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Abstract. We report on systematic measurements of the electrical resistance of one- and three-dimensional
(1D and 3D) metallic and oxidized granular materials under uni-axial compression. Whatever the dimension
of the packing, the resistance follows a power law versus the pressure (R ∝ P−α), with an exponent α much
larger than the ones expected either with elastic or plastic contact between the grains. A simple model
based on a statistical description of the micro-contacts between two grains is proposed. It shows that the
strong dependence of the resistance on the pressure applied to the granular media is a consequence of large
variabilities and heterogeneities present at the contact surface between two grains. Then, the effect of the
three dimensional structure of the packing is investigated using a renormalization process. This allows to
reconcile two extreme approaches of a 3D lattice of widely distributed resistances: the effective medium
and the percolation theories.

PACS. 45.70.-n Granular systems – 72.80.-r Electrical conductivity of specific materials

1 Introduction

The unusual transport properties of granular matter can
come from different sources. They can originate in the
grain-grain contact properties [1], or in the three-dimensio-
nal structure of the random packing of grains [2,3]. In the
case of electrical conductivity of metallic granular samples,
we examine here, all the resistance is due to the thin ox-
ide layers covering the grains. The properties of the grain-
grain contact are thus an essential ingredient. However,
the current is known to circulate within preferred paths
[4–6]. Mechanical stresses are also concentrated in gran-
ular matter along preferred paths [7]. Do the mechanical
and electrical paths coincide or are the latter a simple
percolation lattice due to the extreme variability of the
grain-grain contact electrical resistance? At the end, is the
global electrical resistance of a granular sample a sensitive
probe of this microscopic structure?

In order to contribute to these questions, we exam-
ine here the pressure-dependent electrical resistance of
one- and three-dimensional (1D and 3D) metallic and oxi-
dized granular materials under uni-axial compression. The
paper is organized as follows. After presenting the ex-
perimental apparatus and procedures (Sect. 3), we first
show the power-law dependence of the resistance of pow-
der samples with the force (Sect. 4.1), then the repro-
ducibility of the measurements, in terms of the effective

a e-mail: mathieu.creyssels@ec-lyon.fr

resistivity of an effective medium (Sect. 4.2), and finally
we demonstrate that the resistance of a chain of beads
also exhibits a power-law behaviour with the applied force
(Sect. 4.3). In section 5, we propose a model for explaining
this power-law dependence of the resistivity on the applied
force whatever the dimension of the granular packing. The
last section (6) is dedicated to the main observed differ-
ence between the 1D and 3D experimental results that is
the reproducibility of the measurements. We discuss its
physical origin and relates it to the effective medium and
the percolation theories.

2 State of the art

The mechanical behaviour of two spherical grains in di-
rect contact is rather well known. Indeed, for small static
forces, the Hertz law describes remarkably well the non-
linear interaction between two elastic spheres. It predicts
that the contact area (A) as a function of the force exerted
on the spheres (f) follows a power-law behaviour [8]:

A ∼ f2/3. (1)

The force divided by the contact area defines the contact
pressure p. Then, in the elastic regime (ER), p ∼ f1/3. At
higher forces, when the pressure exceeds the yield strength
of the material, a permanent plastic deformation occurs at
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Fig. 1. Left: Two metallic grains under compression. A is the
contact area. An insulating film composed of oxides or impu-
rities covers each grain. Right: Electrical equivalent circuit of
the contact between the grains. r and c are respectively the
resistance and the capacitance at low frequency (see [6]).

the contact and the previous power law becomes [8]:

A = f/Y. (2)

In this plastic regime (PR), the contact pressure is almost
constant and approximately equal to the yield stress (Y )
whatever the force applied to the grains.

Contrary to the mechanical behaviour, the force-de-
pendent electrical resistance of two metallic grains in con-
tact is still an open problem. For the special case of clean
and non-oxidized surface contact, experimental and the-
oretical studies showed that the electrical resistance thus
measured is proportional to the inverse of the cube root
of the force when the contact pressure is lower than the
plastic yield stress and to the inverse of the square root of
the force in the plastic regime [1,9,10]. Indeed, the resis-
tance of the metallic contact (r) is a result of the constric-
tion of the current stream through the small contact area
(A). It depends only on the resistivity of the metal (ρm)
and on the radius of the contact area: r ∼ ρmA

−1/2. For
elastic spheres, from Eq. (1) we get r ∼ f−1/3 whereas
Eq. (2) (PR) leads to r ∼ f−1/2. However, in realistic
granular packings, grains are not clean and covered by an
oxide layer or another contaminant film which resistivity
is largely greater than the metal one (Fig. 1). In that case,
both the bulk of the metallic grain and the constriction
resistances are lower than the resistance of the insulating
layer. Assuming the Ohmic law is valid and the current
passes uniformly through the oxide film, the contact resis-
tance can be written as

r = ρoxδox/A, (3)

where ρox and δox are respectively the oxide resistivity
and its thickness. Using equations (1) or (2), this very
simple model of the electric contact predicts a power-law
behaviour of the force-dependent resistance:

r ∼ f−2/3 (ER), (4)

r ∼ f−1 (PR). (5)

This theoretical scaling has not yet been observed in a
compressed packing of metallic grains. Some experimen-
tal studies observed a power-law dependence of the re-
sistance on the force (r ∼ f−α) but with an exponent
α greater than one [3,11,12]. For several granular mate-
rials, this exponent varies between 2 and 3 ! Up to now,
no clear explanation has been given to interpret the large

Fig. 2. Image of grains of copper powder through a micro-
scope.

exponent observed in the experiments. In particular, ex-
ponents larger than 1 may come from the structural disor-
der observed for the distribution of contact forces within
three-dimensional grain assemblies, but they can also be
a characteristic feature of the electrical contact between
two grains covered by oxides, independently of the struc-
ture of the force network in the granular medium. With
the help of experiments done both on metallic powders
and on chains of metallic beads, we show in this paper
that the strong dependence of the electrical resistance on
the force only comes from the electrical properties of the
contact between two metallic grains.

3 Experimental methods

3.1 Metallic powders (3D samples)

The grains of our samples [13] are spherical copper par-
ticles, of average diameter 〈d〉 = 80 µm. They are poly-
dispersed, their diameters spanning a range of approxi-
mately a factor two. The powder we have used come from
two different commercial batches called here ”batch I” and
”batch II”, of same characteristics. We looked the grains
from the two batches through a microscope (see Fig. 2)
and we have not noticed any difference in the shape or
in the polydispersity of the grains. Maybe more sophisti-
cated analysis of the grains would reveal some physical or
chemical differences between the two powders. However,
for this present study, this tedious work is unnecessary.

The measured volumetric mass density is µeff = 5.5
g/cm3. As Goodfellow ensures a purity in copper of the
grains equal to or greater than 99 % [13], the packing
density of the samples we have used is µeff/µCu = 62%.
This value is entirely consistent with the measurements
of packing density of spheres in three dimensions given
by several authors [14–16]. The number of grains per unit
volume (n) can also be calculated using the average diam-
eter:

n =
µeff

µCu

6

π〈d〉3 = 2300 grains/mm
3
. (6)

The samples of powder are placed in various cylindri-
cal containers, made of PMMA, and confined between two
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Fig. 3. Experimental set-up for the 3D samples [6].

brass electrodes (Fig. 3). A load is directly applied to the
upper electrode and the electrical measurements are then
performed only after waiting the relaxation of mechani-
cal stress inside the powder. The force (F ) exerted on the
electrodes is measured by a resistive force sensor (FGP
InstrumentationTM). We call Φ the diameter of the con-
tainer, 5 ≤ Φ ≤ 15 mm, and h the distance between the
electrodes (1 ≤ h ≤ 18 mm). After each measurement
at a single applied force, we change the powder and the
following sample is made of fresh and unused powder.

Due to variations in the grain sizes, non-regular ar-
rangement of the grains and non-linear interaction be-
tween the grains, the distribution of stresses in the granu-
lar medium is both complex and inhomogeneous. Stresses
are notably transmitted through the material along force
chains involving only a fraction of all grains [17]. Hence,
the average compression force (〈f〉) between two neigh-
bour grains in contact cannot be known with a good pre-
cision. However, we can estimate it as the product of the
macroscopic pressure applied to the powder (P ) with the
surface area defined as 〈s〉 = n−2/3:

〈f〉 ≈ P n−2/3. (7)

Indeed, for any horizontal cross-sectional area of the cylin-
drical container, the average number of grains cut by this
surface is πΦ2/4 × n2/3, hence 〈s〉 represents the surface
area taken by one grain. As the minimum pressure applied
to the powder is 1N/mm2, the average microscopic force
is in that case 6mN using Eq. (7). It is already enough to
deform plastically the grains. Indeed, the yield stress of
copper is equal to 70N/mm2 and, in the plastic regime,
the contact area is given by Eq. (2). So, when the force
reaches 6mN, the diameter of the contact area goes up to
approximately 10µm and is greater than 〈d〉 /10. It is thus
reasonable to think that a large number of grains in the
packing endures irreversible plastic deformation. That is
why the container is refilled with a new sample of powder
before each experimental run.

The electrical resistance is measured using a Hewlett
Packard 4192A impedance analyser. Notice that the am-
plitude of the alternative voltage applied to the powder
sample is fixed to a low value (URMS = 100mV) in or-
der to avoid any voltage-induced non-linear effect [6,18].
Besides, previous results [6] showed that the resistance
is frequency independent at low frequencies (≤ 1 kHz). In
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Fig. 4. The chain of stainless steel beads [19].

addition, the ac conductivity collapses to the dc conduc-
tivity when the frequency is low. The main interest to use
an impedance analyser in place of a standard multi-meter
is the possibility to measure both the amplitude and the
phase of the electrical response of the powder.

