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Within the framework of the central-moment-based lattice Boltzmann method, we propose a strategy to account
for external forces in two and three dimensions. Its numerical properties are evaluated against consolidated
benchmark problems, highlighting very high accuracy and optimal convergence. Moreover, our derivations are
light and intelligible.

DOI: 10.1103/PhysRevE.95.023311

I. INTRODUCTION

Originally derived to remove the statistical noise affecting
the lattice gas automata [1,2], during the last 20 years the
lattice Boltzmann method (LBM) has undergone a vast series
of developments and improvements. Nowadays, it is a robust
and established technique to perform numerical simulations
of viscous fluids [3–10]. One of the keys to its success lies in
the simplicity of the governing equation, a first-order partial
differential one called the lattice Boltzmann equation (LBE).
It consists of the well-known “collide-and-stream” process to
compute the evolution of the particle distribution functions
(or populations), such that its averaged behavior recovers the
dynamics of fluid motion. While the streaming stage is a simple
shift of data along discrete characteristic particle directions,
the collision process is the most physically salient and delicate
aspect of the method.

The most popular collision operator is the Bhatnagar-
Gross-Krook (BGK) one [11], which forces the populations
to relax to attractors, known as local equilibria, derived as a
second-order-truncated Taylor expansion in the Mach number.
It is also known as the single-relaxation-time LBM, as all the
populations relax at a common rate. It has been proved that the
BGK LBM is consistent with the solution of the Navier-Stokes
equations for incompressible flow with a second order of
accuracy [12]. Later, d’Humières [13] proposed to decompose
the collision stage in a space of moments. Each moment
can relax with a proper rate, hence the notation multiple
relaxation time (MRT), and the postcollision populations are
reconstructed from the collided moments. If compared to the
BGK operator, the adoption of the MRT has proved to increase
the stability of the LB scheme due to the removal of spurious
modes [14,15].

Recently, a novel collision kernel has been proposed by
Geier et al. [16]. A new family of moments has been
introduced, which relax in a frame moving with the fluid. The
members of this class are called “central” moments (CMs),
in contrast to the “raw” moments of the MRT, which are
defined in a frame at rest [13,17]. As for the MRT, central
moments are relaxed independently. In a CM-based kernel,
one of the crucial points to construct the collision operator is
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represented by the binomial theorem, allowing us to relate raw
and central moments. Specifically, the postcollision value of
a CM at a certain order depends on the lower-order raw ones,
and not vice versa. This particular one-way coupling implies
that the collision is configured as a structured hierarchical
pyramidal sequence of relaxation in an ascending order of
moments, hence the name “cascaded” LBM. These models
are characterized by very high properties in terms of accuracy,
stability, and convergence [18–25].

An important aspect of any fluid flow simulation is the
possibility to account for the presence of external forces (e.g.,
gravity or Coriolis forces). Within the LB community, Guo
et al. [26] developed a very valuable approach that has been
widely adopted. Another interesting model is represented by
the exact difference method (EDM) [27], which has been
successfully adopted in Ref. [21] to investigate multiphase
flows by means of CMs. More recently, Premnath et al. [28]
have presented a methodology to incorporate forcing terms in
the cascaded LBM. Again, the binomial theorem has been
adopted to construct such a forcing operator. Despite its
effectiveness and excellent numerical properties, it may lead
to cumbersome practical implementations that are particularly
evident in three dimensions [29,30].

This paper proposes a different strategy to model external
forces in a CM-based collision kernel. Starting from the
definition provided in Ref. [31], we build a forcing term
according to the nonorthogonal basis of moments. Differently
from Refs. [28,29], here the binomial theorem is not required,
as the usage of raw moments is avoided, and the formulation
results in an intelligible derivation. The model is validated
against very-well-defined test cases, demonstrating its excel-
lent numerical performance.

II. PRESENT APPROACH

In this section, our approach is presented. It is worth noting
that the present work focuses only on forcing terms. Therefore,
a detailed discussion about central-moment-based collision
kernels is not reported herein.

