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Abstract.
We consider a linear system of ordinary differential equations from the two dimensional
Ginzburg-Landau equation. We prove that this system doesn’t admit globally bounded
solutions, except those that come from invariance of the Ginzburg-Landau equation un-
der the action of the group of the translations and rotations.

AMS classification : 34B40: Ordinary Differential Equations, Boundary value prob-
lems on infinite intervals. 35J60: Nonlinear PDE of elliptic type.

1 Introduction

Let n and d be given integers, n ≥ 1, d ≥ 1. We define the following system{
a′′ + a′

r −
(n−d)2
r2

a− f2d b = −(1− 2f2d )a

b′′ + b′

r −
(n+d)2

r2
b− f2da = −(1− 2f2d )b

(1.1)

and for n = 0, we define the following equation{
a′′ + a′

r −
d2

r2
a = −(1− f2d )a (1.2)

with the variable r > 0.
Both problems come from the Ginzburg-Landau Theory. Here fd is the only solution of
the differential equation

f ′′d +
f ′d
r
− d2

r2
fd = −fd(1− f2d ). (1.3)

with the conditions fd(0) = 0 and lim+∞ fd = 1. The equation (1.3) is entirely studied
by Hervé and Hervé in [4].
Let us consider the Ginzburg-Landau equation

−∆u = u(1− |u|2) in R2 (1.4)
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where u takes its values in C. The system (1.1) and the equation (1.2) appear when we
linearize the Ginzburg-Landau operator N (u) = ∆u+u(1−|u|2) around the solutions of
the form fd(r)e

idθ, d ∈ N?. The linearized operator has been studied by several authors,
amongst them [5], [8], [6] and [7]. In the third chapter of the book [9], Pacard and Rivière
study the system (1.1) for d = 1. The aim of these authors is the construction of some
solutions for the Ginzburg-Landau equation on a bounded connected domain Ω,

−∆u = 1
ε2
u(1− |u|2) in Ω

u = g in ∂Ω
(1.5)

where ε > 0 is a small parameter, u and g having complex values and degree (g, ∂Ω) ≥ 1.
The study of the minimizing solutions of equation (1.1) is in the book of Bethuel, Brezis
Hélein, [2].
Let us call a bounded solution of (1.1) any solution (a, b) which is defined at r = 0 and
which has a finite limit as r → +∞. Concerning the bounded solutions of (1.1) or (1.2),
the following theorem is known

Theorem 1.1 For all d ≥ 1 and for n = 0, the real vector space of the bounded solutions
of (1.2) is one-dimensional, spanned by fd. For n = 1, the vector space of the bounded
solutions of (1.1) is also a one dimensional vector space, spanned by (f ′d+ d

rfd, f
′
d−

d
rfd).

For d = 1 and n ≥ 2, there are no bounded solutions. For d > 1 and for n ≥ 2d − 1,
there are no bounded solutions.

For all d ≥ 1, the known bounded solutions, for n = 0 and n = 1, come from the invari-
ance of the Ginzburg-Landau equation with respect to the translations and the rotations.

The aim of the present paper is to prove the following

Theorem 1.2 For all d ≥ 1 and for all n > 1, the system (1.1) has no bounded solution.

We will have to allow n to be a real parameter. To begin with, let us consider the
system {

a′′ + a′

r −
γ21
r2
a− f2d b− f2da = −(1− f2d )a

b′′ + b′

r −
γ22
r2
b− f2da− f2d b = −(1− f2d )b

(1.6)

where γ1 and γ2 are real parameters verifying

γ2 > γ1 ≥ 0.

Letting x = a + b and y = a − b, we will have to consider also the system verified by
(x, y), that is {

x′′ + x′

r −
γ2

r2
x+ ξ2

r2
y − 2f2dx = −(1− f2d )x

y′′ + y′

r −
γ2

r2
y + ξ2

r2
y = −(1− f2d )y

(1.7)

with

γ2 =
γ21 + γ22

2
and ξ2 =

γ22 − γ21
2

.

Let us give a precise description of two basis of solutions for the system (1.6), one
base being defined near 0, and one other base being defined near +∞. Let us give the
following definition
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Definition 1.1 We say that

1. a =O(f) at 0 if there exists R > 0 and C > 0 such that

∀r ∈]0, R], |a(r)| ≤ C|f(r)|.

2. a has the behavior f at 0, and we denote a ∼0 f , if there exists a map g, such that

lim
0
g = 0, |a− f | = O(fg).

3. a = o(f) at 0 if there exists a map g, such that

lim
0
g = 0, a = fg.

We will use the same convention at +∞.

We will consider that (d, γ1, γ2) is allowed to move into the set

D = {(d, γ1, γ2) ∈ (R+)3; d ≥ 1; γ2 > 1; 0 ≤ γ1 ≤ γ2 < γ1 + 2d+ 2}.

The condition γ1 ≤ γ2 < γ1+2d+2 and γ2 > 1 is satisfied for γ1 = |n−d| and γ2 = n+d,
whenever d ≥ 1 and n ≥ 1. Moreover, we don’t need to use more general (γ1, γ2) in the
course of the paper. We will need the following subsets of D.

D1 = {(d, γ1, γ2) ∈ D; γ1 > 0}, that is n 6= d

and

D2 = {(d, γ1, γ2) ∈ D; 0 ≤ γ1 <
1

4
;−γ1 − γ2 + 2d+ 2 > 0;−γ2 + 2d+ 1 > 0},

that is |n− d| < 1
4 . (1.8)

Let us recall the following expansion for fd (see [4])

fd(r) = 1− d2

2r2
+O(

1

r4
) near +∞ (1.9)

and
fd(r) = ard − a

4(d+ 1)
rd+2 +O(rd+4) near 0, (1.10)

for some a > 0.
Then, we can state the following theorem, about a base of solutions defined near 0.

Theorem 1.3 For all (d, γ1, γ2) ∈ D, there exist four independent solutions (a, b) of
(1.6) verifying the following conditions

1.

(a1(r), b1(r)) ∼0 (O(rγ2+2d+2), rγ2) and (a′1(r), b
′
1(r)) ∼0 (O(rγ2+2d+1), γ2r

γ2−1).
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2.

(a2(r), b2(r)) ∼0

{
(O(r2θ(r)), r−γ2) if (d, γ1, γ2) ∈ D1

(O(r−γ2+2d+2), r−γ2) if (d, γ1, γ2) ∈ D2

(a′2(r), b
′
2(r)) ∼0

{
(O(rθ(r)),−γ2r−γ2−1) if (d, γ1, γ2) ∈ D1

(O(r−γ2+2d+1),−γ2r−γ2−1) if (d, γ1, γ2) ∈ D2

where

θ(r) =

{
−rγ1−2+r−γ2+2d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0

−rγ1−2 log r if γ1 + γ2 − 2d− 2 = 0.

3.

(a3(r), b3(r)) ∼0 (rγ1 , O(rγ1+2d+2)) and, if γ1 6= 0 (a′3(r), b
′
3(r)) ∼0 (γ1r

γ1−1, O(rγ1+2d+1))

while, if γ1 = 0, (a′3(r), b
′
3(r)) = (O(r), O(r2d+1)).

4.

(a4(r), b4(r)) ∼0

{
(r−γ1 , O(r2θ̃(r)) if (d, γ1, γ2) ∈ D1

(τ(r), O(τ(r)r2d+2)) if (d, γ1, γ2) ∈ D2

and

(a′4(r), b
′
4(r)) ∼0

{
(r−γ1−1, O(rθ̃(r)) if (d, γ1, γ2) ∈ D1

(τ ′(r), O(τ ′(r)r2d+2)) if (d, γ1, γ2) ∈ D2

where

θ̃(r) =

{
−rγ2−2+r−γ1+2d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0

−rγ2−2 log r if γ1 + γ2 − 2d− 2 = 0

and

τ(r) =

{
r−γ1−rγ1

2γ1
if γ1 6= 0

− log r if γ1 = 0.

5. For j = 1 and for j = 3, for all r > 0, the maps

(d, γ1, γ2) 7→ (aj(r), a
′
j(r), bj(r), b

′
j(r)) are continuous in D.

6. For j = 1 and for j = 3, and for all r > 0, (aj(r), a
′
j(r), bj(r), b

′
j(r)) is derivable

wrt to γ1 and wrt γ2, whenever (d, γ1, γ2) ∈ D, and γ2 > γ1.
Moreover the map (d, γ1, γ2) 7→ ∂

∂γi
(aj(r), a

′
j(r), bj(r), b

′
j(r)) is continous, for i = 1

and i = 2. And we have

(
∂a1
∂γi

,
∂a′1
∂γi

,
∂b1
∂γi

,
∂b′1
∂γi

)(r) ∼0 log r(O(rγ2+2d+2), O(rγ2+2d+1), rγ2 , γ2r
γ2−1) (1.11)

and, if γ1 6= 0

(
∂a3
∂γi

,
∂a′3
∂γi

,
∂b3
∂γi

,
∂b′3
∂γi

)(r)

∼0 log r(rγ1 , γ1r
γ1−1 +O(rγ1+1), O(rγ1+2d+2), O(rγ1+2d+1)) (1.12)
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7. For j = 2 or for j = 4, the same notation (aj , bj) is used for two solutions,
one of them being defined for (d, γ1, γ2) ∈ D1, the other one being defined for
(d, γ1, γ2) ∈ D2.
Moreover, for each domain Di, i = 1, 2 and for all r > 0 the maps (d, γ1, γ2) 7→
(aj(r), a

′
j(r), bj(r), b

′
j(r)) are continuous in Di. For each r > 0, the partial deriv-

ability of (aj(r), a
′
j(r), bj(r), b

′
j(r)) wrt γ1 or wrt γ2 is also true separatly in each

domain Di, i = 1, 2.

