
a similar role as the Reynolds number Re�: at low reference settling velocity (or similarly Re�),
the distribution is rather flat, with two peaks at θ = 0 (horizontal fiber) and ±π/2 (vertical fiber),
whereas at larger w0 (or Re�) the peaks at θ = ±π/2 vanish. In fact, considering the time-scale
comparison of Eq. (16) one can see that the relative importance of the reorientation due to inertia
depends similarly on Re� and w0. As either of these two parameters increases, reorientation by
inertia becomes faster, resulting in fibers oriented horizontally and thus settling in straight lines, as
observed on the preferential trajectories in Fig. 12.

Finally we focused on the effective settling velocity through the vortical flow. At low inertia,
the different models predicted correct settling rates, which is in fact consistent with Fig. 2(a),
where all models predicted a similar 2D-averaged settling speed at low Reynolds number. At larger
inertia however, only model M3 captures correctly the effective settling speed, while the other
models significantly overestimate (inertialess models) or underestimate (low-inertia model) the
effective settling velocity. The experimental data in Fig. 11 also show that the average settling speed
diminishes as w0 increases. This is further investigated in Fig. 14, showing the effective settling
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FIG. 13. Probability density function of the angle with the horizontal axis θ for three values of the reference
settling velocity w0 = 0.1 (dotted line), w0 = 1 (solid line), and w0 = 10 (dashed line), at Re� = 1.

velocity averaged over each periodic cell, normalized here by the 2D-averaged settling speed in a
quiescent fluid 〈W 〉. In two dimensions, the linearity of the settling speed with respect to gravity
yields 〈W 〉 = (W‖ + W⊥)/2. The curves obtained exhibit two behaviors, a significant decrease for
w0 � 1 and slow decrease at larger values of w0, converging towards an effective settling velocity
which corresponds to W⊥. These two behaviors are related to the transition observed on preferential
trajectories. At low w0 fibers aggregate along downflow regions, and settling is therefore enhanced
by the flow. Note that in this regime the dispersion is larger as trapping can occur more easily. This
enhanced settling is reduced when w0 increases, as trajectories tend to be located closer to the center
of the vortices, where the vertical component of the flow is almost zero. Finally, at large values of the
relative settling velocity, the ratio Vz/〈W 〉 takes almost a constant value equal to W⊥/〈W 〉. Indeed,
in this regime particles align horizontally and settle along straight vertical trajectories regardless of
the flow. The flow effect is negligible as U0 � Ws , and the resulting effective settling velocity tends
towards the settling velocity in a quiescent fluid at finite inertia. Settling is therefore significantly
enhanced by the vortices at low w0, for particles that act almost as tracer particles, but at large w0

the particles settling rate and trajectories are not affected by the flow.

w

〈 〉

FIG. 14. Settling velocity Vz averaged over each periodic cell, normalized by the 2D averaged settling speed
in a fluid at rest 〈W 〉, as a function of w0, for three values of the particle Reynolds number: Re� = 0.1 (dotted
line), Re� = 1 (solid line), and Re� = 10 (dashed line).
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To conclude, we performed a precise comparison of different theoretical models for inertial
fibers settling in an external flow with well-controlled 2D experiments. Inertia was introduced here
through a finite particle Reynolds number while keeping a low Stokes number. Whereas at low
inertia preferential concentration and effective settling rates were correctly captured by all models,
in particular the inertialess slender-body limit model, we showed that finite aspect ratio corrections
and inertial corrections for Re� � 1 played a significant role on the trajectories, on preferential
sampling and orientations, and on the effective settling velocity. The inertial corrections proposed in
Ref. [25] were in very good agreement with the experimental data in all regimes, even at low particle
aspect ratios, i.e. A = O(10), and large particle Reynolds number, i.e., Re� = O(10). Moreover,
the pseudolinear formulation using a generalized mobility matrix that was introduced in this work
provided excellent results while reducing considerably the computational cost. Using the general
model (M3), we identified the key role played by the reference settling velocity w0 = Ws/U0 in
describing the particles dynamics when settling is included in the problem.