A. Two-dimensional model

The two-dimensional discrete LB equation predicts the
evolution in space, x = [x,y], and time t of the particle
distribution functions |fi〉 = [f0,f1,f2,f3,f4,f5,f6,f7,f8]�,
where | 〉 and � denote a column vector and the transpose
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operator, respectively. Populations move on a fixed Cartesian
square lattice along the generic link i = 0 . . . 8 with velocity
ci = [|cxi〉,|cyi〉] defined according to the two-dimensional
nine-velocity lattice (D2Q9) model [6],

|cxi〉 = [0,1,0, − 1,0,1, − 1, − 1,1]�,

|cyi〉 = [0,0,1,0, − 1,1,1, − 1, − 1]�.

Let us introduce the external source term |Fi〉 =
[F0,F1,F2,F3,F4,F5,F6,F7,F8]�. Then, the BGK LBE
reads as follows,

fi(x + �tci ,t + �t) = fi(x,t) + �(x,t) (1)

+ 1
2 [Fi(x,t) + Fi(x + �tci ,t + �t)], (2)

where the time step is �t = 1 and �(x,t) is the collision
operator. In order to remove the implicitness in Eq. (1), the
following transformation [28,29] is applied,

f
†
i (x,t) = fi(x,t) − 1

2Fi(x,t). (3)

Then, the LBE equation can be rewritten as

f
†
i (x + �tci ,t + �t) = f

†
i (x,t) + �(x,t) + Fi(x,t). (4)

As usual, this process is split into two parts, which are called
collision,

f
†�
i (x,t) = f

†
i (x,t) + �(x,t) + Fi(x,t), (5)

and streaming,

f
†
i (x + �tci ,t + �t) = f

†�
i (x,t), (6)

respectively. Here and henceforth, the superscript � denotes
postcollision quantities and the dependence on x and t is
implicitly assumed. Macroscopic variables can be computed
as

ρ =
∑

i

f
†
i , ρu =

∑
i

f
†
i ci + 1

2
F�t, (7)

where ρ is the fluid density, and u = [ux,uy] and F = [Fx,Fy]
are the flow velocity and external force vectors, respectively.

Now, let us build the forcing operator in terms of central
moments. According to He et al. [31], the forcing term can be
written as

Fi = F
ρ

· c̄i

c2
s

f
eq
i , (8)

where the equilibrium populations are

f
eq
i = wiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
. (9)

Lattice directions shifted by the local fluid velocity are

c̄i = [|c̄xi〉,|c̄yi〉], (10)

where

|c̄xi〉 = |cxi − ux〉,
(11)

|c̄yi〉 = |cyi − uy〉.
The lattice sound speed is cs = 1/

√
3 and the weighting factors

are w0 = 4/9, w1...4 = 1/9, and w5...8 = 1/36. We adopt a

basis defined as

T̄ = [|T̄0〉, . . . ,|T̄i〉, . . . ,|T̄8〉]. (12)

The reader can refer to Refs. [21,28,32] for the expressions of
each component of the basis. Consistently, CMs of the forcing
term are defined as

|ξi〉 = [ξ0, . . . ,ξ8]�. (13)

We propose to compute these quantities as

|ξi〉 = T̄ �|Fi〉, (14)

resulting in the following expressions:

ξ0 = 0,

ξ1 = Fx,

ξ2 = Fy,

ξ3 = −3(Fxux + Fyuy)
(
u2

x + u2
y

)
,

ξ4 = −3(Fxux + Fyuy)
(
u2

x − u2
y

)
,

ξ5 = 3uxuy(Fxux + Fyuy),

ξ6 = 9Fxu
3
xuy + 9Fyu

2
xu

2
y + Fy/3,

ξ7 = 9Fxu
2
xu

2
y + 9Fyuxu

3
y + Fx/3,

ξ8 = −18u2
xu

2
y(Fxux + Fyuy)

− 3uxuy(Fxuy + Fyux) − Fxu
3
x − Fyu

3
y. (15)

It is worth stressing that the practical implementation of the
set of |ξi〉 = [ξ0, . . . ,ξ8]� represents an easy task. In fact,
one can simply solve Eq. (14), instead of coding directly
the above-mentioned formulas. This is particularly worthy
to be noted if a three-dimensional model is adopted. Let
us denote as |ki〉 = [k0, . . . ,k8]�, |keq

i 〉 = [keq
0 , . . . ,k

eq
8 ]