Let us remark that our method of construction near 0 doesn’t permit to obtain smooth
solutions wrt the parameter (d, γ1, γ2) ∈ D and keeping the behavior of (a2, b2) or the
behavior of (a4, b4) at 0 for all (d, γ1, γ2) ∈ D. It is not a problem for us, since in our final
proof of Theorem 1.2, we only need two independent smooth solutions wrt (d, γ1, γ2) and
having bounded behaviors at 0. Also, we don’t have to use the derivability of (a2, b2)
and (a4, b4) wrt γ1 and γ2.

The second theorem is about a base of solutions defined near +∞.

Theorem 1.4 We suppose that
γ21+γ

2
2

2 − d2 > 0. Let us denote

n =

√
γ21 + γ22

2
− d2.

1. We have a base of four solutions (a, b) of (1.6), with given behaviors at +∞. In
order to to distinguish these solutions from the solutions defined in Theorem 1.3,
we use the notation (ui, vi), i = 1, . . . , 4, for these solutions. We have

(u1(r), v1(r)) ∼r→+∞ (
e
√
2r

√
r
,
e
√
2r

√
r

)(1 +O(r−2));

(u2(r), v2(r)) ∼r→+∞ (
e−
√
2r

√
r
,
e−
√
2r

√
r

)(1 +O(r−2));

and
(u3(r), v3(r)) ∼r→+∞ (r−n,−r−n)(1 +O(r−2));

(u4(r), v4(r)) ∼r→+∞ (rn,−rn)(1 +O(r−2)).

2. Except for j = 2, the construction of (uj , vj) is done separatly for each compact
subset K of D. For each of the four solutions and for all r > 0 the map (d, γ1, γ2) 7→
(uj(r), u

′
j(r), vj(r)), v

′
j(r)) is continuous on K. There partial derivatives wrt γ1 and

wrt γ2 exist whenever γ1 < γ2 and are continuous. We have

(
∂u1
∂γi

,
∂u′1
∂γi

,
∂v1
∂γi

,
∂v′1
∂γi

)(r)

∼r→+∞
e
√
2r

√
r

log r(O(r−2), O(r−3), O(r−2), O(r−3))
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(
∂u2
∂γi

,
∂u′2
∂γi

,
∂v2
∂γi

,
∂v′2
∂γi

)(r)

∼r→+∞
e−
√
2r

√
r

log r(O(r−2), O(r−3), O(r−2), O(r−3))

(
∂u3
∂γi

,
∂u′3
∂γi

,
∂v3
∂γi

,
∂v′3
∂γi

)(r)

∼r→+∞ log r(rn, O(rn−1),−rn, O(rn−1))(1 +O(r−2))

(
∂u4
∂γi

,
∂u′4
∂γi

,
∂v4
∂γi

,
∂v′4
∂γi

)(r)

∼r→+∞ log r(r−n, O(r−n−1),−r−n, O(r−n−1))(1 +O(r−2)).

Let us remark that, by our construction, the solution (uj , vj) depends on the given com-
pact set K, except for j = 2. But, for j = 1, we can say that this difficulty disappears after
the proof of Theorem 1.3, since the definition of (a1, b1) is the same for all (d, γ1, γ2) ∈ D.
For the other solutions, called (u3, v3) and (u4, v4), we will have to make sure that the
parameter (d, γ1, γ2) stays in a compact set, as soon as we want and use the continuity
and the derivability of these solutions wrt the parameters.

In [1] we have already give the behaviors of a base of solutions at 0 and at +∞.
But the smooth dependence of the solutions wrt the parameters, announced in Theorem
1.3 and Theorem 1.4, was not taken into account in this previous paper. In the present
paper, the continuity wrt to (d, γ1, γ2), specially of the five solutions (a3, b3) and (a1, b1)
(defined at 0) and (u1, v1), (u2, v2), (u3, v3), (u4, v4) (defined at +∞) and there deriv-
ability wrt γ1 and γ2, are essential and are not entirely trivial facts. Indeed, although it
is clear by the ODE theory that for any given Cauchy data (a0, a

′
0, b0, b

′
0) ∈ R4 at some

r0 > 0, there exists a solution of (1.6) that is continuous wrt (d, γ1, γ2) and derivable wrt
γ1 and γ2, it is not clear that this solution keeps the same behavior at 0 and at +∞ for
all the values of (d, γ1, γ2) ∈ D, and this is generally false.

Now, let us rely the problem (1.6) to an eigenvalue problem.
Let 0 ≤ γ1 < γ2, µ ∈ R and ε > 0 be given and let us consider the following system{

a′′ + a′

r −
γ21
r2
a− 1

ε2
f2a− 1

ε2
f2b = − 1

ε2
µ(1− f2)a

b′′ + b′

r −
γ22
r2
b− 1

ε2
f2b− 1

ε2
f2a = − 1

ε2
µ(1− f2)b

(1.13)

for r ∈]0, 1], with the notation

f(r) = fd(
r

ε
)

and the condition
a(1) = b(1) = 0.

Let us explain in which sense this can be considered as an eigenvalue problem.
We define, for a given γ1 ≥ 0

Hγ1 = {r 7→ (a(r), b(r)); (aeiγ1θ, beiθ) ∈ H1
0 (B(0, 1))×H1

0 (B(0, 1))},
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where (r, θ) are the polar coordinates in R2.
We endow Hγ1 with the scalar product

< (a, b)|(u, v) >=
1

2π

∫
B(0,1)

∇(aeiγ1θ).∇(beiθ)dx =

∫ 1

0
(ra′u′ + rb′v′ +

γ21
r
au+

1

r
bv)dr

and then Hγ1 is a Hibert space.

Let H′γ1 be the topological dual space of Hγ1 .
We consider the following operator Tγ1,γ2 : Hγ1 → H′γ1

Tγ1,γ2(a, b) =

(
−e−iγ1θ∆eiγ1θa+ 1

ε2
f2a+ 1

ε2
f2b

−e−iγ2θ∆eiγ2θb+ 1
ε2
f2b+ 1

ε2
f2a.

)
(1.14)

Then we have
< Tγ1,γ2(a, b), (u, v) >H′,H

=
1

2π

∫
B(0,1)

(∇(eiγ1θa).∇(e−iγ1θu) +∇(eiγ2θb).∇(e−iγ2θv) +
r

ε2
f2(a+ b)(u+ v))dx

=

∫ 1

0
(ra′u′ + rb′v′ +

γ21
r
au+

γ22
r
bv +

r

ε2
f2(a+ b)(u+ v))dr.

We remark that

((a, b), (u, v)) 7→
∫
B(0,1)

(∇(eiγ1θa).∇(e−iγ1θu) +∇(eiγ2θb).∇(e−iγ2θv)

+
1

ε2
f2(a+ b)(u+ v))dx

is a scalar product on Hγ1 . So, Tγ1,γ2 is an isomorphism, by the Riesz Theorem.
Last, let us define the embedding

I : Hγ1 → H′γ1
(a, b) 7→ ((u, v) 7→

∫ 1
0 r(au+ bv)dr)

Since the embedding H1
0 (B(0, 1))×H1

0 (B(0, 1)) ⊂ L2(B(0, 1))×L2(B(0, 1)) is compact,
then I is compact.

For µ ∈ R, we define the operator

Φ = Tγ1,γ2 −
µ

ε2
(1− f2)I.

Then
T −1γ1,γ2Φ = idHγ1 − µT

−1
γ1,γ2C,

where we define

C =
1

ε2
(1− f2)I. (1.15)

Since C is a compact operator and thanks to the continuity of T −1γ1,γ2 , then T −1γ1,γ2C is a
compact operator from Hγ1 into itself. By the standard theory of self adjoint compact
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operators, we can deduce that the kernel N (Tγ1,γ2 − µC) has a finite dimension in Hγ1
and that the range R(Tγ1,γ2 − µC) is closed in H′γ1 and that

R(Tγ1,γ2 − µC) = N (Tγ1,γ2 − µC)⊥.

When N (Tγ1,γ2 − µC) 6= ∅, we say that µ is a C-eigenvalue of Tγ1,γ2 .
There exists a Hilbertian base of Hγ1 formed of eigenvectors of Tγ1,γ2−1C. Let x ∈ Hγ1
be an eigenvector associated to an eigenvalue γ of Tγ1,γ2−1C. Then γ 6= 0 and we have

Tγ1,γ2(x)− 1

γ
Cx = 0.

Then 1
γ is a C-eigenvalue of Tγ1,γ2 . In what follows, we simply call µ an eigenvalue. Be-

cause of the dependence on ε, we denote it by µ(ε).

