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Two Distinct Seasonally Fractionally Differenced Periodic Processes

This article is devoted to study the e¤ects of the S-periodical fractional di¤erencing …lter (1 L S ) D t . To put this e¤ect in evidence, we have derived the periodic auto-covariance functions of two distinct univariate seasonally fractionally di¤erenced periodic models. A multivariate representation of periodically correlated process is exploited to provide the exact and approximated expression auto-covariance of each models. The distinction between the models is clearly obvious through the expression of periodic auto-covariance function. Besides producing di¤erent auto-covariance functions, the two models di¤er in their implications. In the …rst model, the seasons of the multivariate series are separately fractionally integrated. In the second model, however, the seasons for the univariate series are fractionally co-integrated. On the simulated sample, for each models, with the same parameters, the empirical periodic autocovariance are calculated and graphically represented for illustrating the results and support the comparison between the two models.

Introduction

Since their introduction by [START_REF] Gladyshev | Periodically correlated random sequences[END_REF][START_REF] Gladyshev | Periodically and almost PC random processes with continuous time parameter[END_REF] much attention has been given to periodically correlated processes. The interest, for such processes is due to their potential use in modeling of cyclical phenomena appearing in hydrology, climatology and in econometrics. Following pioneer work of [START_REF] Gladyshev | Periodically and almost PC random processes with continuous time parameter[END_REF], an important part of the literature has been devoted to the periodically correlated discrete time processes. A discrete time process is periodically correlated, if there is a non zero integer S such that E (Xt+S) = E (Xt) and Cov(Xt 1 +S ; Xt 2 +S ) = Cov(Xt 1 ; Xt 2 ):

A review of the periodically correlated discrete time processes is proposed in [START_REF] Lund | Modeling and inference for periodically correlated time series[END_REF], Bentarzi and Hallin (1994) give invertibility conditions for periodic moving average.. A large part of the literature on the subject is devoted to the periodic ARM A (P ARM A) models, which have the following representation: Xt p t X i=0 i;t Xt i = q t X j=0 j;tut j , t = 0; 1; 2; ::::; 2 where ut is a zero-mean white noise with variance 2 t . Among searchers who were interested with the periodic autoregressifs processes not periodically stationary, we cite [START_REF] Peter Boswijk | Testing for periodic integration[END_REF] which studied the problem of the presence of a unit root in a periodic autoregression model of order p (P AR(p)) and Boswijk, [START_REF] Boswijk | Multiple unit roots in periodic autoregression[END_REF] which studied the presence of multiple unit roots in a periodic autoregression model of order p. All work cited above were made under the assumption that the processes are periodically integrated of order zero (P I(0)), integrated of order one (I(1)) or periodically integrated of order one ((P I(1)). However currently, it well-known that in the scienti…c …elds mentioned above (hydrology, meteorology, econometrics) much of sets of data that have a certain periodicity; have also a long range dependence (or long memory). Such phenomena can be modeled by stationary processes. The stationary processes with seasonal long memory are well know (see for example Gray, Zhang and Woodward (1989): Garma models; Purter- [START_REF] Hudak | An aplication of the seasonal fractionally di erenced model to the monetary aggegrates[END_REF]:Seasonal ARF IM A; Oppenheim, G. and al (2000); ould Haye and al (2003) for references, properties and simulations). Another alternative, to take account of certain periodic phenomena with long memory is to consider nonstationary models (but periodically stationary) such as the periodically correlated processes with long memory. The periodically correlated processes, within the meaning of [START_REF] Gladyshev | Periodically and almost PC random processes with continuous time parameter[END_REF], with long memory did not receive much attention on behalf of the statisticians and the probabilists. Among works associating periodicity within the meaning of [START_REF] Gladyshev | Periodically and almost PC random processes with continuous time parameter[END_REF] and the presence of long memory we cite, Hui and Li (1995), Franses and Ooms (1997), [START_REF] Ooms | A seasonal periodic long memory model for monthly river ‡ows[END_REF]:

For modelling of the Hong Kong United Christian Hospital attendance series, [START_REF] Hui | On fractionally di¤erenced periodic processes[END_REF] propose a 2-periodic correlated process,

(1 L) d t Yt = ut;
(1:1)

where fut; t 2 Zg is a zero mean white noise with variance 2 t , and dt the 2-periodic fractional parameter. The empirical series yt concerns seventy …ve (approximately one and half years) data on the average number of people entering the emergency unit on weekday and weekend.

