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Introduction

Let n and d be given integers, n ≥ 1, d ≥ 1. We define the following system

a + a r -(n-d) 2 r 2 a -f 2 d b = -(1 -2f 2 d )a b + b r -(n+d) 2 r 2 b -f 2 d a = -(1 -2f 2 d )b (1.1)
and for n = 0, we define the following equation

a + a r -d 2 r 2 a = -(1 -f 2 d )a (1.2)
with the variable r > 0.

Both problems come from the Ginzburg-Landau Theory. Here f d is the only solution of the differential equation

f d + f d r - d 2 r 2 f d = -f d (1 -f 2 d ). (1.3)
with the conditions f d (0) = 0 and lim +∞ f d = 1. The equation (1.3) is entirely studied by Hervé and Hervé in [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau[END_REF].

Let us consider the Ginzburg-Landau equation

-∆u = u(1 -|u| 2 ) in R 2 (1.4) 1
where u takes its values in C. The system (1.1) and the equation (1.2) appear when we linearize the Ginzburg-Landau operator N (u) = ∆u + u(1 -|u| 2 ) around the solutions of the form f d (r)e idθ , d ∈ N . The linearized operator has been studied by several authors, amongst them [START_REF] Lieb | Symmetry of the Ginzburg-Landau minimizer in a disc[END_REF], [START_REF] Mironescu | On the stability of radial solutions of the Ginzburg-Landau equation[END_REF], [START_REF] Lin | The stability of the radial solution to the Ginzburg-Landau equation[END_REF] and [START_REF] Lin | Spectrum of the linearized operator for the Ginzburg-Landau equation[END_REF]. In the third chapter of the book [START_REF] Pacard | Linear and nonlinear aspects of vortices. The Ginzburg-Landau model[END_REF], Pacard and Rivière study the system (1.1) for d = 1. The aim of these authors is the construction of some solutions for the Ginzburg-Landau equation on a bounded connected domain Ω,

-∆u = 1 ε 2 u(1 -|u| 2 ) in Ω u = g in ∂Ω (1.5)
where ε > 0 is a small parameter, u and g having complex values and degree (g, ∂Ω) ≥ 1.

The study of the minimizing solutions of equation (1.1) is in the book of Bethuel, Brezis Hélein, [2].

Let us call a bounded solution of (1.1) any solution (a, b) which is defined at r = 0 and which has a finite limit as r → +∞. Concerning the bounded solutions of (1.1) or (1.2), the following theorem is known Theorem 1.1 For all d ≥ 1 and for n = 0, the real vector space of the bounded solutions of (1.2) is one-dimensional, spanned by f d . For n = 1, the vector space of the bounded solutions of (1.1) is also a one dimensional vector space, spanned by (f d + d r f d , f d -d r f d ). For d = 1 and n ≥ 2, there are no bounded solutions. For d > 1 and for n ≥ 2d -1, there are no bounded solutions.

For all d ≥ 1, the known bounded solutions, for n = 0 and n = 1, come from the invariance of the Ginzburg-Landau equation with respect to the translations and the rotations.

The aim of the present paper is to prove the following Theorem 1.2 For all d ≥ 1 and for all n > 1, the system (1.1) has no bounded solution.

We will have to allow n to be a real parameter. To begin with, let us consider the system a + a r -

γ 2 1 r 2 a -f 2 d b -f 2 d a = -(1 -f 2 d )a b + b r - γ 2 2 r 2 b -f 2 d a -f 2 d b = -(1 -f 2 d )b (1.6)
where γ 1 and γ 2 are real parameters verifying

γ 2 > γ 1 ≥ 0.
Letting x = a + b and y = a -b, we will have to consider also the system verified by (x, y), that is

x + x r -γ 2 r 2 x + ξ 2 r 2 y -2f 2 d x = -(1 -f 2 d )x y + y r -γ 2 r 2 y + ξ 2 r 2 y = -(1 -f 2 d )y (1.7)
with 2. a has the behavior f at 0, and we denote a ∼ 0 f , if there exists a map g, such that lim 0 g = 0, |a -f | = O(f g).

γ 2 = γ 2 1 + γ 2
3. a = o(f ) at 0 if there exists a map g, such that lim 0 g = 0, a = f g.

We will use the same convention at +∞.

We will consider that (d, γ 1 , γ 2 ) is allowed to move into the set

D = {(d, γ 1 , γ 2 ) ∈ (R + ) 3 ; d ≥ 1; γ 2 > 1; 0 ≤ γ 1 ≤ γ 2 < γ 1 + 2d + 2}.
The condition γ 1 ≤ γ 2 < γ 1 +2d+2 and γ 2 > 1 is satisfied for γ 1 = |n-d| and γ 2 = n+d, whenever d ≥ 1 and n ≥ 1. Moreover, we don't need to use more general (γ 1 , γ 2 ) in the course of the paper. We will need the following subsets of D. ; -γ 1 -γ 2 + 2d + 2 > 0; -γ 2 + 2d + 1 > 0}, that is |n -d| < 1 4 .

(1.8)

Let us recall the following expansion for f d (see [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau[END_REF]) for some a > 0.

f d (r) = 1 - d 2 2r 2 + O( 1 r 
Then, we can state the following theorem, about a base of solutions defined near 0.

Theorem 1.3 For all (d, γ 1 , γ 2 ) ∈ D, there exist four independent solutions (a, b) of (1.6) verifying the following conditions 1.

(a 1 (r), b 1 (r)) ∼ 0 (O(r γ 2 +2d+2 ), r γ 2 ) and (a 1 (r), b 1 (r)) ∼ 0 (O(r γ 2 +2d+1 ), γ 2 r γ 2 -1 ).

2.

(a 2 (r), b 2 (r)) ∼ 0 (O(r 2 θ(r)), r

-γ 2 ) if (d, γ 1 , γ 2 ) ∈ D 1 (O(r -γ 2 +2d+2 ), r -γ 2 ) if (d, γ 1 , γ 2 ) ∈ D (a 2 (r), b 2 (r)) ∼ 0 (O(rθ(r)), -γ 2 r -γ 2 -1 ) if (d, γ 1 , γ 2 ) ∈ D (O(r -γ 2 +2d+1 ), -γ 2 r -γ 2 -1 ) if (d, γ 1 , γ 2 ) ∈ D 2 where θ(r) = -r γ 1 -2 +r -γ 2 +2d γ 1 +γ 2 -2d-2 if γ 1 + γ 2 -2d -2 = 0 -r γ 1 -2 log r if γ 1 + γ 2 -2d -2 = 0.

3.

(a 3 (r), b 3 (r)) ∼ 0 (r γ 1 , O(r γ 1 +2d+2 )) and, if γ 1 = 0 (a 3 (r), b 3 (r)) ∼ 0 (γ 1 r γ -1 , O(r γ 1 +2d+1 )) while, if γ 1 = 0, (a 3 (r), b 3 (r)) = (O(r), O(r 2d+1 )).

4.

(a 4 (r), b 4 (r)) ∼ 0 (r

-γ 1 , O(r 2 θ(r)) if (d, γ 1 , γ 2 ) ∈ D 1 (τ (r), O(τ (r)r 2d+2 )) if (d, γ 1 , γ 2 ) ∈ D 2 and (a 4 (r), b 4 (r)) ∼ 0 (r -γ 1 -1 , O(r θ(r)) if (d, γ 1 , γ 2 ) ∈ D 1 (τ (r), O(τ (r)r 2d+2 )) if (d, γ 1 , γ 2 ) ∈ D 2 where θ(r) = -r γ 2 -2 +r -γ 1 +2d γ 1 +γ 2 -2d-2 if γ 1 + γ 2 -2d -2 = 0 -r γ 2 -2 log r if γ 1 + γ 2 -2d -2 = 0 and τ (r) = r -γ 1 -r γ 1 2γ 1 if γ 1 = 0 -log r if γ 1 = 0.
5. For j = 1 and for j = 3, for all r > 0, the maps (d, γ 1 , γ 2 ) → (a j (r), a j (r), b j (r), b j (r)) are continuous in D.

6. For j = 1 and for j = 3, and for all r > 0, (a j (r), a j (r), b j (r), b j (r)) is derivable wrt to γ 1 and wrt γ 2 , whenever (d, γ 1 , γ 2 ) ∈ D, and γ 2 > γ 1 . Moreover the map (d, γ 1 , γ 2 ) → ∂ ∂γ i (a j (r), a j (r), b j (r), b j (r)) is continous, for i = 1 and i = 2. And we have

( ∂a 1 ∂γ i , ∂a 1 ∂γ i , ∂b 1 ∂γ i , ∂b 1 ∂γ i )(r) ∼ 0 log r(O(r γ 2 +2d+2
), O(r γ 2 +2d+1 ), r γ 2 , γ 2 r γ 2 -1 ) (1.11)

and, if γ 1 = 0

( ∂a 3 ∂γ i , ∂a 3 ∂γ i , ∂b 3 ∂γ i , ∂b 3 ∂γ i )(r)
∼ 0 log r(r γ 1 , γ 1 r γ 1 -1 + O(r γ 1 +1 ), O(r γ 1 +2d+2 ), O(r γ 1 +2d+1 )) (1.12)

7. For j = 2 or for j = 4, the same notation (a j , b j ) is used for two solutions, one of them being defined for (d, γ 1 , γ 2 ) ∈ D 1 , the other one being defined for (d, γ 1 , γ 2 ) ∈ D 2 . Moreover, for each domain D i , i = 1, 2 and for all r > 0 the maps (d, γ 1 , γ 2 ) → (a j (r), a j (r), b j (r), b j (r)) are continuous in D i . For each r > 0, the partial derivability of (a j (r), a j (r), b j (r), b j (r)) wrt γ 1 or wrt γ 2 is also true separatly in each domain D i , i = 1, 2.

Let us remark that our method of construction near 0 doesn't permit to obtain smooth solutions wrt the parameter (d, γ 1 , γ 2 ) ∈ D and keeping the behavior of (a 2 , b 2 ) or the behavior of (a 4 , b 4 ) at 0 for all (d, γ 1 , γ 2 ) ∈ D. It is not a problem for us, since in our final proof of Theorem 1.2, we only need two independent smooth solutions wrt (d, γ 1 , γ 2 ) and having bounded behaviors at 0. Also, we don't have to use the derivability of (a 2 , b 2 ) and (a 4 , b 4 ) wrt γ 1 and γ 2 .

The second theorem is about a base of solutions defined near +∞. (u 4 (r), v 4 (r)) ∼ r→+∞ (r n , -r n )(1 + O(r -2 )).

2. Except for j = 2, the construction of (u j , v j ) is done separatly for each compact subset K of D. For each of the four solutions and for all r > 0 the map (d, γ 1 , γ 2 ) → (u j (r), u j (r), v j (r)), v j (r)) is continuous on K. There partial derivatives wrt γ 1 and wrt γ 2 exist whenever γ 1 < γ 2 and are continuous. We have ∼ r→+∞ log r(r -n , O(r -n-1 ), -r -n , O(r -n-1 ))(1 + O(r -2 )).

(
Let us remark that, by our construction, the solution (u j , v j ) depends on the given compact set K, except for j = 2. But, for j = 1, we can say that this difficulty disappears after the proof of Theorem 1.3, since the definition of (a 1 , b 1 ) is the same for all (d, γ 1 , γ 2 ) ∈ D.

For the other solutions, called (u 3 , v 3 ) and (u 4 , v 4 ), we will have to make sure that the parameter (d, γ 1 , γ 2 ) stays in a compact set, as soon as we want and use the continuity and the derivability of these solutions wrt the parameters.

In [START_REF] Beaulieu | Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation[END_REF] we have already give the behaviors of a base of solutions at 0 and at +∞. But the smooth dependence of the solutions wrt the parameters, announced in Theorem 1.3 and Theorem 1.4, was not taken into account in this previous paper. In the present paper, the continuity wrt to (d, γ 1 , γ 2 ), specially of the five solutions (a 3 , b 3 ) and (a 1 , b 1 ) (defined at 0) and (u 1 , v 1 ), (u 2 , v 2 ), (u 3 , v 3 ), (u 4 , v 4 ) (defined at +∞) and there derivability wrt γ 1 and γ 2 , are essential and are not entirely trivial facts. Indeed, although it is clear by the ODE theory that for any given Cauchy data (a 0 , a 0 , b 0 , b 0 ) ∈ R 4 at some r 0 > 0, there exists a solution of (1.6) that is continuous wrt (d, γ 1 , γ 2 ) and derivable wrt γ 1 and γ 2 , it is not clear that this solution keeps the same behavior at 0 and at +∞ for all the values of (d, γ 1 , γ 2 ) ∈ D, and this is generally false. Now, let us rely the problem (1.6) to an eigenvalue problem. Let 0 ≤ γ 1 < γ 2 , µ ∈ R and ε > 0 be given and let us consider the following system a + a r -

γ 2 1 r 2 a -1 ε 2 f 2 a -1 ε 2 f 2 b = -1 ε 2 µ(1 -f 2 )a b + b r - γ 2 2 r 2 b -1 ε 2 f 2 b -1 ε 2 f 2 a = -1 ε 2 µ(1 -f 2 )b (1.13) for r ∈]0, 1], with the notation f (r) = f d ( r ε )
and the condition a(1) = b(1) = 0.

Let us explain in which sense this can be considered as an eigenvalue problem. We define, for a given γ 1 ≥ 0

H γ 1 = {r → (a(r), b(r)); (ae iγ 1 θ , be iθ ) ∈ H 1 0 (B(0, 1)) × H 1 0 (B(0, 1))},
where (r, θ) are the polar coordinates in R 2 .

We endow H γ 1 with the scalar product

< (a, b)|(u, v) >= 1 2π B(0,1) ∇(ae iγ 1 θ ).∇(be iθ )dx = 1 0 (ra u + rb v + γ 2 1 r au + 1 r bv)dr
and then H γ 1 is a Hibert space.

Let H γ 1 be the topological dual space of H γ 1 . We consider the following operator

T γ 1 ,γ 2 : H γ 1 → H γ 1 T γ 1 ,γ 2 (a, b) = -e -iγ 1 θ ∆e iγ 1 θ a + 1 ε 2 f 2 a + 1 ε 2 f 2 b -e -iγ 2 θ ∆e iγ 2 θ b + 1 ε 2 f 2 b + 1 ε 2 f 2 a.
(1.14)

Then we have

< T γ 1 ,γ 2 (a, b), (u, v) > H ,H = 1 2π B(0,1) (∇(e iγ 1 θ a).∇(e -iγ 1 θ u) + ∇(e iγ 2 θ b).∇(e -iγ 2 θ v) + r ε 2 f 2 (a + b)(u + v))dx = 1 0 (ra u + rb v + γ 2 1 r au + γ 2 2 r bv + r ε 2 f 2 (a + b)(u + v))dr.
We remark that

((a, b), (u, v)) → B(0,1) (∇(e iγ 1 θ a).∇(e -iγ 1 θ u) + ∇(e iγ 2 θ b).∇(e -iγ 2 θ v) + 1 ε 2 f 2 (a + b)(u + v))
dx is a scalar product on H γ 1 . So, T γ 1 ,γ 2 is an isomorphism, by the Riesz Theorem. Last, let us define the embedding

I : H γ 1 → H γ 1 (a, b) → ((u, v) → 1 0 r(au + bv)dr) Since the embedding H 1 0 (B(0, 1)) × H 1 0 (B(0, 1)) ⊂ L 2 (B(0, 1)) × L 2 (B(0, 1)) is compact, then I is compact. For µ ∈ R, we define the operator Φ = T γ 1 ,γ 2 - µ ε 2 (1 -f 2 )I. Then T -1 γ 1 ,γ 2 Φ = id Hγ 1 -µT -1 γ 1 ,γ 2 C, where we define C = 1 ε 2 (1 -f 2 )I. (1.15)
Since C is a compact operator and thanks to the continuity of

T -1 γ 1 ,γ 2 , then T -1 γ 1 ,γ 2 C is a compact operator from H γ 1 into itself.
By the standard theory of self adjoint compact operators, we can deduce that the kernel N (T γ 1 ,γ 2 -µC) has a finite dimension in H γ 1 and that the range

R(T γ 1 ,γ 2 -µC) is closed in H γ 1 and that R(T γ 1 ,γ 2 -µC) = N (T γ 1 ,γ 2 -µC) ⊥ . When N (T γ 1 ,γ 2 -µC) = ∅, we say that µ is a C-eigenvalue of T γ 1 ,γ 2 .
There exists a Hilbertian base of H γ 1 formed of eigenvectors of T γ 1 ,γ 2 -1 C. Let x ∈ H γ 1 be an eigenvector associated to an eigenvalue γ of T γ 1 ,γ 2 -1 C. Then γ = 0 and we have

T γ 1 ,γ 2 (x) - 1 γ Cx = 0. Then 1 γ is a C-eigenvalue of T γ 1 ,γ 2 .
In what follows, we simply call µ an eigenvalue. Because of the dependence on ε, we denote it by µ(ε). Now let us define m γ 1 ,γ 2 (ε) as the first eigenvalue for the above eigenvalue problem in H γ 1 , that is Also, m 0 (ε) is realized by some function a(r) ≥ 0.

m γ 1 ,γ 2 (ε) = inf (a,b)∈Hγ 1 ×Hγ 1 /{(0,0)} 1 0 (ra 2 + rb 2 + γ 2 1 r a 2 + γ 2 2 r b 2 + r ε 2 f 2 d ( r ε )(a + b) 2 )dr 1 ε 2 1 0 r(1 -f 2 d ( r ε ))(a 2 + b 2 )dr (1.

16) and let us define

m 0 (ε) = inf a∈H d /{0} 1 0 (ra 2 + d 2 r a 2 )dr 1 ε 2 1 0 r(1 -f 2 d ( r ε ))a 2 dr (1.
We consider that d > 0, that γ 2 > γ 1 ≥ 0 are given and we suppose that

γ 2 2 + γ 2 1 2 > d 2 .
Let µ(ε) be a bounded eigenvalue. Then, we can suppose that

µ(ε) → µ as ε → 0 where µ ≥ 0. Let ω ε = (a ε , b ε )
be an eigenvector associated to µ(ε). We define ωε (r) = ω ε (εr), for r ∈ [0, 1 ε ].

An examination of the proof of Theorem 1.3 gives, for some constants A ε and B ε ,

ωε ∼ r→0 A ε (r γ 1 , o(r γ 1 )) + B ε (o(r γ 2 ), r γ 2 ).
We may suppose that max{|A ε |, |B ε |} = 1. Then by the ODE theory ωε → ω 0 , as ε → 0, uniformly on each compact subset of [0, +∞], where ω 0 = (a 0 , b 0 ) verifies

a 0 + a 0 r - γ 2 1 r 2 a 0 -f 2 d a 0 -f 2 d b 0 = -µ(1 -f 2 d )a 0 b 0 + b 0 r - γ 2 2 r 2 b 0 -f 2 d b 0 -f 2 d a 0 = -µ(1 -f 2 d )b 0 (1.18)
It seems to us that this eigenvalue problem is better suited to our purpose than that used in previous work. Nevertheless, the following theorem can be deduced from previous work on the subject [START_REF] Lieb | Symmetry of the Ginzburg-Landau minimizer in a disc[END_REF], [START_REF] Mironescu | On the stability of radial solutions of the Ginzburg-Landau equation[END_REF], [START_REF] Lin | The stability of the radial solution to the Ginzburg-Landau equation[END_REF] and [START_REF] Lin | Spectrum of the linearized operator for the Ginzburg-Landau equation[END_REF].