Now let us define mγ1,γ2(ε) as the first eigenvalue for the above eigenvalue problem
in Hγ1 , that is

mγ1,γ2(ε) = inf
(a,b)∈Hγ1×Hγ1/{(0,0)}

∫ 1
0 (ra′2 + rb′2 +

γ21
r a

2 +
γ22
r b

2 + r
ε2
f2d ( rε)(a+ b)2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))(a2 + b2)dr

(1.16)
and let us define

m0(ε) = inf
a∈Hd/{0}

∫ 1
0 (ra′2 + d2

r a
2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))a2dr

(1.17)

It is classical that these infimum are attained. Considering the rescaling (ã, b̃)(r) =
(a(εr), b(εr)) and an extension by 0 outside [0, 1/ε], we see that ε 7→ mγ1,γ2(ε) decreases
when ε decreases. Then limε→0mγ1,γ2(ε) exists.
Moreover, mγ1,γ2(ε) is a simple eigenvalue and there exists an eigenvector (a, b) verifying

a(r) ≥ −b(r) ≥ 0 for all r > 0.

Also, m0(ε) is realized by some function a(r) ≥ 0.

We consider that d > 0, that γ2 > γ1 ≥ 0 are given and we suppose that

γ22 + γ21
2

> d2.

Let µ(ε) be a bounded eigenvalue. Then, we can suppose that

µ(ε)→ µ as ε→ 0

where µ ≥ 0. Let
ωε = (aε, bε)

be an eigenvector associated to µ(ε). We define

ω̃ε(r) = ωε(εr), for r ∈ [0, 1ε ].
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An examination of the proof of Theorem 1.3 gives, for some constants Aε and Bε,

ω̃ε ∼r→0 Aε(r
γ1 , o(rγ1)) +Bε(o(r

γ2), rγ2).

We may suppose that max{|Aε|, |Bε|} = 1. Then by the ODE theory

ω̃ε → ω0, as ε→ 0,

uniformly on each compact subset of [0,+∞], where ω0 = (a0, b0) verifies{
a′′0 +

a′0
r −

γ21
r2
a0 − f2da0 − f2d b0 = −µ(1− f2d )a0

b′′0 +
b′0
r −

γ22
r2
b0 − f2d b0 − f2da0 = −µ(1− f2d )b0

(1.18)

It seems to us that this eigenvalue problem is better suited to our purpose than that
used in previous work. Nevertheless, the following theorem can be deduced from previous
work on the subject [5], [8], [6] and [7].

Theorem 1.5 For all d ≥ 1,
(i) there exists C > 0 and ε0 > 0 such that, for all ε < ε0, m0(ε)−1

ε2
≥ C; m0(ε) → 1

and there exists an associated eigenvector a such that ãε → fd, uniformly on each [0, R],
R > 0.
(ii) md−1,d+1(ε) > 1 and

md−1,d+1(ε)−1
ε2

→ 0.
(iii) for d > 1 and n ≥ 2d − 1, there exists C > 0 and ε0 > 0 such that, for all ε < ε0,
m|d−n|,d+n(ε)−1

ε2
≥ C.

(iv) There exists an eigenvector ωε associated to the eigenvalue md−1,d+1(ε) such that

‖(1 − f2d )
1
2 (ω̃ε − Fd)‖L2(B(0, 1

ε
)) → 0, as ε → 0, where Fd = (f ′d + d

rfd, f
′
d −

d
rfd) appears

in Theorem 1.1.

Let us remark that the function f used here (f(r) = fd(
r
ε)) is not the same as the one

used in the previous works [8], [6] and [7]. For this reason, we will give a direct proof of
(i) in the appendix and we will give a proof of (iv) in the course of the paper. The norm
L∞, used in [7] is a nonsense here, since Fd(

1
ε ) 6= 0 and ω̃ε(

1
ε ) = 0.

We have

Proposition 1.1 (i) With the notation above, if µ(ε)→ µ, if ω̃ε → ω0, if
γ22+γ

2
1

2 −µd2 > 0

and if ω0 blows up at +∞, then µ(ε)−1
ε2

≥ C, where C is a given positive number, inde-
pendent of ε.
(ii) If there exists some bounded solution (a, b) of (1.6), then there exists an eigenvalue
µ(ε) verifying µ(ε)− 1→ 0.

With the additional condition
γ22+γ

2
1

2 − d2 ≥ 1 and mγ1,γ2(ε) ≥ 1, there exists an eigen-

value µ(ε) verifying µ(ε)−1
ε2
→ 0.

And we have
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Proposition 1.2 Let d > 1 be given. For all n ∈]1, d+ 1[, there exists Cn > 0 indepen-
dent of ε such that

m|d−n|,d+n(ε) ≤ 1− Cn.

None of the propositions above are very new, because we have already given the proof
of Proposition 1.2, in [1]. Also, Proposition 1.1 can be found there, but for a slighly dif-
ferent eigenvalue problem.

There are two new results in this paper, that will allow us to reach our goal, that is
to prove Theorem 1.2. The first one is that the solution having the least behavior at 0
(ie (a1, b1), that tends the faster to 0 as r → 0) blows up exponentially at +∞ and that
the solution having the least behavior at +∞ (ie (u2, v2), that tends exponentially to 0
as r → +∞) has the greater blowing up behavior at 0. In other words

Proposition 1.3 When d > 0 and when γ2 ≥ γ1 ≥ 0, (γ22 + γ21)/2 ≥ d2, then the
behavior of (a1, b1) at +∞ is the behavior of (u1, v1) and the behavior of (u2, v2) at 0 is
the behavior of (a2, b2).

The second result is the following

Proposition 1.4 When
γ21+γ

2
2

ε2
− d2 > 0, if there exists a bounded solution ω = (a, b)

of (1.6), then we have mγ1,γ2(ε)− 1 → 0 and there exists an eigenvector ωε = (aε, bε)
associated to mγ1,γ2(ε) and such that ω̃ε tends to ω, uniformly on each [0, R], R > 0.

Propositions 1.3 and 1.4 allow us to achieve the proof of Theorem 1.2. More, we can
also enonce

Theorem 1.6 For d ≥ 1, n > 1, γ1 = |n − d| and γ2 = n + d, there is no eigenvalue

µ(ε), with eigenvector in H|n−d|, such that µ(ε)−1
ε2
→ 0, as ε→ 0.

Let us remark that the Hilbert space Hγ1 does depend on γ1. In other words, the
notation mγ1,γ2(ε) doesn’t mean the continuity on this simple eigenvalue wrt the param-
eter (γ1, γ2). The theorem on this subject, in [3], doesn’t work here.

In Part II and Part III, we give detailed proves of Theorem 1.3 and of Theorem 1.4,
although the proves are altogether technical and classical. But these theorems play a
crucial role in our final proof.
In Part IV, we prove Proposition 1.3. In Part V, in order to make the paper as self
contained as possible, we give the proof of Proposition 1.1 and of Proposition 1.2. In
Part VI, we give the proof of Proposition 1.4 and also the proof of Theorem 1.5 (iv). We
chose to give a direct proof of this claim, since the eigenvalue problem is not exactly the
same as in the previous works on the subject and the function fd is not exactly the same,
too. In Part VII, we conclude the proof of Theorem 1.2. Last, in the appendix, we give
a direct proof of Theorem 1.5 (i).
We will use Theorem 1.2 in a separated paper.

10



2 The possible behaviors at zero and the dependence of
the solutions wrt the parameters

Let us explain the way to prove the existence and the continuity wrt the parameter
(d, γ1, γ2) ∈ D of a solution having a given behavior at 0, eg the solution (a1, b1). We
construct some solution (a1, b1) such that for all compact subset K of D, there exists
some R > 0, depending only on K and some C > 0, also depending only on K, such that
for all r ∈]0, R] and all (d, γ1, γ2) ∈ K, we have

|a1(r)|+ |b1(r)− rγ2 | ≤ Crγ2+2d+1

and such that, for all r ∈]0, R], (d, γ1, γ2) 7→ (a1(r), a
′
1(r), b1(r), b

′
1(r)) is continuous on

K, and derivable wrt γ1 and wrt γ2. First, the construction is done for r ∈]0, R]. Then
the definition of this solution in [0,+∞[ and the continuity wrt (d, γ1, γ2) ∈ K, for all
r > 0, follows from the ODE Theory.
We use a constructive method, similar to the proof of the Banach fixed point Theorem.
For each solution, we define a fixed point problem of the form

(a, b) = Φ(a, b)

whose solutions verify the differential system that we have to solve. Then we define two
maps r 7→ ζ1(r) and r 7→ ζ2(r). In order to construct a solution (a, b), verifying, for each
compact subset K of D,

|a(r)ζ−11 (r)|+ |b(r)ζ−12 (r))− 1| ≤ Cr2

for all r < R and with R and C depending only on K, we define two sequences{
α0 = 0 β0 = ζ2

(αk+1, βk+1) = Φ(αk, βk).
(2.19)

Then, for each compact subset K of D, we prove that for all 0 < r < 1 and for all
(d, γ1, γ2) ∈ K we have

|αk+1−αk|(r) ≤ Cζ1(r)r2(‖ζ−11 (αk−αk−1)‖L∞([0,r]) +‖ζ−12 (βk−βk−1)‖L∞([0,r])), (2.20)

|βk+1− βk|(r) ≤ Cζ2(r)r2(‖ζ−11 (αk −αk−1)‖L∞([0,r]) + ‖ζ−12 (βk − βk−1)‖L∞([0,r])) (2.21)

and
|α1 − α0|(r) ≤ Cr2ζ1(r), |β1 − β0|(r) ≤ Cr2ζ2(r) (2.22)

where C depends only on K.
Then we deduce that

‖ζ−11 (αk+1 − αk)‖L∞([0,r]) + ‖ζ−12 (βk+1 − βk)‖L∞([0,r])