�
, and

|k�
i 〉 = [k�

0, . . . ,k
�
8]� the basis of precollision, equilibrium,

and postcollision central moments of the populations. The
members of the first and second groups are evaluated according
to Ref. [32]. Then, the collision stage is performed as

k�
i = ki + ωi

(
k

eq
i − ki

) − 1
2ξi, i = 1 . . . 8, (16)

where ωi is the relaxation frequency associated with the
moment ki . Notice that k0 is collision invariant. The presence of
the last term in the right-hand side obeys Eq. (3). Furthermore,

postcollision populations |f †�
i 〉 = [f †�

0 , . . . ,f
†�
8 ]

�
are recon-

structed by solving T̄ �|f †�
i 〉 = |k�

i 〉 and, eventually, these are
streamed by Eq. (6) [32].

In the Supplemental Material, a script [33] allows the
reader to perform the symbolic manipulations to obtain all
the involved quantities.

B. Three-dimensional model

In three dimensions, let us consider the D3Q27 model.
In this case, the Eulerian basis is x = [x,y,z], and the fluid
velocity and external force vectors are u = [ux,uy,uz] and
F = [Fx,Fy,Fz], respectively. The transformed populations

are defined as |f †
i 〉 = [f †

0 , . . . ,f
†
26]

�
and the lattice velocity
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vectors are

|cxi〉 = [0,1, − 1,0,0,0,0,1, − 1,1, − 1,1, − 1,1, − 1,

0,0,0,0,1, − 1,1, − 1,1, − 1,1, − 1]�,

|cyi〉 = [0,0,0,1, − 1,0,0,1,1, − 1, − 1,0,0,0,0,1,

−1,1, − 1,1,1, − 1, − 1,1,1, − 1, − 1]�,

|czi〉 = [0,0,0,0,0,1, − 1,0,0,0,0,1,1,1, − 1,

1,1, − 1, − 1,1,1,1,1, − 1, − 1, − 1, − 1]�. (17)

Moreover, the weights are set to w0 = 8/27, w1...6 = 2/27,
w7...18 = 1/54, w19...26 = 1/216. Equations (11) are completed
by

|c̄zi〉 = |czi − uz〉, (18)

as now c̄i = [|c̄xi〉,|c̄yi〉,|c̄zi〉]. Now, the integer index i

assumes the values i = 0 . . . 26. Let us employ the following
basis,

T̄ = [|T̄0〉, . . . ,|T̄i〉, . . . ,|T̄26〉], (19)

whose components are outlined in Refs. [29,30]. In this case,
the central moments are |ξi〉 = [ξ0, . . . ,ξ26]� and can be easily
computed, again, by Eq. (14). Postcollision central moments
are evaluated by Eq. (16). Then, populations are reconstructed
and streamed, as usual. The resultant expressions of ξ0...26 are
quite long and are not reported herein. However, as for the two-
dimensional case, a script [33] is added to the Supplemental
Material to derive the entire three-dimensional formulation.
Here, we have derived the scheme for the D2Q9 and D3Q27
models. Notice that the same procedure can be adopted for any
lattice velocity space.

III. NUMERICAL EXPERIMENTS

Here, we report our results concerning three different tests.
In each scenario, the density field is initialized as ρ(x,0) = ρ0

everywhere, with ρ0 = 1, and the D2Q9 model is adopted.
Moreover, the performance of the present model, SPresent, is
compared to the one achieved by implementing the exact
difference method [27], SEDM, and the model proposed by
Premnath et al. [28], SPremnath.

A. Driving forces: Four-rolls mill

Let us consider a square periodic box of size N × N , where
the fluid is initially at rest. Let us apply a constant force field,
that is,

F(x) = φ[sin(x) sin(y), cos(x) cos(y)]. (20)

with φ = 2νu0ψ
2. Then, the pressure and velocity fields must

converge to a steady state that reads as follows,

p(x) = p0

[
1 − u2

0

4c2
s

[cos (2ψx) − cos (2ψy)]

]
,

u(x) = u0[sin (ψx) sin (ψy), cos (ψx) cos (ψy)], (21)

where u0 = 10−3, ψ = 2π/N , and p0 = ρ0c
2
s . This test is

known as four-rolls mill and is a modification of the canonical
Taylor-Green vortex [34]. Simulations characterized by differ-
ent grid sizes are carried out, i.e., N = [8,16,32,64,128], at a

FIG. 1. Four-rolls mill: The slope of the line fitting our results
(triangles) indicates a convergence rate of 1.997.