On the other hand, in order to analyzes the long-memory properties in the conditional mean of the quarterly in ‡ation rate in the United Kingdom [START_REF] Franses | A periodic long memory model for quartely UK in ‡ation[END_REF] propose a 4-periodic correlated process,

Yt = (1 L) d t ut; (1:2)
where fut; t 2 Zg is de…ned as above and dt is the 4-periodic fractional parameter.

Finally, for the monthly empirical data, which concern the log transformed data of the monthly mean river ‡ow in cubic feet per second, [START_REF] Ooms | A seasonal periodic long memory model for monthly river ‡ows[END_REF] propose to use the seasonal periodic fractional operator de…ned, in simple framework as follows,

Yt = (1 L S ) D t ut; S = 12 (1:3)
where fut; t 2 Zg is de…ned as above and S = 12.

The main di¤erence between, the one hand, the models (1:1) and (1:2) and the other hand, the model (1:3), is in the unit of lag to which the fractional di¤erence operator is applied. In the models (1:1) and (1:2) the fractional di¤erence operator was applied to weekly and quarterly lags, respectively, corresponding to the basic time interval of the time series analyzed. In the model (1:3) the fractional di¤erence operator was applied to yearly, which is the seasonal lag of the time series analyzed. Indeed, by using a binomial expansion for the di¤erence operator (1 L) d t , (1 L) d t , (1 L S ) d t we can rewrite, respectively, the models (1:1), (1:2) and (1:3) as the following,

1 X j=0 (j dt) (j + 1) ( dt) Yt j = ut; (1:4) Yt = 1 X j=0 (j + dt) (j + 1) (dt) ut j ; (1:5) Yt = 1 X j=0 (j + Dt) (j + 1) (Dt) ut Sj : (1:6) 
where

(z) = R +1 0 s z 1 e z ds; if z > 0 1 if z = 0; if z < 0, (z)
is de…ned in terms of the above expressions and the recurrence formula z (z) = (z + 1).

While, the invertibility and stationarity conditions of the model (1:3) are known (see [START_REF] Ooms | A seasonal periodic long memory model for monthly river ‡ows[END_REF], apart when dt = d is a constant, nothing is clear about the models (1:1) and (1:2). More precisely, no thing is clear about the stationarity conditions for the model (1:1), because his in…nite moving average representation is unknown and no thing is clear about the invertibility conditions for the model (1:2), because his in…nite autoregressive representation is unknown. The model (1:3) is invertible and stationary if 0:5 < Dt < 0:5 and it is easy to show in this case that the in…nite autoregressive representation of the process yt is given by

1 X j=0 (j Dt) (j + 1) ( Dt)
Yt Sj = ut:

For the model (1:4), at any case, in general, we have,

Yt 6 = 1 X j=0 (j + dt) (j + 1) (dt) ut j ;
and for the model (1:5), at any case, in general, we have,

1 X j=0 (j dt) (j + 1) ( dt)
Yt j 6 = ut:

For the particular periodic ARF IM A(0; dt; 0), namely (1 L) d t yt = ut; ut i:i:d(0; 2 t ), the in…nite moving average representation is unknown. In this paper, we give the closed form of this representation. It is important to known such representation in order to deduce the stationarity condition of this type of model. Unfortunately, the closed form obtained is not easy to handle due to her parametric complexity (see Appendix).