≤ (Cr)2k(‖ζ−11 (α1 − α0)‖L∞([0,r]) + ‖ζ−12 (β1 − β0)‖L∞([0,r]))

We choose R such that CR < 1 and we define,

for all 0 < r < R a(r) =

k=+∞∑
k=0

(αk+1−αk)+α0, b(r) =

k=+∞∑
k=0

(βk+1−βk)+β0. (2.23)
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Then we have (a, b) = Φ(a, b) and the continuity of (a(r), b(r)) wrt (d, γ1, γ2) follows from
the continuity of (αk, βk) for all k and from the convergence of the sums uniformly wrt
(d, γ1, γ2) ∈ K.
Then we have to prove the uniform convergence wrt (d, γ1, γ2) ∈ K of the sums

k=+∞∑
k=0

(α′k+1 − α′k), and
k=+∞∑
k=0

(β′k+1 − β′k),

in order to prove the continuity of (a′(r), b′(r)) wrt (d, γ1, γ2).
Then, since the derivability of (a, a′, b, b′) wrt γ1 and wrt γ2 is needed only for the solutions
(a1, b1) and (a3, b3), we will prove it only for the solution (a1, b1), but the proof can be
adapted for the other solutions.
In what follows, we will use the following forms of the first equation of (1.6)

(r2γ1+1(ar−γ1)′)′ = rγ1+1(f2d b− (1− f2d )a) (2.24)

or
(r−2γ1+1(arγ1)′)′ = r−γ1+1(f2d b− (1− f2d )a) (2.25)

or, when γ1 may reach 0,

(rτ2(τ−1a)′)′ = rτ(f2d b− (1− 2f2d )a) (2.26)

where

τ(r) =

{
r−γ1−rγ1

2γ1
if γ1 > 0

− log r if γ1 = 0.

and the following form of the second equation of (1.6)

(r2γ2+1(br−γ2)′)′ = rγ2+1(f2da− (1− 2f2d )b) (2.27)

or
(r−2γ2+1(brγ2)′)′ = r−γ2+1(f2da− (1− 2f2d )b). (2.28)

We denote
ν : r 7→ r.

2.1 The solution (a1, b1).

Let us consider the integral system
a = rγ1 + rγ1

∫ r
0 t
−2γ1−1

∫ t
0 s

γ1+1(f2d b− (1− 2f2d )a)dsdt

b = rγ2
∫ r
0 t
−2γ2−1

∫ t
0 s

γ2+1(f2da− (1− 2f2d )b)dsdt.

(2.29)

By the reformulation given at the begining of the section, it is clear that any solution of
this system is a solution of (1.6).
Let us denote by

Φ(a, b)

the rsm of (2.29).
Following the method described just above, we prove
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Proposition 2.5 There exists a solution (a1, b1) of (1.6) such that, for any compact
subset K of D, there exist some real numbers R and C verifying

for all r ≤ R, |a1(r)r−2d|+ |b1(r)− rγ2 | ≤ Crγ2+2

where C and R remain the same for all (d, γ1, γ2) ∈ K, and (d, γ1, γ2)→ (a1(r), a
′
1(r), b1(r), b

′
1(r))

is continuous. Moreover

|a′1(r)r−2d|+ |b′1(r)− γ2rγ2−1| ≤ Crγ2+1

for all r < R and for some C depending only on K.
For all r > 0, (a1(r), a

′
1(r), b1(r), b

′
1(r)) is derivable wrt γ1 and with respect to γ2, as soon

as γ2 > γ1 and (d, γ1, γ2) ∈ D and, for i = 1, 2

|∂a1
∂γi
|(r) ≤ Crγ2+2d+2| log r|, |∂b1

∂γi
(r)− rγ2 log r| ≤ Crγ2+2| log r|, (2.30)

and

|∂a
′
1

∂γi
|(r) ≤ Crγ2+2d+2| log r|, |∂b

′
1

∂γi
(r)− γ2rγ2−1 log r| ≤ Crγ2+1| log r|. (2.31)

with the same property for C and R as above.

Proof We define ζ1(r) = rγ2+2d and ζ2(r) = rγ2 and we define (αk, βk) by (2.19).
For k ≥ 1, assuming that αk − αk−1 and βk − βk−1 are continuous wrt (d, γ1, γ2), we
prove the continuity of αk+1 − αk and βk+1 − βk in K by use of the Lebesgue Theorem.
Then, involving the estimate f2d (t) ≤ Mt2d and |1 − 2f2d |(t) ≤ M , the desired estimate
(2.20) remains to the estimation for all r > 0, r < 1,

rγ1
∫ r

0
t−2γ1−1

∫ t

0
sγ1+1+γ2+2ddsdt =

rγ2+2d+2

(−γ1 + γ2 + 2d+ 2)(γ1 + γ2 + 2d+ 2)
≤ Crγ2+2d+2

where C depends only on K.
This gives (2.20) and also the estimate of |α1 − α0|.
Now the desired estimate (2.21) follows from both estimations

rγ2
∫ r

0
t−2γ2−1

∫ t

0
s2γ2+1dsdt =

rγ2+2

2(2γ2 + 2)
≤ Cr2+γ2

and

rγ2
∫ r

0
t−2γ2−1

∫ t

0
s2γ2+1+4ddsdt ≤ Crγ2+2+4d

where C depends only on K. This gives the proof of (2.21) and also the estimate of
|β1 − β0|.
This terminates the proof of the existence of (a1, b1), the continuity wrt (d, γ1, γ2) and
the desired behavior at 0.
To prove the continuity of (a′(r), b′(r)) wrt to (d, γ1, γ2), we compute

(α′k+1−α′k)(r) = γ1r
−1(αk+1−αk)(r)+r−γ1−1

∫ r

0
sγ1+1(f2d (βk−βk−1)+(1−2f2d )(αk−αk−1))dsdt

13



that gives, for k ≥ 1

r−γ2−2d|(α′k+1−α′k)(r)| ≤ (Cr2)kγ1r
−1(‖(α1−α0)ν

−γ2−2d‖L∞([0,r])+‖(β1−β0)ν−γ2‖L∞([0,r]))

+C̃(Cr2)k−1r2d+γ2+1(‖(α1 − α0)ν
−γ2−2d‖L∞([0,r]) + ‖(β1 − β0)ν−γ2‖L∞([0,r]))

with C̃ depending only on K, and consequently

r−γ2−2d|(α′k+1 − α′k)(r)| ≤ C̃(Cr2)k−1r2

with another C̃ depending only on K. Then the sum

+∞∑
k=1

(α′k+1 − α′k)ν−γ2−2d

converges for all r < R, uniformly wrt (d, γ1, γ2) ∈ K. Thus a′(r) is continuous wrt
(d, γ1, γ2). Moreover, a direct estimate gives

|α′1(r)| ≤ Crγ2+2d+1

for all r < R. We deduce that

|a′(r)| ≤ Crγ2+2d+1

with C depending only on K.
Now we compute, for k ≥ 1

(β′k+1−β′k)(r) = γ2r
−1(βk+1−βk)(r)+r−γ2−1

∫ r

0
sγ2+1(f2d (αk−αk−1)+(1−2f2d )(βk−βk−1))dsdt

that gives
r−γ2 |(β′k+1 − β′k)(r)| ≤ ((Cr2)kγ2r

−1 + C̃(Cr2)k−1)

(‖(β1 − β0)ν−γ2‖L∞([0,r]) + ‖(α1 − α0)ν
−γ2−2d‖L∞([0,r]))

and consequently
r−γ2+1|(β′k+1 − β′k)(r)| ≤ C̃(Cr2)k−1r

with C̃ depending only on K. Recalling

b′(r) =
+∞∑
k=1

(β′k+1 − β′k)(r) + β′1,

a direct calculation gives
|β′1 − β′0| ≤ Crγ2+1.

This gives that b′(r) is continuous wrt (d, γ1, γ2) and that for all r < R

|b′(r)− γ2rγ2−1| ≤ Crγ2+1

with C depending only on K.
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Now, let us prove the derivability, wrt γ2, of (a1(r), b1(r)), for 0 < r < R and for
γ2 > γ1, γ1 ≥ 0 and d > 0 being given, and the continuity of the derivative function wrt
(d, γ1, γ2). First, we use the Lebesgue Theorem to prove by induction that αk+1−αk and
βk+1 − βk are derivable wrt γ1 and wrt γ2. Then, since a and b are defined for r ∈ [0, R]
by (2.23), it is sufficient to prove that the sums∑

k≥0

∂(αk+1 − αk)
∂γ2

and
∑
j≥0

∂(βk+1 − βk)
∂γ2

are convergent, for all r ∈ [0, R], uniformly wrt (d, γ1, γ2) ∈ K, for any compact subset
K of {(d, γ1, γ2) ∈ D, d > 0, γ2 > γ1}. In fact, we are going to prove that∑
j≥0
‖ζ−11 | log ν|−1∂(αk+1 − αk)

∂γ2
‖L∞([0,R]) and

∑
j≥0
‖ζ−12 | log ν|−1∂(βk+1 − βk)

∂γ2
‖L∞([0,R])

are convergent, uniformly wrt (d, γ1, γ2) ∈ K. This will give the desired derivability
result, and also the estimate (3.80).
We have

∂α0

∂γ2
= 0 and

∂β0
∂γ2

= rγ2 log r.