The present work should provide guidance for choosing the appropriate modeling when the
fiber aspect ratio is not extremely high or when the particle Reynolds number is not very small. In
particular, it shows that the slender body limit model (denoted M0) should be used with care in these
cases and that using models accounting for finite aspect ratio (M1) and finite inertia (M2 and M3)
may be more sound.
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APPENDIX A: STOKES NUMBER EXPRESSION

The Stokes number compares the particle response time to the flow time scale, providing
information on the relative importance of particle acceleration. Whereas for spherical particles
characterized by a single length scale the Stokes number can be defined in an almost unique way,
different definitions can be used for anisotropic particles. In this work we define the Stokes number
in the same way as for spheres [19], starting from the particle advection equation (namely, Newton’s
second law). Considering the low Reynolds number case, the particle advection equation can be
expressed as

mp

dVi

dT
= (mp − mf )g · ei − Rij (Vj − Uj ), (A1)

using Einstein’s summation convention. Here mp and mf are the particle and corresponding fluid
mass, V is the particle velocity and Vi its components, T the time, g the gravitational acceleration,
U the fluid velocity, and Rij the resistance matrix components, giving the fluid drag force as a linear
function of the relative velocity in the low Reynolds number case. Introducing the mobility matrix
Mij so that MijRjk = δik and using the flow scales as reference scales, the nondimensional advection
equation reads

mpγ̇Mij

dvj

dt
= wi − vi + ui, (A2)

where lower case letters denote nondimensional quantities, and w is the settling speed in a quiescent
fluid.

For spheres the isotropic mobility matrix allows one to define the Stokes number St from
the dimensionless coefficient scaling the acceleration, mpγ̇Mij = St δij . A cylindrical rod is
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characterized by two mobility coefficients, M‖ = (4πμ�ε)−1 along the principal axis and M⊥ =
(8πμ�ε)−1 in the two normal directions [22]. Following a similar approach one can define the
Stokes number for a cylindrical rod considering a spherically averaged mobility, in a similar way as
in Ref. [20] for ellipsoids, resulting in

St = mpγ̇
M‖ + 2M⊥

3
= 1

3

a2ρpγ̇

με
. (A3)

As shown throughout the paper, corrections to the mobility coefficients in the presence of inertia do
not significantly affect the typical scaling, so that this definition of the Stokes number obtained at
zero Reynolds number remains valid at finite Reynolds number.

APPENDIX B: EXPRESSIONS OF THE G y AND Gz AND ω̃ FUNCTIONS
FOR THE DIFFERENT MODELS

The dynamics of a settling fiber in a cellular flow is modeled by Eqs. (17) and (18). The functions
Gy and Gz and ω̃ depend on the different models and read in the general case

Gy(ε,Re�) = 1 + (F⊥ − 2F‖)ε, (B1)

Gz(ε,Re�,θ ) = 1 + (F⊥ − 2F‖) sin2θ − F⊥
1 + sin2θ

ε, (B2)

ω̃(w,λ,α,ε,Re�) = −3

4

w

λ
FG(Re�,α)ε. (B3)

These expressions can be simplified according to the model considered.
Model 0:

Gy = 1, Gz = 1, ω̃ = 0. (B4)

Model 1:

Gy = 1 +
(

ln 4 − 5

2

)
ε, Gz = 1 +

[
ln 4 − 1 + 5 sin2θ

2(1 + sin2θ )

]
ε, ω̃ = 0. (B5)

Model 2:

Gy = 1 +
(

ln 4 − 5

2

)
ε, (B6)

Gz = 1 +
[

ln 4 − 1 + 5 sin2θ + Re�

2(1 + sin2θ )

]
ε, (B7)

ω̃ = 5

16

w

λ
sin(2α) Re� ε. (B8)

Model 3: These functions are given by Eqs. (B1)–(B3), with

F‖ = 1

2

[
E1(2Re�) + ln(2Re�) − e−2Re� + γ + 1

2Re�

+ E1(2Re�) + ln(Re�) + γ − 3 ln 2 + 1

]
,

F⊥ = E1(Re�) + ln(Re�) − e−Re� − 1

Re�

+ γ − 1

2
− ln 4, (B9)
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and

FG =
(

1

2Re�(1 − cα)

{
2 + 2

e−Re�(1−cα ) − 1

Re�(1 − cα)
− E1[Re�(1 − cα)] − ln[Re�(1 − cα)] − γ

}

+ 1

2Re�(1 + cα)

{
2 + 2

e−Re�(1+cα ) − 1

Re�(1 + cα)
− E1[Re�(1 + cα)] − ln[Re�(1 + cα)] − γ

}

− 1

Re�(1 − cα)cα

[
1 − 1 − e−Re�(1−cα )

Re�(1 − cα)

]
+ 1

Re�(1 + cα)cα

[
1 − 1 − e−Re�(1+cα )

Re�(1 + cα)

])
sin(2α),

(B10)

noting cα = cos α, where γ is Euler constant and E1 is the exponential integral function,

E1(x) =
∫ ∞

x

e−t

t
dt . (B11)
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