3.2 Metallic beads (1D samples)

We also used one-dimensional samples [5,19] (Fig. 4). Here,
the grains are 8mm in diameter and stainless steel rolling
beads. They are confined in a straight channel, and a force
can be applied on this chain of beads by means of a piston
in the range from 1 to 500 N. The force is measured by a re-
sistive force sensor (FGP InstrumentationTM). The piston
is moved by a stepper motor and then its displacement is
controlled by a computer. Hence, moving the piston, the
force can be easily changed and adjusted to the chosen
value. Besides, the piston can be moved backward far from
the first bead in order to have the possibility to roll the
beads and to change the contacts between the beads. Note
that a very small clearance of 2/100 mm is provided in the
channel, so that the beads can move freely along the chain
axis but not laterally. Hence, contrary to the powder, for
the chain of beads, the same force is applied to each bead
since the channel is straight and lateral displacements of
the beads are negligible compared to axial displacements
of the beads. Besides, [19] measured the total displacement
of the chain and showed that the deformation of the beads
is in the elastic regime [Hertz’s law, Eq. (1)] whatever the
force applied to the chain (see Fig. 2 in [19]). Unlike the
experiments with powders for which a new sample is sys-
tematically used for each experimental run, the beads are
not changed. But, to obtain reproducible measurements,
the piston is moved backward and the beads are system-
atically rolled so that the contacts between the beads are
thus systematically changed before each measurement.

For measuring the electrical resistance, two conductive
leads are soldered on the first and last beads of the chain
and they are connected to a direct voltage source (Keith-
ley 2400) which also gives a measurement of the electric
current. The measured resistance is always largely higher
than both the resistance of the leads and the stainless steel
bulk material. Besides, careful attention has been paid to
inject to the chain of beads very low electric power, in
order to avoid any decrease of the resistance due to the
current flowing through the contacts between the beads.
[5] showed that the tension (U) versus current (I) charac-
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teristic of the chain of beads (but also for two- and three-
dimensional granular metals) exhibits three different and
successive regimes when the current is increased. At very
low currents, the U − I characteristic is linear and con-
stant in time showing that the resistance is independent of
the injected current. Then, for higher currents, the U − I
characteristic becomes non-linear but stays reversible that
is the U − I characteristic is the same when the current is
decreased after being increased. Finally, if the current ex-
ceeds a critical value, the resistance decreases irreversibly.
This critical transition from an insulating to a conductive
state for the granular metal is similar to the ”Branly ef-
fect” [5,19,20]. For this present study, this transition is
not studied and all the given resistances have been mea-
sured in the first regime for which the U − I characteristic
is linear and reversible. Besides, all the electrical devices
are connected to the same computer in order to control
and measure at the same time the mechanical force and
the electrical resistance.

4 Experimental results

We present here the electrical resistivity measurements
of metallic powders and of chains of beads under axial
mechanical force. We also show that the powder behaves
like an effective medium constituted by a very large num-
ber of grains (>100000). But the experimental results on
chains of beads indicate that the not obvious behaviour
of the electrical resistance as a function of force comes
from some complexities of the electrical contact between
two grains rather than some rearrangements of the current
conducting channels in the powder.

4.1 Electrical properties of the powders

We begin this section by giving our experimental results
on the electrical conductivity of the metallic powder from
batch I as a function of the applied mechanical force. In
Fig. 5, the resistance R of samples of different masses and
sizes is plotted against the force. The logarithmic plot sug-
gests that a power law

R ∝ F−αpI (8)

well fits the data. The best fit is obtained for αpI
= 1.7

whatever the mass or the size of the sample. We want to
emphasize both the reproducibility of the resistance for a
given sample geometry and the large value of αpI

, which
will be deeply discussed throughout this article. Indeed,
αpI

is greater than 1 and thus also 2/3 that are the slopes
predicted by Eqs. (5) and (4) respectively.

As explained in the section 3, low frequency ac mea-
surements allow us to determine the effective capacitance
(C) of the powder sample, in parallel to the resistance.
The dependence of C on the applied force, for a sample of
batch I, in the same conditions than for Fig. 5, is shown
in Fig. 6. The capacitance is clearly proportional to the
applied force:

C ∝ F. (9)

F (N)

R
(Ω

)

102 103
104

105

106

107

108

Fig. 5. Resistance of copper powder samples of different sizes
versus the applied force F . Squares: m = 0.2g, Φ = 7mm,
h = 1mm, circles: m = 1g, Φ = 7mm, h = 4.7mm, triangles:
m = 2g, Φ = 7mm, h = 9.4mm, stars: m = 3g, Φ = 7mm, h =
14.2mm, plusses: m = 9g, Φ = 12mm, h = 14.5mm. Dashed
lines are power laws with a slope −αpI = −1.7.

C
(F

)

F (N)102 103

10−11

10−10

10−9

10−8

Fig. 6. Low frequency capacitance of copper powder samples
of different sizes versus the applied force F . Symbols are as in
Fig. 5. Dashed lines represent power laws with a slope equal
to 1.

Adopting the simple model of conduction between two
grains presented in section 2, the capacitance (c) of one
contact is thus proportional to the contact surface as

c = ǫoxA/δox, (10)

where ǫox is the electric permittivity of the oxide that cov-
ers the grains. Using equations (1) or (2), this very simple
model of the electric contact between two grains predicts a
power-law behaviour of the force-dependent capacitance:

c ∝ f2/3 (ER), (11)

c ∝ f (PR). (12)
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Fig. 7. Resistance and capacitance of samples from batch I
(blue plusses) and from batch II (black stars) as a function of
the force. Sample size: m = 2g, Φ = 10mm, h = 4.6mm.

These above results lead to two quite different conclu-
sions. First, a simple model of electrical conduction can
explain well the experimentally observed capacitance for
the powder although the number of grains is very large
(>100000) and the force network is much complex within
the powder. As previously estimated in section 3, most
of the contacts in the powder are described by Eq. (2).
A large amount of the grains are thus deformed plasti-
cally by the mechanical force which imposes the change of
the powder between two experimental runs. On the con-
trary, the force-dependent resistance remains unexplained
and a simple model of conduction between two grains dis-
agrees with the observed results for the powder. Assuming
a contact area (A) proportional to the force [Eq. (2)], Eq.
(8) for two grains in contact becomes:

r ∝ A−αpI , (13)

with αpI
= 1.7 which is significantly greater than one.

Results for powder from batch II

The powder of batch II gives further interesting results.
As seen in Fig. (7), the resistance of the powder from
batch II does not depend as a power law of the force.
Rather, the resistance falls rapidly when approaching a
critical force. The capacitance also exhibits a complex de-
pendence on the force: C grows faster than F [see also
Fig. (7)], thus Eq. (9) is not valid for the powder from
batch II. A clear interpretation is simply that for powders
from batch II, as the force between the grains is very large,
the grains are extremely plastic to such an extent that Eq.
(2) is no longer valid. In this case, the pressure between
the grains p = F/A is no longer constant and even de-
creases when the force increases. Then the contact area
A increases more rapidly than the force, which reflects in

C (F)

R
(Ω

)

10−9 10−8

102

103

104

105

106

107

Fig. 8. Resistance of samples from batch I (blue plusses) and
II (black stars) as a function of the capacitance. Red dashed
line: R ∝ C−αpI with αpI = 1.7. Black solid line: R ∝ C−αpII

with αpII = 2.2.

a spectacular increase in the capacitance when the force
increases. At the same time, the capacitance stays propor-
tional to the contact area as for the grains for the powder
of batch I. Coming back to the force-dependent resistance
and assuming a capacitance proportional to the contact
area for the powder of batch I, Eq. (13) shows that the
resistance must exhibit a power-law dependence on the
capacitance with a slope −αpI

, and this result is well ex-
perimentally observed in figure 8. Similarly, with the same
assumption that is c ∝ A, the resistance for powders of
batch II is also a power law of the capacitance with a slope
−αpII

≃ −2.2 which is close to −αpI
(Fig. 8).

Despite a significant difference between the mechanical
behaviours of the two powders explored in this paper, the
electrical resistance when plotted against the capacitance
is described by a power law for the two powders with
an exponent αpI

or αpII
both largely greater than one.

Besides, these exponents cannot be easily explained by a
simple model of conduction between two grains. Finally, it
has to be emphasized the very good reproducibility of both
the resistance and the capacitance of the powders. In other
words, at fixed geometry (mass and diameter constants),
the resistance and capacitance depend only on the force.
We will see in Sect. 4.3 that this situation is different for
the chain of beads.

4.2 The powder seen as an effective medium

The good reproducibility of the experimental measure-
ments observed for both the resistance and the capaci-
tance suggests that the powder can be considered as an
effective medium, whose properties would depend on the
applied pressure P defined as

P =
4F

πΦ2
. (14)
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h/Φ

〈R
∗ r
e
d
〉

0 1 2 3 4
1016

1017

Fig. 9. Dependence of the averaged reduced resistivity on the
aspect ratio h/Φ for powder samples from batch I. Blue crosses:
Φ = 5mm, green stars: Φ = 7mm, red circles: Φ = 10mm,
purple squares: Φ = 12mm, black triangles: Φ = 15mm. Black
dot-dashed line: 〈R∗

red〉 ∝ exp(0.35 h
Φ
) [Eq. (22)]. Red dotted

line: Eq. (21) with 2αpI fw = 0.31.