Theorem 1.5 For all d ≥ 1, (i) there exists C > 0 and ε 0 > 0 such that, for all ε < ε 0 , m 0 (ε)-1

ε 2 ≥ C; m 0 (ε) → 1 and there exists an associated eigenvector a such that ãε → f d , uniformly on each [0, R], R > 0. (ii) m d-1,d+1 (ε) > 1 and m d-1,d+1 (ε)-1 ε 2 → 0. (iii) for d > 1 and n ≥ 2d -1, there exists C > 0 and ε 0 > 0 such that, for all ε < ε 0 , m |d-n|,d+n (ε)-1 ε 2
≥ C. (iv) There exists an eigenvector ω ε associated to the eigenvalue m d-1,d+1 (ε) such that

(1 -f 2 d ) 1 2 (ω ε -F d ) L 2 (B(0, 1 ε )) → 0, as ε → 0, where F d = (f d + d r f d , f d -d r f d ) appears in Theorem 1.1.
Let us remark that the function f used here (f (r) = f d ( r ε )) is not the same as the one used in the previous works [START_REF] Mironescu | On the stability of radial solutions of the Ginzburg-Landau equation[END_REF], [START_REF] Lin | The stability of the radial solution to the Ginzburg-Landau equation[END_REF] and [START_REF] Lin | Spectrum of the linearized operator for the Ginzburg-Landau equation[END_REF]. For this reason, we will give a direct proof of (i) in the appendix and we will give a proof of (iv) in the course of the paper. The norm L ∞ , used in [START_REF] Lin | Spectrum of the linearized operator for the Ginzburg-Landau equation[END_REF] is a nonsense here, since F d ( 1 ε ) = 0 and ωε ( 1 ε ) = 0.

We have

Proposition 1.1 (i) With the notation above, if µ(ε) → µ, if ωε → ω 0 , if γ 2 2 +γ 2 1 2 -µd 2 > 0 and if ω 0 blows up at +∞, then µ(ε)-1 ε 2 ≥ C,
where C is a given positive number, independent of ε. (ii) If there exists some bounded solution (a, b) of (1.6), then there exists an eigenvalue µ(ε) verifying µ(ε) -1 → 0. With the additional condition

γ 2 2 +γ 2 1 2 -d 2 ≥ 1 and m γ 1 ,γ 2 (ε) ≥ 1, there exists an eigen- value µ(ε) verifying µ(ε)-1 ε 2 → 0.

And we have

Proposition 1.2 Let d > 1 be given. For all n ∈]1, d + 1[, there exists C n > 0 indepen- dent of ε such that m |d-n|,d+n (ε) ≤ 1 -C n .
None of the propositions above are very new, because we have already given the proof of Proposition 1.2, in [START_REF] Beaulieu | Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation[END_REF]. Also, Proposition 1.1 can be found there, but for a slighly different eigenvalue problem.

There are two new results in this paper, that will allow us to reach our goal, that is to prove Theorem 1.2. The first one is that the solution having the least behavior at 0 (ie (a 1 , b 1 ), that tends the faster to 0 as r → 0) blows up exponentially at +∞ and that the solution having the least behavior at +∞ (ie (u 2 , v 2 ), that tends exponentially to 0 as r → +∞) has the greater blowing up behavior at 0. In other words Proposition 1.3 When d > 0 and when γ 2 ≥ γ 1 ≥ 0, (γ 2 2 + γ 2 1 )/2 ≥ d 2 , then the behavior of (a 1 , b 1 ) at +∞ is the behavior of (u 1 , v 1 ) and the behavior of (u 2 , v 2 ) at 0 is the behavior of (a 2 , b 2 ).

The second result is the following

Proposition 1.4 When γ 2 1 +γ 2 2 ε 2
-d 2 > 0, if there exists a bounded solution ω = (a, b) of (1.6), then we have m γ 1 ,γ 2 (ε) -1 → 0 and there exists an eigenvector ω ε = (a ε , b ε ) associated to m γ 1 ,γ 2 (ε) and such that ωε tends to ω, uniformly on each [0, R], R > 0. Propositions 1.3 and 1.4 allow us to achieve the proof of Theorem 1.2. More, we can also enonce Theorem 1.6 For d ≥ 1, n > 1, γ 1 = |n -d| and γ 2 = n + d, there is no eigenvalue µ(ε), with eigenvector in H |n-d| , such that µ(ε)-1 ε 2 → 0, as ε → 0.

Let us remark that the Hilbert space H γ 1 does depend on γ 1 . In other words, the notation m γ 1 ,γ 2 (ε) doesn't mean the continuity on this simple eigenvalue wrt the parameter (γ 1 , γ 2 ). The theorem on this subject, in [START_REF] Crandall | Bifurcation, perturbation of simple eigenvalues and linearized stability[END_REF], doesn't work here.

In Part II and Part III, we give detailed proves of Theorem 1.3 and of Theorem 1.4, although the proves are altogether technical and classical. But these theorems play a crucial role in our final proof. In Part IV, we prove Proposition 1.3. In Part V, in order to make the paper as self contained as possible, we give the proof of Proposition 1.1 and of Proposition 1.2. In Part VI, we give the proof of Proposition 1.4 and also the proof of Theorem 1.5 (iv). We chose to give a direct proof of this claim, since the eigenvalue problem is not exactly the same as in the previous works on the subject and the function f d is not exactly the same, too. In Part VII, we conclude the proof of Theorem 1.2. Last, in the appendix, we give a direct proof of Theorem 1.5 (i). We will use Theorem 1.2 in a separated paper.

The possible behaviors at zero and the dependence of the solutions wrt the parameters

Let us explain the way to prove the existence and the continuity wrt the parameter (d, γ 1 , γ 2 ) ∈ D of a solution having a given behavior at 0, eg the solution (a 1 , b 1 ). We construct some solution (a 1 , b 1 ) such that for all compact subset K of D, there exists some R > 0, depending only on K and some C > 0, also depending only on K, such that for all r ∈]0, R] and all (d, γ 1 , γ 2 ) ∈ K, we have

|a 1 (r)| + |b 1 (r) -r γ 2 | ≤ Cr γ 2 +2d+1
and such that, for all r ∈]0, R], (d,

γ 1 , γ 2 ) → (a 1 (r), a 1 (r), b 1 (r), b 1 (r)
) is continuous on K, and derivable wrt γ 1 and wrt γ 2 . First, the construction is done for r ∈]0, R]. Then the definition of this solution in [0, +∞[ and the continuity wrt (d, γ 1 , γ 2 ) ∈ K, for all r > 0, follows from the ODE Theory. We use a constructive method, similar to the proof of the Banach fixed point Theorem.

For each solution, we define a fixed point problem of the form

(a, b) = Φ(a, b)
whose solutions verify the differential system that we have to solve. Then we define two maps r → ζ 1 (r) and r → ζ 2 (r). In order to construct a solution (a, b), verifying, for each compact subset

K of D, |a(r)ζ -1 1 (r)| + |b(r)ζ -1 2 (r)) -1| ≤ Cr 2
for all r < R and with R and C depending only on K, we define two sequences

α 0 = 0 β 0 = ζ 2 (α k+1 , β k+1 ) = Φ(α k , β k ).
(2.19)

Then, for each compact subset K of D, we prove that for all 0 < r < 1 and for all (d, γ 1 , γ 2 ) ∈ K we have

|α k+1 -α k |(r) ≤ Cζ 1 (r)r 2 ( ζ -1 1 (α k -α k-1 ) L ∞ ([0,r]) + ζ -1 2 (β k -β k-1 ) L ∞ ([0,r]) ), (2.20) |β k+1 -β k |(r) ≤ Cζ 2 (r)r 2 ( ζ -1 1 (α k -α k-1 ) L ∞ ([0,r]) + ζ -1 2 (β k -β k-1 ) L ∞ ([0,r]) ) (2.21) and |α 1 -α 0 |(r) ≤ Cr 2 ζ 1 (r), |β 1 -β 0 |(r) ≤ Cr 2 ζ 2 (r) (2.22)
where C depends only on K.

Then we deduce that

ζ -1 1 (α k+1 -α k ) L ∞ ([0,r]) + ζ -1 2 (β k+1 -β k ) L ∞ ([0,r]) ≤ (Cr) 2k ( ζ -1 1 (α 1 -α 0 ) L ∞ ([0,r]) + ζ -1 2 (β 1 -β 0 ) L ∞ ([0,r]) )
We choose R such that CR < 1 and we define,

for all 0 < r < R a(r) = k=+∞ k=0 (α k+1 -α k ) + α 0 , b(r) = k=+∞ k=0 (β k+1 -β k ) + β 0 . (2.23)
Then we have (a, b) = Φ(a, b) and the continuity of (a(r), b(r)) wrt (d, γ 1 , γ 2 ) follows from the continuity of (α k , β k ) for all k and from the convergence of the sums uniformly wrt (d, γ 1 , γ 2 ) ∈ K. Then we have to prove the uniform convergence wrt (d, γ 1 , γ 2 ) ∈ K of the sums k=+∞ k=0 (α k+1 -α k ), and k=+∞ k=0 (β k+1 -β k ), in order to prove the continuity of (a (r), b (r)) wrt (d, γ 1 , γ 2 ). Then, since the derivability of (a, a , b, b ) wrt γ 1 and wrt γ 2 is needed only for the solutions (a 1 , b 1 ) and (a 3 , b 3 ), we will prove it only for the solution (a 1 , b 1 ), but the proof can be adapted for the other solutions. In what follows, we will use the following forms of the first equation of (1.6)

(r 2γ 1 +1 (ar -γ 1 ) ) = r γ 1 +1 (f 2 d b -(1 -f 2 d )a) (2.24) or (r -2γ 1 +1 (ar γ 1 ) ) = r -γ 1 +1 (f 2 d b -(1 -f 2 d )a) (2.25)
or, when γ 1 may reach 0,

(rτ 2 (τ -1 a) ) = rτ (f 2 d b -(1 -2f 2 d )a) (2.26) 
where

τ (r) = r -γ 1 -r γ 1 2γ 1 if γ 1 > 0 -log r if γ 1 = 0.
and the following form of the second equation of (1.6)

(r 2γ 2 +1 (br -γ 2 ) ) = r γ 2 +1 (f 2 d a -(1 -2f 2 d )b) (2.27) or (r -2γ 2 +1 (br γ 2 ) ) = r -γ 2 +1 (f 2 d a -(1 -2f 2 d )b).
(2.28)

We denote ν : r → r.

2.1

The solution (a 1 , b 1 ).

Let us consider the integral system

   a = r γ 1 + r γ 1 r 0 t -2γ 1 -1 t 0 s γ 1 +1 (f 2 d b -(1 -2f 2 d )a)dsdt b = r γ 2 r 0 t -2γ 2 -1 t 0 s γ 2 +1 (f 2 d a -(1 -2f 2 d )b)dsdt.
(2.29)

By the reformulation given at the begining of the section, it is clear that any solution of this system is a solution of (1.6).

Let us denote by Φ(a, b) the rsm of (2.29). Following the method described just above, we prove Proposition 2.5 There exists a solution (a 1 , b 1 ) of (1.6) such that, for any compact subset K of D, there exist some real numbers R and C verifying for all r ≤ R,

|a 1 (r)r -2d | + |b 1 (r) -r γ 2 | ≤ Cr γ 2 +2
where C and R remain the same for all (d, γ 1 , γ 2 ) ∈ K, and (d,

γ 1 , γ 2 ) → (a 1 (r), a 1 (r), b 1 (r), b 1 (r)) is continuous. Moreover |a 1 (r)r -2d | + |b 1 (r) -γ 2 r γ 2 -1 | ≤ Cr γ 2 +1
for all r < R and for some C depending only on K. For all r > 0, (a 1 (r), a 1 (r), b 1 (r), b 1 (r)) is derivable wrt γ 1 and with respect to γ 2 , as soon as γ 2 > γ 1 and (d, γ 1 , γ 2 ) ∈ D and, for i = 1, 2

| ∂a 1 ∂γ i |(r) ≤ Cr γ 2 +2d+2 | log r|, | ∂b 1 ∂γ i (r) -r γ 2 log r| ≤ Cr γ 2 +2 | log r|, (2.30) 
and

| ∂a 1 ∂γ i |(r) ≤ Cr γ 2 +2d+2 | log r|, | ∂b 1 ∂γ i (r) -γ 2 r γ 2 -1 log r| ≤ Cr γ 2 +1 | log r|. (2.31)
with the same property for C and R as above.

Proof We define ζ 1 (r) = r γ 2 +2d and ζ 2 (r) = r γ 2 and we define (α k , β k ) by (2.19). For k ≥ 1, assuming that α k -α k-1 and β k -β k-1 are continuous wrt (d, γ 1 , γ 2 ), we prove the continuity of α k+1 -α k and β k+1 -β k in K by use of the Lebesgue Theorem. Then, involving the estimate f 2 d (t) ≤ M t 2d and |1 -2f 2 d |(t) ≤ M , the desired estimate (2.20) remains to the estimation for all r > 0, r < 1,

r γ 1 r 0 t -2γ 1 -1 t 0 s γ 1 +1+γ 2 +2d dsdt = r γ 2 +2d+2 (-γ 1 + γ 2 + 2d + 2)(γ 1 + γ 2 + 2d + 2) ≤ Cr γ 2 +2d+2
where C depends only on K. This gives (2.20) and also the estimate of |α 1 -α 0 |. Now the desired estimate (2.21) follows from both estimations

r γ 2 r 0 t -2γ 2 -1 t 0 s 2γ 2 +1 dsdt = r γ 2 +2 2(2γ 2 + 2) ≤ Cr 2+γ 2 and r γ 2 r 0 t -2γ 2 -1 t 0 s 2γ 2 +1+4d dsdt ≤ Cr γ 2 +2+4d
where C depends only on K. This gives the proof of (2.21) and also the estimate of

|β 1 -β 0 |.
This terminates the proof of the existence of (a 1 , b 1 ), the continuity wrt (d, γ 1 , γ 2 ) and the desired behavior at 0. To prove the continuity of (a (r), b (r)) wrt to (d, γ 1 , γ 2 ), we compute

(α k+1 -α k )(r) = γ 1 r -1 (α k+1 -α k )(r)+r -γ 1 -1 r 0 s γ 1 +1 (f 2 d (β k -β k-1 )+(1-2f 2 d )(α k -α k-1 ))dsdt that gives, for k ≥ 1 r -γ 2 -2d |(α k+1 -α k )(r)| ≤ (Cr 2 ) k γ 1 r -1 ( (α 1 -α 0 )ν -γ 2 -2d L ∞ ([0,r]) + (β 1 -β 0 )ν -γ 2 L ∞ ([0,r]) ) + C(Cr 2 ) k-1 r 2d+γ 2 +1 ( (α 1 -α 0 )ν -γ 2 -2d L ∞ ([0,r]) + (β 1 -β 0 )ν -γ 2 L ∞ ([0,r]) )
with C depending only on K, and consequently

r -γ 2 -2d |(α k+1 -α k )(r)| ≤ C(Cr 2 ) k-1 r 2
with another C depending only on K. Then the sum

+∞ k=1 (α k+1 -α k )ν -γ 2 -2d
converges for all r < R, uniformly wrt (d,

γ 1 , γ 2 ) ∈ K. Thus a (r) is continuous wrt (d, γ 1 , γ 2 )
. Moreover, a direct estimate gives

|α 1 (r)| ≤ Cr γ 2 +2d+1
for all r < R. We deduce that

|a (r)| ≤ Cr γ 2 +2d+1
with C depending only on K. Now we compute, for k ≥ 1

(β k+1 -β k )(r) = γ 2 r -1 (β k+1 -β k )(r)+r -γ 2 -1 r 0 s γ 2 +1 (f 2 d (α k -α k-1 )+(1-2f 2 d )(β k -β k-1 ))dsdt that gives r -γ 2 |(β k+1 -β k )(r)| ≤ ((Cr 2 ) k γ 2 r -1 + C(Cr 2 ) k-1 ) ( (β 1 -β 0 )ν -γ 2 L ∞ ([0,r]) + (α 1 -α 0 )ν -γ 2 -2d L ∞ ([0,r]) ) and consequently r -γ 2 +1 |(β k+1 -β k )(r)| ≤ C(Cr 2 ) k-1 r with C depending only on K. Recalling b (r) = +∞ k=1 (β k+1 -β k )(r) + β 1 , a direct calculation gives |β 1 -β 0 | ≤ Cr γ 2 +1 .
This gives that b (r) is continuous wrt (d, γ 1 , γ 2 ) and that for all r < R

|b (r) -γ 2 r γ 2 -1 | ≤ Cr γ 2 +1
with C depending only on K.

Now, let us prove the derivability, wrt γ 2 , of (a 1 (r), b 1 (r)), for 0 < r < R and for γ 2 > γ 1 , γ 1 ≥ 0 and d > 0 being given, and the continuity of the derivative function wrt (d, γ 1 , γ 2 ). First, we use the Lebesgue Theorem to prove by induction that α k+1 -α k and β k+1 -β k are derivable wrt γ 1 and wrt γ 2 . Then, since a and b are defined for r ∈ [0, R] by (2.23), it is sufficient to prove that the sums

k≥0 ∂(α k+1 -α k ) ∂γ 2 and j≥0 ∂(β k+1 -β k ) ∂γ 2 are convergent, for all r ∈ [0, R], uniformly wrt (d, γ 1 , γ 2 ) ∈ K, for any compact subset K of {(d, γ 1 , γ 2 ) ∈ D, d > 0, γ 2 > γ 1 }.
In fact, we are going to prove that

j≥0 ζ -1 1 | log ν| -1 ∂(α k+1 -α k ) ∂γ 2 L ∞ ([0,R]) and j≥0 ζ -1 2 | log ν| -1 ∂(β k+1 -β k ) ∂γ 2 L ∞ ([0,R])
are convergent, uniformly wrt (d, γ 1 , γ 2 ) ∈ K. This will give the desired derivability result, and also the estimate (3.80).