Since the P ARF IM A(p; dt; q) is not easy to handle. The work that we present in this article is concerned only on the Seasonal periodical fractional operator, namely (1 L S ) D t . More Precisely, in this work we are interested in certain theoretical properties of the SP ARF IM A(p; 0; 0)(0; Dt; 0)S (Seasonal periodic ARF IM A). The study of the theoretical properties of this class of models remains to be made; because among works which evoke this class, only one exists; that is of [START_REF] Ooms | A seasonal periodic long memory model for monthly river ‡ows[END_REF] where Dt is S-periodical fractional parameter. The model above, if 0 Dt < 0:5, 8t can be written as follows:

(1 L S ) D t t (L) (Xt t ) = ut; t 2 Z: (M odel(I))
There is another class of models SP ARF IM A(p; 0; 0)(0; Dt; 0)S distinct from that used by [START_REF] Ooms | A seasonal periodic long memory model for monthly river ‡ows[END_REF]; this class is de…ned as follows:

t (L)(1 L S ) D t (Xt t ) = ut; t 2 Z; (M odel(II))
where t , t (L), Dt are de…ned like above. These two classes coincide, only if Dt = D; 8t, since, generally, the composition of t (L) and

(1 L S ) D t is not necessarily commutative. To convince, it is su¢ cient to notice that the S-variate representation of the model (I) is a V ARF I model (vector autoregressive model, driven by fractionally integrated innovation) whereas the multivariate writing of the model (II) is a F IV AR model (fractionally integrated vector autoregression) (see Rebecca Sela and Cli¤ord Mr. Hurvich (2008)). These two distinct classes, generalize the univariate model ARF IM A, the …rst is closely related to the cointegrated processes, whereas the second is closely related to the integrated processes. Consequently, in our case, the model (I) is closely related to the cointegrated season and the model (II) is closely related to the integrated season.

In order to distinguish between the model (I) and (II), we note them, respectively as the following: P AR(p) P SF I(Dt) and P SF I(Dt) P AR(p). The rest of this paper is organized as follows: section 2 is devoted to de…ned two class of processes; the periodic autoregressive of order p process with periodic seasonal fractional integrated of order Dt innovation, namely P AR(p) P SF I(Dt) and the periodic seasonal fractional integrated process, periodic autoregressive of order p, namely P SF I(Dt) P AR(p). In section 3, for each model de…ned in section 2, we provide the exact and approximated expression of the periodic autocovariances function. In the section 4, on the simulated samples for each model, with the same parameters for the model (I) and (II), the empirical periodic autocovariances are calculated and graphically represented for illustrating the theoretical results and comparison between the two models.

Without restricting the generality, we suppose that all processes de-…ned below have zero mean.

Representation and notation 2.1 S-periodical seasonally fractionally integrated, periodic autoregressive process (P SF I(D t ) P AR(p))

A periodically correlated process fYt; t 2 Zg is said S-periodical seasonally fractionally integrated of order Dt, periodic autoregressive of order p; if it has the following representation:

t(L)(1 L S ) D t Yt = ut; t 2 Z; (2:1) 
where fut; t 2 Zg is a zero mean white noise with variance and ( i) s;j = iS+s j;s ; s; j = 1; :::; S and 1 i P:

The periodic stationarity condition of the model (2:2) is the same as the stationarity condition of it equivalent fractional integrated vector autoregression, namely F IV AR, (Rebecca Sela and Cli¤ord Hurvich (2008)) representation (2:2), which means that the roots of the determinantal equation :::

P L P and [ (L)] 1 = (L) = 1 P j=0 j L j , with ( j ) j2N
is sequence of absolutely summable matrix i.e. 