If so, this effective medium has an averaged resistivity
R∗(P ), defined by the following equation:

R∗(P ) ≡ πΦ2

4h
R(P ). (15)

h and Φ are respectively the height and the diameter of the
powder sample. Using the observed power-law dependence
of the resistance versus F [Eq. (8) is valid for powder sam-
ples from batch I], it results that the reduced resistivity

R∗

red ≡ R∗PαpI (16)

should be independent, both of the sample geometry, and
the applied force or pressure. At fixed geometry, the re-
duced resistivity has been averaged across all the mea-
sured force giving 〈R∗

red〉, and the result is plotted as a
function of the aspect ratio (h/Φ) in a semi-logarithmic
plot in Fig. 9. For a given aspect ratio, the reduced resis-
tivity is found to be again well reproducible whatever the
diameter or the mass of the powder sample. Secondly, the
reduced resistivity has a clear exponential dependence on
the aspect ratio. Next we show that this behaviour results
from the existence of arches within the powder under com-
pression, a well known phenomenon in granular matter
called Janssen effect [7]. By contrast to a vertical cylinder
filled with a liquid in which the lateral walls support none
of the vertical load, for a cylinder filled with grains, the
emergence of arches in the complex network of the forces
between the grains redirects the weight towards the side
walls. Hence, the pressure at the bottom within the gran-
ular material does not increase linearly with the height
of the powder sample but rather saturates to a constant
value.

At fixed geometry, the variation of the pressure in the
powder (p) as a function of the height can be calculated us-
ing the simplified model given by Janssen in his paper [7].

Consider a slice of the powder sample of diameter Φ and
thickness dz, located at a distance of z from the bottom
of the container. Imposing the mechanical equilibrium of
this piece of granular material the following equation is
obtained

πΦ2

4
[p(z)− p(z + dz)− µgdz] = πΦpw dz, (17)

where µ is the density of the powder and g is the gravity
acceleration. The right hand-side of Eq. (17) represents
the force of friction and pw the corresponding pressure
applied by the lateral wall on the grains that are in contact
with the container. This force balances both the difference
of pressure across the slice of powder and the own weight
of the slice. Next, assuming that the pressure applied by
the walls is proportional to the vertical pressure (pw =
fw p), Eq. (17) becomes:

dp

dz
+

4fwp

Φ
= −µg. (18)

In fact, fw is the product of two different and phenomeno-
logical coefficients: fw = µs ×K. The coefficient of static
friction (µs) is the ratio between the pressure applied by
the walls and the horizontal pressure within the powder,
whereasK represents the ratio between the horizontal and
the vertical pressures. Measuring these two coefficients is a
great challenge and needs sophisticated experimental set-
ups and procedures. To our knowledge, µs is not known for
a copper surface sliding on walls made of PMMA. It also
depends on the oxidation state and the surface roughness
of the grains. As a rough order of magnitude, [21] found
0.3 ≤ µs ≤ 0.4 for stainless steel on a PMMA surface. The
second coefficient K is also not known and depends on the
friction coefficient between two copper grains. But it also
depends largely on the packing density ([22]) and so on
the history of the granular medium. [22] reported values
of K between 0.6 and 0.9 but they used glass beads. Any-
way, for the Janssen’s model, only the product of K by
µs plays a role in Eq. (18). Besides, hereafter, fw = K µs

is considered as a fitting parameter and can vary from 0
to 1.

For the experiments considered here, the pressure mea-
sured at the bottom is always greater than 2.5GPa where-
as µgh < 1 kPa. Hence the weight of the grains can be
largely neglected as well as the right-hand side of Eq. (18).
Besides, the coefficient fw is assumed to be both constant
within the powder and independent of the force applied.
Integrating Eq. (18) between z = 0 (bottom) and z, the
pressure profile is obtained

p(z) = P exp(−4fw
z

Φ
), (19)

where P = p(0) is the pressure measured at the bottom.
Then, the resistance of a powder sample of height h can
be calculated as follow

R =
4

πΦ2

∫ h

0

ρ(p)dz, (20)
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Fig. 10. Dependence of the averaged reduced capacitance on
the aspect ratio h/Φ (powder from batch I). Symbols are as in
Fig. 9. Black dot-dashed line: 〈C∗

red〉 ∝ exp(−0.2 h
Φ
) [Eq. (26)].

Red dotted line: Eq. (25) with 2fw = 0.18.

with ρ the resistivity of the powder depending on the co-
ordinate z or else on the local pressure. According to Eq.
(8), the reduced resistivity is constant: ρred ≡ ρpαpI =
ρ(0)PαpI . Integrating Eq. (20), we obtain

R∗

red = ρred
sinh(2αpI

fw
h
Φ )

2αpI
fw

h
Φ

exp(2αpI
fw

h
Φ ), (21)

≈ ρred exp(2αpI
fw

h
Φ ) for fw

h
Φ ≪ 1. (22)

Hence, this model of arches within the powder shows that
the electrical resistivity measured experimentally is not
far away from an exponential function of the aspect ratio.
Equations (21) and (22) are plotted in Fig. 9 with respec-
tively fw = 0.09 and fw = 0.10 as fitting parameters.

In the same way, the capacitance can be calculated as

C−1 =
4

πΦ2

∫ h

0

dz

ǫ(p)
, (23)

where ǫ is the electric permittivity of the powder. As the
capacitance is observed to be proportional to the force or
the pressure applied to the powder [Eq. (9) is valid for
powder samples from batch I], the reduced electric per-
mittivity is constant: ǫred ≡ ǫ p−1 = ǫ(0)P−1. Integrating
Eq. (23), we obtain

C∗

red =
4h

πΦ2

C

P
(24)

= ǫred
2fw

h
Φ

sinh(2fw
h
Φ )

exp(−2fw
h
Φ ), (25)

≈ ǫred exp(−2fw
h
Φ ) for fw

h
Φ ≪ 1. (26)

Equations (25) and (26) are plotted in Fig. 10 with respec-
tively fw = 0.09 and fw = 0.10. A very good agreement
is observed with the experimental measurements showing

F (N)

R
(Ω

)

101 102

103

104

105

Fig. 11. Log-log plot of the electrical resistance as a function
of the applied force for two different chains of 12 beads. The
applied force is gradually increased while the electrical resis-
tance is measured. Each run lasted around 20 minutes. Solid
lines represent power laws with a slope of -1.5.

that the Janssen’s model explains well the variation of the
capacitance versus the aspect ratio.

Thus, to conclude this paragraph, the powder behaves
like an effective medium and the very good reproducibil-
ity of the experimental measurements comes undoubtedly
from the large number of grains within the powder. In sec-
tion 6, theoretical considerations are given to calculate the
size (or the number of grains) needed in order to consider
the powder as an effective medium.

4.3 Results for the chain of beads

As emphasized in Sect. 1, the strong dependence of the
effective resistivity on the pressure observed in the case of
metallic powders may be due to either a progressive rear-
rangement of the complex and three-dimensional map of
the conducting channels in the powder, or to the average
evolution of the contact resistance between the grains. The
one-dimensional experimental set-up allows to study the
contact between two grains in the case of only one con-
ducting channel represented by the chain of beads. The
experimental results presented below suggests that the
power-law behaviour of the powder resistance with a large
exponent (αpI

, αpII
> 1) is a consequence of a power-law

behaviour of the contact resistance between two grains
with also an exponent greater than one.

In Sect. 3.2, we have explained that, thanks to the one-
dimensional set-up well instrumented with a step motor
controlled by a computer and both the force sensor and
the resistance meter also connected to the same computer,
there are in fact two protocols to measure the electrical
resistance of the beads as a function of the applied force.
The first one is to increase the force from 0 to a maximum
value of around 400 N, and at the same time both this
force and the electrical resistance of the chain of beads



8 M. Creyssels et al.: Pressure dependence of the electrical transport in granular materials
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Fig. 12. Probability density function of the logarithm of the
resistance for two different forces: F = 20 N (blue plusses)
and F = 400 N (green circles). The chain is constituted by
21 beads which corresponds to 20 bead-bead contacts. Dashed
lines represent log-normal laws.

are measured and recorded. Figure 11 shows two mea-
surements of the resistance using this protocol. For each
run, one can see that when the force increases, the electri-
cal resistance does not decay regularly. Indeed, sometimes
the resistance drops suddenly whereas the force increases
very little. In this case, we have never observed any ex-
ternal perturbation or large variations of the mechanical
properties of the chain of beads. For example, we have
recorded the chain displacement δd at the same time as
the electrical resistance. δd is found to be a power law
of the force with an exponent 2/3 without any sudden
and abrupt jumps of δd. The mechanical behaviour of the
beads is very well described by the Hertz’s law (also re-
ported in [19]) whereas the electrical behaviour is more
complex and certainly cannot only be explained by an in-
crease of the contact surface when the force between two
beads increases. The oxide film which covers each bead
plays surely a crucial role for the electrical resistivity of
the contact between two beads whereas it has no effect on
the mechanical behaviour of the chain of beads.

All the same, forgetting for the moment the sudden
drops of the resistance, R as a function of F can be fit-
ted by a power law with a slope between -1.6 and -1.3. In
Fig. 11, a F−1.5 scaling is plotted as a visual indication.
Contrary to the results for the powder presented previ-
ously, it is clearly not possible with this method to mea-
sure with a good precision the slope since the power-law
behaviour is just a rough approximation of the dependence
of R on the force. And also at a given force, the resistance
varies widely between two chains of 12 beads whereas the
resistance of the powder depends only on the weight of
the powder (or on the number of grains) and the force.