We have ∂α 0 ∂γ 2 = 0 and

∂β 0 ∂γ 2 = r γ 2 log r.
Let k ≥ 0 be given. We easily verify that

∂(α k+1 -α k ) ∂γ 2 = r γ 1 r 0 t -2γ 1 -1 t 0 s γ 1 +1 (f 2 d ∂(β k -β k-1 ) ∂γ 2 -(1 -2f 2 d ) ∂(α k -α k-1 ) ∂γ 2 )dsdt
and that

∂(β k+1 -β k ) ∂γ 2 = r γ 2 log r r 0 t -2γ 2 -1 t 0 s γ 2 +1 (f 2 d (α k -α k-1 ) -(1 -2f 2 d )(β k -β k-1 ))dsdt +r γ 2 r 0 (-2γ 2 -1)t -2γ 2 -2 t 0 s γ 2 +1 (f 2 d (α k -α k-1 ) -(1 -2f 2 d )(β k -β k-1 ))dsdt +r γ 2 r 0 -2t -2γ 2 -1 log t t 0 s γ 2 +1 log s(f 2 d (α k -α k-1 ) -(1 -2f 2 d )(β k -β k-1 ))dsdt +r γ 2 r 0 t -2γ 2 -1 t 0 s γ 2 +1 (f 2 d ∂(α k -α k-1 ) ∂γ 2 -(1 -2f 2 d ) ∂(β k -β k-1 ) ∂γ 2 )dsdt. Now we estimate, for all r > 0 r -γ 2 -2d (log r) -1 | ∂(α k+1 -α k ) ∂γ 2 |(r) ≤ M r 2 ν -γ 2 (log ν) -1 ∂(β k -β k-1 ) ∂γ 2 L ∞ ([0,r]) (γ 2 -γ 1 + 2d + 2)(γ 2 + γ 1 + 2d + 2) + 2r 2 ν -γ 2 -2d (log ν) -1 ∂(α k -α k-1 ) ∂γ 2 L ∞ ([0,r]) (γ 2 + γ 1 + 2d + 4)(γ 2 -γ 1 + 2d + 4) . (2.32)
Now, let us estimate the first term for r -γ 2 (log r)

-1 ∂(β k+1 -β k ) ∂γ 2 (r) | r 0 t -2γ 2 -1 t 0 s γ 2 +1 (f 2 d (α k -α k-1 ) -(1 -2f 2 d )(β k -β k-1 ))dsdt| ≤ M r 4d+2 ν -γ 2 -2d (α k -α k-1 ) L ∞ ([0,R]) (4d + 2)(2γ 2 + 4d + 2) + r 2 ν -γ 2 (β k -β k-1 ) L ∞ ([0,R]) 2(2γ 2 + 2) .
We can estimate the second term as follows

|(log r) -1 r 0 (-2γ 2 -1)t -2γ 2 -2 t 0 s γ 2 +1 (f 2 d (α k -α k-1 ) -(1 -2f 2 d )(β k -β k-1 ))dsdt| ≤ M r 4d+2 ν -γ 2 -2d (α k -α k-1 ) L ∞ ([0,R]) (4d + 2)(2γ 2 + 4d + 2) + r 2 ν -γ 2 (β k -β k-1 ) L ∞ ([0,R]) 2(2γ 2 + 2) .
We have a similar estimate for the third term. The fourth term gives

|(log r) -1 r 0 t -2γ 2 -1 t 0 s γ 2 +1 (f 2 d ∂(α k -α k-1 ) ∂γ 2 -(1 -2f 2 d ) ∂(β k -β k-1 ) ∂γ 2 )dsdt| ≤ M r 4d+2 ν -γ 2 -2d (α k -α k-1 ) L ∞ ([0,R]) (4d + 2)(2γ 2 + 4d + 2) + r 2 ν -γ 2 (β k -β k-1 ) L ∞ ([0,R]) 2(2γ 2 + 2) .
Finally, we can find some constant C, independent of (d, γ 1 , γ 2 ) ∈ K, such that, for all 0 < r < 1,

r -γ 2 -2d | log r| -1 | ∂(α k+1 -α k ) ∂γ 2 |(r) ≤ Cr 2 ( ν -γ 2 (log ν) -1 ∂(β k -β k-1 ) ∂γ 2 L ∞ ([0,r]) + ν -γ 2 -2d (log ν) -1 ∂(α k -α k-1 ) ∂γ 2 L ∞ ([0,r]) )
and

r -γ 2 | log r| -1 | ∂(β k+1 -β k ) ∂γ 2 |(r) ≤ Cr 2 ( ν -γ 2 -2d (α k -α k-1 ) L ∞ ([0,r]) + ν -γ 2 (β k -β k-1 ) L ∞ ([0,r]) + ν -γ 2 -2d (log ν) -1 ∂(α k -α k-1 ) ∂γ 2 L ∞ ([0,r]) + ν -γ 2 (log ν) -1 ∂(β k -β k-1 ) ∂γ 2 L ∞ ([0,r]) )
Summing the both inequalities just above and (2.20) and (2.21) (with

ζ 1 = ν γ 2 +2d and ζ 2 = ν γ 2 ), we get r -γ 2 -2d | log r| -1 | ∂(α k+1 -α k ) ∂γ 2 |(r) + r -γ 2 | log r| -1 | ∂(β k+1 -β k ) ∂γ 2 |(r) ≤ (Cr 2 ) k ( ν -γ 2 (log ν) -1 ∂(β 1 -β 0 ) ∂γ 2 L ∞ ([0,r]) + ν -γ 2 -2d (α 1 -α 0 ) L ∞ ([0,r]) + ν -γ 2 -2d (log ν) -1 ∂(α 1 -α 0 ) ∂γ 2 L ∞ ([0,r]) + ν -γ 2 (log ν) -1 ∂(β 1 -β 0 ) ∂γ 2 L ∞ ([0,r]) ).
Then, we directly estimate

r -γ 2 |(log r) -1 ∂(β 1 -β 0 ) ∂γ 2 |(r) ≤ r 2 γ 2 + 1 (2.33) and r -γ 2 -2d |(log r) -1 ∂(α 1 -α 0 ) ∂γ 2 |(r) ≤ M r 2 (γ 2 -γ 1 + 2d + 2)(γ 2 + γ 1 + 2d + 2) (2.34)
and we deduce that, choosing r < R, where R depends only on K, the sum

+∞ k=0 ν -γ 2 -2d (log ν) -1 ∂(α k+1 -α k ) ∂γ 2 L ∞ ([0,R]) + +∞ k=0 ν -γ 2 (log ν) -1 ∂(β k+1 -β k ) ∂γ 2 L ∞ ([0,R]) (2.35) converges, uniformly wrt (d, γ 1 , γ 2 ) ∈ K. Consequently, the same claim is true for +∞ k=0 ∂(α k+1 -α k ) ∂γ 2 and +∞ k=0 ∂(β k+1 -β k ) ∂γ 2 .
We can deduce that a and b, defined by (2.23), are differentiable wrt γ 2 and that the partial differential is continuous wrt (d, γ 1 , γ 2 ) ∈ K. Moreover, we get the behavior of the derivatives near 0. Now let us prove the differentiability of (a 1 (r), b 1 (r)) wrt γ 1 . We have

∂α 0 ∂γ 1 = ∂β 0 ∂γ 1 = 0.
By induction, we have that ∂α k ∂γ 1 and ∂β k ∂γ 1 exist for all k. Then we write

∂(α k+1 -α k ) ∂γ 1 = r γ 1 log r r 0 t -2γ 1 -1 t 0 s γ 1 +1 (f 2 d (β k -β k-1 ) -(1 -2f 2 d )(α k -α k-1 ))dsdt +r γ 1 r 0 -2t -2γ 1 -1 log t t 0 s γ 1 +1 (f 2 d (β k -β k-1 ) -(1 -2f 2 d )(α k -α k-1 ))dsdt +r γ 1 r 0 t -2γ 1 -1 t 0 s γ 1 +1 log s(f 2 d (β k -β k-1 ) -(1 -2f 2 d )(α k -α k-1 ))dsdt +r γ 1 r 0 t -2γ 1 -1 t 0 s γ 1 +1 (f 2 d ∂(β k -β k-1 ) ∂γ 1 -(1 -2f 2 d ) ∂(α k -α k-1 ) ∂γ 1 )dsdt
We can estimate the first three terms of

r -2γ 2 -2d | log r| -1 | ∂(α k+1 -α k ) ∂γ 1 (r)| by Cr 2 ( (β k -β k-1 )ν -γ 2 L ∞ ([0,r] + (α k -α k-1 )ν -γ 2 -2d L ∞ ([0,r] )
where C is independent of r and of (d, γ 1 , γ 2 ) ∈ K.

The estimate of the fourth term gives

|r -γ 2 -2d+γ 1 (log r) -1 r 0 t -2γ 1 -1 t 0 s γ 1 +1 (f 2 d ∂(β k -β k-1 ) ∂γ 1 -(1 -2f 2 d ) ∂(α k -α k-1 ) ∂γ 1 )dsdt| ≤ Cr 2 ( ∂(β k -β k-1 ) ∂γ 1 ν -γ 2 (log ν) -1 L ∞ ([0,r]) + ∂(α k -α k-1 ) ∂γ 1 ν -γ 2 -2d (log ν) -1 L ∞ ([0,r])
where C is independent of r and of (d,

γ 1 , γ 2 ) ∈ K. Finally | ∂(α k+1 -α k ) ∂γ 1 (r)r -γ 2 -2d (log r) -1 | ≤ Cr 2 ( (β k -β k-1 )ν -γ 2 L ∞ ([0,r] + (α k -α k-1 )ν -γ 2 -2d L ∞ ([0,r] (2.36) + ∂(β k -β k-1 ) ∂γ 1 ν -γ 2 (log ν) -1 L ∞ ([0,r]) + ∂(α k -α k-1 ) ∂γ 1 ν -γ 2 -2d (log ν) -1 L ∞ ([0,r]) ).
Now,

∂β k+1 ∂γ 1 = r γ 2 r 0 t -2γ 2 -1 t 0 s γ 2 +1 (f 2 d ∂α k ∂γ 1 -(1 -2f 2 d ) ∂β k ∂γ 1 )dsdt.
Then, we get

r -γ 2 | log r| -1 | ∂(β k+1 -β k ) ∂γ 1 |(r) ≤ Cr 2( ∂(α k -α k-1 ) ∂γ 1 ν -γ 2 -2d (log ν) -1 L ∞ ([0,r]) + ∂(b j -b j-1 ) ∂γ 1 ν -γ 2 (log ν) -1 L ∞ ([0,r]) ). (2.37) 
Recalling (2.37),2.36), (2.20) and (2.21), we can conclude as in the proof of the derivability wrt γ 2 . Now, the same proof as for a and b permit to prove that the sums

+∞ k=0 ∂(α k+1 -α k ) ∂γ i and +∞ k=0 ∂(β k+1 -β k ) ∂γ i
converge, uniformly wrt (d, γ 1 , γ 2 ) ∈ K and to get (2.31).

2.2

The solution (a 3 , b 3 ).

Proposition 2.6 There exist a solution (a 3 , b 3 ) of (1.6) and, for any compact subset K ∈ D, some real numbers R and C verifying for all 0 < r < R,

|a 3 (r) -r γ 1 | ≤ Cr γ 1 +2 , |b 3 (r)| ≤ Cr γ 1 +2d+2 , |a 3 (r) -γ 1 r γ 1 -1 | ≤ Cr γ 1 +1 and |b 3 (r)| ≤ Cr γ 1 +2d+1 ,
where C and R remain the same for all

(d, γ 1 , γ 2 ) ∈ K. Moreover, for all r > 0 (d, γ 1 , γ 2 ) → (a 3 (r), a 3 (r), b 3 (r), b 3 (r)
) is continuous on D and is derivable wrt γ 1 and γ 2 whenever γ 1 < γ 2 and we have for all 0 < r < R and for i = 1, 2,

| ∂a 3 ∂γ i (r) -(log r)r γ 1 | ≤ Cr γ 1 +2 | log r|, | ∂b 3 ∂γ i (r)| ≤ Cr γ 1 +2d+2 | log r| (2.38) and | ∂a 3 ∂γ i (r) -(log r)γ 1 r γ 1 -1 | ≤ Cr γ 1 +1 | log r|, | ∂b 3 ∂γ i (r)| ≤ Cr γ 1 +2d+1 | log r| (2.39)
Proof We consider the fixed point problem

   a = r γ 1 r 0 t -2γ 1 -1 t 0 s γ 1 +1 (f 2 d b -(1 -2f 2 d )a)dsdt b = r γ 2 + r γ 2 r 0 t -2γ 2 -1 t 0 s γ 2 +1 (f 2 d a -(1 -2f 2 d )b)dsdt.
(2.40)

We define by induction (α 0 , β 0 ) = (r γ 1 , 0) and, for all j ∈ N, (α j+1 , β j+1 ) = Φ(α j , β j ).

(2.41) and we define ζ 1 (r) = r γ 1 and ζ 2 (r) = r γ 1 +2d . We have to verify (2.20). For this purpose, we estimate

r γ 1 r 0 t -γ 1 -1 t 0 s γ 1 +1 s γ 1 dsdt = r 2+γ 1 2(2 + 2γ 1 ) ≤ Cr γ 1 +2 .
where C depends only on K, and

r γ 1 r 0 t -γ 1 -1 t 0 s γ 1 +1 s γ 1 +4d+2 dsdt = r 2+γ 1 2(2 + 2γ 1 ) ≤ Cr γ 1 +2+4d .
The both inequalities give (2.20), for all 0 < r < 1, and give also

|α 1 -α 0 |(r) ≤ Cr γ 1 +1 .
In order to verify (2.21), we compute

r γ 2 r 0 t -2γ 2 -1 t 0 s γ 2 +1+2d+γ 1 dsdt = r 2d+γ 1 +2 (-γ 2 + 2d + 2)(γ 2 + 2d + 2) ≤ Cr γ 1 +2d+2
where C depends only on K. This gives (2.21), and gives also

|β 1 -β 0 |(r) ≤ Cr γ 1 +2d+2 .
Then, as explained at the beginning of the chapter, we can deduce that for all r ≤ R, |a(r) -

r γ 1 | + |b(r)| ≤ Cr γ 1 +2d+2
with R and C depending only on K, and we have the continuity of (d,

γ 1 , γ 2 ) → (a 3 (r), b 3 (r)). Now, the continuity of (d, γ 1 , γ 2 ) → (a 3 (r), b 3 (r)
) and the estimate near 0 of (a 3 , b 3 ) can be proved exactly by the same proof as the continuity of (d, γ 1 , γ 2 ) → (a 1 (r), b 1 (r)), and we obtain

for all 0 < r < R |a 3 (r) -γ 1 r γ 1 -1 | ≤ Cr γ 1 +1 and |b 3 (r)| ≤ Cr γ 1 +2d+1 .
Now, when γ 1 = 0, the proof of (2.38) and of (2.39) are similar to the corresponding property of (a 1 , b 1 ) and are left to the reader.

When γ 1 = 0, we write, for k ≥ 1

|α k+1 -α k |(r) ≤ r -1 r 0 s|f 2 d (β k -β k-1 ) -(1 -2f 2 d )(α k -α k-1 )|ds ≤ C( r 4d+1 4d + 2 (β k -β k-1 )ν -2d L ∞ ([0,r] + r 2 α k -α k-1 L ∞ ([0,r]) ≤ Cr(Cr 2 ) k-1 ( (β 1 -β 0 )ν -2d L ∞ ([0,r] + α 1 -α 0 L ∞ ([0,r] ). Then the sum k≥0 (α k+1 -α k ) converges, uniformly wrt (d, γ 1 , γ 2 ) ∈ K. We estimate directly |α 1 -α 0 |(r) ≤ Cr that gives |a 3 (r)| ≤ Cr.
The estimate of |b 3 (r)| is left to the reader. The proof of the derivability wrt γ 1 and γ 2 and the behaviors of the derivatives works as for (a 1 , b 1 ) and is left to the reader, too.

2.3

The solution (a 2 , b 2 ).

We distinguish the construction of (a 2 , b 2 ) when (d,

γ 1 , γ 2 ) ∈ D 1 and the construction of (a 2 , b 2 ) when (d, γ 1 , γ 2 ) ∈ D 2 . 2.3.1 (a 2 , b 2 ), for γ 1 = 0.
First, we construct a solution, for (d,

γ 1 , γ 2 ) ∈ D 1 = {(d, γ 1 , γ 2 ) ∈ D; γ 1 > 0}.
Proposition 2.7 For all (d, γ 1 , γ 2 ) ∈ D, such that γ 1 = 0, there exists a solution (a 2 , b 2 ) of (1.6) having the following property : for all compact set K ⊂ D 1 , there exists R and C depending only on K, for which we have

for all 0 < r ≤ R |b 2 (r) -r -γ 2 | ≤ Cr -γ 2 +2
(2.42)

and for all 0 < r ≤ R |a 2 (r)| ≤ C(r 2 θ(r) + r γ 1 ) (2.43)
where

θ(r) =      -r γ 1 -2 +r -γ 2 +2d γ 2 +γ 1 -2d-2 if -γ 2 -γ 1 + 2d + 2 = 0 -r γ 1 -2 log r if -γ 2 -γ 1 + 2d + 2 = 0 (We have θ(r) ≥ 0 for all 0 < r < 1).
Moreover, for all 0 < r < R,

|a 2 (r)| ≤ C(rθ(r) + r γ 1 -1 ) and |b 2 (r) + γ 2 r -γ 2 -1 | ≤ Cr -γ 2 -1 (2.44)
where C and R depend only on K, and, for all r > 0

(d, γ 1 , γ 2 ) → (a 2 (r), a 2 (r), b 2 (r), b 2 (r)) is continuous on D 1 .

Proof

We consider the following fixed point problem

   a = r -γ 1 r 0 t 2γ 1 -1 t 1 s -γ 1 +1 (f 2 d b -(1 -2f 2 d )a)dsdt b = r -γ 2 + r -γ 2 r 0 t 2γ 2 -1 t 1 s -γ 2 +1 (f 2 d a -(1 -2f 2 d )b)dsdt.
(2.45)

We define

ζ 1 (r) = θ(r) + r γ 1 -2 and ζ 2 (r) = r -γ 2 and (α 0 , β 0 ) = (0, r -γ 2 ) and, for all k ∈ N, (α k+1 , β k+1 ) = Φ(α k , β k ). (2.46)
We give (d, γ 1 , γ 2 ) ∈ K, a compact subset of D 1 . Then we have γ 1 ≥ c, for some c > 0, depending only on K.

In order to prove (2.20), we estimate, for r < 1

r -γ 1 r 0 t 2γ 1 -1 1 t s -γ 1 +1 (θ(s) + s γ 1 -2 )dsdt = r -γ 1 r 0 t 2γ 1 -1 (      -log t-1-t -γ 2 -γ 1 +2d+2 -γ 2 -γ 1 +2d+2 γ 1 +γ 2 -2d-2 if γ 1 + γ 2 -2d -2 = 0 (log t) 2 if γ 1 + γ 2 -2d -2 = 0 -log t)dt (2.47) =          -r γ 1 2γ 1 log r+ r γ 1 (2γ 1 ) 2 - r γ 1 2γ 1 -r -γ 2 +γ 1 +2d+2 -γ 2 +γ 1 +2d+2 -γ 1 -γ 2 +2d+2 γ 1 +γ 2 +2d+2 if γ 1 + γ 2 -2d -2 = 0 r γ 1 2γ 1 (log r) 2 -2 r γ 1 (2γ 1 ) 2 log r + 2 r γ 1 (2γ 1 ) 3 if γ 1 + γ 2 -2d -2 = 0 - r γ 1 2γ 1 log r + r γ 1 (2γ 1 ) 2 ≤ Cr 2 (-log r)(θ(r) + r γ 1 -2 )
for some C depending only on K.