Yi; = (1 L S ) D i (L) 1 i u (2:4) 
where (L) 1 i is the ith rows of (L) 1 . From (2:4) we see clearly that,

Yi; is integrated of order Di; i = 1; :::; S:

Periodic autoregressive, S-periodical seasonally fractionally integrated process (P AR(p) P SF I(D t ))

A periodically correlated process fZt; t 2 Zg is said, periodic autoregressive of order p; S-periodical seasonally fractionally integrated of order Dt if it has the following representation: 

t(L)Zt = (1 L S ) D t ut; t 2 
( (L)) i Z = (1 L S ) D i ui;
where (L) = 0 1L ::: P L P and ( (L)) i is the ith rows of (L), this means that the ith relation of (2:6) is integrated of order Di. Among the S relations of (2:6), those which are integrated of order lower than max where (L) 1 i;s is (i; s) th element of the matrix (L) 1 . Zi; is written like linear combination of S independent processes, respectively, integrated of order D1; :::; Ds; :::; DS; consequently Zi; is integrated of order max 1 i S Di [START_REF] Granger | Developements in the study of Cointegrated Economic Variables[END_REF]).

Periodic autocovariances

This section deals with the determination of theoretical periodic autocovariances of periodically correlated processes de…ned in precedent section.

P SF I(D t ) P AR(p) periodic autocovariances

Theorem 1 Given the stationary S-variate process Y de…ned by (2:2), we have

Y (h) h h D 0:5 i A h h D 0:5 i , as h ! 1 (3:1)
where the (i; k) th element of S S matrix A is:

(1 Di D k ) (D k ) (1 D k ) 0 i k
with 0 i is the ith rows of the matrix and = diag( 2 1 ; :::; 2 s ; :::; 2 S ). Proof. See Ching-Fan [START_REF] Chung | Sample Means, Sample Autocovariances, and Linear Regression of Stationary Multivariate Long Memory Processes[END_REF].

Corollary 2 Given the process Yt de…ned in (2:1), we have:

(s) (j) (h+ ) Ds+D s+ S 1 (1 Ds D s+ S ) (D s+ S ) (1 D s+ S ) 0 s s+ S ; (3:2)
where h and are integers such as j = h S + , and j > 0, i.e. j

[h] with 0 < S 1 and is de…ned as follows:

= 0; if 1 s + < S; = 1, if S + 1 s + 2S 1;
0 s is the sth rows of the matrix and = diag( 2 1 ; :::; 2 s ; :::; 2 S ). Proof. The proof of the corollary, rises directly from theorem 1. From theorem 1, we have :

(i;k) Y (h) h (D i +D k 1) (1 Di D k ) (D k ) (1 D k ) 0 i k ; (3:3) 
where

(i;k) Y (h) = Cov(Yi; ; Y k; +h ) are the (i; k) th element of the covariance matrix of Y (h). Moreover, it is known that (s) (j) = Cov(YS +s; YS +s+j ) = Cov(Ys; ; Ys+j; ): (3:4) 
Putting j = Sh + with 0 < S 1, by replacing j by Sh + in (3:4), we have (s) (j) = Cov(Ys; ; Y s+ ; +h ):

(3:5)
According to the value of (s + ), the equality (3:5), becomes

(s) (j) = ( (s;s+ ) Y (h); if 1 s + < S;
(s;s+ S) Y (h + 1); if (S + 1) s + 2S 1:

By using the approximation (3:3), we have:

(s) (j) 8 > > > > > < > > > > > : h (Ds+D s+ 1) (1 Ds D s+ ) (D s+ ) (1 D s+ ) 0 s s+ ; if 1 s + < S; (h + 1) (Ds+D s+ S 1) (1 Ds D s+ S ) (D s+ ) (1 D s+ S ) 0 s s+ S ; if (S + 1) s + 2S 1;
where 0 s is the sth rows of the matrix and = diag( 2 1 ; :::; 2 s ; :::; 2 S ). From corollary 1; emerges several remarks, the most important are Remark 3 : The periodic autocovariances (s) (j) s = 1; :::; S taper o¤ at di¤ erent hyperbolic rates. If we suppose that min

1 i S Di = D1 and max 1 i S Di =
DS (this does not restrict the generality) than (1) (j), with j 0[S] has the more speedy taper o¤ hyperbolic rate (/ h 2D 1 1 ) and (S) (j), with j 0[S] has the lowest taper o¤ hyperbolic rate (/ h 2D S 1 ). This remark will be largely clari…ed graphically (see section 4, couples of …gures (1a; 1b) to (5a; 5b). The advantage which o¤er by the periodic process is the possibility of representing the graph of the autocovariances in various manners. The autocovariances functions (s) (j); s = 1; :::; S can be represented in the same plot (hui ad Li 1995), or separately. For j = Sh + , with 0 < S 1 we can also represented (s) (Sh + ); = 0; :::; S 1 in the same plot. These are the three kinds of graphs which we will use in the next section.