Then, the second kind of experiments we have done
was to fix the force and to measure several times the elec-
trical resistance of the chain of beads. Obviously, it would

F (N)

R̃
(Ω

)

101 102

104

105

106

Fig. 13. Log-log plot of the resistance R̃ = exp(〈lnR〉) as a
function of the applied force for a chain of 21 beads. For each
force, R̃ is obtained by averaging around 600 measurements
of the resistance. Each errorbar represents the corresponding
standard deviation σ calculated over the same measurements.
Solid line represents a power-law fit with a slope of -1.4.

have been costly and time-consuming to change every time
the beads after each measurement. But, we have noticed
that rolling the beads along the chain axis is sufficient in
order to test a new and fresh contact between the beads.
In [19], the authors showed that this technique ensures
reproducible measurements. So, to investigate a possible
power-law behaviour of the electrical resistance as a func-
tion of the force, we have spent many hours to measure
many times the resistance of one chain of beads at fixed
force. Between two measurements, the force has been de-
creased, the piston has been driven back and we have sys-
tematically rolled the beads. Then, the piston has again
been pushed on the chain of beads and the force has been
increased to the prescribed value. For each value of the in-
vestigated force, we have measured around 600 times the
electrical resistance of the chain of beads. Figure 12 shows
the probability density function of the logarithm of the re-
sistance for two different forces: F = 20 N (plusses) and
F = 400 N (circles). At fixed force, the resistance varies
over more than two orders of magnitude and the proba-
bility density function of the resistance can well be fitted
by a log-normal distribution with parameters 〈lnR〉 and
σ2 = 〈(lnR − 〈lnR〉)2〉 which are respectively the mean
and the standard deviation of the logarithm of the resis-
tance. Naturally, 〈lnR〉 and σ depend on the force applied.

In Fig. 13, the characteristic resistance R̃ = exp(〈lnR〉)
is plotted against the force. Similarly to the experiments
with the powder but using R̃, the resistance is very well
fitted by a power law

R̃ ∝ F−αb . (27)

In the case of a chain of 21 beads that is 20 contacts be-
tween two beads, the exponent of this power law is equal
to αb = 1.4 whereas for the powders, the obtained expo-
nent is equal to αpI

= 1.7 or αpII
= 2.2. Anyway, the two
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experimental systems are very different granular media
(1D vs. 3D, 20 vs. more than 100000 particles, in stain-
less steel vs. copper ...) but in both cases, they exhibit a
similar behaviour that is a strong dependence of the resis-
tance with the force: αpI

, αpII
, αb > 1. We can finally note

that, according to the Hertz’s law [Eq. (1)], the resistance
of the chain of beads is a power law of the contact area:
R̃ ∝ A−3αb/2, with an exponent 3αb/2 = 2.1, whereas for
the powder this exponent is equal to αpI

= 1.7 since most
of the grains from batch I are in the plastic regime.

5 The proposed model

The main result obtained in the last section is that the
electrical resistance decreases much faster than the in-
creasing contact area when the mechanical force is in-
creased for both the metallic powders and the chain of
beads. Hence, to model this striking effect observed both
in 1D and 3D granular materials, we cannot refer to some
percolation theories or to the complex network of the
forces between the grains in the powder since in the 1D
experiment, there is only one conduction channel and the
beads are compressed by the same force. On the contrary,
the capacitance increases like the contact area for the pow-
der and the behaviour of the capacitance is well explained
by a very simple model that is c is proportional to the
contact area and inversely proportional to the thickness
of the oxide that covers the beads [Eq. (10)].

To interpret this observed difference of behaviour be-
tween the resistance and the capacitance, a more detailed
description of the contact between two grains is needed.
To focus our attention on the contact, the sketch of two
grains in Fig. 1 is zoomed in Fig. 14. At this scale, the ox-
ide and maybe some impurities that cover the grains are
not homogeneous which also leads to a non uniform resis-
tivity of this oxide film. Hence, when a voltage is applied,
the electric current (I) does not flow uniformly through
the oxide. Rather, it follows a given number of conducting
micro-channels for which the resistivity is low due to a bet-
ter conductivity of the oxide in these places. Besides, it is
reasonable to assume that, on the one hand the number of
micro-channels (k) increases proportionally with the con-
tact area (k ∝ A), on the other hand their resistivity fol-
lows a given distribution characterizing the properties of
the oxide or impurities present at the surface of the grains.
As the micro-channels are connected in parallel and not in
series, it is better to define the probability density func-
tion (Q) of the conductances (γ) of the micro-channels.
Then, if Q is such that γ admits an average value, the
resistance can be written as

1

R
≡ Γ =

k
∑

i=1

γi (28)

≈ k

∫

∞

0

Q(γ) γ dγ = k 〈γ〉. (29)

Hence, the electrical resistance is found to be again in-
versely proportional to the contact area as for a uniform

Grain

Grain

δox

A

Oxide

I

Fig. 14. Schema of the contact between two grains. The grains
are covered of non-homogeneous oxide and impurities. The cur-
rent I is then divided into multiple ”micro-currents” that fol-
low conducting micro-channels.

oxide layer, and thus R ∝ F−2/3 in the elastic regime and
R ∝ F−1 in the plastic regime, the exponents are again
far away from the ones obtained experimentally.

Another possibility not yet explored is to assume that
the oxide layer is strongly non-homogeneous. This may
come from the large variability of the characteristics of
the micro-channels (nature of the oxide, length, width...).
In this case, the distribution of the conductances can be
very broad leading to a non finite mean of the distribution:
〈γ〉 = ∞. The Pareto distribution is an example of this
kind of distribution:

Q(γ) = µ
γµo
γ1+µ

, (30)

the parameter µ controlling the tail of Q. Large values of
µ give narrow distributions of γ whereas values of µ close
to zero give broader distributions. The degree of disorder
and the variability increase when µ decreases. Hereafter,
0 < µ < 1 so that 〈γ〉 does not exist. The standard central
limit theorem does not apply, but its generalization states
that the sum of k independent conductances tends to a
k-independent Lévy distribution Ψ [23,24]:

Γ = k1/µ Ψ, (31)

with 1/µ > 1. In the plastic regime, when the force in-
creases, both the contact area and the number of micro-
channels increase proportionally to the force (k ∝ A ∝ f),
but the total conductance of the contact increases faster
than the force: Γ ∝ f1/µ.

To illustrate this model in the case of the chain of
beads, we can simulate the electrical resistance of two
beads in contact as a function of the force using the Pareto
distribution [Eq. (30)]. The coefficient µb has to be chosen
such that 1/µb = 3αb/2 yielding to the value of 0.47 for µb

but we prefer to fix µb = 0.44 in order to fit better the ex-
perimental results. Indeed, we will show that the slope of
the power-law behaviour of the resistance with the force
[Eq. (27)] depends slightly on the number of beads (see
Fig. 16). In fact, it decreases a bit when the number of
beads increases yielding to αb = 1.5 for two beads in con-
tact and αb = 1.4 for 21 beads in contact. As for the num-
ber of micro-channels, k is not experimentally measured.
But, in practice, k can be chosen arbitrary, at least while
respecting k ∝ A ∝ F 2/3. Here, k = 6, 20 and 60 yielding
to F = k3/2 ≃ 15, 90 and 465 N, respectively. Then for
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Fig. 15. Results from the model. Probability density functions
of the logarithm of the resistance for two beads in contact ψ1

(circles), three beads or two bead/bead contacts ψ2 (plusses),
four beads ψ3 (crosses) and 21 beads (squares). Straight lines
are power-law fits of the tails of the PDFs for 2, 3 and 4 beads
with slopes 0.44, 0.88 and 1.31 respectively. PDF for the chain
of 21 beads is fitted by a gaussian law (solid line) that also
corresponds to a log-normal law for the resistance. The number
of micro-channels is here fixed to k = 60 that corresponds to a
fixed force of 465 N.

each force, the values of the k conductances are given ran-
domly by the Pareto distribution. The constant γ0 is the
only one parameter needed to be adjusted to fit the ex-
perimental data. The obtained conductance follows a Lévy
distribution [Eq. (31)] that is shown in Fig. 15 (circles).
Actually, the probability density function of the logarithm
of the obtained resistance is plotted in this figure and the
tail of this distribution follows a power law with a slope
equal to µb = 0.44 : ψ1(lnR) ∝ Rµb when R < 1 Ω.

Then, for each force, the electrical resistance of three
beads in contact can be directly calculated as the sum
of the resistances of two bead/bead contacts. The ob-
tained distribution of the logarithm of the resistance (ψ2)
is plotted in Fig. 15 (plusses). This distribution is nar-
rower than ψ1 with also a steeper tail: ψ2 ∝ R0.88. For
a chain of 21 beads in contact, the distribution is nearly
symmetrical around its maximum and is close to a nor-
mal law or a log-normal law for the resistance, as observed
experimentally in Fig. 12. The characteristic resistances
R̃ = exp(〈lnR〉) obtained experimentally and numerically
are plotted against the force in Fig. 16 for two beads in
contact (circles) and also for a chain of 21 beads (squares).
There is a quite good agreement between the experimental
values and the model for the two systems. In particular,
the model describes very well the power-law behaviour of
the resistance with the force and also the non-linear evolu-
tion of the resistance with the number of beads at a given
force (This is discussed in further detail in next section).
On the contrary, the model under-estimates the standard
deviation of lnR for the chain of 21 beads. Finally, the
model shows that the slope of the power law R̃ ∝ F−αb
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Fig. 16. Log-log plot of the resistance R̃ = exp(〈lnR〉) as a
function of the applied force for two beads in contact (circles)
and for a chain of 21 beads (squares). Open symbols repre-
sent experiments and plain symbols are given by the model.
Each errorbar represents the corresponding standard deviation
σ =

√

〈(lnR − 〈lnR〉)2〉. Solid line: slope -1.5. Dot-dashed line:
slope -1.4.

depends a bit on the number of beads: αb = 1.5 for two
beads and αb = 1.4 for 21 beads.