Let k ≥ 0 be given. We easily verify that

∂(αk+1 − αk)
∂γ2

= rγ1
∫ r

0
t−2γ1−1

∫ t

0
sγ1+1(f2d

∂(βk − βk−1)
∂γ2

− (1− 2f2d )
∂(αk − αk−1)

∂γ2
)dsdt

and that

∂(βk+1 − βk)
∂γ2

= rγ2 log r

∫ r

0
t−2γ2−1

∫ t

0
sγ2+1(f2d (αk − αk−1)− (1− 2f2d )(βk − βk−1))dsdt

+rγ2
∫ r

0
(−2γ2 − 1)t−2γ2−2

∫ t

0
sγ2+1(f2d (αk − αk−1)− (1− 2f2d )(βk − βk−1))dsdt

+rγ2
∫ r

0
−2t−2γ2−1 log t

∫ t

0
sγ2+1 log s(f2d (αk − αk−1)− (1− 2f2d )(βk − βk−1))dsdt

+rγ2
∫ r

0
t−2γ2−1

∫ t

0
sγ2+1(f2d

∂(αk − αk−1)
∂γ2

− (1− 2f2d )
∂(βk − βk−1)

∂γ2
)dsdt.

Now we estimate, for all r > 0

r−γ2−2d(log r)−1|∂(αk+1 − αk)
∂γ2

|(r) ≤
Mr2‖ν−γ2(log ν)−1

∂(βk−βk−1)
∂γ2

‖L∞([0,r])

(γ2 − γ1 + 2d+ 2)(γ2 + γ1 + 2d+ 2)

+
2r2‖ν−γ2−2d(log ν)−1

∂(αk−αk−1)
∂γ2

‖L∞([0,r])

(γ2 + γ1 + 2d+ 4)(γ2 − γ1 + 2d+ 4)
. (2.32)

Now, let us estimate the first term for r−γ2(log r)−1
∂(βk+1−βk)

∂γ2
(r)
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|
∫ r

0
t−2γ2−1

∫ t

0
sγ2+1(f2d (αk − αk−1)− (1− 2f2d )(βk − βk−1))dsdt|

≤
Mr4d+2‖ν−γ2−2d(αk − αk−1)‖L∞([0,R])

(4d+ 2)(2γ2 + 4d+ 2)
+
r2‖ν−γ2(βk − βk−1)‖L∞([0,R])

2(2γ2 + 2)
.

We can estimate the second term as follows

|(log r)−1
∫ r

0
(−2γ2 − 1)t−2γ2−2

∫ t

0
sγ2+1(f2d (αk − αk−1)− (1− 2f2d )(βk − βk−1))dsdt|

≤
Mr4d+2‖ν−γ2−2d(αk − αk−1)‖L∞([0,R])

(4d+ 2)(2γ2 + 4d+ 2)
+
r2‖ν−γ2(βk − βk−1)‖L∞([0,R])

2(2γ2 + 2)
.

We have a similar estimate for the third term. The fourth term gives

|(log r)−1
∫ r

0
t−2γ2−1

∫ t

0
sγ2+1(f2d

∂(αk − αk−1)
∂γ2

− (1− 2f2d )
∂(βk − βk−1)

∂γ2
)dsdt|

≤
Mr4d+2‖ν−γ2−2d(αk − αk−1)‖L∞([0,R])

(4d+ 2)(2γ2 + 4d+ 2)
+
r2‖ν−γ2(βk − βk−1)‖L∞([0,R])

2(2γ2 + 2)
.

Finally, we can find some constant C, independent of (d, γ1, γ2) ∈ K, such that, for all
0 < r < 1,

r−γ2−2d| log r|−1|∂(αk+1 − αk)
∂γ2

|(r) ≤ Cr2(‖ν−γ2(log ν)−1
∂(βk − βk−1)

∂γ2
‖L∞([0,r])

+‖ν−γ2−2d(log ν)−1
∂(αk − αk−1)

∂γ2
‖L∞([0,r]))

and

r−γ2 | log r|−1|∂(βk+1 − βk)
∂γ2

|(r) ≤ Cr2(‖ν−γ2−2d(αk − αk−1)‖L∞([0,r])

+‖ν−γ2(βk − βk−1)‖L∞([0,r]) + ‖ν−γ2−2d(log ν)−1
∂(αk − αk−1)

∂γ2
‖L∞([0,r])

+‖ν−γ2(log ν)−1
∂(βk − βk−1)

∂γ2
‖L∞([0,r]))

Summing the both inequalities just above and (2.20) and (2.21) (with ζ1 = νγ2+2d and
ζ2 = νγ2), we get

r−γ2−2d| log r|−1|∂(αk+1 − αk)
∂γ2

|(r) + r−γ2 | log r|−1|∂(βk+1 − βk)
∂γ2

|(r)

≤ (Cr2)k(‖ν−γ2(log ν)−1
∂(β1 − β0)

∂γ2
‖L∞([0,r]) + ‖ν−γ2−2d(α1 − α0)‖L∞([0,r])

+‖ν−γ2−2d(log ν)−1
∂(α1 − α0)

∂γ2
‖L∞([0,r]) + ‖ν−γ2(log ν)−1

∂(β1 − β0)
∂γ2

‖L∞([0,r])).
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Then, we directly estimate

r−γ2 |(log r)−1
∂(β1 − β0)

∂γ2
|(r) ≤ r2

γ2 + 1
(2.33)

and

r−γ2−2d|(log r)−1
∂(α1 − α0)

∂γ2
|(r) ≤ Mr2

(γ2 − γ1 + 2d+ 2)(γ2 + γ1 + 2d+ 2)
(2.34)

and we deduce that, choosing r < R, where R depends only on K, the sum

+∞∑
k=0

‖ν−γ2−2d(log ν)−1
∂(αk+1 − αk)

∂γ2
‖L∞([0,R])+

+∞∑
k=0

‖ν−γ2(log ν)−1
∂(βk+1 − βk)

∂γ2
‖‖L∞([0,R])

(2.35)
converges, uniformly wrt (d, γ1, γ2) ∈ K. Consequently, the same claim is true for

+∞∑
k=0

∂(αk+1 − αk)
∂γ2

and
+∞∑
k=0

∂(βk+1 − βk)
∂γ2

.

We can deduce that a and b, defined by (2.23), are differentiable wrt γ2 and that the
partial differential is continuous wrt (d, γ1, γ2) ∈ K. Moreover, we get the behavior of
the derivatives near 0.

Now let us prove the differentiability of (a1(r), b1(r)) wrt γ1. We have

∂α0

∂γ1
=
∂β0
∂γ1

= 0.

By induction, we have that ∂αk
∂γ1

and ∂βk
∂γ1

exist for all k.
Then we write

∂(αk+1 − αk)
∂γ1

= rγ1 log r

∫ r

0
t−2γ1−1

∫ t

0
sγ1+1(f2d (βk − βk−1)− (1− 2f2d )(αk −αk−1))dsdt

+rγ1
∫ r

0
−2t−2γ1−1 log t

∫ t

0
sγ1+1(f2d (βk − βk−1)− (1− 2f2d )(αk − αk−1))dsdt

+rγ1
∫ r

0
t−2γ1−1

∫ t

0
sγ1+1 log s(f2d (βk − βk−1)− (1− 2f2d )(αk − αk−1))dsdt

+rγ1
∫ r

0
t−2γ1−1

∫ t

0
sγ1+1(f2d

∂(βk − βk−1)
∂γ1

− (1− 2f2d )
∂(αk − αk−1)

∂γ1
)dsdt

We can estimate the first three terms of r−2γ2−2d| log r|−1|∂(αk+1−αk)
∂γ1

(r)| by

Cr2(‖(βk − βk−1)ν−γ2‖L∞([0,r] + ‖(αk − αk−1)ν−γ2−2d‖L∞([0,r])

where C is independent of r and of (d, γ1, γ2) ∈ K.
The estimate of the fourth term gives

|r−γ2−2d+γ1(log r)−1
∫ r

0
t−2γ1−1

∫ t

0
sγ1+1(f2d

∂(βk − βk−1)
∂γ1

− (1− 2f2d )
∂(αk − αk−1)

∂γ1
)dsdt|
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≤ Cr2(‖∂(βk − βk−1)
∂γ1

ν−γ2(log ν)−1‖L∞([0,r]) + ‖∂(αk − αk−1)
∂γ1

ν−γ2−2d(log ν)−1‖L∞([0,r])

where C is independent of r and of (d, γ1, γ2) ∈ K.
Finally

|∂(αk+1 − αk)
∂γ1

(r)r−γ2−2d(log r)−1|

≤ Cr2(‖(βk − βk−1)ν−γ2‖L∞([0,r] + ‖(αk − αk−1)ν−γ2−2d‖L∞([0,r] (2.36)

+‖∂(βk − βk−1)
∂γ1

ν−γ2(log ν)−1‖L∞([0,r]) + ‖∂(αk − αk−1)
∂γ1

ν−γ2−2d(log ν)−1‖L∞([0,r])).