Reynolds number Re = u0N/ν equal to 100. The performance
of our scheme is elucidated by computing the relative discrep-
ancy between analytical predictions and numerical findings.
For this purpose, the vectors ran and rnum are introduced,
storing the values of the velocity field from Eq. (21) and those
provided by our numerical experiments, respectively. Then,
the relative error is computed as

err = ‖ran − rnum‖
‖ran‖ (22)

and is depicted in Fig. 1 as a function of the grid dimension. An
excellent convergence rate equal to 1.997 is found that is totally
consistent with the second-order nature of the LB equation. We
repeated the experiment by adopting the EDM and the scheme
developed in Ref. [28]. In Table I, the relative error achieved by
each method is reported for every grid resolution. The model in
Ref. [28] manifests an outlier for the coarsest grid resolution.
It is found that the EDM possesses the best performance, even
if a very slight mismatch emerges with respect to findings
achieved by the remaining models. In fact, each one shows a
convergence rate ∼2.

B. Magnetohydrodynamic forces: Orszag-Tang vortex

By considering an electrically conductive fluid, at the
macroscopic level the fluid dynamics obeys the incompressible
Navier-Stokes equations accounting for the Lorentz force,
completed by the magnetic induction equation for the space-
time evolution of the magnetic field, namely, b = [bx,by,bz].

TABLE I. Four-rolls mill: Percentage relative errors and conver-
gence rate achieved by different forcing schemes. Convergence rates
(CR) are computed by excluding findings at N = 8.

N SPresent SEDM SPremnath

8 10.120 10.112 28.487
16 2.5608 2.5567 2.558
32 0.64223 0.64013 0.6407
64 0.16129 0.16023 0.16042
128 0.04023 0.03969 0.03984
CR 1.997 2.003 2.001
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The problem is solved through the two-population model
proposed in Ref. [35]. Let us also introduce the current vector
j = [jx,jy,jz]. Consistently, it is possible to define the Lorentz
force as FL = j × b. In Ref. [35], it has been argued that
the effect of the Lorentz force in the Navier-Stokes equations
can be accounted for directly in the equilibrium distribution
functions of the velocity field. Conversely, here we propose a
different approach. Specifically, we use FL = [FLx,FLy,FLz]
as an external force that is inserted in a CM-based algorithm
by means of our proposed scheme. To obtain the Lorentz
force, the current field is required. Its components can be
evaluated locally from the particle distribution functions
[36] as

jα = −ωm

θ

[∑
i

(ciβgiγ − ciγ giβ) − 2(uβbγ − uγ bβ)

]
, (23)

where α, β, and γ span the Eulerian basis. Notice that the
quantity θ is equal to c2

s in two dimensions, whereas it assumes
the values of 1/4 in a three-dimensional model [35,36]. The
relaxation frequency ωm is linked to the magnetic resistivity η

as η = ( 1
ωm

− 1
2 )θ .

It can be observed that the fluid velocity u depends on FL

that is in turn related to u itself. In order to make accurate
computations, we develop an iterative scheme to address the
correct value of the Lorentz force at each grid point. Within
the typical time step and at the generic location x, this process
can be summarized as follows.

(1) Compute the magnetic field, the density, and Lorentz
force-free velocity ũ. The latter is

ũ = 1

ρ

∑
i

fici . (24)

(2) Define the quantity j
‡
x ,j

‡
y ,j

‡
z as

j ‡
x =

∑
i

(ciygiz − cizgiy),

j ‡
y =

∑
i

(cizgix − cixgiz), (25)

j ‡
z =

∑
i

(cixgiy − ciygix).