6 Random lattice and effective medium

This section is dedicated to the evolution of the electrical
resistance of both the chain of beads and the powder with
the number of beads or grains. As observed in previous
sections, the slope αb for the chain of beads depends on
the number of beads whereas, for the powder, the slope αp

does not depend on the size of the sample. Furthermore,
even for a chain with 21 beads, the resistance at a fixed
force is given by a log-normal law with a large standard
deviation whereas the resistance of a powder sample is
very reproducible.

6.1 The chain of beads (1 dimension)

The previous model well explains the unusual behaviour of
the electrical resistance with the force for the two metallic
granular media experimentally investigated in this paper.
But the model also shows that the contact resistance be-
tween two grains is controlled by a few random conduc-
tance channels. For the chain of beads, this implies that,
at a given force, the resistance varies a lot when the beads
are changed or moved in order to ”refresh” the contacts.
Besides, the model also implies that the resistance does
not depend linearly with the number of beads (N) or the
number of contacts Nc = N−1 (see Fig. 17). All these fea-
tures are observed experimentally for the chain of beads,
the standard deviation σ(Nc) =

√

〈(lnR− 〈lnR〉)2〉 mea-
sured experimentally is even greater than the one obtained
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102

103

Fig. 17. Model for the chain of beads: plot of the resistance
R̃ divided by the number of contacts as a function of Nc. The
force is fixed at 400 N. Each errorbar represents the correspond-
ing standard deviation σ(Nc) =

√

〈(lnR− 〈lnR〉)2〉. Horizon-

tal line: asymptotic value of R̃/Nc when Nc → ∞. Black points:
〈R〉/Nc versus Nc.

by the model when the number of contacts is 20, show-
ing that the distribution of the resistance stays large even
when the resistance is averaged over 20 contacts. Obvi-
ously, σ(Nc) decreases when Nc increases but it decreases
slowly while the resistance per contact converges slowly
to its asymptotic value (R̃/Nc)Nc→∞.

For the chain of beads, the total resistance of Nc con-
tacts is always the sum of the Nc resistances of contact so
that, when the average resistance 〈R〉 is finite, 〈R〉/Nc is
independent of the number of contacts and hence :

〈R〉
Nc

=

( 〈R〉
Nc

)

Nc→∞

≡ Reff . (32)

Reff is called the effective resistance of the chain of beads
and depends only on the electrical properties of the con-
tact between two beads. Then, for the stainless steel beads
experimentally investigated in this paper, a chain of those
beads can be considered as an effective medium when
R̃/Nc = Reff . Data from Fig. 17 can be plotted differ-
ently by focusing on the effect of the standard deviation σ
on the difference between the logarithm of the asymptotic
resistance and the mean of the logarithm of the resistance:

δ ≡ lnReff − 〈ln(R/Nc)〉. (33)

δ increases with σ (see Fig. 18) but it also depends on
the form of the distribution of the individual resistances.
Indeed, for a log-normal law for the distribution of the con-
tact resistances, δ increases as σ2/2 (solid line in Fig. 18).
For a skewed distribution and neglecting the terms of or-
der higher than σ3, using Eqs. (32) and (33) one can ob-
tain:

δ = σ2/2 + Sσ3/6, (34)
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Fig. 18. Model for the chain of beads: difference between the
logarithm of the asymptotic resistance and the mean of the
logarithm of the resistances (circles). Solid line: δ obtained for
a log-normal distribution for the contact resistances. Dashed
line: Eq. (34).

S being the skewness of the distribution. Obviously, this
development of δ as a power series of σ is valid when σ
is lower than 1. Indeed, for σ > 1, large differences are
observed between δ calculated numerically and Eq. (34).

6.2 Two-dimensional systems

Unlike the chain of beads for which the mean or ”effec-
tive” resistance for a long chain is obtained easily thanks
to Eq. (32), the situation is much more complex for granu-
lar packings at two or more dimensions. Indeed, in general,
the effective resistance of 2D or 3D packings of metallic
beads is not equal to the mean of the distribution of the re-
sistances of one contact bead/bead. The effective medium
theory (EMT) is a standard approximation for conduc-
tion in mixtures. For resistor networks and resistances dis-
tributed according to a distribution function φ(r), Kirk-
patrick [25,26] showed that the effective resistance (reff )
is the solution of the equation:

∫

∞

−∞

r − reff
reff + (z/2− 1)r

φ(r) dr = 0, (35)

where z is the number of bonds meeting at each node of
the network. Obviously, for the chain of beads wherein
z = 2, Eq. (35) becomes reff = 〈r〉: the effective resis-
tance of one dimensional network is given by the mean of
the distribution of the resistances without any approxima-
tion. But, for 2D or 3D systems, calculating the effective
resistance is much more complicated in general. Indeed,
reff depends not only on the mean resistance but also on
the higher moments of the distribution φ(r).

In the case of two-dimensional systems and for z = 4,
Eq. (35) can be rewritten as

∫

∞

−∞

tanh

(

σu− δ

2

)

Φ(u) du = 0, (36)
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with u = (ln r − 〈ln r〉)/σ, σ2 = 〈(ln r − 〈ln r〉)2〉, and

δ ≡ ln reff − 〈ln r〉. (37)

6.2.1 For not very wide distributions (σ < 1)

For σ < 1, a first order approximation of Eq. (36) gives
δ = 0 or else

reff ≈ exp(〈ln r〉). (38)

In order to evaluate the limits of this equation, an iterative
process can be used to calculate numerically the effective
resistance of a large 2D lattice of resistors. This process
is inspired by the renormalization group method and is
described in appendix A.1. The results obtained numer-
ically are compared with the Eqs. (36) and (38) in Fig.
19. For resistances at small scale following a log-normal
law (or normal law for ln r), the iterative process finds an
effective resistance equal to exp(〈ln r〉) for a large piece
of the material, whatever the width of the distribution, in
agreement with Eq. (38) and, thus, also in agreement with
Eq. (36). Indeed, for any symmetrical distribution Φ(u),
Eq. (36) gives Eq. (38) without approximation. On the
contrary, for a skewed distribution Φ, reff is not strictly
equal to exp(〈ln r〉). To show this, for each value of σ,
we have generated a skewed distribution from a gaus-
sian random variable (g) of standard deviation σ. First,
from g, we considered lg = ln[cosh(g)]− 〈ln[cosh(g)]〉 and
wσ,S = ασ,S g + βσ,S lg. The two parameters ασ,S and
βσ,S are chosen to have, respectively, σ and Sσ3 the stan-
dard deviation and the skewness of the skewed variable
wσ,S (〈w2

σ,S〉 = σ2 and 〈w3
σ,S〉/σ3 = S). Figure 19 indi-

cates that for skewed distributions, δ deviates from zero
when the standard deviation increases showing that the
approximation reff ≈ exp(〈ln r〉) becomes not valid for
very broad and skewed distributions.

Using a third order approximation of Eq. (36), the ef-
fective medium theory leads to

δ

σ
=

4

σ̂
cos

{

1

3

[

arccos

(

Sσ̂3

16

)

− 2π

]}

, (39)

with 2

σ̂ =
√

4

σ2 − 1. Equation (39) is also plotted in Fig. 19

(dot-dashed lines) showing that this level of approxima-
tion of Eq. (36) remains valid as soon as σ is lower than 0.3
for a skewed distribution with |S| = 1. When σ increases,
we cannot neglect the moments of Φ(u) higher than the
third moment and thus greater differences are seen be-
tween the Kirpatrick’s equation and the approximation
(39).

Next paragraph deals with broader distributions (σ > 1)
and the link between effective medium theory and perco-
lation theory.

6.2.2 From very wide distributions to percolation theory

Figure 20 shows that for the two skewed distributions of
resistances (squares: S = 1, circles: S = −1), δ/σ con-
verges to an asymptotic value when σ increases much

σ

δ/
σ
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Fig. 19. Results from the iterative process and comparison
with Eqs. (36) and (38). δ = ln reff − 〈ln r〉 is the difference
between the logarithm of the effective resistance observed at
large scale and the mean of the logarithm of the resistances
at small scale. Plusses: δ/σ obtained for a normal distribution
Φ(u) or a log-normal distribution for φ(r). Squares: results for
a skewed distribution with S = 1 whatever σ. Circles: results
for a skewed distribution with S = −1. Solid lines: Eq. (36).
Dot-dashed lines: Eq. (39).
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Fig. 20. δ/σ versus σ (same symbols as Fig. 19). Solid lines:
Eq. (36). Also plotted: median (ln r) of the distribution Φ̃(ln r).
Plain squares: (ln reff − ln r)/σ for a skewed distribution with
S = 1 whatever σ. Plain circles: (ln reff − ln r)/σ for a skewed
distribution with S = −1.

larger than one. Indeed, Eq. (36) can be rewritten as

∫

∞

−∞

tanh

(

ln r − ln reff
2

)

Φ̃(ln r) d ln r = 0. (40)

When σ tends to infinity, (40) can be approximated by

∫ ln reff

−∞

Φ̃(ln r) d ln r =

∫

∞

ln reff

Φ̃(ln r) d ln r, (41)
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showing that ln reff becomes the median of the distribu-
tion of the logarithm of the resistances when σ → ∞.
Whatever the form of the initial distribution Φ̃(ln r), the
effective resistance of a large medium constituted by a
large number of resistances converges to the median of Φ̃
(see Fig. 20). In the case of binary mixtures of conduct-
ing (r0 = 0 or ln r0 = −∞) and insulating resistances

(r∞ = ∞ or ln r∞ = ∞), the median of Φ̃(ln r) is equal to
−∞ or else +∞ depending on the probability (0 ≤ p0 ≤ 1)
to have conducting resistances. Indeed, if p0 > 0.5, there
are more conducting resistances than insulating resistances
in the mixture and the median of Φ̃(ln r) is −∞. In that
case, the effective resistance of the mixture is also −∞. On
the contrary, for p0 < 0.5, the median of Φ̃ is +∞ and the
corresponding effective resistance is +∞. When p0 = 0.5,
changing only one resistance in the mixture (for example
an insulating resistance becomes a conductive resistance)
is sufficient to change the state of the mixture from in-
sulating to conducting, even if the mixture is constituted
by a very large number of resistances. This very sensitive
transition from an insulating state to a conducting state
is called percolation and, in that case (2D, z = 4), the
percolation threshold is equal to 0.5 (see appendix B).