Now,

∂βk+1

∂γ1
= rγ2

∫ r

0
t−2γ2−1

∫ t

0
sγ2+1(f2d

∂αk
∂γ1
− (1− 2f2d )

∂βk
∂γ1

)dsdt.

Then, we get

r−γ2 | log r|−1|∂(βk+1 − βk)
∂γ1

|(r) ≤ Cr2(‖∂(αk − αk−1)
∂γ1

ν−γ2−2d(log ν)−1‖L∞([0,r])

+‖∂(bj − bj−1)
∂γ1

ν−γ2(log ν)−1‖L∞([0,r])). (2.37)

Recalling (2.37),2.36), (2.20) and (2.21), we can conclude as in the proof of the derivability
wrt γ2. Now, the same proof as for a′ and b′ permit to prove that the sums

+∞∑
k=0

∂(α′k+1 − α′k)
∂γi

and
+∞∑
k=0

∂(β′k+1 − β′k)
∂γi

converge, uniformly wrt (d, γ1, γ2) ∈ K and to get (2.31).

2.2 The solution (a3, b3).

Proposition 2.6 There exist a solution (a3, b3) of (1.6) and, for any compact subset
K ∈ D, some real numbers R and C verifying

for all 0 < r < R, |a3(r)− rγ1 | ≤ Crγ1+2 , |b3(r)| ≤ Crγ1+2d+2,

|a′3(r)− γ1rγ1−1| ≤ Crγ1+1 and |b′3(r)| ≤ Crγ1+2d+1,

where C and R remain the same for all (d, γ1, γ2) ∈ K. Moreover, for all r > 0
(d, γ1, γ2) 7→ (a3(r), a

′
3(r), b3(r), b

′
3(r)) is continuous on D and is derivable wrt γ1 and

γ2 whenever γ1 < γ2 and we have for all 0 < r < R and for i = 1, 2,

|∂a3
∂γi

(r)− (log r)rγ1 | ≤ Crγ1+2| log r|, |∂b3
∂γi

(r)| ≤ Crγ1+2d+2| log r| (2.38)

and

|∂a
′
3

∂γi
(r)− (log r)γ1r

γ1−1| ≤ Crγ1+1| log r|, |∂b
′
3

∂γi
(r)| ≤ Crγ1+2d+1| log r| (2.39)
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Proof We consider the fixed point problem
a = rγ1

∫ r
0 t
−2γ1−1

∫ t
0 s

γ1+1(f2d b− (1− 2f2d )a)dsdt

b = rγ2 + rγ2
∫ r
0 t
−2γ2−1

∫ t
0 s

γ2+1(f2da− (1− 2f2d )b)dsdt.

(2.40)

We define by induction

(α0, β0) = (rγ1 , 0) and, for all j ∈ N, (αj+1, βj+1) = Φ(αj , βj). (2.41)

and we define ζ1(r) = rγ1 and ζ2(r) = rγ1+2d.
We have to verify (2.20). For this purpose, we estimate

rγ1
∫ r

0
t−γ1−1

∫ t

0
sγ1+1sγ1dsdt =

r2+γ1

2(2 + 2γ1)
≤ Crγ1+2.

where C depends only on K, and

rγ1
∫ r

0
t−γ1−1

∫ t

0
sγ1+1sγ1+4d+2dsdt =

r2+γ1

2(2 + 2γ1)
≤ Crγ1+2+4d.

The both inequalities give (2.20), for all 0 < r < 1, and give also

|α1 − α0|(r) ≤ Crγ1+1.

In order to verify (2.21), we compute

rγ2
∫ r

0
t−2γ2−1

∫ t

0
sγ2+1+2d+γ1dsdt =

r2d+γ1+2

(−γ2 + 2d+ 2)(γ2 + 2d+ 2)
≤ Crγ1+2d+2

where C depends only on K. This gives (2.21), and gives also

|β1 − β0|(r) ≤ Crγ1+2d+2.

Then, as explained at the beginning of the chapter, we can deduce that

for all r ≤ R, |a(r)− rγ1 |+ |b(r)| ≤ Crγ1+2d+2

withR and C depending only onK, and we have the continuity of (d, γ1, γ2) 7→ (a3(r), b3(r)).
Now, the continuity of (d, γ1, γ2) 7→ (a′3(r), b

′
3(r)) and the estimate near 0 of (a′3, b

′
3) can

be proved exactly by the same proof as the continuity of (d, γ1, γ2) 7→ (a′1(r), b
′
1(r)), and

we obtain

for all 0 < r < R |a′3(r)− γ1rγ1−1| ≤ Crγ1+1 and |b′3(r)| ≤ Crγ1+2d+1.

Now, when γ1 6= 0, the proof of (2.38) and of (2.39) are similar to the corresponding
property of (a1, b1) and are left to the reader.
When γ1 = 0, we write, for k ≥ 1

|α′k+1 − α′k|(r) ≤ r−1
∫ r

0
s|f2d (βk − βk−1)− (1− 2f2d )(αk − αk−1)|ds
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≤ C(
r4d+1

4d+ 2
‖(βk − βk−1)ν−2d‖L∞([0,r] +

r

2
‖αk − αk−1‖L∞([0,r])

≤ Cr(Cr2)k−1(‖(β1 − β0)ν−2d‖L∞([0,r] + ‖α1 − α0‖L∞([0,r]).

Then the sum
∑

k≥0(α
′
k+1 − α′k) converges, uniformly wrt (d, γ1, γ2) ∈ K. We estimate

directly
|α′1 − α′0|(r) ≤ Cr

that gives
|a′3(r)| ≤ Cr.

The estimate of |b′3(r)| is left to the reader. The proof of the derivability wrt γ1 and γ2
and the behaviors of the derivatives works as for (a1, b1) and is left to the reader, too.

2.3 The solution (a2, b2).

We distinguish the construction of (a2, b2) when (d, γ1, γ2) ∈ D1 and the construction of
(a2, b2) when (d, γ1, γ2) ∈ D2.

2.3.1 (a2, b2), for γ1 6= 0.

First, we construct a solution, for (d, γ1, γ2) ∈ D1 = {(d, γ1, γ2) ∈ D; γ1 > 0}.

Proposition 2.7 For all (d, γ1, γ2) ∈ D, such that γ1 6= 0, there exists a solution (a2, b2)
of (1.6) having the following property : for all compact set K ⊂ D1, there exists R and
C depending only on K, for which we have

for all 0 < r ≤ R |b2(r)− r−γ2 | ≤ Cr−γ2+2 (2.42)

and
for all 0 < r ≤ R |a2(r)| ≤ C(r2θ(r) + rγ1) (2.43)

where

θ(r) =


−rγ1−2+r−γ2+2d

γ2+γ1−2d−2 if − γ2 − γ1 + 2d+ 2 6= 0

−rγ1−2 log r if − γ2 − γ1 + 2d+ 2 = 0

(We have θ(r) ≥ 0 for all 0 < r < 1).
Moreover, for all 0 < r < R,

|a′2(r)| ≤ C(rθ(r) + rγ1−1) and |b′2(r) + γ2r
−γ2−1| ≤ Cr−γ2−1 (2.44)

where C and R depend only on K, and, for all r > 0

(d, γ1, γ2) 7→ (a2(r), a
′
2(r), b2(r), b

′
2(r))

is continuous on D1.
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Proof
We consider the following fixed point problem

a = r−γ1
∫ r
0 t

2γ1−1
∫ t
1 s
−γ1+1(f2d b− (1− 2f2d )a)dsdt

b = r−γ2 + r−γ2
∫ r
0 t

2γ2−1
∫ t
1 s
−γ2+1(f2da− (1− 2f2d )b)dsdt.

(2.45)

We define
ζ1(r) = θ(r) + rγ1−2 and ζ2(r) = r−γ2

and

(α0, β0) = (0, r−γ2) and, for all k ∈ N, (αk+1, βk+1) = Φ(αk, βk). (2.46)

We give (d, γ1, γ2) ∈ K, a compact subset of D1.
Then we have γ1 ≥ c, for some c > 0, depending only on K.

In order to prove (2.20), we estimate, for r < 1

r−γ1
∫ r

0
t2γ1−1

∫ 1

t
s−γ1+1(θ(s) + sγ1−2)dsdt

= r−γ1
∫ r

0
t2γ1−1(


− log t− 1−t−γ2−γ1+2d+2

−γ2−γ1+2d+2

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0

(log t)2 if γ1 + γ2 − 2d− 2 = 0

− log t)dt (2.47)

=


− r

γ1
2γ1

log r+ rγ1

(2γ1)
2−

rγ1
2γ1
− r
−γ2+γ1+2d+2

−γ2+γ1+2d+2
−γ1−γ2+2d+2

γ1+γ2+2d+2 if γ1 + γ2 − 2d− 2 6= 0

rγ1
2γ1

(log r)2 − 2 rγ1
(2γ1)2

log r + 2 rγ1
(2γ1)3

if γ1 + γ2 − 2d− 2 = 0

− rγ1

2γ1
log r +

rγ1

(2γ1)2

≤ Cr2(− log r)(θ(r) + rγ1−2)

for some C depending only on K.