P AR(p) P SF I(D t ) periodic autocovariances

Before stating the main result of this section, we need some further notation. Let Dmax = max 

Z (j) j 2Dmax 1 A, as j ! 1 (3:6)
where the (i; k) th element of S S matrix A, is: Proof. See Ching-Fan [START_REF] Chung | Sample Means, Sample Autocovariances, and Linear Regression of Stationary Multivariate Long Memory Processes[END_REF].

A(l; m) = (1 2Dmax) (Dmax) (1 Dmax) X i2F 1 (l; i) (m; i) 2
The corollary below, gives the approximated expression, as j ! 1, of the periodic autocovariances function, (s) (j) = cov(ZS +s; ZS +s+j ) of the process Zt, de…ned in (2:5).

Corollary 5 Given the process Zt de…ned in (2:5), we have,

(s) (j) (h+ ) 2Dmax 1 (1 2Dmax) (Dmax) (1 Dmax) X i2F 1 (s; i) (s+ S ; i) 2 i (3:7)
where h and are integers such as j = hS + , and j > 0, i.e. j

[h] with 0 < S 1, and is de…ned as follows:

= 0; if 1 s + < S = 1, if S + 1 s + 2S 1 
and (i; s) is the (i; s) th element of the matrix = [ (1)] 1 = 1 P j=0 j :
Proof. The proof of the corollary, rises directly from theorem 3. From theorem 3, we have :

(l;k) Z (j) j 2Dmax 1 (1 2Dmax) (Dmax) (1 Dmax) X i2F 1 (l; i) (k; i) 2 i (3:8)
where (l;k) Z (j) = Cov(Z l; ; Z k; +j ) is the (i; k) th element of the covariance matrix Z (j). Moreover, it is known that According to the value of (s + ), the equality (3:10), becomes

(s) (j) = ( (s;s+ ) Z (h); if 1 s + < S (s;s+ S) Z (h + 1); if (S + 1) s + 2S 1
By using the approximation (3:8), we have,

(s) (j) 8 > > > > > > > < > > > > > > > : h (2Dmax 1) (1 2Dmax) (Dmax) (1 Dmax) P i2F 1 (s; i) (s + ; i) 2 i ; if 1 s + < S (h + 1) (2Dmax 1) (1 2Dmax) (Dmax) (1 Dmax) P i2F 1 (s; i) (s + S; i) 2 i ; if (S + 1) s + 2S 1 
Remark 6 If D1 = D2 = ::: = DS the periodic autocovariances (s) (j) of the model (2:2) coincide with those of model (2:8)

Remark 7 From corollary 4; we see that the periodic autocovariances (s) (j) s = 1; :::; S taper o¤ at the same hyperbolic rates.

Simulation

In this section we compare the …nite sample of the periodic autocovariances (s) (j) s = 1; :::; 4 of the models (1:3), (2:1) and (2:5) for di¤erent value of D = (D1; D2; D3; D4). The sample size for each model is T = 1000:

The model we consider for the simulation study are

Model A (1 L 4 ) D t Xt = "t
which has the following S-variate representation 0

B B @ (1 L) D 1 0 0 0 0 (1 L) D 2 0 0 0 0 (1 L) D 3 0 0 0 0 (1 L) D 4 1 C C A X = u Model B t(L)(1 L 4 ) D t Yt = ut
which has the following S-variate representation 0 B B @

1 0 0 0:7 0:8 1 0 0 0 0:6 1 0 0 0 0:4 1 1 C C A 0 B B @ (1 L) D 1 0 0 0 0 (1 L) D 2 0 0 0 0 (1 L) D 3 0 0 0 0 (1 L) D 4 1 C C A Y = u Model C (1 L 4 ) D t t(L)Zt = ut which has the following S-variate representation 0 B B @ (1 L) D 1 0 0 0 0 (1 L) D 2 0 0 0 0 ( 1 
L) D 3 0 0 0 0 (1 L) D 4 1 C C A 0 B B @ 1 0 0 0:7 0:8 1 0 0 0 0:6 1 0 0 0 0:4 1 1 C C A Z = u
where u are i:i:d N (0; ) with = diag(1; 1; 1; 1).