Then we compute

r -γ 1 r 0 t 2γ 1 -1 1 t s -γ 1 +1+2d-γ 2 dsdt r -γ 1 r 0 t 2γ 1 -1      1-t -γ 1 -γ 2 +2d+2 -γ 1 -γ 2 +2d+2 if γ 1 + γ 2 -2d -2 = 0 -log t if γ 1 + γ 2 -2d -2 = 0 (2.48) = r γ 1 (γ 1 -γ 2 + 2d + 2)2γ 1 + r 2 θ(r) (γ 1 -γ 2 + 2d + 2) ≤ Cr 2 (θ(r) + r γ 1 -2 )
where C depends only on K. Now (2.47) and (2.48) give, for all k ≥ 2 and in place of (2.20)

|α k+1 -α k |(r) ≤ Cζ 1 (r)r 2 (-log r)( ζ -1 1 (α k -α k-1 ) L ∞ ([0,r]) + ζ -1 2 (α k -α k-1 ) L ∞ ([0,r]) ),
and gives also

|α 1 -α 0 |(r) ≤ Cr 2 (θ(r) + r γ 1 -2 ).
To obtain (2.21), we compute

r -γ 2 r 0 t 2γ 2 -1 1 t s -γ 2 +1+2d (θ(s) + s γ 1 -2 )dsdt ≤ r -γ 2 r 0 t 2γ 2 -1 (                    1-t -γ 1 -γ 2 +2d+2 -γ 1 -γ 2 +2d + 1-t -2γ 2 +4d -2γ 2 +4d γ 1 +γ 2 -2d-2 if γ 1 + γ 2 -2d -2 = 0, γ 1 -γ 2 + 2d = 0, γ 2 = 2d -log t-1-t -2γ 2 +4d -2γ 2 +4d γ 1 +γ 2 -2d-2 if γ 1 + γ 2 -2d -2 = 0, γ 1 -γ 2 + 2d = 0, γ 2 = 2d -t γ 1 -γ 2 +2d γ 1 -γ 2 +2d log t + t γ 1 -γ 2 +2d (γ 1 -γ 2 +2d) 2 if γ 1 + γ 2 -2d -2 = 0 +      1-r -γ 2 +γ 1 +2d -γ 2 +γ 1 +2d if γ 1 -γ 2 + 2d = 0 -log r if γ 1 -γ 2 + 2d = 0 )dt (2.49) = r -γ 2                        r 2γ 2 2γ 2 -r γ 1 +γ 2 +2d γ 1 +γ 2 +2d γ 1 -γ 2 +2d - r 2γ 2 2γ 2 -r 2d 2d -γ 2 +2d γ 1 +γ 2 -2d-2 if γ 1 + γ 2 -2d -2 = 0, γ 1 -γ 2 + 2d = 0 r 2γ 2 2γ 2 (-log r)+ r 2γ 2 (2γ 2 ) 2 - r 2γ 2 2γ 2 -r 2d 2d -γ 2 +2d γ 1 +γ 2 -2d-2 if γ 1 + γ 2 -2d -2 = 0, γ 1 -γ 2 + 2d = 0 r γ 1 +γ 2 +2d (-log r) (γ 1 +γ 2 +2d)(γ 1 -γ 2 +2d) + r γ 1 +γ 2 +2d (γ 1 +γ 2 +2d) 2 + r γ 1 +γ 2 +2d (γ 1 +γ 2 +2d)(γ 1 -γ 2 +2d) 2 if γ 1 + γ 2 -2d -2 = 0 +      ( r γ 2 2γ 2 -r γ 2 +γ 1 +2d γ 2 +γ 1 +2d ) 1 -γ 2 +γ 1 +2d if γ 1 + γ 2 -2d -2 = 0 -r γ 2 2γ 2 log r if γ 1 + γ 2 -2d -2 = 0 ≤ Cr -γ 2 +2
where C depends only on K. Now we compute

r -γ 2 r 0 t 2γ 2 -1 1 t s -2γ 2 +1 dsdt ≤ r 2-γ 2 2(2γ 2 -2) ≤ Cr 2-γ 2 (2.50)
where C depends only on K.

Then (2.49) and (2.50) give (2.21), and also

|β 1 -β 0 |(r) ≤ Cr -γ 2 +2 .
We conclude for all (d, γ 1 , γ 2 ) ∈ D 1 , there exists a solution (a 2 , b 2 ), satisfying the desired behavior at 0 and such that (d,

γ 1 , γ 2 ) → (a 2 (r), b 2 (r)) is continuous on D 1 .
The behavior of (a 2 (r), b 2 (r)) at 0 is left to the reader.

2.3.2 (a 2 , b 2 ), for γ 1 small. Let us consider K, a compact subset of D 2 . For (d, γ 1 , γ 2 ) ∈ K, we have in particular γ 1 ≤ c 0 , -γ 2 + 2d + 1 ≥ c 1 , γ 2 ≥ c 2 and -γ 1 -γ 2 + 2d + 2 ≥ c 3
, where c 0 < 1 4 , c 1 > 0, c 2 > 1 and c 3 > 0 depend only on K. We have Proposition 2.8 There exists a solution (a 2 , b 2 ) of (1.6) having the following property : for all compact set K ⊂ D 2 , there exists R and C, depending only on K, for which we have for all

0 < r ≤ R |b 2 (r) -r -γ 2 | ≤ Cr -γ 2 +2
(2.51)

and for all 0 < r ≤ R |a 2 (r)| ≤ Cr -γ 2 +2d+2
(2.52)

Moreover, for all 0 < r < R,

|a 2 (r)| ≤ Cr -γ 2 +2d+1 and |b 2 (r) + γ 2 r -γ 2 -1 | ≤ Cr -γ 2 -1 (2.53)
where C and R depend only on K, and, for all r > 0

(d, γ 1 , γ 2 ) → (a 2 (r), a 2 (r), b 2 (r), b 2 (r)) is continuous on D 2
Proof Let us consider the following fixed point problem

   a = r γ 1 r 0 t -2γ 1 -1 t 0 s γ 1 +1 (f 2 d b -(1 -2f 2 d )a)dsdt b = r -γ 2 + r -γ 2 r 0 t 2γ 2 -1 t 1 s -γ 2 +1 (f 2 d a -(1 -2f 2 d )b)dsdt.
(2.54)

We define ζ 1 (r) = r -γ 2 +2d and ζ 2 (r) = r -γ 2 .

In order to prove (2.20), we verify that

r γ 1 ( r 0 t -2γ 1 -1 t 0 s γ 1 +1 s 2d-γ 2 dsdt ≤ Cr -γ 2 +2d+2
(2.55) Then (2.55) gives (2.20) and gives also

|α 1 -α 0 |(r) ≤ Cr -γ 2 +2d+2 .
Now, in order to prove (2.21), we compute

r -γ 2 r 0 t 2γ 2 -1 1 t s -γ 2 +1 s 2d-γ 2 +2d dsdt = r -γ 2 r 2γ 2 2γ 2 -r 4d+2 4d+2 -2γ 2 + 4d + 2 ≤ Cr 2 r -γ 2 (2.56) and r -γ 2 r 0 t 2γ 2 -1 1 t s -γ 2 +1 s -2γ 2 +1 dsdt = r -γ 2 -2γ 2 + 2 ( r 2γ 2 2γ 2 - r 2 2 ) ≤ Cr 2 r -γ 2 (2.57)
Then (2.56) and (2.57) give (2.21) and gives also

|β 1 -β 0 |(r) ≤ Cr 2 r γ 2 .
So we have the existence and the continuity wrt (d, γ 1 , γ 2 ) ∈ D 2 of a solution (a 2 , b 2 ), and we have the desired behavior at r = 0. The behavior at r = 0 of (a 2 , b 2 ) is left to the reader.

2.4

The solution (a 4 , b 4 ).

2.4.1 (a 4 , b 4 ) when γ 1 = 0.
First we construct a solution (a 4 , b 4 ) when γ 1 > 0. We have to prove Proposition 2.9 There exists a solution (a 4 , b 4 ) of (1.6) having the following property : for all compact subset K of D 1 , there exist R < 1 and C depending only on K, such that, for all 0 < r < R

|a 4 (r) -r -γ 1 | ≤ Cr -γ 1 +2 and |b 4 (r)| ≤ C(r 2 θ(r) + r γ 2 ),
where, for 0 < r < 1, θ is defined by

θ(r) =      -r γ 2 -2 +r -γ 1 +2d γ 1 +γ 2 -2d-2 if γ 1 + γ 2 -2d -2 = 0 -r γ 2 -2 log r if γ 1 + γ 2 -2d -2 = 0.
Moreover

|a 4 (r) + γ 1 r -γ 1 -1 | ≤ Cr -γ 1 +1 and |b 4 (r)| ≤ C(r θ + r γ 2 -1 )
.

And (d, γ 1 , γ 2 ) → (a 4 (r), a 4 (r), b 4 (r), b 4 (r)) is continuous on D 1 .
Proof Let us consider the following fixed point problem

   a = r -γ 1 + r -γ 1 r 0 t 2γ 1 -1 t 1 s -γ 1 +1 (f 2 d b -(1 -2f 2 d )a)dsdt b = r -γ 2 r 0 t 2γ 2 -1 t 1 s -γ 2 +1 (f 2 d a -(1 -2f 2 d )b)dsdt. (2.58) Let us define ζ 1 (r) = r -γ 1 and ζ 2 (r) = θ(r) + r γ 2 -2 .
Let K be a compact subset of D 1 . Then we have γ 1 ≥ c, where c > 0 depends only on K. In order to prove (2.20), we estimate

r -γ 1 r 0 t 2γ 1 -1 1 t s -2γ 1 +1 dsdt = r -γ 1        r 2γ 1 2γ 1 -r 2 2 -2γ 1 +2 if γ 1 = 1 -r 2 2 log r + r 2 4 if γ 1 = 1 = r -γ 1 r 2 r 2γ 1 -2 -1 (-2γ 1 +2)2γ 1 + r 2 4γ 1 if γ 1 = 1 -r 2 2 log r + r 2 4 if γ 1 = 1 ≤    Cr -γ 1 r 2c 1 if 0 < c 1 ≤ γ 1 < 1 Cr -γ 1 r 2 (-log r) if γ 1 = 1 Cr -γ 1 +2 if γ 1 > 1 (2.59)
Now, we return to (2.49). Exchanging γ 1 and γ 2 , we get

r -γ 1 r 0 t 2γ 1 -1 1 t s -γ 1 +1+2d ( θ + r γ 2 -2 )dsdt ≤ Cr -γ 1 +2 . (2.60)
Then, (2.60) and (2.59) give, in place of ( 2.20), and for some c > 0 depending only on

K |α k+1 -α k |(r) ≤ Cζ 1 (r)r c ( ζ -1 1 (α k -α k-1 ) L ∞ ([0,r]) + ζ -1 2 (β k -β k-1 ) L ∞ ([0,r]) )
and gives also

|α 1 -α 0 |(r) ≤ Cr -γ 1 +c .
Now to obtain (2.21), we return to (2.48). Exchanging γ 1 and γ 2 , we get

r -γ 2 r 0 t 2γ 2 -1 1 t s -γ 2 +1+2d-γ 1 dsdt ≤ Cr 2 ( θ + r γ 2 -2 ) (2.61)
where C depends only on K.

Then, returning to (2.47), we get where, for 0 < r < 1, τ is defined by 

r -γ 2 r 0 t 2γ 2 -1 1 t s -γ 2 +1 ( θ + r γ 2 -2 )dsdt ≤ Cr 2 (-log r)( θ + r γ 2 -2 ). ( 2 
τ (r) = r -γ 1 -r γ 1 2γ 1 if γ 1 > 0 -log r if γ 1 = 0.

Proof

In view of (2.26), let us consider the following fixed point problem

   a = τ (r) + τ (r) r 0 1 t τ -2 (t) t 0 sτ (s)(f 2 d b -(1 -2f 2 d )a)dsdt b = r -γ 2 r 0 t 2γ 2 -1 t 0 s -γ 2 +1 (f 2 d a -(1 -2f 2 d )b)dsdt (2.63)
We define ζ 1 (r) = τ (r) and ζ 2 (r) = r 2d τ (r).

Let us consider K a compact subset of D 2 . Then we have γ 1 ≤ c 1 and -γ 1 -γ 2 +2d+2 ≥ c 2 , where c 1 < 1 4 and c 2 > 0. But γ 1 can be equal to 0. Since e u ≥ 1 + u, we have for all

t ∈]0, 1[ t γ 1 (-log t) ≤ τ (t) ≤ t -γ 1 (-log t) (2.64)
In order to prove (2.20), we estimate, assuming that r ≤ exp(-1)

τ (r) r 0 1 t τ -2 (t) t 0 sτ 2 (s)dsdt ≤ τ (r) r 0 t -2γ 1 -1 log 2 t t 0 s -2γ 1 +1 (log s) 2 dsdt = τ (r) r 0 t -2γ 1 -1 log 2 t ( t -2γ 1 +2 -2γ 1 + 2 log 2 t -2 t -2γ 1 +2 (-2γ 1 + 2) 2 log t + 2 t -2γ 1 +2 (-2γ 1 + 2) 3 )dt ≤ Cr -4γ 1 +2 τ (r) ≤ r c τ (r) (2.65)
where C > 0 and c > 1 are independent of (d, γ 1 , γ 2 ) ∈ K.

Following the same proof, we get, for r ≤ exp(-1)

τ (r) r 0 1 t τ -2 (t) t 0 sτ (s)s 2d τ (s)s 2d dsdt ≤ Cr -4γ 1 +4d+2 τ (r) ≤ Cr 2 τ (r).
(2.66)

Then, (2.65) and (2.66) give (2.20), with r c instead of r 2 , and give also

|α 1 -α 0 | ≤ Cr c τ (r).
Now, in order to prove (2.21), we compute

r -γ 2 r 0 t 2γ 2 -1 t 0 s -γ 2 +1 s 2d τ (s)dsdt ≤ r -γ 2 r 0 t 2γ 2 -1 t 0 s -γ 2 +1 s 2d-γ 1 (-log s)dsdt ≤ Cr -γ 2 r γ 2 -γ 1 +2d+2 (-log r) ≤ Cr -γ 2 +2d+2
(2.67)

where C depends only on K. Then (2.56) gives (2.21) and gives also

|β 1 -β 0 |(r) ≤ Cr -γ 2 +2d+2 .
We have proved the desired result for (a 4 (r), b 4 (r)). The proof concerning (a 4 (r), b 4 (r)) is left to the reader.

3

The possible behaviors at infinity and the dependence of the solutions wrt the parameters.

Our goal is to prove Theorem 1.4. We use the system (1.7) and we construct a base of four solutions, (x j , y j ), j = 1, . . . , 4, characterized by there behavior at +∞. Then the solutions (u j , v j ) announced in Theorem 1.4 are obtained by u j =

x j +y j 2 and v j =

x j -y j 2 .

Let us consider the first equation of (1.7). As is usual with regard to Bessel's equations, we let

x(r) = r 1 2 x(r).

Then the system (1.7) becomes

   x -2x + -γ 2 -3d 2 r 2 x + 3(1 -f 2 d + d 2 r 2 )x + ξ 2 r 3 2 y = 0 y + y r -γ 2 -d 2 r 2 y + µ 2 r 5 2 x + (1 -f 2 d -d 2 r 2 )y = 0 (3.68)
We can replace the first equation of this system by

(e 2 √ 2r (xe - √ 2r ) ) = e √ 2r q(r)x - ξ 2 r 2 y
or by

(e -2 √ 2r (xe √ 2r ) ) = e - √ 2r q(r)x - ξ 2 r 2 y, where 
q(r) = -γ 2 -3d 2 r 2 + 3(1 -f 2 d + d 2 r 2 ). Let us suppose that γ 2 -d 2 ≥ 0. Then we let n = γ 2 -d 2 .
The second equation of the system (1.7) can be written as

(r 2n+1 (r -n y) ) = r n+1 ( µ 2 r 2 x -(1 -f 2 d - d 2 r 2 )y) or (r -2n+1 (r n y) ) = r -n+1 ( µ 2 r 2 x -(1 -f 2 d - d 2 r 
2 )y). Finally, the system (1.7) can be written as

(e ±2 √ 2r (r 1 2 e ∓ √ 2r x) ) = r 1 2 e ± √ 2r q(r)x -ξ 2 r 2 y (r ±2n+1 (r ∓n y) ) = r ±n+1 ( ξ 2 r 2 x -(1 -f 2 d -d 2 r 2 )y) (3.69)
We denote

J + = e √ 2r √ r , J -= e - √ 2r √ r and n = γ 2 1 + γ 2 2 2 -d 2 .
We are going to construct four solutions of (3.69). The plan is almost the same for each solution. Let us explain it. First, for some given R 0 > 0, we define a fixed point problem of the form (x, y) = Φ(x, y), for (x, y) defined on [R 0 , +∞[, and whose solutions are solutions of (3.69). The function Φ will depend on R 0 , except for one solution denoted by (x 2 , y 2 ) (that vanishes exponentially at +∞). Let us remark that the present construction does not allow us to construct the solutions (x j , y j ), j = 2 without taking into account a given compact subset

K ⊂ {(d, γ 1 , γ 2 ); 0 ≤ γ 1 < γ 2 ; γ 2 1 + γ 2 2 2 -d 2 > 0}. (3.70)
Indeed, R 0 depends on K. Then we give a map ζ and we want to prove the existence of a fixed point (x, y) verifying, for some C depending only on K, an estimate of the form

|x j (r) -ζ(r)| + |y j (r)| ≤ Cζ(r)r -2 if j = 1, 3, or |x j (r)| + |y j (r) -ζ(r)| ≤ Cζ(r)r -2 if j = 2, 4.
Moreover we want (d, γ 1 , γ 2 )) → (a(r), a (r), b(r), b (r)) to be continuous, and derivable wrt γ 1 and wrt γ 2 , for any given r > R 0 . We define by induction, for (x 1 , y 1 ) and for (x 3 , y 3 )

(α 0 , β 0 ) = (ζ, 0) and (α k+1 , β k+1 ) = Φ(α k , β k ). (3.71) 
For (x 2 , y 2 ) and for (x 4 , y 4 ), we exchange the role of x and y, that gives (α 0 , β 0 ) = (0, ζ) and (α k+1 , β k+1 ) = Φ(α k , β k ).

(3.72)

The proof of the continuity of (d, γ 1 , γ 2 ) → (α k , α k , β k , β k )(r), for all k follows from the Lebesgue Theorem and from an induction. We denote ν : r → r. Then we prove that there exists C > 0 depending only on K and independent of R 0 , such that for all r ≥ R 0 and all k ≥ 0, for j = 1, 3

|(α k+1 -α k )ζ -1 |(r) ≤ C r 2 ( (α k -α k-1 )ζ -1 L ∞ ([R 0 ,+∞[) + (β k -β k-1 )ζ -1 ν 2 ) L ∞ ([R 0 ,+∞[) ) (3.73) and r 2 |(β k+1 -β k )ζ -1 |(r) ≤ C r 2 ( (α k -α k-1 )ζ -1 L ∞ ([R 0 ,+∞[) + (β k -β k-1 )ζ -1 ν 2 ) L ∞ ([R 0 ,+∞[) ) (3.74)
and for j = 2, 4

r 2 |(α k+1 -α k )ζ -1 |(r) ≤ C r 2 ( (α k -α k-1 )ζ -1 ν 2 L ∞ ([R,+∞[) + (β k -β k-1 )ζ -1 L ∞ ([R,+∞[) ) (3.75)
and

|(β k+1 -β k )ζ -1 |(r) ≤ C r 2 ( (α k -α k-1 )ζ -1 ν 2 L ∞ ([R,+∞[) + (β k -β k-1 )ζ -1 L ∞ ([R,+∞[) ) (3.76)
Then we define

x(r) = α 0 (r) + k≥0 (α k+1 -α k )(r) and y(r) = β 0 (r) + k≥0 (β k+1 -β k )(r) (3.77)
Since C is independent of R 0 , we choose R 0 > 0 such that (CR -2 0 ) < 1, the sums ζ -1 x(r) and ζ -1 ν 2 y(r) (or ζ -1 ν 2 x(r) and ζ -1 y(r)) converge, uniformly wrt (d, γ 1 , γ 2 ) ∈ K. Consequently, we get together the existence of a solution (x, y) having the desired behavior at +∞ and the continuity of the map (d, γ 1 , γ 2 ) → (x(r), y(r)). Then we prove the continuity of (d, γ 1 , γ 2 ) → (x (r), y (r)) in K and the behavior of (x , y ) at +∞ by the uniform convergence of

ζ -1 k≥0 (α k+1 -α k )(r) and ζ -1 ν 2 k≥0 (β k+1 -β k )(r).
We prove the derivability wrt γ i , for i = 1, 2, of (x(r), x (r), y(r), y (r)) by the the uniform convergence of

k≥0 ∂ ∂γ i (α k+1 -α k )(r), and ζ -1 ν 2 k≥0 ∂ ∂γ i (β k+1 -β k )(r) and ζ -1 k≥0 ∂ ∂γ i (α k+1 -α k )(r), and ζ -1 ν 2 k≥0 ∂ ∂γ i (β k+1 -β k )(r).
(For j = 2, 4 we change the place of ν 2 ).

We will use the following estimate, which is not difficult to prove, by an integration by part. Let α ∈ R and β > 0 be given. Then In what follows, K is compact and is as in (3.70). We will detail the proof of the construction only for the first solution (x 1 , y 1 ) and we will only indicate the way to adapt it for the other three solutions.