Then we compute

r−γ1
∫ r

0
t2γ1−1

∫ 1

t
s−γ1+1+2d−γ2dsdt

r−γ1
∫ r

0
t2γ1−1


1−t−γ1−γ2+2d+2

−γ1−γ2+2d+2 if γ1 + γ2 − 2d− 2 6= 0

− log t if γ1 + γ2 − 2d− 2 = 0

(2.48)

=
rγ1

(γ1 − γ2 + 2d+ 2)2γ1
+ r2

θ(r)

(γ1 − γ2 + 2d+ 2)
≤ Cr2(θ(r) + rγ1−2)

where C depends only on K.
Now (2.47) and (2.48) give, for all k ≥ 2 and in place of (2.20)

|αk+1−αk|(r) ≤ Cζ1(r)r2(− log r)(‖ζ−11 (αk−αk−1)‖L∞([0,r])+‖ζ−12 (αk−αk−1)‖L∞([0,r])),
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and gives also
|α1 − α0|(r) ≤ Cr2(θ(r) + rγ1−2).

To obtain (2.21), we compute

r−γ2
∫ r

0
t2γ2−1

∫ 1

t
s−γ2+1+2d(θ(s) + sγ1−2)dsdt ≤

r−γ2
∫ r

0
t2γ2−1(



1−t−γ1−γ2+2d+2

−γ1−γ2+2d
+ 1−t−2γ2+4d

−2γ2+4d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0, γ1 − γ2 + 2d 6= 0, γ2 6= 2d

− log t− 1−t−2γ2+4d

−2γ2+4d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0, γ1 − γ2 + 2d = 0, γ2 6= 2d

− tγ1−γ2+2d

γ1−γ2+2d log t+ tγ1−γ2+2d

(γ1−γ2+2d)2
if γ1 + γ2 − 2d− 2 = 0

+


1−r−γ2+γ1+2d

−γ2+γ1+2d if γ1 − γ2 + 2d 6= 0

− log r if γ1 − γ2 + 2d = 0

)dt (2.49)

= r−γ2



r2γ2
2γ2

− r
γ1+γ2+2d

γ1+γ2+2d
γ1−γ2+2d

−
r2γ2
2γ2

− r
2d

2d
−γ2+2d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0, γ1 − γ2 + 2d 6= 0

r2γ2
2γ2

(− log r)+ r2γ2

(2γ2)
2−

r2γ2
2γ2

− r
2d

2d
−γ2+2d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0, γ1 − γ2 + 2d = 0

rγ1+γ2+2d(− log r)
(γ1+γ2+2d)(γ1−γ2+2d) + rγ1+γ2+2d

(γ1+γ2+2d)2
+ rγ1+γ2+2d

(γ1+γ2+2d)(γ1−γ2+2d)2
if γ1 + γ2 − 2d− 2 = 0

+


( r
γ2

2γ2
− rγ2+γ1+2d

γ2+γ1+2d ) 1
−γ2+γ1+2d if γ1 + γ2 − 2d− 2 6= 0

− rγ2
2γ2

log r if γ1 + γ2 − 2d− 2 = 0

≤ Cr−γ2+2

where C depends only on K.
Now we compute

r−γ2
∫ r

0
t2γ2−1

∫ 1

t
s−2γ2+1dsdt ≤ r2−γ2

2(2γ2 − 2)
≤ Cr2−γ2 (2.50)

where C depends only on K.

Then (2.49) and (2.50) give (2.21), and also

|β1 − β0|(r) ≤ Cr−γ2+2.

We conclude for all (d, γ1, γ2) ∈ D1, there exists a solution (a2, b2), satisfying the desired
behavior at 0 and such that (d, γ1, γ2) 7→ (a2(r), b2(r)) is continuous on D1. The behavior
of (a′2(r), b

′
2(r)) at 0 is left to the reader.
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2.3.2 (a2, b2), for γ1 small.

Let us consider K, a compact subset of D2. For (d, γ1, γ2) ∈ K, we have in particular
γ1 ≤ c0, −γ2 + 2d + 1 ≥ c1, γ2 ≥ c2 and −γ1 − γ2 + 2d + 2 ≥ c3, where c0 <

1
4 , c1 > 0,

c2 > 1 and c3 > 0 depend only on K.
We have

Proposition 2.8 There exists a solution (a2, b2) of (1.6) having the following property
: for all compact set K ⊂ D2, there exists R and C, depending only on K, for which we
have

for all 0 < r ≤ R |b2(r)− r−γ2 | ≤ Cr−γ2+2 (2.51)

and
for all 0 < r ≤ R |a2(r)| ≤ Cr−γ2+2d+2 (2.52)

Moreover, for all 0 < r < R,

|a′2(r)| ≤ Cr−γ2+2d+1 and |b′2(r) + γ2r
−γ2−1| ≤ Cr−γ2−1 (2.53)

where C and R depend only on K, and, for all r > 0

(d, γ1, γ2) 7→ (a2(r), a
′
2(r), b2(r), b

′
2(r))

is continuous on D2

Proof Let us consider the following fixed point problem
a = rγ1

∫ r
0 t
−2γ1−1

∫ t
0 s

γ1+1(f2d b− (1− 2f2d )a)dsdt

b = r−γ2 + r−γ2
∫ r
0 t

2γ2−1
∫ t
1 s
−γ2+1(f2da− (1− 2f2d )b)dsdt.

(2.54)

We define ζ1(r) = r−γ2+2d and ζ2(r) = r−γ2 .
In order to prove (2.20), we verify that

rγ1(

∫ r

0
t−2γ1−1

∫ t

0
sγ1+1s2d−γ2dsdt ≤ Cr−γ2+2d+2 (2.55)

Then (2.55) gives (2.20) and gives also

|α1 − α0|(r) ≤ Cr−γ2+2d+2.

Now, in order to prove (2.21), we compute

r−γ2
∫ r

0
t2γ2−1

∫ 1

t
s−γ2+1s2d−γ2+2ddsdt = r−γ2

r2γ2
2γ2
− r4d+2

4d+2

−2γ2 + 4d+ 2

≤ Cr2r−γ2 (2.56)

and

r−γ2
∫ r

0
t2γ2−1

∫ 1

t
s−γ2+1s−2γ2+1dsdt =

r−γ2

−2γ2 + 2
(
r2γ2

2γ2
− r2

2
) ≤ Cr2r−γ2 (2.57)
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Then (2.56) and (2.57) give (2.21) and gives also

|β1 − β0|(r) ≤ Cr2rγ2 .

So we have the existence and the continuity wrt (d, γ1, γ2) ∈ D2 of a solution (a2, b2),
and we have the desired behavior at r = 0. The behavior at r = 0 of (a′2, b

′
2) is left to

the reader.

2.4 The solution (a4, b4).

2.4.1 (a4, b4) when γ1 6= 0.

First we construct a solution (a4, b4) when γ1 > 0. We have to prove

Proposition 2.9 There exists a solution (a4, b4) of (1.6) having the following property :
for all compact subset K of D1, there exist R < 1 and C depending only on K, such that,
for all 0 < r < R

|a4(r)− r−γ1 | ≤ Cr−γ1+2 and |b4(r)| ≤ C(r2θ̃(r) + rγ2),

where, for 0 < r < 1, θ̃ is defined by

θ̃(r) =


−rγ2−2+r−γ1+2d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0

−rγ2−2 log r if γ1 + γ2 − 2d− 2 = 0.

Moreover

|a′4(r) + γ1r
−γ1−1| ≤ Cr−γ1+1 and |b′4(r)| ≤ C(rθ̃ + rγ2−1).

And (d, γ1, γ2) 7→ (a4(r), a
′
4(r), b4(r), b

′
4(r)) is continuous on D1.

Proof Let us consider the following fixed point problem
a = r−γ1 + r−γ1

∫ r
0 t

2γ1−1
∫ t
1 s
−γ1+1(f2d b− (1− 2f2d )a)dsdt

b = r−γ2
∫ r
0 t

2γ2−1
∫ t
1 s
−γ2+1(f2da− (1− 2f2d )b)dsdt.

(2.58)

Let us define ζ1(r) = r−γ1 and ζ2(r) = θ̃(r) + rγ2−2.
Let K be a compact subset of D1. Then we have γ1 ≥ c, where c > 0 depends only on K.
In order to prove (2.20), we estimate

r−γ1
∫ r

0
t2γ1−1

∫ 1

t
s−2γ1+1dsdt = r−γ1


r2γ1
2γ1
− r

2

2

−2γ1+2 if γ1 6= 1

− r2

2 log r + r2

4 if γ1 = 1

= r−γ1

{
r2 r2γ1−2−1

(−2γ1+2)2γ1
+ r2

4γ1
if γ1 6= 1

− r2

2 log r + r2

4 if γ1 = 1
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≤


Cr−γ1r2c1 if 0 < c1 ≤ γ1 < 1
Cr−γ1r2(− log r) if γ1 = 1

Cr−γ1+2 if γ1 > 1
(2.59)

Now, we return to (2.49). Exchanging γ1 and γ2, we get

r−γ1
∫ r

0
t2γ1−1

∫ 1

t
s−γ1+1+2d(θ̃ + rγ2−2)dsdt ≤ Cr−γ1+2. (2.60)

Then, (2.60) and (2.59) give, in place of ( 2.20), and for some c > 0 depending only
on K

|αk+1 − αk|(r) ≤ Cζ1(r)rc(‖ζ−11 (αk − αk−1)‖L∞([0,r]) + ‖ζ−12 (βk − βk−1)‖L∞([0,r]))

and gives also
|α1 − α0|(r) ≤ Cr−γ1+c.