Simulated Autocovariances of model A

In …gures 1 to 4, we represent the empirical autocovariances function The …gures 1, illustrate well the theoretical result of theorem 1 and also states that the periodicity is caused by the fractional parameters D = (0:1; 0:2; 0:3; 0:4) (the auto-covariances (s) (j) s = 1; :::; 4 for lag j 0 [START_REF] Franses | A periodic long memory model for quartely UK in ‡ation[END_REF] taper o¤, respectively, at hyperbolic rates, according the value of D. 

Figure 1a

Figure 1b The periodic autocovariances b (s) (j), s = 1; :::; 4, for lag j = 1 to 100, of model B, with D = (0:1; 0:2; 0:3; 0:4); taper o¤ at di¤erent hyperbolic rates 

Figure 4b

The periodic autocovariances (3) 

Figure 1c

Figure 2c The periodic autocovariances b (s) (j), s = 1; :::; 4, for lag j = 1 to 100 and D = (0:1; 0:2; 0:4; 0:4); taper o¤ at the same hyperbolic rates

Simulated comparison between autocovariances of model B and C

In order to compare, both autocovariances b (s) (j), s = 1; :::; 4 for model (B) and model (C) we represent them graphically in the same scale for di¤erent value of D = (D1; D2; D3; D4) (see below). In …gures 5 to 8 we plot the autocovariance sequences b (s) (j), s = 1; :::; 4 of model B and model C in the same scale and with identical parameters ( (L), , and D). The autocovariances sequences di¤er dramatically. Rebecca Sela and Cli¤ord Hurvich (2008) presents a similar conclusion for cross-covariance sequences of bivariate F IV AR(1; D) and V ARF I(1; D) processes with the same parameters. They point out that the …rst model have the series integrated separately (in our case the seasons are integrated separately) and in the second there is cointegration relation between the two series (in our case there are 3 cointegrations relations between the four seasons). This fact, does not explain clearly why there is such di¤erence between the autocovariances of model B and model C. Further more, the taper o¤ hyperbolic rates of the autocovariances of model (C) is equal than the lowest tapper o¤ hyperbolic rate of the autocovariances of model (B), so why the autocovariance sequences di¤er dramatically? The explanation is in explicit results of corollary 3:1 and corollary 3:2. Generally, in the literature of long memory models, attention is focused on the fractional parameters (which associate with hyperbolic tapper o¤ of autocovariance) rather than on autoregressive or moving average parameters and V ("t) included in expression of autocovariance. In the expression (3:4), the autoregressive parameters and V ("t) appears in the following form: 0 are greater than 1 (some are greater than 2, see the diagonal of matrix (4:1)). On the other hand, all values of (s; S) (s + S ; S) 2 S are lower than 1 (except the last value in the diagonal of matrix (4:2).

Conclusion

For Seasonal-Periodic-ARF IM A(p; 0; 0)(0; D; 0) model, allowing the seasonal fractional parameter D to be S-periodic rather than constant we have highlighted the existence of two distinct models (see section 1, model(I) and model (II)). For these two distinct models we have established the exact and approximated expression of the periodic autocovariance. On the simulated sample, for each model, the empirical periodic autocovariance are calculated and graphically represented.