(3) Estimate the tentative value of the current:

j (0)
x = −ωm

θ
[j ‡

x − 2(ũybz − ũzby)],

j (0)
y = −ωm

θ
[j ‡

y − 2(ũzbx − ũxbz)], (26)

j (0)
z = −ωm

θ
[j ‡

z − 2(ũxby − ũybx)].

(4) Perform the following procedure starting with the
iteration counter p = 0.

(a) Evaluate the three components of the Lorentz force:

F
(p)
Lx = bzj

(p)
y − byj

(p)
z ,

F
(p)
Ly = bxj

(p)
z − bzj

(p)
x , (27)

F
(p)
Lz = byj

(p)
x − bxj

(p)
y .

(b) Correct the fluid velocity:

u(p) = ũ + 1

2ρ
F(p)

L . (28)

(c) Update the current:

j (p+1)
x = −ωm

θ

[
j ‡
x − 2

(
u(p)

y bz − u(p)
z by

)]
,

j (p+1)
y = −ωm

θ

[
j ‡
y − 2

(
u(p)

z bx − u(p)
x bz

)]
, (29)

j (p+1)
z = −ωm

θ

[
j ‡
z − 2

(
u(p)

x by − u(p)
y bx

)]
.

(d) Check the convergence criterion:

|j (p+1) − j (p)|
|j (p+1)| � 10−4, (30)

with j = ‖ j‖.
(e) If Eq. (30) is not satisfied, go to step 4(a) and increase

the counter p by 1. Otherwise, exit.
Then, the final value of FL is incorporated in the LBE.

Interestingly, the above-sketched algorithm is drastically sim-
plified in two dimensions, where the current vector possesses
only one nonzero component.

Let us assume a two-dimensional configuration. We test our
formulation against the Orszag-Tang vortex problem [35,37].
A square periodic box of length 2π is considered with a
Reynolds number of Re ≈ 628. Initial conditions are defined
as

u(x,0) = v0[− sin(hy), sin(hx)], (31)

b(x,0) = b0[− sin(hy), sin(2hx)], (32)

where h = 2π/M , with M = 512 being the number of grid
points in the x and y directions. The values of v0 and b0

are chosen in order to carry out numerical experiments at a
Mach number Ma = v0/cs ≈ 0.0028. Notice that the Reynolds
and magnetic Prandtl numbers are defined as Re = v0N/ν

and Pr = ν/η = 1, respectively. In Table II, our findings are
compared to results from pseudospectral simulations [35]
in terms of peak values of the current, jmax = maxx j (x),
and vorticity, ζmax = maxx |∇ × u(x)|, at two representative
time instants, i.e., t = 0.5,1. Let us introduce the quantities
err1, err2, and err3. These are computed through Eq. (22),
hence measuring the accuracy of the results achieved by
the present model, the EDM, and the scheme in Ref. [28]
against the reference values [35]. Our values are highly
satisfactory. In fact, the relative difference between the
present and spectral results from Ref. [35] exhibit a slight
discrepancy ranging between 0.1% and 0.7%. Interestingly,
all the adopted schemes are accurate, with our proposed
one showing the best performance for all the monitoredbrk
quantities. The contour maps of the magnetic, current, velocity,
and vorticity fields are depicted in Fig. 2. It is possible to appre-
ciate that the adopted grid resolution is able to capture fine flow
features. Moreover, progressively larger gradients of all the re-
ported quantities appear in time. This observation corroborates
findings in Table II, where the errors are found to increase with
t . In addition, it is consistent with the seminal contribution
in Ref. [35], where the same time-dependent pattern of the
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TABLE II. Orszag-Tang vortex: Findings from our scheme, EDM [27], model in Ref. [28], and reference spectral values from Ref. [35] in
terms of the peak value of the current, jmax, and vorticity, ζmax, at two representative time instants, together with the percentage relative errors.

t Ref. [35] SPresent SEDM SPremnath err1 (%) err2 (%) err3 (%)

jmax 0.5 18.24 18.26 18.27 18.26 0.1096 0.1645 0.1096
1 46.59 46.66 46.69 46.66 0.1502 0.2146 0.1502

ζmax 0.5 6.758 6.756 6.756 6.755 0.0296 0.0296 0.0444
1 14.20 14.11 14.10 14.10 0.6338 0.7042 0.7042

FIG. 2. Orszag-Tang vortex: Contour maps of the magnitude of velocity (first row), vorticity (second row), magnetic field (third row), and
current (fourth row) at t = 0.25 (first column), 0.5 (second column), 0.75 (third column), and 1 (fourth column). Numbering proceeds from
the top to the bottom of the page and from left to right.
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TABLE III. Oscillating cylinder in a quiescent fluid: The quan-
tities e1 and e2 are provided by different approaches and reference
values from the literature [39,44,45].