3.1

The greatest behavior at +∞ : the solution (x 1 , y 1 ).

Proposition 3.11 For every compact subset K of {(d, γ 1 , γ 2 ); 0 ≤ γ 1 ≤ γ 2 ; d ≥ 0;

γ 2 1 +γ 2 2
2d 2 > 0}, there exists a solution (x 1 , y 1 ) of (3.69), such that there exist C and R 0 depending only on K and such that

|x 1 (r) - e √ 2r √ r | + |y 1 (r)| ≤ C e √ 2r √ r r -2 |x 1 (r) -( e √ 2r √ r ) | ≤ Cr -3 e √ 2r √ r , |y 1 |(r) ≤ Cr -4 e √ 2r
√ r and for all r > 0 (d, γ 1 , γ 2 ) → (x 1 (r), x 1 (r), y 1 (r), y 1 (r)) is continuous on K.

Moreover (x 1 , x 1 , y 1 , y 1 )(r) is derivable wrt γ 1 and γ 2 and we have, for i = 1, 2

for r ≥ R 0 | ∂x 1 ∂γ i |(r) + | ∂y 1 ∂γ i |(r) ≤ C e √ 2r √ r r -2 log r and | ∂x 1 ∂γ i |(r) + | ∂y 1 ∂γ i |(r) ≤ C e √ 2r √ r r -3 log r (3.80)
where C remains the same when (d, γ 1 , γ 2 ) ∈ K.

Let us remark that at this stage, the solution (x 1 , y 1 ) depends on K.

Proof Let R 0 > 0 be given. Let us consider the following fixed point problem, with x and y defined in [R 0 , +∞[

     x = J + + J + r +∞ (J + ) -2 1 t t R 0 sJ + ( ξ 2 s 2 y -3(1 -f 2 d -d 2 s 2 )x)dsdt y = r n r R 0 t -2n-1 t R 0 s n+1 ( ξ 2 s 2 x -(1 -f 2 d -d 2 s 2 )y)dsdt.
Let us denote it by (x, y) = Φ(x, y).

Let ζ = J + . We define (α k , β k ) by (3.71). Let us denote

B = C(K, C([R 0 , +∞[)).
First, we prove that, for R 0 large enough, when ((α j -α j-1 )(J + ) -1 , (β j -

β j-1 )(J + ) -1 ν 2 ) ∈ B 2 then ((α j+1 -α j )(J + ) -1 , (β j+1 -β j )(J + ) -1 ν 2 ) ∈ B 2 (3.81)
For this purpose, we write

t R 0 sJ + ( ξ 2 s 2 |β k -β k-1 | + 3|1 -f 2 d - d 2 s 2 ||α k -α k-1 |)ds ≤ t R 0 sJ + ξ 2 s 2 J + s -2 ds (J + ) -1 ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞]) + t R 0 s M s 4 (J + ) 2 (J + ) -1 (α k -α k-1 ) L ∞ ([R 0 ,+∞])
where we have used

|1 -f 2 d -d 2 s 2 | ≤ M s 4 .
Then there exists C, depending only on K such that ξ 2 ≤ C. Using (3.79) and (3.78), we deduce that

(J + ) -2 1 t t R 0 sJ + ( ξ 2 s 2 (β k -β k-1 ) + 3(1 -f 2 d - d 2 s 2 )(α k -α k-1 ))ds is integrable on [r, +∞[, when R 0 ≥ 6 2 √
2 , uniformly for (d, γ 1 , γ 2 ) ∈ K and, by the Lebesgue Theorem, that α j+1 -α j is continuous wrt (d,

γ 1 , γ 2 ) ∈ K. Now, we write t R 0 s n+1 | ξ 2 s 2 (α k -α k-1 ) -(1 -f 2 d - d 2 s 2 )(β k -β k-1 )|ds ≤ t R 0 Cs n+1 J + ( 1 s 2 (J + ) -1 (α k -α k-1 ) L ∞ ([R 0 ,+∞]) + M s 4 s -2 (J + ) -1 ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞]) )ds
We use (3.79), with α = n -1 and for α = n -3. In any case, we have |α| ≤ C, for some

C > 0 depending only on K. Then, we chose R 0 ≥ -2(n-5-1 2 ) √ 2
in order to conclude that

t -2n-1 t R 0 s n+1 | ξ 2 s 2 (α k -α k-1 ) -(1 -f 2 d - d 2 s 2 )(β k -β k-1 )|ds ≤ Ct -n-2 J + ( (J + ) -1 (α k -α k-1 ) L ∞ ([R 0 ,+∞]) + (J + ) -1 ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞]) )
where C depends only on K. Moreover 3 ≤ n + 2 ≤ c, where c depends only on K. Then, this quantity is integrable in [R 0 , r[, uniformly wrt (d, γ 1 , γ 2 ) ∈ K. We deduce, by the Lebesgue Theorem, that β j+1 -β j is continuous wrt (d, γ 1 , γ 2 ) ∈ K.

We have proved (3.81). Now, in order to prove (3.73), we estimate, in view of (3.79) and for

R 0 ≥ 8 2 √ 2 J + +∞ r (J + ) -2 1 t t R 0 s(J + ) 2 s -4 dsdt ≤ J + +∞ r (J + ) -2 1 t 2 2 √ 2 t -4 e 2 √ 2t dt ≤ J + +∞ r 2 2 √ 2 t -4 dt ≤ Cr -3 J + . (3.82)
This gives (3.73), with ζ = J + , and this gives also

|α 1 -α 0 |(r) ≤ Cr -3 J + . (3.83)
In order to prove (3.74), we estimate, for 

R 0 ≥ -2(n -7 2 ) √ 2 and R 0 ≥ 2(n + 7 2 ) √ 2 (3.84) r n r R 0 t -2n-1 t R 0 s n+1 J + s 4 dsdt = r n r R 0 t -2n-1 ( 2 √ 2 t n-5 2 e √ 2t )dt ≤ r n r R 0 2 √ 2 t -n-7 2 e √ 2t dt ≤ Cr -3 J + . ( 3 
(J + ) -1 |α k+1 -α k |(r) + (J + ) -1 |β k+1 -β k |(r) ≤ Cr -3 (CR -3 0 ) k-1 ( (J + ) -1 (α 1 -α 0 L ∞ ([R 0 ,+∞[ + (J + ) -1 (β 1 -β 0 L ∞ ([R 0 ,+∞[ ).
(3.87) Defining x 1 and y 1 by (3.77) and choosing R 0 to have CR -2 0 < 1, the sums converge uniformly wrt (d, γ 1 , γ 2 ) ∈ K and then the continuity of (x 1 (r), y 1 (r)) wrt (d, γ 1 , γ 2 ) is now complete. But while the first condition given in (3.84) remains to R 0 ≥ 3 √ 2 (since n ≥ 1), the second one makes R 0 depending on K, and consequently, the definition of (x 1 , y 1 ) depends on K. We remark also that C depends on K, too. Then, we write

|x 1 (r) -J + | ≤ k≥0 |α k+1 -α k |(r) ≤ Cr -2 J + k≥1 (CR -1 0 ) k-1 ( (J + ) -1 (α 1 -α 0 ) L ∞ ([R 0 ,+∞[ + (J + ) -1 (β 1 -β 0 ) L ∞ ([R 0 ,+∞[ ) +|α 1 -α 0 |(r)
and (3.83) gives the desired behavior at +∞ for x 1 . A similar proof gives the desired behavior of y 1 at +∞. Now, let us turn to (x 1 (r), y 1 (r)). We write

(α k+1 -α k )(r) = (J + ) J -1 + (α k+1 -α k )(r) + J -1 + r r R 0 sJ + ( ξ 2 s 2 (β k -β k-1 ) -3(1 -f 2 d - d 2 s 2 )(α k -α k-1 )ds.
Consequently, using successively (3.79) and (3.87)

J -1 + |α k+1 -α k |(r) ≤ CJ -1 + |α k+1 -α k |(r) +Cr -2 ( J -1 + ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞[) + J -1 + (α k -α k-1 ) L ∞ ([R 0 ,+∞[) ) ≤ Cr -3 (CR -3 0 ) k-1 ( J -1 + (α 1 -α 0 ) L ∞ ([R 0 ,+∞[) + J -1 + (β 1 -β 0 ) L ∞ ([R 0 ,+∞[) ). (3.88) This gives the convergence of k≥1 J -1 + (α k+1 -α k )(r)
uniformly wrt r ∈ [R 0 , +∞[ and wrt (d, γ 1 , γ 2 ) ∈ K. Then we directly estimate

|α 1 (r) -α 0 (r)|(J + ) -1 ≤ (J + ) -1 |α 1 -α 0 |(r) + Cr -4 J + (J + ) -1 ≤ Cr -3
and we deduce the desired behavior at +∞

J -1 + |x 1 (r) -J + | ≤ Cr -3 . Now we write (β k+1 -β k )(r) = nr n-1 r -n (β k+1 -β k )(r)+r -n-1 r R 0 s n+1 ( ξ 2 s 2 (β k -β k-1 )-(1-f 2 d - d 2 s 2 )(α k -α k-1 )ds
and consequently, using (3.79) and (3.87), we get for k ≥ 1

r 3 (J + ) -1 |β k+1 -β k |(r) ≤ nr 2 J -1 + |β k+1 -β k |(r) +Cr -2 ( J -1 + (α k -α k-1 ) L ∞ ([R 0 ,+∞[) + J -1 + ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞[) ) ≤ Cr -2 (CR -3 0 ) k-1 ( J -1 + (α 1 -α 0 ) L ∞ ([R 0 ,+∞[) + J -1 + ν 2 (β 1 -β 0 ) L ∞ ([R 0 ,+∞[) ). (3.89) This gives the convergence of k≥1 r 3 (J + ) -1 |β k+1 -β k |(r)
uniformly wrt r and to (d, γ 1 , γ 2 ) ∈ K. Now we estimate

|β 1 -β 0 |(r) ≤ nr -1 |β 1 -β 0 |(r) + Cr -4 J + ≤ Cr -4 J +
and we deduce the desired estimate

|y 1 (r)| ≤ Cr -4 J + .
Let us turn to the derivability of (x 1 (r), y 1 (r)) wrt γ 1 and γ 2 . Let us assume that α k -α k-1 and β k -β k-1 are derivable wrt γ i , for i = 1 or i = 2 and that (log ν)

-1 (J + ) -1 ∂ ∂γ i (α k -α k-1 ) and (log ν) -1 (J + ) -1 ∂ ∂γ i (β k -β k-1 ) belong to L ∞ ([R 0 , +∞[) and are continuous wrt (d, γ 1 , γ 2 ).
On one hand, we write for i = 1 or i = 2, using ∂ξ 2 ∂γ i = (-1) i γ i ,

| ∂ ∂γ i (J + ( ξ 2 s 2 (β k -β k-1 ) -3(1 -f 2 d - d 2 s 2 )(α k -α k-1 ))| ≤ C(J + ) 2 s -4 ( (J + ) -1 ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞]) +log s (log ν) -1 (J + ) -1 ν 2 ∂ ∂γ i (β k -β k-1 ) L ∞ ([R 0 ,+∞[) + log s log ν) -1 (J + ) -1 ∂ ∂γ i (α k -α k-1 ) L ∞ ([R 0 ,+∞]) ).
Then we deduce that α k+1 -α k is derivable wrt γ i , by the Lebesgue Theorem. Moreover, since C is independent of (d, γ 1 , γ 2 ) ∈ K, we have that ∂ ∂γ i (α k+1 -α k ) is continuous wrt (d, γ 1 , γ 2 ) and we have, using (3.79)

(J + ) -1 | ∂ ∂γ i (α k+1 -α k )|(r) ≤ +∞ r (J + ) -2 1 t t R 0 s| ∂ ∂γ i (J + ( ξ 2 s 2 (β k -β k-1 )-3(1-f 2 d - d 2 s 2 )(α k -α k-1 )))|dsdt ≤ C +∞ r t -4 ( (J -1 + (β k -β k-1 ) L ∞ ([R 0 ,+∞[) + log t( J -1 + (log ν) -1 ν 2 ∂ ∂γ i (β k -β k-1 ) L ∞ ([R 0 ,+∞[) + J -1 + (log ν) -1 ∂ ∂γ i (α k -α k-1 ) L ∞ ([R 0 ,+∞[) ))dt that is (J + ) -1 | ∂ ∂γ i (α k+1 -α k )|(r) ≤ Cr -3 ( (J -1 + ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞[) + log r( J -1 + (log ν) -1 ν 2 ∂ ∂γ i (β k -β k-1 ) L ∞ ([R 0 ,+∞[) + J -1 + (log ν) -1 ∂ ∂γ i (α k -α k-1 ) L ∞ ([R 0 ,+∞[) )) (3.90)
where C is independent of (d, γ 1 , γ 2 ) ∈ K.

On the other hand, we use

∂n ∂γ i = 1 4 γ i n and we estimate, for s ≥ R 0 ≥ e | ∂ ∂γ i (s n+1 ( ξ 2 s 2 (α k -α k-1 ) -(1 -f 2 d - d 2 s 2 )(β k -β k-1 ))| ≤ C J + s 2 s n+1 log s( (J + ) -1 (α k -α k-1 ) L ∞ ([R 0 ,+∞]) + (log ν) -1 (J + ) -1 ∂ ∂γ i (α k -α k-1 ) L ∞ ([R 0 ,+∞]) ) +C J + s 6 s n+1 log s( (log ν) -1 (J + ) -1 ν 2 ∂ ∂γ i (β k -β k-1 ) L ∞ ([R 0 ,+∞]) + (J + ) -1 ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞]) ).
And then we use the Lebesgue Theorem to prove by induction that β k+1 -β k is derivable wrt γ i and we use (3.79) to get

t -2n-1 | ∂ ∂γ i t R 0 (s n+1 ( ξ 2 s 2 (α k -α k-1 ) -(1 -f 2 d - d 2 s 2 )(β k -β k-1 )))ds| ≤ CJ + t -n-2 log t( (J + ) -1 (α k -α k-1 ) L ∞ ([R 0 ,+∞]) + (J + ) -1 ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞]) + (log ν) -1 (J + ) -1 ∂ ∂γ i (α k -α k-1 ) L ∞ ([R 0 ,+∞]) + (log ν) -1 (J + ) -1 ν 2 ∂ ∂γ i (β k -β k-1 ) L ∞ ([R 0 ,+∞]) ) with C independent of (d, γ 1 , γ 2 ) ∈ K.
Integrating this inequality on [R 0 , r], we get the same upper bound, with r in place of t.

Then we can estimate

r R 0 ∂ ∂γ i (t -2n-1 )| t R 0 (s n+1 ( ξ 2 s 2 (α k -α k-1 ) -(1 -f 2 d - d 2 s 2 )(β k -β k-1 )))dsdt|
by the same upper bound. Finally, we get, when log r > 1

(J + ) -1 (log r) -1 r 2 | ∂ ∂γ i (β k+1 -β k )|(r) ≤ Cr -2 ( (J + ) -1 (α k -α k-1 ) L ∞ ([R 0 ,+∞]) + (J + ) -1 ν 2 (β k -β k-1 ) L ∞ ([R 0 ,+∞]) + (log ν) -1 (J + ) -1 ∂ ∂γ i (α k -α k-1 ) L ∞ ([R 0 ,+∞]) + (log ν) -1 (J + ) -1 ν 2 ∂ ∂γ i (β k -β k-1 ) L ∞ ([R 0 ,+∞]) ). (3.91)
But the sum of (3.87), (3.90) and (3.91) leads for all k ≥ 0 to

(J + ) -1 (α k+1 -α k ) L ∞ ([R 0 ,+∞[) + (J + ) -1 ν 2 (β k+1 -β k ) L ∞ ([R 0 ,+∞[) + (log ν) -1 (J + ) -1 ∂ ∂γ i (α k+1 -α k ) L ∞ ([R 0 ,+∞]) + (log ν) -1 (J + ) -1 ν 2 ∂ ∂γ i (β k+1 -β k ) L ∞ ([R 0 ,+∞])
≤ C 0 (CR -2 0 ) k for some C and some C 0 depending only on K. So, using the sum of (3.90) and (3.91) again, we deduce, for all k ≥ 1

(log r) -1 (J + ) -1 (| ∂ ∂γ i (α k+1 -α k )|(r) + r 2 | ∂ ∂γ i (β k+1 -β k )|(r)) ≤ Cr -2 C 0 (CR -2 0 ) k-1
Choosing R 0 large enough (since the constants are independent of R 0 ), we deduce that the sums k≥0

(J + ) -1 (log ν) -1 ∂ ∂γ i (α k+1 -α k ) L ∞ ([R 0 ,+∞[) and k≥0 (log ν) -1 (J + ) -1 ν 2 ∂ ∂γ i (β k+1 -β k ) L ∞ ([R 0 ,+∞[)
are convergent, uniformly wrt (d, γ 1 , γ 2 ) ∈ K. Recalling the definition of x 1 and y 1 by (3.77), we deduce that x and y are derivable wrt γ 1 and γ 2 . Moreover, since ∂α 0 ∂γ i = ∂β 0 ∂γ i = 0, we get

(log r) -1 (J + ) -1 | ∂x 1 ∂γ i |(r) ≤ k≥1 (log r) -1 (J + ) -1 (α k+1 -α k )(r) ≤ Cr -2 k≥1 C 0 (CR -2 0 ) k
and this gives

(log r) -1 (J + ) -1 | ∂x 1 ∂γ i |(r) ≤ Cr -2 .
The same proof works for (log r) -1 (J + ) -1 r 2 | ∂y 1 ∂γ i |(r). This gives the first part of (3.80). The proof of the behavior of ∂x 1 ∂γ i and of ∂y 1 ∂γ i at +∞ is left to the reader.

3.2

The intermediate blowing up behavior at +∞ : the solution (x 3 , y 3 ). Proposition 3.12 For all K as in (3.70) and for some R 0 > 0 depending on K, there exists a solution (x 3 , y 3 ) of (1.7), verifying the following property there exists C depending only on K and such that for all r > R 0

|x 3 (r)| + |y 3 (r) -r n | ≤ Cr n-2 , |x 3 |(r) + |y 3 (r) -nr n-1 | ≤ Cr n-3
and for all r > 0 (d, γ 1 , γ 2 ) → (x 3 (r), x 3 (r), y 3 (r), y 3 (r)) is continuous on K.

Moreover, (x 3 , y 3 ) is derivable wrt γ 1 and γ 2 and we have

| ∂x 3 ∂γ i |(r) + | ∂y 3 ∂γ i (r) -r n log r| ≤ C| log r|r n-2 | ∂x 3 ∂γ i |(r) + | ∂y 3 ∂γ i |(r) ≤ C| log r|r n-1 (3.92)
for r ≥ R 0 and for C depending only on K.

Proof We follow the proof of Proposition 3.11, with the same notation. Let us indicate only what is different. We consider the following fixed point problem, with x and y defined in [R 0 , +∞[

     x = J + r +∞ (J + ) -2 1 t t R 0 sJ + ( µ 2 s 2 y -3(1 -f 2 d -d 2 s 2 )x)dsdt y = r n + r n r +∞ t -2n-1 t R 0 s n+1 ( µ 2 s 2 x -(1 -f 2 d -d 2 s 2 )y)dsdt
We chose ζ(r) = r n and (α 0 , β 0 ) = (0, ζ).