6.3 Three-dimensional systems

Here the results obtained previously for 2D systems are
generalized for three-dimensional materials like powders.
The effective resistance given by Eq. (35) is compared to
the one calculated numerically thanks to the same kind
of iteration process used to describe a 2D material (see
appendix A.2).

6.3.1 For not very wide distributions (σ < 1)

For 3D systems with z = 6 and for not very wide distribu-
tions, Kirpatrick’s equation can be approximated as (see
appendix C)

δ = −σ
2

6
, (42)

where δ = ln reff − 〈ln r〉. With the same approximation
(order 2 on σ), Landau [27] remarked that this result is
identical to that given by the following equation:

reff = 〈r−1/3〉−3, (43)

showing that Eq. (38) is replaced by Eq. (43) for 3D sys-
tems. The advantage of such equation is the possible ex-
tension to imaginary impedances, giving access to the fre-
quency dependence of the effective impedance [6]. How-
ever, De Wit [28] pushed the development up to the sixth
order and showed differences at this level, depending on
the shape of the distribution of resistance values.

The results from the iterative process are compared
with Eqs. (35), (42) and (43) in Fig. 21 for three different
distributions of resistances: log-normal law (plusses) and
two skewed distributions with S equal to one (squares)

δ/
σ

σ
0 0.2 0.4 0.6 0.8 1

-0.15

-0.1

-0.05

0

Fig. 21. Results from the iterative process and comparison
with Eqs. (35), (42) and (43). Plusses: δ/σ obtained for a nor-
mal distribution Φ(u) or a log-normal distribution for φ(r).
Squares: results for a skewed distribution with S = 1 what-
ever σ. Circles: results for a skewed distribution with S = −1.
Dot-dashed lines: Eq. (35), with z = 6. Solid line: Eq. (42).
Dotted lines: Eq. (43). The two extreme lines correspond to
the skewed distribution of the resistances with S = −1.

and minus one (circles). These two skewed distributions
are the ones obtained previously in the case of 2D sys-
tems. For σ < 1, very few differences are observed between
the Kirkpatrick’s equation (35) and the effective resistance
calculated numerically, whatever the value of the skew-
ness chosen. Besides, the approximation (42) stays valid
for σ < 0.2 but greater differences are observed when σ
is greater than 0.2. As for the more practical approxima-
tion given by Landau, Eq. (43) gives the same result than
Eq. (42) for resistances distributed by a log-normal law,
but, when σ > 0.2, differences between Eq. (43) and the
Kirkpatrick’s equation are slightly larger than the ones
observed between Eqs. (42) and (35).

6.3.2 From very wide distributions to percolation theory

Contrary to that observed for 2D systems, when σ is larger
than one, large differences are observed between the effec-
tive resistance calculated numerically and the one given
by the Kirpatrick’s equation both for a log-normal dis-
tribution and the two skewed distributions (see Fig. 22).
When σ tends to infinity, Eq. (35) with z = 6 can be
approximated by

−
∫ ln reff

−∞

Φ̃(ln r) d ln r+
1

2

∫

∞

ln reff

Φ̃(ln r) d ln r = 0, (44)

and hence:

QKirkpatrick
eff,σ→∞

=
1

3
, (45)

where the quantile Qeff =
∫ ln reff

−∞
Φ̃(ln r) d ln r is the pro-

portion of resistances smaller than the effective resistance.
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Fig. 22. δ/σ versus σ (same symbols as Fig. 21). Solid line: Eq.
(42). Dot-dashed lines: Eq. (35), with z = 6. Horizontal
line: Eq. (47).
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Fig. 23. The quantile Qeff versus σ. Same symbols as Figs.
21 and 22. For dot-dashed lines, the quantile is calculated using
the effective resistance given by (35). Horizontal and dashed
line: Qeff,σ→∞ = pc = 0.208.

Figure 23 shows that, using the effective resistance given
by the Kirkpatrick’s equation, Qeff tends to 1/3 whatever
the skewness of the distribution of resistances (dot-dashed
lines). But, the quantile calculated from the numerical re-
sults is quite different and tends to another value, close
to 0.2.

We can then focus on binary mixtures of conduct-
ing (r0 = 0 or ln r0 = −∞) and insulating resistances
(r∞ = ∞ or ln r∞ = ∞). In that case, σ = ∞ and using
Eq. (45), Qeff,σ→∞ = 1/3, whereas Qeff,σ→∞ ≈ 0.2 from
the results we have obtained thanks to the iteration pro-
cess. So, using the same argument presented previously for
2D systems, the effective medium theory (35) gives 1/3 for
the percolation threshold (pc) whereas it is rather close to

0.2 adopting the iteration process. We have checked this
result in appendix B and, for the 3D system, we have
found

Qeff,σ→∞ = pc = 0.208± 0.001. (46)

Coming back to the effective resistance issue, Eq. (46)
gives the value of ln reff whatever the form of the dis-
tribution but when σ tends to infinity. For a log-normal
distribution of the resistances, Eq. (46) yields to

(

δ

σ

)

σ→∞

= −0.813. (47)

For the two skewed distributions studied in this article
(S = 1 and S = −1), equation (46) gives respectively
(δ/σ)σ→∞ = −0.791 and (δ/σ)σ→∞ = −0.777, showing
that the three curves δ/σ versus σ in Fig. 22 are very
close when σ tends to infinity.

6.4 Comparison 1D/2D/3D

Here we summarize the results obtained in this section:

– The 3D case is the only one for which there is no
equation to calculate directly the effective resistance
from the distribution of the resistances. For 1D sys-
tems, r1Deff = 〈r〉 whereas for 2D systems Kirkpatrick’s

equation (35) gives r2Deff . Besides, for 2D systems and
for symmetrical distributions of the logarithm of the
resistances, Eq. (35) implies that ln reff = 〈ln r〉 what-
ever the value of the standard deviation.

– For not very broad distributions that is for distribu-
tions with a small standard deviation (typically σ < 1
but it depends on the precision needed for obtaining
the effective resistance and also on the form of the dis-
tribution of the resistances), ln reff = 〈ln r〉 for 2D

systems whereas reff = 〈r−1/3〉−3 for 3D systems.
– When the standard deviation of the distribution of re-

sistances tends to infinity, the percolation theory gives
the value of the effective resistance of a large medium
using the following equation

∫ reff

0

φ(r) dr = pc, (48)

where pc is the percolation threshold for a binary mix-
ture of conducting and insulating resistances. pc is also
equal to the quantile which is the proportion of resis-
tances smaller than the effective resistance when con-
sidering a medium constituted by a large number of
resistances distributed according to φ. At two dimen-
sions with z = 4, pc = 0.5 and hence the effective
resistance is the median of the distribution of the resis-
tances. At three dimension and considering a network
sketched in Fig. 26, pc = 0.208 and Eq. (48) gives the
effective resistance depending on the distribution of
the resistances.

Hence, whatever the dimension, when the size of the
medium increases, its resistance converges to one limit
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called the ”effective resistance” whose value depends both
on the dimension and also on the form of the distribution
of the resistances at small scale. To conclude on the ef-
fects of the dimension, we can also compare how ”quickly”
the resistance of the medium converges to the ”effective
resistance” as the size of the medium increases. Indeed,
for a small size medium, the resistance depends on the
sample chosen whereas, when the size is sufficiently large,
the resistance becomes independent on the sample cho-
sen. This has been clearly observed experimentally since
the resistance of the chain of beads depends a lot on the
beads chosen or even on the electrical contacts between
the beads, but the standard deviation of the resistance
measured from a large number of different chains of beads
clearly decreases when the number of beads that consti-
tute the chain increases (see Fig. 16). For the powder, the
number of grains is large (more than 100000) and the mea-
sured resistance is very reproducible, depending only on
the mechanical force and on the size of the sample. Thus,
considering the three systems studied here (1D, 2D, 3D),
we can compare directly the evolution of the standard
deviation of the resistance as a function of the number of
resistances being in the medium. For each system, we take
the same distribution of resistances that is a log-normal
law with the same standard deviation σ0. Then, using the
iteration process presented in appendix A, we calculate for
each system the standard deviation of the new distribution
of resistance at step 1, then at step 2, etc... Thus, in Fig.
24, the ratio between the standard deviation calculated at
step i and the initial one (σ0) is plotted against the number
of components (Nc) that constitute the medium. For the
1D system, Nc = 2i whereas for the 2D and 3D systems,
Nc = 22i and Nc = 23i respectively. Indeed, at each step,
each piece of material is constituted by 4 smaller pieces of
materials at 2D (Fig. 25) and 8 pieces of materials at 3D
(Fig. 26).