Ref. [39] Ref. [44] Ref. [45] SPresent SEDM SPremnath

e1 2.09 2.10 2.10 2.10 2.10 2.10
e2 1.45 1.45 1.45 1.45 1.45 1.45

error is experienced. Finally (and again in agreement with
Ref. [35]), notice that the presence of finite values of resistivity
and viscosity visibly affects our plots, especially if compared
to the perfectly conducting and inviscid case in Ref. [38].

C. Forces prescribing the no-slip condition on an immersed
moving boundary: Oscillating cylinder in a quiescent fluid

The last comparison is performed by investigating the flow
physics induced by the harmonic motion of a cylinder of

diameter D = 100 in a calm viscous fluid [39]. The presence
of a moving body is accounted for by the immersed boundary
method [40]. In short, it generates a body force that enforces the
no-slip condition at the fluid-boundary interface. Therefore,
we use this quantity in our proposed forcing operator. The
interested reader can refer to Ref. [41] for an in-depth discus-
sion about the adopted lattice Boltzmann-immersed boundary
model. The fluid domain consists of 55D × 35D lattice points
in the horizontal and vertical directions, respectively. The
cylinder is initially placed in the center of the fluid domain
and it undergoes a horizontal harmonic motion of period T

and velocity v(t) = −V cos (2πt/T ), with V = 0.01 being
the peak value. The governing parameters of the flow are
the Reynolds number, Re = V D/ν = 100, and the Keulegan-
Carpenter number, KC = V T/D = 5.

According to Ref. [42], the horizontal force acting on the
cylinder, namely, Qx , can be computed by a semiempirical
formula, i.e.,

Qx = − 1
2e1ρDv|v| − 1

4e2πρD2v̇, (33)

FIG. 3. Oscillating cylinder in a quiescent fluid: Map of velocity magnitude at different time instants, i.e., t/T = 2 (top left), 2.25 (top
right), 2.5 (middle left), 2.75 (middle right), and 3 (bottom).
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where a superimposed dot indicates the time derivative. The
quantities e1 and e2 are the drag and added-mass coeffi-
cients [42]. These are evaluated by a non-linear least-square
fit with the MATLAB curve fitting toolbox [43]. Specifically,
the force signal has been fitted by neglecting the first cycle of
oscillation, thus avoiding any issue related to initial transient
dynamics. Then, two subsequent cycles have been used. Our
findings and those provided by implementing the schemes in
Refs. [27,28] are reported in Table III and are compared to
reference values from the literature [39,44,45]. An excellent
agreement is shown.

Finally, the velocity field induced by the motion of the
cylinder is shown in Fig. 3 during a period of oscillation, i.e.,
t/T ∈ [2 : 3]. At t/T = 2.25 and t/T = 2.75, the cylinder
stops its motion. Here, it is particularly worth noting that the
fluid travels around its surface and the velocity vanishes close
to the boundary. This manifests clearly that the impenetrability
of the cylinder surface is very well enforced by our scheme.

IV. CONCLUSIONS

Under the same assumption of the works by Premnath
et al. [28,29] (i.e., the representation of the forcing term
according to He et al. [31]), we have demonstrated that there
is an alternative way to construct an external source operator.
In particular, the most advantageous aspects of our proposed
approach are as follows.

(1) Generality: The method can be developed for any lattice
space without ad hoc derivations.

(2) Intelligible derivations: The analytical formulation is
light, even in three dimensions, as it does not require the
binomial theorem and the usage of raw moments.

(3) Practical implementation: No cumbersome expressions
are involved in the computations, as CMs of the forcing term
can be computed by Eq. (14).

Moreover, the model has shown very high accuracy and
convergence properties that are fully consistent with other
existing approaches.
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