We let the reader prove, for all r ≥ R 0 ≥ 1

r -n+2 |α j+1 -α j |(r) ≤ C r 2 ( (α j -α j-1 )ν -n+2 L ∞ ([R 0 ,+∞[) + (β j -β j-1 )ν -n L ∞ ([R 0 ,+∞[) ) (3.93) and r -n |β j+1 -β j |(r) ≤ C r 2 ( (α j -α j-1 )ν -n+2 L ∞ ([R 0 ,+∞[) + (β j -β j-1 )ν -n ) L ∞ ([R 0 ,+∞[) ) (3.94)
We also remark that the constant C is independent of R 0 and does depend on K. In the course of the construction of (x 3 , y 3 ), we need the condition CR -2 0 < 1. We can conclude that the choice of R 0 , and consequently the solution (x 3 , y 3 ) depend on K. The end of the proof of Proposition 3.12 is left to the reader.

3.3

The least behavior at +∞ : the solution (x 2 , y 2 ). Proposition 3.13 There exists a solution (x 2 , y 2 ) of (1.7) verifying, for all compact subset K as in (3.70) there exist C and R 0 depending only on K and such that for all r > R 0

|x 2 (r) -J -| + |y 2 (r)| ≤ Cr -2 J -, |x 2 (r) -(J -) | + |y 2 (r)| ≤ Cr -3 J -
and, for all r > 0,

(d, γ 1 , γ 2 ) → (x 2 (r), x 2 (r), y 2 (r), y 2 (r)) is continuous on {(d, γ 1 , γ 2 ); 0 ≤ γ 1 ≤ γ 2 ; d ≥ 0; γ 2 1 +γ 2 2 2 -d 2 > 0}.
Moreover, (x 2 (r), x 2 (r), y 2 (r), y 2 (r)) is derivable wrt γ 1 and γ 2 and, for i = 1, 2

| ∂x 2 ∂γ i | + | ∂y 2 ∂γ i | ≤ CJ -r -2 | log r| and | ∂x 2 ∂γ i | + | ∂y 2 ∂γ i | ≤ CJ -r -3 | log r| (3.95)
for r ≥ R 0 and for C depending only on K.

Proof Let us consider the following fixed point problem

     x = J -+ J - r +∞ (J -) -2 1 t t +∞ sJ -( ξ 2 s 2 y -3(1 -f 2 d -d 2 s 2 )x)dsdt y = r -n r +∞ t 2n-1 t +∞ s -n+1 ( ξ 2 s 2 x -3(1 -f 2 d -d 2 s 2 )y)dsdt
We define, with the usual notation, ζ = J -and (α 0 , β 0 ) = (J -, 0). Let (d, γ 1 , γ 2 ) ∈ K, where K is a compact set, as usual. We let the reader use (3.79) and (3.78) and verify that, if R 0 > 0 is large enough, depending only on K, we have for all r > R 0

|(J -) -1 (α j+1 -α j )|(r) ≤ C r 2 ( (α j -α j-1 )(J -) -1 L ∞ ([R 0 ,+∞[) + (β j -β j-1 (J -) -1 ν 2 ) L ∞ ([R 0 ,+∞[) ) (3.96) and r 2 (J -) -1 |(β j+1 -β j )(J + ) -1 |(r) ≤ C r 2 ( (α j -α j-1 )(J -) -1 L ∞ ([R 0 ,+∞[) + (β j -β j-1 )(J -) -1 ν 2 ) L ∞ ([R 0 ,+∞[) ) (3.97)
where C depends only on K and is independent of R 0 . The rest of the proof is left to the reader, too. We remark that, for this solution, the construction doesn't depend on K.

3.4

The intermediate vanishing behavior at +∞ : the solution (x 4 , y 4 ).

Proposition 3.14 For all compact subset K as in (3.70), there exists a solution (x 4 , y 4 ) of (1.7), verifying the following property there exists C and R 0 depending only on K and such that for all r ≥ R 0

|x 4 (r)| + |y 4 (r) -r -n | ≤ Cr -n-2 , |x 4 (r)| + |y 4 (r) + nr -n-1 | ≤ Cr -n-3
and, for all r > 0 (d, γ 1 , γ 2 ) → (x 4 (r), x 4 (r), y 4 (r), y 4 (r)) is continuous on K.

Moreover, (x 4 , x 4 , y 4 , y 4 ) is derivable wrt γ 1 and γ 2 and, for i = 1, 2

| ∂x 4 ∂γ i | + | ∂y 4 ∂γ i | ≤ Cr -n-2 log r and | ∂x 4 ∂γ i | + | ∂y 4 ∂γ i | ≤ Cr -n-3 log r (3.98)
for r ≥ R 0 and for C depending only on K.

Proof Let R 0 > 0 be given and let us consider the following fixed point problem

     x = J - r R 0 (J -) -2 1 t t +∞ sJ -( ξ 2 s 2 y -3(1 -f 2 d -d 2 s 2 )x)dsdt y = r -n + r -n r +∞ t 2n-1 t +∞ s -n+1 ( ξ 2 s 2 x -3(1 -f 2 d -d 2 s 2 )y)dsdt
We define ζ(r) = r -n and (α 0 , β 0 ) = (0, r -n ). Using (3.79) and (3.78), we can verify that for R 0 > 0 large enough depending on K and for all r ≥ R 0

r n+2 |α j+1 -α j |(r) ≤ C r 2 ( (α j -α j-1 )ν n+2 L ∞ ([R 0 ,+∞[) + (β j -β j-1 )ν n L ∞ ([R 0 ,+∞[) ) (3.99) 
and

r n |β j+1 -β j |(r) ≤ C r 2 ( (α j -α j-1 )ν n+2 L ∞ ([R 0 ,+∞[) + (β j -β j-1 )ν n L ∞ ([R 0 ,+∞[) ) (3.100) 
where C depends only on K and is independent of R 0 . The proof of the proposition is left to the reader. [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau[END_REF] The smallest behavior at zero is relied with the greatest behavior at infinity For all (d, γ 1 , γ 2 ) ∈ D, the solution that has the smallest behavior at 0, is well defined, to a multiplicative factor. In all what follows, we call ω 1 this solution, that is (a 1 , b 1 ) in Theorem 1.3. In the same way, η 2 = (u 2 , v 2 ) is a solution that has the smallest behavior at +∞, without ambiguity. Now we can enonce Proposition 4.15 When d > 0 and when γ 2 ≥ γ 1 ≥ 0, (γ 2 2 + γ 2 1 )/2 ≥ d 2 , then the behavior of ω 1 at +∞ is an exponentially increasing behavior.

Proof Let us denote ω 1 = (a, b) and let us define x = a+b and y = a-b. Using Theorem 1.3, we have x(r) ∼ 0 r γ 2 and y(r) ∼ 0 -r γ 2 . Then we have x(r) > 0 and y(r) < 0 near r = 0.

Let us prove that for all r we have x(r) > 0 and y(r) < 0. Let us suppose that x(r) > 0 and y(r) < 0 in [0, R[. Combining the first equation of the system (1.7) with the equation (1.3), we get, for all r ≤ R

[rx f d -rf d x] r 0 + r 0 -γ 2 + d 2 s xf d ds + µ 2 r 0 y s f d ds -2 r 0 sf 3 d xds = 0.
We deduce that rf 2 d (

x f d ) (r) ≥ 2 r 0 sf 3 d xds. (4.101) then x f d increases in [0, R] and consequently x > 0 in [0, R].
We deduce that x(R) > 0. Moreover, combining the second equation of the system 1.7 and 1.3, we get

[ry f d -rf d y] r 0 + r 0 -γ 2 + d 2 s yf d ds + ξ 2 r 0 x s f d ds = 0
and consequently

rf 2 d ( -y f d ) (r) ≥ r 0 γ 2 -d 2 s yf d ds. (4.102) 
Then -y f d increases in [0, R] and consequently y < 0 in [0, R]. We have proved that x(r) > 0 and y(r) < 0 for all r > 0. We have now that (4.101) and (4.102) are valid for all r > 0 and we know that f d ∼ +∞ 1. Then the behavior of x and of -y at +∞ cannot be a polynomial increasing behavior. Now let us use Theorem 1.4 and let us identify the behavior of (x, y) at +∞. Then x and y have an exponentially increasing behavior at +∞.

We can now prove the following Corollary 4.1 When d > 0 and when γ 2 ≥ γ 1 ≥ 0, (γ 2 2 + γ 2 1 )/2 ≥ d 2 , then the behavior of η 2 at 0 is the greater blowing up behavior.

Proof Let (a, b) and (u, v) be two solutions of (1.6). Multiplying (1.6) and integrating by parts, we get easily, for all r 1 > 0 and

r 2 > 0 [r(a u -u a + vb -v b)] r 2 r 1 = 0.
Then, if (a, b) and (u, v) correspond respectively to ω 1 and η 2 , we get a real number

C = 0 such that lim +∞ r(a u -u a + vb -v b)(r) = C and consequently lim 0 r(a u -u a + vb -v b)(r) = C.
Considering that (a, b) ∼ 0 (o(r γ 2 ), r γ 2 ) and in view of Theorem 1.3, that gives all the possible behaviors at 0, we conclude that the only fitting behavior at 0 for (u, v) is (u, v) ∼ 0 D(o(r γ 1 ), r -γ 2 ), for some real number D = 0.

The eigenvalue problem

In this part, we give the proves of Proposition 1.1 and Proposition 1.2. In what follows, we consider that d > 0, that γ 2 > γ 1 ≥ 0 are given and we suppose that

γ 2 2 +γ 2 1 2 > d 2 .
5.1 Proof of Proposition 1.1.

To begin with, using the notation of Proposition 1.1, we suppose that µ(ε) → µ and that ωε → ω 0 on [0, R], for each R > 0. If

γ 2 2 +γ 2 1 2 -µd 2 > 0, we define n 0 = γ 2 2 +γ 2 1 2 -µd 2 .
Lemma 5.1 If ω 0 blows up either exponentially, or like (r n 0 , -r n 0 ) and if

γ 2 2 +γ 2 1 2 -µd 2 > 0, then we have µ(ε)-1 ε 2
> C, for all ε small enough, where C > 0 is independent of ε.

Proof Let ω ε = (a ε , b ε ) ∈ H γ 1 be
an eigenvector associated to µ(ε). Using (1.13), we write

µ(ε) ε 2 1 0 r(1 -f 2 )(a 2 ε + b 2 ε )dr = 1 0 (ra 2 ε + rb 2 ε + γ 2 1 r a 2 ε + γ 2 2 r b 2 ε + r ε 2 f 2 (a ε + b ε ) 2 )dr.
We use the definition (1.17) of m 0 (ε) to get

µ(ε) ε 2 1 0 r(1 -f 2 )(a 2 ε + b 2 ε )dr ≥ m 0 (ε) ε 2 1 0 r(1 -f 2 )(a 2 ε + b 2 ε )dr + 1 0 ( γ 2 1 -d 2 r a 2 ε + γ 2 2 -d 2 r b 2 ε + r ε 2 f 2 (a ε + b ε ) 2 )dr.
Now, we use the trick of TC Lin (see [START_REF] Lin | The stability of the radial solution to the Ginzburg-Landau equation[END_REF]). Letting bε = τ ãε , we consider the map

H : τ → γ 2 1 -d 2 r + γ 2 2 -d 2 r τ 2 + rf d 2 (1 + τ ) 2 (5.103) 
and we minimize this map. The minimum is attained for τ 0 verifying

τ 0 ( γ 2 2 -d 2 r + rf 2 d ) + rf 2 d = 0
and then

1 + τ 0 = γ 2 2 -d 2 r γ 2 2 -d 2 r + rf 2 d
and consequently

H(τ 0 ) = γ 2 1 -d 2 r + ( rf 2 d γ 2 2 -d 2 r + rf 2 d ) 2 ( γ 2 2 -d 2 r ) + rf 2 d ( γ 2 2 -d 2 r γ 2 2 -d 2 r + rf 2 d ) 2 .
We have

H(τ 0 ) ∼ r→+∞ γ 2 1 + γ 2 2 -2d 2 r .
Moreover for all τ > 0, H(τ ) ≥ H(τ 0 )

Since we have suppose that

γ 2 1 +γ 2 2 2
-d 2 > 0, there exists some constants C 1 > 0 and R 0 > 0, independent of τ , such that for all τ > 0

H(τ ) ≥ C 1 r for all r > R 0 .
Then, for all R > R 0 and all ε < 1 R , we write

1 ε 0 H(r)ã 2 ε (r)dr ≥ R 0 0 H(r)ã 2 ε (r)dr + R R 0 H(r)ã 2 ε (r)dr.
Now a 0 blows up exponentially at +∞, or as r n 0 . We can choose R 0 large enough and a constant C 2 > 0 to have also

a 2 0 (r) ≥ C 2 ( e √ 2r √ r ) 2 or C 2 r 2n 0 for all r > R 0 .
Since ãε → a 0 as ε → 0, uniformly in [0, R 0 ], we can chose ε 0 such that for all ε < ε 0

R 0 0 H(r)ã 2 ε (r)dr ≥ 1 2 R 0 0 H(r)a 2 0 (r)dr.
Moreover, for all R > R 0 , ãε → a 0 as ε → 0, uniformly in [R 0 , R]. Then, there exists ε(R) such that for all ε < ε(R) we have

R R 0 H(r)ã 2 ε (r)dr ≥ C 2 2 R R 0 1 r r 2n 0 dr or R R 0 H(r)ã 2 ε (r)dr ≥ C 2 2 R R 0 1 r ( e √ 2r √ r ) 2 dr.
And finally, for ε < ε(R), we have

( µ(ε) -m 0 (ε) ε 2 ) 1 0 r(1 -f 2 )(a 2 ε + b 2 ε )dr ≥ 1 2 R 0 0 H(r)a 2 0 (r)dr + C 1 C 2 2 R R 0 1 r r 2n 0 dr or C 1 C 2 2 R R 0 1 r ( e √ 2r √ r ) 2 dr .
where C 1 and C 2 , given above, are independent of R and ε. But we can choose R such that the lhs is positive. We deduce that µ(ε) -m 0 (ε) > C 0 , for some C 0 > 0, independent of ε, and for ε small enough. Then we use Theorem 1.5 (i), that gives m 0 (ε)-1 Proof Let us suppose that ω = (a, b) is a solution of (1.6), a and b being real valued functions. Let 1 2 < N < 1 be given, let us define

ω cut = (a cut , b cut ) by (a cut , b cut )(r) = (a, b)(r) for 0 ≤ r ≤ N ε ((a, b)(r)(1 -h(r)) for N ε ≤ r ≤ 1 ε where h(r) = (r -N ε ) 3 ( 1 ε -N ε ) 3 . We have ω cut e idθ ∈ (H 2 ∩ H 1 0 )(B(0, 1 ε )).
We use, for ε small enough

|a(r)| ≤ Cr -n for N ε < r < 1 ε , |a cut | ≤ |a| and r(1 -f 2 d ) = O( 1 r 
) at +∞ and we verify that

< ω cut -ω, (1 -f 2 d )(ω cut -ω) > (L 2 ×L 2 )(B(0, 1 ε )) = 1 ε N ε r(1 -f 2 d )((a -a cut ) 2 + (b -b cut ) 2 )dr = O(ε 2n ) as ε → 0. ( 5.104) 
Then, let us define

ω cut (r) = ω cut ( r ε ) 0 < r < 1.
Let (ζ i ) i∈J be a Hilbertian base of H γ 1 , associated to the eigenvalues µ i (ε), and such that

< Cζ i , ζ i > (L 2 ×L 2 )(B(0,1)) = 1.
We have

ω cut = i∈J α i ζ i and < Cω cut , ω cut > (L 2 ×L 2 )(B(0,1)) =< (1 -f 2 d )ω cut , ω cut > (L 2 ×L 2 )(B(0, 1 ε )) = i∈J α 2 i . Since < (1 -f 2 d )ω cut , ω cut > L 2 (B(0, 1 ε )) -→ +∞ 0 r(1 -f 2 d )(a 2 + b 2 )dr as ε → +∞,
there exists I ⊂ J, such that I = ∅ and for all i ∈ I, α 2 i → 0, as ε → 0.

Now we write

-(T + C)ω cut = i∈J α i (µ i -1)Cζ i that gives < -(T + C)ω cut , i∈J α i (µ i -1)ζ i > H γ 1 ,Hγ 1 = i∈J α 2 i (µ i -1) 2 .
(5.105) But (T + C)ω cut is represented by a function of L 2 (B(0, 1)) × L 2 (B(0, 1)), and C = 1-f 2 ε 2 . So, using this identification, we can estimate the rhs of (5.105) as follows,

-< (T +C)ω cut , i∈J α i (µ i -1)ζ i > H γ 1 ,Hγ 1 =< (T +C)ω cut , ε 2 1 -f 2 (T +C)ω cut > (L 2 ×L 2 )(B(0,1)) = 1 N rε 2 1 -f 2 ((a cut + a cut r - γ 2 1 r 2 a cut - 1 ε 2 f 2 (a cut + b cut ) + 1 ε 2 (1 -f 2 )a cut ) 2 +(b cut + b cut r - γ 2 2 r 2 b cut - 1 ε 2 f 2 (a cut + b cut ) + 1 ε 2 (1 -f 2 )b cut ) 2 )dr. = 1 ε N ε r 1 -f 2 d ((a cut + a cut r - γ 2 1 r 2 a cut -f 2 d (a cut + b cut ) + (1 -f 2 d )a cut ) 2 +(b cut + b cut r - γ 2 2 r 2 b cut -f 2 d (a cut + b cut ) + (1 -f 2 d )b cut ) 2 )dr.
Let us estimate each term, as ε → 0. We use

r 1 -f 2 d = O(r 3 ) at +∞ to get 1 ε N ε r 1 -f 2 (a cut ) 2 r 4 dr = O(ε 2n ).
Taking advantage that a + b = O(r -n-2 ) at +∞, a similar estimate for a cut + b cut gives

1 ε N ε r 1 -f d 2 f 2 d (a cut + b cut ) 2 dr = O(ε 2n ). Now a cut = a (1 -h) + ah and |a | ≤ Cr -n-1 and 1 ε N ε h 2 dr = O(ε).
We deduce that

1 ε N r 1 -f 2 d (a cut ) 2 r 2 dr = O(ε 2n ). Now, since |a | ≤ Cr -n-2 and 1 ε N ε h 2 dr = O(ε 3 )
we get

1 ε N ε r 1 -f d 2 (a cut ) 2 dr = O(ε 2n ).
We have proved that

1 ε N ε r 1 -f 2 d ((a cut + a cut r - γ 2 1 r 2 a cut -f 2 d (a cut + b cut ) -(1 -f 2 d )a cut ) 2 = O(ε 2n )
and with the same proof we have

1 ε N ε r 1 -f d 2 (b cut + b cut r - γ 2 2 r 2 b cut -f 2 d (a cut + b cut ) -(1 -f 2 d )b cut ) 2 )dr = O(ε 2n )
and finally 

-< (T + C)ω cut , i∈J α i (µ i -1)η i > H γ 1 ,Hγ 1 = O(ε 2n ) (5.
α 2 i (µ i -1) 2 = O(ε 2n ).
So, for all i ∈ J we have

|α i (µ i -1)| = O(ε n ).
Since n > 0, we are led to µ i (ε) -1 → 0 as ε → 0, for all i ∈ I.

We have proved the lemma. Now, under the conditions of Lemma 5.2 and with the additional condition that n ≥ 1 and that the least eigenvalue is greater than 1, we can improve the conclusion of Lemma 5.2 as follows.