For an initial distribution of resistances not very large
i.e. σ0 small (in Fig. 24 we take σ0 = 0.1), σi decreases
with the number of components that constitute the me-
dium at a similar rate whatever its dimension. Indeed,
in appendix D, we show that, for small σ0, a very good
approximation of σi/σ0 is 2

−i/2 (1D), 2−i (2D) and 2−3i/2

(3D). Hence, σi/σ0 is a power law of the number of the
components

σi
σ0

=
1√
Nc

. (49)

For broader distributions of initial resistances and what-
ever the dimension of the system, the standard deviation
σi decreases less quickly with the number of components
than for Eq. (49). However, for 2D and 3D systems, Fig.
24 shows that the ratio σi/σ0 stays decreasing quickly
with the number of resistances whereas, for the 1D sys-
tem, σi/σ0 decreases very slowly. For example, for a sys-
tem with 10000 resistances, σi/σ0 is lower than 5% in two
or three dimensions whereas σi/σ0 ≈ 28% at 1D. This
result confirms that the powder can be seen as an effec-
tive medium: for all the samples of powder tested in this
article, the number of grains is greater than 100000 and
hence the corresponding measured resistance is very close

Nc
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Fig. 24. Evolution of the standard deviation with the number
of components that constitute the medium. Circles: 1D, Nc =
2i. Diamonds: 2D, Nc = 22i. Squares: 3D, Nc = 23i. σ0 is the
standard deviation of the initial distribution of the resistances,
open symbols: σ0 = 0.1, plain symbols: σ0 = 10.

to the effective resistance (reff ) of the powder. On the
contrary, for the chain of beads, the measured resistance
depends on the contacts between the beads and the resis-
tance varies a lot even with the same beads and the same
mechanical force. However, the effective resistance of the
chain of beads can be calculated since, for a 1D system,
reff = 〈r〉.

7 Conclusions

We have measured the pressure dependence of the elec-
trical resistance of one- and three-dimensional metallic
granular media. Whatever the dimension of the granu-
lar medium, the resistance is found to be a power law of
the pressure (R ∝ P−α) with an ”anomalous” exponent α
larger than the one expected either with elastic or plastic
contact between the grains. The value of α is of course
not ”universal” and depends on the physical properties of
both the grains and the oxide that covers the grains. But
the experiments presented here on the chain of beads show
that a large exponent α is also observed for a 1D granular
system for which there is only one ”force chain” and the
stress is perfectly homogeneous since all the contacts be-
tween the grains undergo the same force. Besides, for the
powders, the exponent for the capacitance is not larger
than one (C ∝ P ) showing that the pressure-dependent
capacitance is well explained by a basic model (Eq. 10)
without taking account the 3D structure of the force net-
work. These results suggest that the strong dependence of
the resistance on the force does not come from the non-
homogeneous distribution of the stresses in the 3D granu-
lar media, but it can be understood by means of a simple
model of the electrical conduction between two metallic
grains in contact. This model states that the electric cur-
rent flowing from one grain to the other in contact does
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not pass uniformly in the oxide: it rather follows some
conducting micro-channels. Due to strong inhomogeneities
in the physical properties of the oxide (size and conduc-
tivity), the conductances of these micro-channels can be
widely distributed following a very large distribution like
a Pareto distribution. Then, the parameter 0 < µ < 1
of this Pareto distribution characterizes the variability of
the properties of the micro-channels and controls directly
the exponent α of the relation: R ∝ P−α (α = 2

3µ in the

elastic regime, α = 1

µ in the plastic regime).

The second main result of this work concerns the ap-
parent contradiction arising from the measurements of
the powder resistance. On the one hand, the pressure-
dependent resistance suggests that the individual contact
resistance between the grains follows a very broad distri-
bution, which should naively yields to a wide dispersion
of the experimental results. On the other hand, packed
powder samples behave well as an effective medium with
very good reproducible conductivity measurements. Our
renormalization approach solves this apparent contradic-
tion. It shows that, in three dimensions, the distribution
of resistances rapidly narrows when the size of the sam-
ple grows, explaining the reproducibility of the measure-
ments. Further, it illustrates the crossover between two
regimes, the narrow distribution regime, which extends
up to standard deviations of the logarithm of resistances
of order one, where the Landau’s equation (43) holds, and
the wide distribution limit, where the effective resistance
of the sample is controlled by the percolation threshold.
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Appendix A Renormalization group method
for calculating the effective resistance

For a chain of random resistors, the corresponding effec-
tive resistance is given by the mean value of the resis-
tance distribution. For 2D or 3D networks of resistors,
Kirkpatrich’s formula (35) gives an aproximation of the
effective resistance but there is no exact equation for cal-
culating reff . Here, the renormalization group method is
used to calculate numerically the effective resistance at a
given resistance distribution.

a1 b1

a2 b2

a

Fig. 25. Left: description of the iterative process. Each square
piece of the material is divided in four smaller squares of half
side length. Right: arrangement of the resistances for the iter-
ation process. The four resistances a1, b1, a2 and b2 represent
the resistances of the four sub-squares of side half of the square
of material. The resistance a represents the lateral conduction
between these sub-squares.

A.1 2D systems

Instead of a lattice, we consider an inhomogeneous re-
sistive material, and evaluate its effective resistivity by
the following iterative process. Consider a square of this
material, which we divide into four sub-squares, assumed
homogeneous. The goal is to estimate the distribution of
effective resistivity of the square, given the distribution
of the resistances of the sub-squares. For this, we approx-
imate this assembly of sub-squares with a block of five
resistances (a1, a2, b1, b2 and a), shaped as two triangles
base to base (see Fig. 25). At a given scale, the following
equation gives the electrical resistance (r) of each square
piece of the material as a function of these five resistances
which are defined at smaller scale:

r =
a2b2(a1 + b1) + a1b1(a2 + b2) + a(a1 + a2)(b1 + b2)

a(a1 + b1 + a2 + b2) + (a1 + b1)(a2 + b2)
(A.1)

At each step, this process corresponds to an averaging of
the resistances over five resistances reflecting that the re-
sistance of the square is an averaging of the resistances of
the corresponding sub-squares. We can also notice that if
all the sub-squares have the same resistance (a1 = a2 =
b1 = b2 = a), the larger square has also the same resis-
tance, showing that the effective resistance is size-indepen-
dent at two dimensions. For the chain of beads, the effec-
tive resistance is proportional to the length of the chain
(or the number of contact bead/bead) whereas, at three
dimensions, the effective resistance is proportional to the
height of the sample and inversely proportional to its cross-
section [Eq. (15)].

Hence, given the distribution of the resistances at very
small scale (φ), one can calculate the distribution of the
resistances at greater scales using at each step Eq. (A.1).
For each initial distribution φ, 511 values of resistance are
chosen randomly following φ. The first step consists to
average these resistances using Eq. (A.1) in order to ob-
tain 510 new values of resistance characterizing the distri-
bution φ1 at step one. Then, from this new set of resis-
tances, 59 new values of resistance are calculated in order
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to determine the distribution at step two (φ2). The pro-
cess is continued until step 11 for which there is only one
calculated resistance. After each step, the obtained distri-
bution is of course narrower than the previous one since
it is an averaging process. So the standard deviation of
the distribution of the resistances decreases as the num-
ber of steps increases and finally it tends to zero after 11
iterations whatever the initial standard deviation tested
hereafter. We then assume that the resistance obtained
after 11 steps is very close to the one we search that is the
effective resistance of the material at large scale (reff ).

A.2 3D systems

Here, a cube of the material is divided into eight sub-cubes
and the goal is to estimate the distribution of resistance
of the cube, given the distribution of the resistances of the
sub-cubes (see Fig. 26). For this, we approximate this as-
sembly of sub-cubes with a block of 12 resistances, shaped
as two pyramids base to base. The eight resistances ai, bi,
ci and di (i = 1 or 2) represent the resistances of the
eight sub-cubes whereas the four resistances (a, b, c and
d) represent the lateral conduction between the sub-cubes.
Equation (A.1) used for the 2D case needs to be general-
ized for this 3D structure. Indeed, the electrical resistance
of the cube is a complex function (G3D) of these twelve
resistances:

rcube = G3D(a, b, c, d, a1, b1, c1, d1, a2, b2, c2, d2). (A.2)

We have obtained G3D usingMaple but it is not possible to
write here this very long equation. Besides, if all of the sub-
cubes have the same resistance (i.e. the twelve resistances
are equal), the larger cube has a resistance twice smaller.
This is in agreement with the fact that the resistance of
a cube is inversely proportional to its size contrary to the
square for which its resistance is size-independent. So, the
resistance at step i is defined as ri = 2 × G3D in order to
have ri→∞ = reff , where reff is the effective resistance
of the material.

At a given scale, using Eq. (A.2), we have calculated
the resistance of each cube of material as a function of
twelve resistances and all of them are defined at smaller
scale. Hence, from the distribution of the resistances given
at the smallest scale, we have obtained consecutively the
distribution of the resistances at greater scale. After nine
iterations, the standard deviation of the obtained distri-
bution is very small and the value of the corresponding
resistance is assumed to be the effective resistance of the
material at large scale (reff ).

Appendix B Percolation thresholds for 2D
and 3D lattices

In the case of binary mixtures of conducting (r0 = 0
or ln r0 = −∞) and insulating resistances (r∞ = ∞ or
ln r∞ = ∞), the percolation phenomenon is an insulating
to conducting transition or else a conducting to insulating

a1
b1

c1d1

a2 c2b2
d2

a b

cda1 b1

d1

a2 b2

c1

c2

Fig. 26. Left: description of the iterative process. Each cube
piece of the material is divided in eight smaller cubes of half
side length. Right: arrangement of the resistances for the itera-
tion process. The eight resistances a1, b1, c1, d1 and a2, b2, c2,
d2 represent the resistances of the eight sub-cubes of side half
of the cube of material. The resistances a, b, c and d represent
the lateral conduction between these sub-cubes.

transition for the whole mixture depending only on the
state of one resistance. This transition is observed when
the proportion of conducting resistances in the mixture
(p0) reaches a particular value (pc). This critical propor-
tion of conducting resistances depends on the dimension
and also on the geometrical characteristics of the resis-
tor network. Here, using the iteration process described
in Appendix A.1 and A.2, we calculate numerically pc for
2D and 3D networks that are described in Figs. 25 and 26
respectively.