It is clear, through, theoretical and simulated results that it is not easy to distinguish between these two models (the shape of the autocovariance for each model is not su¢ cient). If we consider the general model, namely, Seasonal-Periodic-ARF IM A(p; dt; q)(P; Dt; Q) the situation becomes more complex to handle, because the number of di¤erent models we can distinguish is more than two models. Furthermore, the non seasonal part of the general model (i.e. P ARF IM A(p; dt; q)) did not receive much attention on behalf of the statisticians and the probabilists.
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 1234 Figure 1: The periodic autocovariances b (s) (j), s = 1; :::; 4, for lag j = 1 to 25with D = (0:1; 0:2; 0:3; 0:4) for model A
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 2 Simulated autocovariances of model BFor D = (0:1; 0:2; 0:3; 0:4), the …gures (1a) and (1b) represents the empirical autocovariances b (s) (j) s = 1; :::; 4, respectively, in spike graph and in line graph of the model B. The couples of …gures (2a; 2b) to (5a; 5b) represents the empirical autocovariances b (1) (4h+ ); = 0; :::; 3 to b (4) (4h+ ); = 0; :::; 3, for h = 1 to 25; respectively, in spike graph and line graph, for the model B.

Figure 3b

 3b Figure 2aFigure2bperiodic autocovariances(1) (4h + ); = 0; :::; 3; for …xed h (h = 1 to 25) have tendency to increase according with the value of D1 + D 1+ 4

  (4h + ); = 0; :::; 3; for …xed h (h = 1 to 24) have tendency to increase according with the value of D3 + D 3+ 4 periodic autocovariances b (4) (4h + ); = 0; :::; 3; for …xed h (h = 1 to 25) have tendency to increase according with the value of D4 + D 4+ 44.3 Simulated autocovariances of model CThe …gures (1c) and (2c) represents the empirical autocovariances b (s) (j) s = 1; :::; 4, respectively, in spike graph and in line graph of the model C. The di¤erence between the periodic autocovariances (s) (j), s = 1; :::; 4, for lag j = 1 to 100, decreases at the same manner, mainly because they taper o¤ at the same hyperbolic rates
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 5678 Figure 5: The periodic autocovariances b (s) (j), s = 1; :::; 4, for lag j = 1 to 100; D = (0:1; 0:2; 0:3; 0:4) for respectively, model (B) and model (C)

  and in expression (3:6) it appears in the following form: (s; S) (s + S ; S) 2 S . From model (B) and model (C), the set, of possible values, of these two quantities are respectively:

  . The work of Franses and Ooms has to consist in adjusting a

	SP ARF IM A(p; 0; 0)(0; Dt; 0)S to a set of real data. Precisely the model
	considered by Ooms and Franses is de…ned as follows:
	t (L) (Xt where t is S-periodical constant such as t = t+S , t (L) = 1 t ) = t ; t 2 N , with t = (1 L S ) D t ut;	t;1 L
	t;2 L 2 :::	t;p L p . The parameters t;i i = 1; :::; p are periodic functions
	in t; and t a white noise seasonally fractionally integrated of order Dt,

  2 t and (1 L S ) D t are de…ned like above.

t (L) = 1 t;1 L t;2 L 2 ::: t;p L p where t;1

6 Appendix A Proposition: The in…nite moving average representation of the process, fyt; t 2 Zg ; de…ned by (1:1), is given by yt = ut+

where

: The number terms in the sum "

The number 2 j 1 represent the cardinal sets of k positive integers, namely, (i1; i2; ; i k ), which when summed together give j. Proof. Putting 0( dt) = 1 and

we can rewrite (1:4) as

More generally, we have

Suppose that the in…nite moving average representation of (A1) is given by

we have for the lagged variable yt j ,

By replacing yt j by ut j + P 1 k=1 k (t j)u t j k in (A1), we obtain

Let j;k 0 (t j) = j ( dt) k 0 j (t j), then we can rewrite (A5) as,

We can rewrite (A6) as, From (A8), the in…nite moving average representation of the process yt is

By identi…cation between (A2) and (A9), we obtain

From (A10), the …rst three coe¢ cients, ( 1(t), 2(t), 3(t)) are:

22 with i l 6 = 0, l 2 1; 3:More generally, we have,