Lemma 5.3 If n ≥ 1, if m γ 1 ,γ 2 (ε) ≥ 1 and
if there exists a bounded solution of (1.6), then there exists an eigenvalue µ(ε) such that

µ(ε) -1 ε 2 → 0.
Proof Using the notation of the proof of Lemma 5.2, we write

ω cut = i∈J α i ζ i
and consequently

-< (T + C)ω cut , ω cut > H γ 1 ,Hγ 1 = i∈J α 2 i (µ i -1).
To make the proof more easy, and since we don't need anymore the continuity of the second derivatives at N ε , we use another definition for ω cut , that is now

ω cut (r) = ω(r) if 0 < r < N ε ω(r)(1 -h(r)) if N ε < r < 1 ε where h(r) = ( r -N ε 1 ε -N ε ) 2
and N > 1 2 . We will have to chose a suitable N , depending on ε. Then

-< (T + C)ω cut , ω cut > H γ 1 ,Hγ 1 = -< (T + C)(ω cut -ω), (ω cut -ω) > H γ 1 ,Hγ 1 = 1 ε N ε (r(a cut -a) 2 +r(b cut -b) 2 + γ 2 1 r (a cut -a) 2 + γ 2 2 r (b cut -b) 2 -r(1-f 2 d )((a cut -a) 2 +(b cut -b) 2 ) +rf 2 d (a cut -a + b cut -b) 2 )dr. We have |a cut -a| 2 r ≤ Cε 2n+1 h 2 (r)
where C is independent of N , when 1 2 < N < 1. Since we have

1 ε N ε h 2 (r)dr = 1 7 ( 1 ε - N ε ),
and

|a cut + b cut -a -b| ≤ Cr -n-2
we deduce that

1 ε N ε ( γ 2 1 r (a cut -a) 2 + γ 2 2 r (b cut -b) 2 + r(1 -f 2 d )((a cut -a) 2 + (b cut -b) 2 +r(1 -f 2 d )(a cut -a + b cut -b)dr ≤ C 1 (1 -N )ε 2n where C 1 is independent of N . Now (a cut -a) = -a h -ah .
On one hand, we have

1 ε N ε ra 2 h 2 dr ≤ Cε 2n+1 1 ε N ε h 2 (r)dr ≤ Cε 2n (1 -N ).
On the other hand, we use

1 ε N ε h 2 (r)dr = 4 3 ε 1 -N to get 1 ε N ε a 2 h 2 dr ≤ Cε 2n+1 1 1 -N . Finally | < (T + C)ω cut , ω cut > H γ 1 ,Hγ 1 | ≤ C 1 ε 2n (1 -N ) + C 2 ε 2n+1 1 -N ,
where C 1 and C 2 are positive and independent of ε and of N , when 1 2 < N < 1. Then, we take 1 -N = ε α where 0 < α < 1,

to obtain | < (T + C)ω cut , ω cut > H γ 1 ,Hγ 1 | ≤ C(ε 2n+α + ε 2n+1-α ),
where C > 0 is independent of ε.

Then | i∈J α 2 i (µ i (ε) -1)| ≤ C(ε 2n+α + ε 2n+1-α ).
And, since we have supposed, for all i, that µ i (ε) -1 ≥ 0, we have

0 ≤ i∈J α 2 i (µ i (ε) -1) ≤ C(ε 2n+α + ε 2n+1-α ).
But we verify that we still have

1 ε N ε r(1 -f 2 d )((a cut ) 2 + (b cut ) 2 )dr → 0
to deduce, as in the proof of Lemma 5.2, that

∃I = ∅, ∀i ∈ I, α i → 0. Then, ∀i ∈ I, 0 ≤ µ i (ε) -1 ≤ C(ε 2n+α + ε 2n+1-α ).
The lemma is proved.

The proof of Proposition 1.1 follows from Lemma 5.1 and Lemma 5.2.

Proof of Proposition 1.2.

The proof for n = 2 and d = 2 is originally in [START_REF] Mironescu | On the stability of radial solutions of the Ginzburg-Landau equation[END_REF].

For d ≥ 1 and n ≥ 1, let x =

f d r n-1 and y = d f d r n . A calculus gives -(rx ) + γ 2 r x -ξ 2 r y -r(1 -3f 2 d )x = -2 n-1 r n-1 f d (1 -f 2 d ) -(ry ) + γ 2 r y -ξ 2 r x -r(1 -f 2 d )y = 0 (5.107)
For a = x+y 2 and b = x-y 2 , we deduce that

-(ra ) + γ 2 1 r a + f 2 d b -r(1 -2f 2 d )a = -n-1 r n-1 f d (1 -f 2 d ) -(rb ) + γ 2 2 r b + f 2 d a -r(1 -2f 2 d )b = -n-1 r n-1 f d (1 -f 2 d ) (5.108)
where, as usual,

γ 1 = |n -d|, γ 2 = n + d, γ 2 = γ 2 1 +γ 2 2 2 and ξ 2 = γ 2 2 -γ 2 1
2 . We verify that x ∼ 0 y ∼ 0 dr d-n + O(r d-n+2 ) and, at +∞, x = O(r -n ), y = O(r -n ), and consequently that

a ∼ 0 2dr d-n + O(r d-n+2 ) and b ∼ 0 O(r d-n+2 ).
let us suppose that d ≥ 1 and that 1 < n < d + 1. We can multiply the system (5.108) and integrate by parts. We obtain that +∞ 0

(ra 2 + rb 2 + γ 2 1 r a 2 + γ 2 2 r b 2 + rf 2 d (a + b) 2 -r(1 -f 2 d )(a 2 + b 2 ))dr = +∞ 0 -(n -1) r n-1 f d (1 -f 2 d )(a + b)dr
This gives +∞ 0

(ra 2 + rb 2 + γ 2 1 r a 2 + γ 2 2 r b 2 + rf 2 d (a + b) 2 )dr +∞ 0 r(1 -f 2 d )(a 2 + b 2 )dr = 1 -C n with C n = +∞ 0 (n-1) r n-1 f d (1 -f 2 d )(a + b)dr +∞ 0 r(1 -f 2 d )(a 2 + b 2 )dr > 0.
Now we use an approximation argument, valid as soon as n > 0. For example for a given constant 0 < N < 1 we define

(a ε , b ε )(r) = (a, b)( r ε ) in [0, N ] = (a(r) (1-r) 2 (1-N ) 2 , b(r) (1-r) 2 (1-N ) 2 ) in [N, 1].
We have that (a ε , b ε ) ∈ H |n-d| and that

1 0 (ra 2 ε + rb 2 ε + γ 2 1 r a 2 ε + γ 2 2 r b 2 ε + r 1 ε 2 f 2 (a ε + b ε ) 2 )dr 1 ε 2 1 0 r(1 -f 2 )(a 2 ε + b 2 ε )dr = N ε 0 (ra 2 + rb 2 + γ 2 1 r a 2 + γ 2 2 r b 2 + rf 2 d (a + b) 2 )dr + O(ε 2n ) N ε 0 r(1 -f 2 d )(a 2 + b 2 )dr + O(ε 2n ) (5.109) → 1 -C n , as ε tends to 0.
We deduce that, if 1 < n < d + 1 m d-n,d+n (ε) < 1 -C n 2 for ε small enough and the proof of the proposition is complete.

6 The proof of Theorem 1.4.

Let us consider d > 1. We can write the system (1.6) as X = M X with X = (a, ra , b, rb ) t (6.110) and

M =      0 1 r 0 0 -r(1 -2f 2 d ) + γ 2 1 r 0 rf 2 d 0 0 0 0 1 r rf 2 d 0 -r(1 -2f 2 d ) + γ 2 2 r 0     
We are going to use a resolvant matrix for (6.110). First, we have Lemma 6.4 Let us suppose that there exists a bounded solution of (1.6). Then we can chose a base of solutions, X 1 , X 2 , X 3 , X 4 , for (6.110), whose third vector is a bounded solution, and such that if we denote by R(s) the resolvant matrix, whose columns are the vectors X i , i = 1, . . . , 4 and if we denote the second and the fourth column of R -1 (s) by C 2 and C 4 , we have at 0 and when

(d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 < 0 C 2 =     O(s γ 1 ) O(s γ 1 +2γ 2 ) O(s -γ 1 ) O(s γ 1 )     and C 4 =     O(s -γ 2 ) O(s γ 2 ) O(s γ 2 ) O(s 2γ 1 +γ 2 )    
and at 0 and when (d, γ 1 , γ 2 ) ∈ D 1 and γ

1 + γ 2 -2d -2 > 0 C 2 =     O(s -γ 2 +2d+2 ) O(s γ 2 +2d+2 ) O(s -γ 1 ) O(s γ 1 )     and C 4 =     O(s -γ 2 ) O(s γ 2 ) O(s -γ 1 +2d+2 ) O(s γ 1 +2d+2 )     and at 0 and when (d, γ 1 , γ 2 ) ∈ D 2 C 2 =     O(τ (s)s -γ 2 +γ 1 +2d+2 ) O(τ (s)s γ 1 +γ 2 +2d+2 ) O(τ (s)) O(s γ 1 )     and C 4 =     O(s γ 1 -γ 2 τ (s)) O(s γ 1 +γ 2 τ (s)) O(s 2d+2 τ (s)) O(s γ 1 +2d+2 )    
and in any case, at +∞

C 2 ∼ +∞ 1 -16n √ 2     4nJ - 4nJ + -4 √ 2s n -4 √ 2s -n     and C 4 ∼ +∞ 1 -16n √ 2     4nJ - 4nJ + 4 √ 2s n 4 √ 2s -n    
where -16n √ 2 is the determinant of R(s).

Proof We can choose R(s) as follows

R(s) ∼ +∞     J + J - s -n s n s(J + ) s(J -) -ns -n ns n J + J - -s -n -s n s(J + ) s(J -) ns -n -ns n    
where, as usual, the notation J + stands for e √ 2s √ s and the notation J -stands for e -√ 2s √ s . To give the behaviors at 0, we return to Theorem 1.3. We have, for some

c i = 0, i = 1, . . . , 4 If (d, γ 1 , γ 2 ) ∈ D 1 , R(s) ∼ 0     O(s γ 2 +2d+2 ) O(s γ1 ) c 3 s γ 1 c 4 s -γ 1 O(s γ 2 +2d+2 ) O(s γ1 ) c 3 γ 1 s γ 1 -c 4 γ 1 s -γ 1 c 1 s γ 2 c 2 s -γ 2 O(s γ 1 +2d+2 ) O(s γ2 ) c 1 γ 2 s γ 2 -c 2 γ 2 s -γ 2 O(s γ 1 +2d+2 ) O(s γ2 )    
where we use the notation

γ1 = min{γ 1 , -γ 2 + 2d + 2} and γ1 = min{γ 2 , -γ 1 + 2d + 2} if γ 1 + γ 2 -2d -2 = 0 (if γ 1 +γ 2 -2d-2 = 0, we have to replace O(s γ1 ) by O(s γ 1 log s) and O(s γ2 ) by O(s γ 2 log s)) and 
If (d, γ 1 , γ 2 ) ∈ D 2 , R(s) ∼ 0     O(s γ 2 +2d+2 ) O(s -γ 2 +2d+2 ) c 3 s γ 1 c 4 τ (s) O(s γ 2 +2d+2 ) O(s -γ 2 +2d+2 ) c 3 γ 1 s γ 1 -c 4 sτ (s) c 1 s γ 2 c 2 s -γ 2 O(s γ 1 +2d+2 ) O(τ (s)s 2d+2 ) c 1 γ 2 s γ 2 -c 2 γ 2 s -γ 2 O(s γ 1 +2d+2 ) O(τ (s)s 2d+2 )     where τ (s) = s -γ 1 -s γ 1 2γ 1 if γ 1 = 0 -log s if γ 1 = 0
The determinant W of R(s) is independent of s, due to the fact that the matrix M of the differential system has a null trace. Moreover, J + J -= 1 s . Using the behavior at +∞ of R(s), given above, we deduce that W is the principal term, as s → +∞ of 1 s Lemma 6.5 Let m γ 1 ,γ 2 (ε) be the first eigenvalue, and let m be such that m γ 1 ,γ 2 (ε) → m as ε → 0. If there exists a bounded solution (a, b) of the system (1.6), then we have necessarly m = 1.

Proof From the definition of m γ 1 ,γ 2 (ε), we have that it decreases as ε decreases to 0, then we can define its limit m ≥ 0. But we have supposed that there exists µ(ε) → 1, then we have m ≤ 1. Moreover, we can define ω ε ∈ H γ 1 an eigenvector associated to m γ 1 ,γ 2 (ε) such that there exists ω 0 = (a 0 , b 0 ) such that ωε → ω 0 on each compact subset of [0, +∞[. The condition m ≤ 1 gives

γ 2 1 +γ 2 2 2
-md 2 ≥ 0. Since a 0 ≥ -b 0 ≥ 0, an examination of the proof of Theorem 1.4 gives that the possible behavior at +∞ for (a 0 , b 0 ) is either (r -n 0 , -r -n 0 ), or (r n 0 , -r n 0 ) where

n 0 = γ 2 1 + γ 2 2 2 -md 2 . (6.111)
In what follows, we suppose that m < 1, so we have n 0 > n, and we want to reach to a contradiction. Since m < 1, we have by Lemma 5.1, that ω 0 has a bounded behavior at +∞ and consequently (a 0 , b 0 ) ∼ 0 (r -n 0 , -r -n 0 ) and we recall that a 0 + b 0 = O(r -n 0 -2 ).

At 0, in view of a 0 ≥ -b 0 ≥ 0, the only possible behavior is

(a 0 , b 0 ) ∼ 0 (cr γ 1 , O(r γ 1 +2d+2 )),
for some c = 0.

Let us denote X 0 = (a 0 , ra 0 , b 0 , rb 0 ) t , the vector corresponding to ω 0 . We have

X 0 = M X 0 -(m -1)(1 -f 2 d )(0, ra, 0, rb) t .
let us define X 1 , X 2 , X 3 and X 4 as in Lemma 6.4. We are going to prove that there exist some constants C i such that

X 0 = 4 i=1 C i X i -(m -1) 4 i=1 Xi , with Xi = X 0 O(r 2 ) at 0 (6.112) and Xi = X 0 O(r -2 ) at + ∞ for i = 1, 2 X i O(1) at + ∞ for i = 3, 4 (6.113) 
We write

X 0 = 4 i=1 A i (r)X i (6.114)
We will name A i (r)X i the i th term of X 0 . For all i = 1, . . . , 4, we have 6.115) where the notation [ ] i means the i th line of the vector, and A i is a constant. Let us examine the behavior of each term A i (r)X i at +∞ and at 0, using Lemma 6.4. For the first term, we use the first terms of C 2 and C 4 , given in Lemma 6.4, to obtain

A i (r) = A i -(m -1) r 1 [R -1 (s)s(1 -f 2 d )     0 a 0 0 b 0     ds] i ( 
[R -1 (s)s(1 -f 2 d )     0 a 0 0 b 0     ] 1 ∼ +∞ O( 1 s J -(a 0 + b 0 )) and ∼ 0    s(O(s γ 1 a 0 + O(s -γ 2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 , γ 1 + γ 2 -2d -2 < 0 s(O(s -γ 2 +2d+2 a 0 + O(s -γ 2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 , γ 1 + γ 2 -2d -2 > 0 s(O(τ (s)s γ 1 -γ 2 +2d+2 a 0 + O(τ (s)s γ 1 -γ 2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 2 . (6.116) Let us define B 1 = -(m-1) +∞ 1 [R -1 (s)s(1-f 2 d )     0 a 0 0 b 0     ] 1 ds and X1 = X 1 r +∞ [R -1 (s)s(1-f 2 d )     0 a 0 0 b 0     ] 1 ds We can write A 1 (r)X 1 = (A 1 + B 1 )X 1 -(m -1) X1
and, using Lemme (3.78), we see that

X1 = X 1 O(r -n 0 -2 J -) at +∞ and X1 = X 1 O(1) at 0. ( 6 

.117)

For the second term, we obtain

[R -1 (s)s(1 -f 2 d )     0 a 0 0 b 0     ] 2 ∼ +∞ O( 1 s J + (a 0 + b 0 )) and ∼ 0    s(O(s γ 1 +2γ 2 a 0 ) + O(s γ 2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 < 0 s(O(s γ 2 +2d+2 a 0 ) + O(s γ 2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 > 0 sτ (s)(O(s γ 1 +γ 2 +2d+2 )a 0 + O(s γ 1 +γ 2 )b 0 ) if (d, γ 1 , γ 2 ) ∈ D 2 (6.118) Denoting B 2 = -(m-1) 0 1 [R -1 (s)s(1-f 2 d )     0 a 0 0 b 0     ] 2 ds and X2 = X 2 r 0 [R -1 (s)s(1-f 2 d )     0 a 0 0 b 0     ] 2 ds we get A 2 (r)X 2 = (A 2 + B 2 )X 2 -(m -1) X2 with X2 = X 2 O(r -n 0 -3 J + ) at +∞ and, at 0 X2 = X 2    O(r γ 1 +2γ 2 +2 a 0 ) + O(r γ 2 +2 b 0 ) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 < 0 O(r γ 2 +2d+4 a 0 ) + O(r γ 2 +2 b 0 ) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 > 0 τ (r)(O(r γ 1 +γ 2 +2d+4 )a 0 + O(r γ 1 +γ 2 + 2)b 0 ) if (d, γ 1 , γ 2 ) ∈ D 2 at 0. (6.119) For the third term, we obtain [R -1 (s)s(1 -f 2 d )     0 a 0 0 b 0     ] 3 ∼ +∞ -1 16n √ 2 4 √ 2d 2 s s n (-a 0 + b 0 ) and ∼ 0    s(O(s -γ 1 a 0 ) + O(s γ 2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 < 0 s(O(s -γ 1 a 0 ) + O(s -γ 1 +2d+2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 > 0 s(O(τ (s)a 0 ) + O(τ (s)s 2d+2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 2 (6.120) Letting B 3 = -(m-1) 0 1 [R -1 (s)s(1-f 2 d )     0 a 0 0 b 0     ] 3 ds and X3 = X 3 r 0 [R -1 (s)s(1-f 2 d )     0 a 0 0 b 0     ] 3 ds
and keeping in mind n -n 0 < 0, we find

A 3 (r)X 3 = (A 3 + B 3 )X 3 -(m -1) X3 with X3 = X 3 O(1) at +∞ and X3 = X 3    O(r -γ 1 +2 a 0 ) + O(r γ 2 +2 b 0 ) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 < 0 O(r -γ 1 +2 a 0 ) + O(r -γ 1 +2d+4 b 0 ) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 > 0 τ (r)(O(r 2 a 0 ) + O(r 2d+4 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 2 . (6.121) For the fourth term, [R -1 (s)s(1 -f 2 d )     0 a 0 0 b 0     ] 4 ∼ +∞ -1 16n √ 2 4d 2 √ 2 s s -n (-a 0 + b 0 ) and ∼ 0    s(O(s γ 1 a 0 ) + O(s 2γ 1 +γ 2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 < 0 s(O(s γ 1 a 0 ) + O(s γ 1 +2d+2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 > 0 sτ (s)(O(s γ 1 )a 0 + O(s γ 1 +2d+2 )b 0 ) if (d, γ 1 , γ 2 ) ∈ D 2 (6.122) Letting B 4 = -(m-1) 0 1 [R -1 (s)s(1-f 2 d )     0 a 0 0 b 0     ] 4 ds and X4 = X 4 r 0 [R -1 (s)s(1-f 2 d )     0 a 0 0 b 0     ] 4 ds we find A 4 (r)X 4 = (A 4 + B 4 )X 4 -(m -1) X4 with X4 = X 4 O(1) at +∞ and X4 = X 4 O    O(r γ 1 +2 a 0 ) + O(r 2γ 1 +γ 2 +2 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 < 0 O(r γ 1 +2 a 0 ) + O(r γ 1 +2d+4 b 0 ) if (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 > 0 τ (r)(O(r γ 1 +2 a 0 ) + O(r γ 1 +2d+4 b 0 )) if (d, γ 1 , γ 2 ) ∈ D 2 ( 
6.123) Summing the four terms, we find

X 0 = 4 i=1 (A i + B i )X i -(m -1) 4 i=1
Xi .