At the smallest scale, there are two kind of resistances:
the insulating ones (r = r∞) and the conducting ones (r =
1/r∞), with ln r∞ = 25, and the proportion of conducting
resistances is p0. The first step consists to use respectively
Eq. (A.1) (2D) or Eq. (A.2) (3D) in order to calculate
the resistance of each block constituted by five (2D) or
twelve (3D) initial resistances. Then, the distribution of
the resistances at step one is obtained and the proportion
of conducting resistances (p1) is evaluated. To calculate
p1, ln r = 0 is taken as the limit between a conducting
resistance and an insulating one since the resistances at
step one can take more than two values. The same process
is used a second time in order to obtain the distribution
of the resistances at step two and hence the proportion of
conducting resistances p2. And so on for simulating binary
mixtures with a large number of initially resistances.

Figures 27 and 28 show the evolution of pi as a func-
tion of the initial proportion of conducting resistances (p0)
after step 1, 2, 3, 6 and 10. For a binary mixture consti-
tuted of 56 = 15625 resistances, except for p0 close to pc
with pc = 0.5 for the 2D system and pc = 0.208 ± 0.001
(3D), p6 is equal to 0 or 1, depending on p0. Thus, for
binary mixtures constituted by a large number of resis-
tances, the mixture is in an insulating state when p0 < pc
whereas it becomes a conductor when p0 > pc. When p0
is close to pc, the state of the mixture is very sensitive to
the ratio between the numbers of conducting resistances
and of insulating ones.
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Fig. 27. Results for binary mixtures for the 2D system and
using the iterative process. p0 is the proportion of conducting
resistances in the mixture. At step 10, p10 is the corresponding
proportion of conducting blocks and is very close to the one
we search for a very large mixture.
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Fig. 28. Results for binary mixtures for the 3D system. At
step 10, p10 = 0 when p0 < pc whereas p10 = 1 when p0 > pc
except for p0 very close to pc, with pc ≈ 0.208.

Appendix C Approximation of Kirpatrick’s
equation for 3D systems

Kirpatrick’s equation (35) can be approximated for not
very wide distributions (σ < 1) and for z = 6 (z is the
number of bonds meeting at each node of the network).
First, Eq. (35) can be rewritten as

∫

∞

−∞

exp(δ − σu)− 1

1 + 1

3
[exp(δ − σu)− 1]

Φ(u) du = 0, (C.1)

with u = (ln r − 〈ln r〉)/σ, σ2 = 〈(ln r − 〈ln r〉)2〉 and δ =
ln reff − 〈ln r〉. Using the Taylor series expansion of the
exponential function and omitting terms of order greater

than two, Eq. (C.1) becomes δ2 + 6δ + σ2 = 0 and when
σ is small, we obtain

δ = ln reff − 〈ln r〉 ≈ −σ
2

6
. (C.2)

Besides, using also the Taylor series expansion of the ex-
ponential function and then the one of the logarithm, we
have

ln(〈r− 1

3 〉−3)=−3 ln

[
∫

∞

−∞

exp

(

−σu+〈ln r〉
3

)

Φ(u)du

]

≈ 〈ln r〉 − 3 ln

[

1 +
1

2

(σ

3

)2
]

≈ 〈ln r〉 − σ2

6
. (C.3)

From Eqs. (C.2) and (C.3), we conclude

ln reff = ln(〈r− 1

3 〉−3). (C.4)

Appendix D Evolution of σ with the
number of resistances for not very wide
distributions (σ0 small)

D.1 1D systems

The iteration process has been used in this article for the
2D and 3D systems but this process can also be used for
the chain of beads in order to evaluate the evolution of σ
as a function of the number of resistances that constitute
the chain of beads. At each step i+ 1, the resistance ri+1

is the mean of two resistances (a and b) defined at step i:
ri+1 = (a+ b)/2. This latter equation can be rewritten as

exp(〈ui+1〉+ δui+1) = exp(〈ui〉)
exp(δua) + exp(δub)

2
,

(D.1)
where 〈ui〉 and 〈ui+1〉 are respectively the mean of the
logarithm of the resistances defined at step i and i + 1.
Taking the logarithm of Eq. (D.1) and using the Taylor
series expression of the exponential and logarithm func-
tions, we obtain

〈ui+1〉+ δui+1 = 〈ui〉+
δua + δub

2
+
δu2a + δu2b

8
− δuaδub

4
.

(D.2)
Taking the mean of (D.2) and using 〈δua〉 = 〈δub〉 = 0
and 〈δuaδub〉 = 0, it yields

〈ui+1〉 = 〈ui〉+
〈δu2i 〉
4

, (D.3)

and

〈δu2i+1〉 =
〈δu2i 〉
2

. (D.4)

From Eq. (D.4) we obtain

σi
σ0

=

√

〈δu2i 〉
〈δu20〉

=

(

1

2

)i/2

. (D.5)
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Then, using Eqs (D.2) and (D.3), we have

〈ui+1〉+
〈δu2i+1〉

2
= 〈ui〉+

〈δu2i 〉
2

. (D.6)

Finally, when i tends to infinity, this latter equation gives

δ = 〈u∞〉 − 〈u0〉 =
σ2
0

2
, (D.7)

which is an approximation of Eq. (34) when σ0 is small.

D.2 2D systems

The calculus to obtain σi/σ0 is much more complex at 2D
than the one given previously for the chain of beads since
the resistance at step i + 1 [ri+1 = exp(〈ui+1〉 + δui+1)]
is a function of five resistances: a = exp(〈ui〉+ δua), aj =
exp(〈ui〉+δuaj

) and bj = exp(〈ui〉+ δubj ), with j = 1 or 2.
Eq. (A.1) gives ri+1 as a function of these five resistances.
Similarly to what was done for the 1D case, using the
Taylor series expression of the exponential and the loga-
rithm functions, we can obtain 〈ui+1〉+ δui+1 − 〈ui〉 as a
power series of the five variables δua, δuaj

and δubj . Tak-
ing the mean of this equation and saying that 〈δuaj

〉 =

〈δubj 〉 = 〈δuaj
δubl〉 = 〈δuaj

δu2bl〉 = 0 whatever j and l,

and 〈δuaj
δual

〉 = 〈δuaj
δu2al

〉 = 0 for j 6= l, it yields

〈ui+1〉 = 〈ui〉 −
5

64
〈δu3i 〉. (D.8)

At 2D, the first non-zero term in Eq. (D.8) is the third
moment of δui and not the standard deviation σi. The
standard deviation and the third moment of δui+1 can
also be calculated:

〈δu2i+1〉 =
〈δu2i 〉
4

and 〈δu3i+1〉 =
〈δu3i 〉
16

. (D.9)

From Eqs. (D.9) we obtain

σi
σ0

=

(

1

2

)i

and
〈δu3i 〉

〈δu2i 〉3/2
= S

(

1

2

)
3i
2

, (D.10)

where S is the skewness of the initial distribution of re-
sistances. Eq. (D.10) means that the distribution of ln r
rapidly narrows and, even if the original distribution is
skewed, it rapidly goes to a symmetrical distribution. Then,
using Eqs. (D.8) and (D.10), we have

〈ui+1〉 −
〈δu3i+1〉

12
= 〈ui〉 −

〈δu3i 〉
12

. (D.11)

Finally, when i tends to infinity, this latter equation gives

δ = 〈u∞〉 − 〈u0〉 = − S

12
σ3
0 , (D.12)

which is an approximation of Eq. (39) when σ0 is small.

D.3 3D systems

For the 3D system (Fig. 26), the function G3D (A.2) gives
ri+1 = exp(〈ui+1〉 + δui+1) as a function of twelve resis-
tances: ζj = exp(〈ui〉+ δuζj ), with ζ = a, b, c or d, and j =
1, 2 or {}. Using the Taylor series expression of the expo-
nential and the logarithm functions, and with the help of
Maple, we can obtain 〈ui+1〉+δui+1−〈ui〉 as a power series
of the twelve variables δuζj . Taking the mean of this equa-

tion and saying that 〈δuζj 〉 = 〈δuζjδuξl〉 = 〈δuζjδu2ξl〉 = 0
if ζ 6= ξ or else j 6= l, it yields

〈ui+1〉 = 〈ui〉+
7

48
〈δu2i 〉 −

35

576
〈δu3i 〉. (D.13)

The standard deviation and the third moment of δui+1

can also be calculated

〈δu2i+1〉 =
〈δu2i 〉
8

+
7

192
〈δu3i 〉, (D.14)

〈δu3i+1〉 =
〈δu3i 〉
64

. (D.15)

From Eqs. (D.14) and (D.15) we obtain

σi
σ0

≈
(

1

2

)
3i
2

(

1− S

3
σ0

)

, (D.16)

〈δu3i 〉
〈δu2i 〉3/2

= S

(

1

2

)
3i
2

, (D.17)

where S is the skewness of the initial distribution of re-
sistances. Then, using Eqs. (D.13), (D.16) and (D.17) we
have

〈ui+1〉−
〈δu2i+1〉

6
−〈δu3i+1〉

18
= 〈ui〉−

〈δu2i 〉
6

−〈δu3i 〉
18

. (D.18)

Finally, when i tends to infinity, this latter equation gives

δ = 〈u∞〉 − 〈u0〉 = −1

6
σ2
0 −

S

18
σ3
0 , (D.19)

and when σ0 is very small, Eq. (D.19) gives Eq. (42).
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