We collect (6.117), (6.119), (6.121) and (6.123) and we use the expansions of X 1 , X 2 ,X 3 and X 4 at 0 and at +∞, given in the proof of Lemma 6.4 (the columns of R(s)). We get (6.112) and (6.113). But X 0 is bounded at 0. We infer that A 2 + B 2 = A 4 + B 4 = 0. But X 0 is bounded at +∞, too. And Xi is bounded at +∞, for all i = 4. Since we have also X 1 >> X4 at +∞, we infer that A 1 + B 1 = 0 and that X4 must be bounded at +∞. Returning to the definition of X4 , we must have and using (6.132), we get, for R large enough and R < r < We have proved (6.127) and (6.128).

1 ε |(A 1 + B 1 )a 1 ( 1 ε ) + a 3 ( 1 ε )| ≤ C |µ(ε) -1| ε n |(A 1 + B 1 )a 1 ( 1 ε ) + a 3 ( 1 
Secondly, We use Theorem 1.3 to see that the vector space of the bounded solutions of (1.6) is at most one dimensional, spanned by some ω = (a, b). Then, in view of Lemma 5.1, if the property we have to prove is not true, there exist two eigenvalues µ 1 (ε) and µ 2 (ε) (that may be equal), associated to some eigenvectors ω ε and η ε and such that max{ and, using the same trick as in the proof of Lemma 5.1, we get

|µ 1 (ε) -1| ε 2 , |µ 1 (ε) -1| ε n } → 0, max{ |µ 2 (ε) -1| ε 2 , |µ 2 (ε) -1| ε n } → 0,
< T (ω ε -η ε ), ω ε -η ε > H γ 1 ,Hγ 1 ≥ m 0 (ε) ε 2 1 0 r(1 -f 2 )(α 2 ε + β 2 ε )dr + 1 ε 0 H(τ 0 )α 2 ε dr (6.136)
Where H is defined in (5.103). Defining R 0 > 0 such that H(τ 0 ) > 0, for all r ≥ R 0 , we have

1 ε 0 H(τ 0 )α 2 ε dr ≥ R 0 0 H(τ 0 )α 2 ε dr.
Moreover, by (6.134), we have

1 ε 2 1 0 r(1 -f 2 )(α 2 ε + β 2 ε )dr =< Cω ε , ω ε > (L 2 ×L 2 )(B(0,1)) + < Cη ε , η ε > (L 2 ×L 2 )(B(0,1))
and consequently, (6.136) becomes

< T (ω ε -η ε ), ω ε -η ε > H γ 1 ,Hγ 1 ≥ m 0 (ε)(< Cω ε , ω ε > (L 2 ×L 2 )(B(0,1)) + < Cη ε , η ε > (L 2 ×L 2 )(B(0,1)) ) + R 0 0
H(τ 0 )α 2 ε dr. (6.137) By collecting (6.135) and (6.137), we obtain (m 0 (ε) -µ 1 (ε)) < Cω ε , ω ε > (L 2 ×L 2 )(B(0,1)) +(m 0 (ε) -µ 2 (ε)) < Cη ε , η ε > (L 2 ×L 2 )(B(0,1)) . 

≤ -

Appendix

In this Appendix, we give a direct proof of Theorem 1.5, for the convenience of the reader. The original proof can be find in [START_REF] Mironescu | On the stability of radial solutions of the Ginzburg-Landau equation[END_REF], [START_REF] Lin | Spectrum of the linearized operator for the Ginzburg-Landau equation[END_REF].

I. Proof of m 0 (ε)-1 Multiplying the equation (8.140), by f d and integrating by parts on [0, 1 ε ], we find m 0 (ε) > 1, for all ε > 0. Then, using a truncation of f , with value 0 for r ≥ 1, as a test function for the infimum m 0 (ε), and since we know the existence of the limit, we have that lim ε→0 m 0 (ε) ≤ 1. This gives m 0 (ε) → 1. Secondly, we use the same technics as in the proof of Theorem 1. Thus we can define

f d + k≥0 (α k+1 -α k ).
Since m 0 (ε) -1 → 0, then for each r > 0, the sum is convergent for ε small enough, depending on r. This sum is a solution of (8.140). If we name it ã, we have

|ã -f d |(r) ≤ f d (r) m 0 (ε) -1 4 r 2 1 1 -m 0 (ε)-1 4 r 2 .
We remark that a similar proof gives the existence of a solution of (8.140) having the behavior r -d at 0. Since the eigenvector ã is defined at 0, it must be the solution defined above, to a multiplicative constant. We deduce two consequences. 

2 2 and ξ 2 = γ 2 2 -γ 2 Definition 1 . 1

 22211 We say that 1. a =O(f ) at 0 if there exists R > 0 and C > 0 such that ∀r ∈]0, R], |a(r)| ≤ C|f (r)|.

D 1 =

 1 {(d, γ 1 , γ 2 ) ∈ D; γ 1 > 0}, that is n = d and D 2 = {(d, γ 1 , γ 2 ) ∈ D; 0 ≤ γ 1 < 1 4

  4 ) near +∞ (1.9) andf d (r) = ar da 4(d + 1) r d+2 + O(r d+4 ) near 0,(1.10)

Theorem 1 . 4 1 +

 141 We suppose that O(r -2 ));(u 2 (r), v 2 (r)) ∼ r→+∞ ( O(r -2 )); and (u 3 (r), v 3 (r)) ∼ r→+∞ (r -n , -r -n )(1 + O(r -2));

  17) It is classical that these infimum are attained. Considering the rescaling (ã, b)(r) = (a(εr), b(εr)) and an extension by 0 outside [0, 1/ε], we see that ε → m γ 1 ,γ 2 (ε) decreases when ε decreases. Then lim ε→0 m γ 1 ,γ 2 (ε) exists. Moreover, m γ 1 ,γ 2 (ε) is a simple eigenvalue and there exists an eigenvector (a, b) verifying a(r) ≥ -b(r) ≥ 0 for all r > 0.

  .62)We have proved the existence of (a 4 , b 4 ), for all (d, γ 1 , γ 2 ) ∈ D 1 , and the continuity of (d, γ 1 , γ 2 ) → (a 4 (r), b 4 (r)). The behavior of (a 4 (r), b 4 (r)) at r = 0 is left to the reader. 2.4.2 (a 4 , b 4 ) for small γ 1 . Now we give (d, γ 1 , γ 2 ) ∈ D 2 . We have Proposition 2.10 There exists a solution (a 4 , b 4 ) of (1.6) having the following property : for all compact subset K of D 2 , there exist R < 1 and C and c > 1 depending only on K, such that, for all 0 < r < R |a 4 (r) -τ (r)| ≤ Cr c τ (r) and |b 4 (r)| ≤ Cr 2d+2 τ (r),

Moreover |a 4

 4 (r) -τ (r)| ≤ Cr c-1 τ (r) and |b 4 (r)| ≤ Cr 2d+1 τ (r). And (d, γ 1 , γ 2 ) → (a 4 (r), a 4 (r), b 4 (r), b 4 (r)) is continuous on D 2 .

|β 1 -

 1 β 0 |(r) ≤ Cr -3 J + . (3.86) By (3.73) and (3.74) give, for all k ≥ 1 and r > R 0

ε 2 ≥

 2 C. The lemma is proved. Now let us enonce the following Lemma 5.2 If ω = (a, b) is a bounded solution of (1.6), then there exists an eigenvalue µ(ε) such that (µ(ε) -1) → 0.

+∞ 0 [C 2 + b 0 C 4 ] 4 ∼ +∞ X 4 4 i=1 3 + 3 + B 3 )X 3 --1 16 √ 2 -8d 2 ( 1 ε 4 i=2

 02444433332214 R -1 (s)s(1 -f 2 d ) now X 0 = (A 3 + B 3 )X 3 -(m -1)Xi and since X1 + X2 << X 0 at +∞, we must haveX 0 ∼ +∞ (A 3 + B 3 )X 3 -(m -1) X3 -(m -1) X4 (6.125)But, recalling (6.124) and recalling n < n 0 , this implies that(A 3 + B 3 ) -(m -1) B 3 )X 3 -(m -1) X3 = -(m -1)X 3 r +∞ [R -1 (s)s(1 -f 2 d ) (m -1) X3 ∼ +∞ -(m -1)X 3 √ 2 n(n -n 0 ) r n-n 0 . (6.126)Finally, we sum (6.124) and (6.126) to get, by (6.125)a 0 ∼ +∞ (m -1) |ã ε | + | bε |)).This gives, since µ(ε)-1ε n → 0 |ã ε + bε | ≤ C(|A 1 + B 1 ||a 1 + b 1 | + |a 3 + b 3 |).(6.131)This implies, for all R < r <|â i |(r) ≤ C(1 + 1 R 2 + ε -n )(|A 1 + B 1 |J + (r) + r -n ).

|A 1 +

 1 B 1 | ≤ Cε n √ εe - √ 2r .

ωε → ω

  and ηε → ω on each [0, R]and < T ω ε , η ε > H γ 1 ,Hγ 1 = 0. (6.133)and we have also< Cω ε , η ε > (L 2 ×L 2 )(B(0,1)) = 0. (6.134)On one hand, we write< T (ω ε -η ε ), ω ε -η ε > H γ 1 ,Hγ 1 = µ 1 (ε) < Cω ε , ω ε > (L 2 ×L 2 )(B(0,1)) +µ 2 (ε) < Cη ε , η ε > (L 2 ×L 2 )(B(0,1)) (6.135)57On the other hand, we let ω ε -η ε = (α, β)

1 R< 0 0H(τ 0 )α 2 ε

 102 also, for all R > 0 and ε< Cω ε , ω ε > (L 2 ×L 2 )(B(0,1)) ≥ exists C > 0 such that, for ε small enough < Cω ε , ω ε > (L 2 ×L 2 )(B(0,1)) > C and < Cη ε , η ε > (L 2 ×L 2 )(B(0,1)) > C.Then we use (6.127) and (6.128) to get R dr = o(ε 4 ) as ε → 0.Then(6.138) givesm 0 (ε) -µ 1 (ε) ε 2 → 0 and m 0 (ε) -µ 2 (ε) ε 2 → 0.

ε 2 ≥ 2 ( 1 - 2 ( 1 -f 2 d

 221212 C. Using the Euler equation of the infimum problem (1f 2 )a = -m 0 (ε) -1 ε f 2 )a (8.139) where r ∈ [0, 1], f (r) = f d ( r ε) and a(r) ≥ 0 and a(1) = 0. And we have, for the rescaled)ã = -(m 0 (ε) -1)(1 -f 2 d )ã. (8.140)Firstly, let us give a sketch of the proof of m 0 (ε) → 1.

f 2 d 2 d

 22 3 to analyse the possible behaviors at 0. But in place of comparing the solution ã with r d , we compare it with f d . More precisely, we know that f d is one solution of the equation usual in matter of ODE, we seek a solution of (8.140) of the form f d g. We writeg f d + 2g f d + g f d r = -(m 0 (ε) -1)(1 -f 2 d )f d g, that is (g (rf 2 d )) = -(m 0 (ε) -1)r(1 -f 2 d )f 2 d g.Letting ã = f d g, we are led to the following form of the equation (8.140)(rf 2 d (f -1 d ã) ) = -(m 0 (ε) -1)r(1 -f 2 d )f d ã. (8.142)On the other hand, we define the fixed point problema = f d -(m 0 (ε) -)f d a(s)ds. (8.143)We denote it by Φ(a) = a.In view of (8.142), each solution of this fixed point problem is a solution of (8.140).As usual, we define by inductionα 0 = f d and α k+1 = Φ(α k ) 61and we write, for all k ≥ 1|α k+1 -α k |(r) ≤ f d (r)(m 0 (ε) -1) dsdt f -1 d (α k -α k-1 ) L ∞ ([0,r]and, using f -2 (t) ≤ f -2 d (s) we get|f -1 d (α k+1 -α k )|(r) ≤ (m 0 (ε) -1) r 2 4 f -1 d (α k -α k-1 ) L ∞ ([0,r]and |f -1 d (α 1 -α 0 )|(r) ≤ (m 0 (ε) -1) d (α k+1 -α k ) L ∞ ([0,r] ≤ ( (m 0 (ε) -1)r 2 4 ) k+1 .

1 ε 2 ≥

 12 Firstly, for all R > 0 |ã -f d |(r) ≤ Cr 2 f d (r)(m 0 (ε) -1), for all ε < ε(R) and where C depends only on R, and in particular, ã -f d tends to 0, asε → 0, uniformly in [0, R]. Secondly, if m 0 (ε) -1 ε 2 → 0, then ã -f d L ∞ ([0, 1 ε ]) → 0, as ε → 0.This second possibility cannot occur, since ã( 1 ε ) = 0. We have proved that m 0 (ε)-C.The eigenvalue m |d-1|,d+1 (ε). Sketch of the proof of m |d-1|,d+1 (ε) > 1 and m |d-1|,d+1 (ε) → 1. Let (a, b) be an eigenvector associated to m |d-1|,d+1 (ε). Let F d = (A, B) be defined in Theorem 1.1. Multiplying the system verified by (a, b) and the system verified by (A, B) and integrating by parts on [0,1 ε ] we get m |d-1|,d+1 (ε) > 1. This proof is in[START_REF] Mironescu | On the stability of radial solutions of the Ginzburg-Landau equation[END_REF]. Then we can use the truncation of F d and (5.109), where n = 1 and C n = 0 or, alternatively, Proposition 1.4, to get that m |d-1|,d+1 (ε) → 1.

But we have by (6.111) n 2 0 -n 2 = (-m + 1)d 2 . We deduce that n 0 = n, that gives m = 1, that is in contradiction with m < 1. We have not written the proof of (6.112) and (6.113) for (d, γ 1 , γ 2 ) ∈ D 1 and γ 1 + γ 2 -2d -2 = 0, but this is true in this case, too.

Proof of Proposition 1.4 completed. With the notation of Lemma 6.5, we know that m = 1, that ω 0 verifies a 0 ≥ -b 0 ≥ 0 on [0, +∞[ and that it is defined at 0. If ω 0 is not equal to ω, up to a multiplicative constant, we can find C = 0 such that ω 0 -Cω has the behavior of ω 1 at 0 (that is the least vanishing behavior). But this implies an exponentially blowing up behavior at +∞. Since ω is bounded, then ω 0 has an exponentially blowing up behavior at +∞. But this is in contradiction with a 0 ≥ -b 0 ≥ 0. So ω 0 is a bounded solution of (1.6). The Proposition 1.4 is proved.

Proof of Proposition 1.5 (iv).

First let us prove the following

where ω is a bounded solution of (1.6), then we can chose an eigenvector, still denoted by ωε and such that

for some constant C ε and some function ωε , with the conditions ωε → ω0 as ε → 0, for some limit function ω0 and uniformly on each [0, R]

Here ω 1 = (a 1 , b 1 ), is, as usual, the solution defined in Theorem 1.3, that has a least behavior at 0 and blows up exponentially at +∞. In order to prove (6.127) and (6.128), we use

t and a resolvant matrix, whose third vector is the bounded solution, and we write, with the notation of the proof of Lemma 6.5

Then we use the analysis at 0 of each term, given in (6.116), (6.118), (6.120) and (6.122), in which we replace (a 0 , b 0 ) by (ã ε , bε ). And we write

Xi ,

where

Now, in view of the behaviors at 0, we must have

The behavior at +∞ given in Lemma 6.4, ie

gives a finite limit for X1 (r), as ε → 0, when r > 0 is fixed. Indeed, the behavior of (ã ε , bε ) at +∞ is at most (J + , J + ). So, we have for all r > 0 and for all i, (1 -µ(ε)) Xi (r) → 0 as ε → 0.

We deduce that

By dividing the eigenvector in presence by A 3 + B 3 , we are led to

Then let us give a large R and 1 ε > R. Using Lemma 6.4 and (3.79) and (3.78), we obtain, for all R < r < 1 ε , and some C, independent of r and ε (by |X|, we mean each component of X)

Taking into account the behavior at +∞ for each X i , together with

Xi , (6.130)

we deduce, for r > R

≥ C, for some C > 0 independing of ε, and that µ i (ε)-1

→ 0, i = 1, 2, we infer that (6.138) leads to a contradiction. The lemma is proved. Now let us complete the proof of Proposition 1.5 (iv). We have that m d-1,d+1 (ε) > 1 (see a sketch of the proof in the appendix) and consequently

> 0. But, since F d is a bounded solution of (1.6) and since n ≥ 1, we know by Lemma 5.3 that there exists an eigenvalue µ(ε)

→ 0. By Lemma 6.6, we are led to µ(ε) = m d-1,d+1 (ε). Then we return to the end of the proof of Lemma 5.2, with F d instead of ω. We have now that the set I defined there has one element. Denoting by i 0 this element, we have

)) → 0. This gives the proof of (iv), where

The proof of Theorem 1.2 completed

In this part, we consider d ≥ 1 and n ≥ 1 and γ 1 = |n -d| and γ 2 = n + d. First, we have

Proof This follows immediatly from Proposition 1.2 and from Proposition 1.4. Now let η i = (x i , y i ), i = 1, 2, 3, 4, be defined by Theorem 1.4. Theorem 1.3 allows us to use the solution ω 1 = (a 1 , b 1 ), defined in Theorem 1.3, in place of (x 1 , y 1 ) and to obtain a base (ω 1 , η 2 , η 3 , η 4 ) of solutions of (1.6), whose behaviors at +∞ are known. Now, let ω 3 = (a 3 , b 3 ) be defined in Theorem 1.3. Recall that ω 3 is continuous wrt (d, γ 1 , γ 2 ) ∈ D and is derivable wrt γ 1 and γ 2 . With these definitions, we can write

Let us remark that ω 1 and ω 3 -C 1 (n, d)ω 1 form a base of the bounded solutions at 0, and that ω 3 -C 1 (n, d)ω 1 = o(ω 1 ) at +∞. So the problem of the existence of some bounded solutions remains to the problem C 3 (n, d) = 0. We define γ 1 = |n -d| and γ 2 = n + d. The real numbers C i (n, d) can be computed by the means of determinants involving only the values of the five solutions in presence, (a, a , b, b )(r), for a given r > 0. So, as soon as (d, γ 1 , γ 2 ) stays in a given compact subset of D, C i is continuous wrt (d, γ 1 , γ 2 ) and consequently is continuous wrt (d, n). Moreover, with the same condition, each C i is derivable wrt γ 1 and wrt γ 2 and consequently is derivable wrt n. And ∂C i ∂n is continuous wrt to (n, d), for i = 1, . . . , 4. Now, we are going to prove Proposition 7.17 There is no bounded solution of (1.6), when d ≥ 1 and n

In what follows, we suppose by contradiction that there exists (n 0 , d 0 ), d 0 > 1, n 0 ≥ d 0 + 1, such that there exists a bounded solution of (1.6). By Theorem 1.1, we have n 0 ≤ 2d 0 -1. From now on, we allow (n, d) to be such that 1 ≤ d ≤ d 0 + 1 and 1 ≤ n ≤ 2d. Clearly, (d, |n -d|, n + d) stays in a compact subset of D. This is sufficient for each solution η i , i = 1, 2, 3, 4, to be defined without ambiguity, and consequently, for each C i to be well defined too. And each C i is smooth wrt (n, d), as explained above. The proof of Proposition 7.17 completed. With the definitions given above, let us define the set → 0 is done in [START_REF] Lin | Spectrum of the linearized operator for the Ginzburg-Landau equation[END_REF], by use of a suitable test function. The same proof works here, remarking that 

that is also studied by Hervé-Hervé [START_REF] Hervé | Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau[END_REF], and that makes no difference in the proof. An alternative proof is done in Part VI of the present paper.