Now to obtain (2.21), we return to (2.48). Exchanging γ1 and γ2, we get

r−γ2
∫ r

0
t2γ2−1

∫ 1

t
s−γ2+1+2d−γ1dsdt ≤ Cr2(θ̃ + rγ2−2) (2.61)

where C depends only on K.
Then, returning to (2.47), we get

r−γ2
∫ r

0
t2γ2−1

∫ 1

t
s−γ2+1(θ̃ + rγ2−2)dsdt ≤ Cr2(− log r)(θ̃ + rγ2−2). (2.62)

We have proved the existence of (a4, b4), for all (d, γ1, γ2) ∈ D1, and the continuity of
(d, γ1, γ2) 7→ (a4(r), b4(r)). The behavior of (a′4(r), b

′
4(r)) at r = 0 is left to the reader.

2.4.2 (a4, b4) for small γ1.

Now we give (d, γ1, γ2) ∈ D2. We have

Proposition 2.10 There exists a solution (a4, b4) of (1.6) having the following property
: for all compact subset K of D2, there exist R < 1 and C and c > 1 depending only on
K, such that, for all 0 < r < R

|a4(r)− τ(r)| ≤ Crcτ(r) and |b4(r)| ≤ Cr2d+2τ(r),

where, for 0 < r < 1, τ is defined by

τ(r) =

{
r−γ1−rγ1

2γ1
if γ1 > 0

− log r if γ1 = 0.

Moreover
|a′4(r)− τ ′(r)| ≤ Crc−1τ(r) and |b′4(r)| ≤ Cr2d+1τ(r).

And (d, γ1, γ2) 7→ (a4(r), a
′
4(r), b4(r), b

′
4(r)) is continuous on D2.
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Proof
In view of (2.26), let us consider the following fixed point problem

a = τ(r) + τ(r)
∫ r
0

1
t τ
−2(t)

∫ t
0 sτ(s)(f2d b− (1− 2f2d )a)dsdt

b = r−γ2
∫ r
0 t

2γ2−1
∫ t
0 s
−γ2+1(f2da− (1− 2f2d )b)dsdt

(2.63)

We define
ζ1(r) = τ(r) and ζ2(r) = r2dτ(r).

Let us considerK a compact subset ofD2. Then we have γ1 ≤ c1 and−γ1−γ2+2d+2 ≥ c2,
where c1 <

1
4 and c2 > 0. But γ1 can be equal to 0. Since eu ≥ 1 + u, we have for all

t ∈]0, 1[
tγ1(− log t) ≤ τ(t) ≤ t−γ1(− log t) (2.64)

In order to prove (2.20), we estimate, assuming that r ≤ exp(−1)

τ(r)

∫ r

0

1

t
τ−2(t)

∫ t

0
sτ2(s)dsdt ≤ τ(r)

∫ r

0

t−2γ1−1

log2 t

∫ t

0
s−2γ1+1(log s)2dsdt

= τ(r)

∫ r

0

t−2γ1−1

log2 t
(
t−2γ1+2

−2γ1 + 2
log2 t− 2

t−2γ1+2

(−2γ1 + 2)2
log t+ 2

t−2γ1+2

(−2γ1 + 2)3
)dt

≤ Cr−4γ1+2τ(r) ≤ rcτ(r) (2.65)

where C > 0 and c > 1 are independent of (d, γ1, γ2) ∈ K.

Following the same proof, we get, for r ≤ exp(−1)

τ(r)

∫ r

0

1

t
τ−2(t)

∫ t

0
sτ(s)s2dτ(s)s2ddsdt

≤ Cr−4γ1+4d+2τ(r) ≤ Cr2τ(r). (2.66)

Then, (2.65) and (2.66) give (2.20), with rc instead of r2, and give also

|α1 − α0| ≤ Crcτ(r).

Now, in order to prove (2.21), we compute

r−γ2
∫ r

0
t2γ2−1

∫ t

0
s−γ2+1s2dτ(s)dsdt

≤ r−γ2
∫ r

0
t2γ2−1

∫ t

0
s−γ2+1s2d−γ1(− log s)dsdt

≤ Cr−γ2rγ2−γ1+2d+2(− log r) ≤ Cr−γ2+2d+2 (2.67)

where C depends only on K. Then (2.56) gives (2.21) and gives also

|β1 − β0|(r) ≤ Cr−γ2+2d+2.

We have proved the desired result for (a4(r), b4(r)). The proof concerning (a′4(r), b
′
4(r))

is left to the reader.
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3 The possible behaviors at infinity and the dependence of
the solutions wrt the parameters.

Our goal is to prove Theorem 1.4.
We use the system (1.7) and we construct a base of four solutions, (xj , yj), j = 1, . . . , 4,
characterized by there behavior at +∞. Then the solutions (uj , vj) announced in Theo-

rem 1.4 are obtained by uj =
xj+yj

2 and vj =
xj−yj

2 .

Let us consider the first equation of (1.7). As is usual with regard to Bessel’s equa-
tions, we let

x̃(r) = r
1
2x(r).

Then the system (1.7) becomes x̃′′ − 2x̃+ −γ2−3d2
r2

x̃+ 3(1− f2d + d2

r2
)x̃+ ξ2

r
3
2
y = 0

y′′ + y′

r −
γ2−d2
r2

y + µ2

r
5
2
x̃+ (1− f2d −

d2

r2
)y = 0

(3.68)

We can replace the first equation of this system by

(e2
√
2r(x̃e−

√
2r)′)′ = e

√
2rq(r)x̃− ξ2

r2
y

or by

(e−2
√
2r(x̃e

√
2r)′)′ = e−

√
2rq(r)x̃− ξ2

r2
y,

where

q(r) =
−γ2 − 3d2

r2
+ 3(1− f2d +

d2

r2
).

Let us suppose that γ2 − d2 ≥ 0. Then we let

n =
√
γ2 − d2.

The second equation of the system (1.7) can be written as

(r2n+1(r−ny)′)′ = rn+1(
µ2

r2
x− (1− f2d −

d2

r2
)y)

or

(r−2n+1(rny)′)′ = r−n+1(
µ2

r2
x− (1− f2d −

d2

r2
)y).

Finally, the system (1.7) can be written as{
(e±2

√
2r(r

1
2 e∓

√
2rx)′)′ = r

1
2 e±

√
2rq(r)x− ξ2

r2
y

(r±2n+1(r∓ny)′)′ = r±n+1( ξ
2

r2
x− (1− f2d −

d2

r2
)y)

(3.69)

We denote

J+ =
e
√
2r

√
r
, J− =

e−
√
2r

√
r

and n =

√
γ21 + γ22

2
− d2.
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We are going to construct four solutions of (3.69). The plan is almost the same for
each solution. Let us explain it. First, for some given R0 > 0, we define a fixed point
problem of the form

(x, y) = Φ(x, y),

for (x, y) defined on [R0,+∞[, and whose solutions are solutions of (3.69). The function Φ
will depend onR0, except for one solution denoted by (x2, y2) (that vanishes exponentially
at +∞). Let us remark that the present construction does not allow us to construct the
solutions (xj , yj), j 6= 2 without taking into account a given compact subset

K ⊂ {(d, γ1, γ2); 0 ≤ γ1 < γ2;
γ21 + γ22

2
− d2 > 0}. (3.70)

Indeed, R0 depends on K. Then we give a map ζ and we want to prove the existence of
a fixed point (x, y) verifying, for some C depending only on K, an estimate of the form

|xj(r)− ζ(r)|+ |yj(r)| ≤ Cζ(r)r−2 if j = 1, 3,

or |xj(r)|+ |yj(r)− ζ(r)| ≤ Cζ(r)r−2 if j = 2, 4.

Moreover we want (d, γ1, γ2)) 7→ (a(r), a′(r), b(r), b′(r)) to be continuous, and derivable
wrt γ1 and wrt γ2, for any given r > R0.
We define by induction, for (x1, y1) and for (x3, y3)

(α0, β0) = (ζ, 0) and (αk+1, βk+1) = Φ(αk, βk). (3.71)

For (x2, y2) and for (x4, y4), we exchange the role of x and y, that gives

(α0, β0) = (0, ζ) and (αk+1, βk+1) = Φ(αk, βk). (3.72)

The proof of the continuity of (d, γ1, γ2) 7→ (αk, α
′
k, βk, β

′
k)(r), for all k follows from

the Lebesgue Theorem and from an induction. We denote ν : r 7→ r.
Then we prove that there exists C > 0 depending only on K and independent of R0, such
that for all r ≥ R0 and all k ≥ 0,
for j = 1, 3

|(αk+1 − αk)ζ−1|(r) ≤
C

r2
(‖(αk − αk−1)ζ−1‖L∞([R0,+∞[)

+‖(βk − βk−1)ζ−1ν2)‖L∞([R0,+∞[)) (3.73)

and

r2|(βk+1 − βk)ζ−1|(r) ≤
C

r2
(‖(αk − αk−1)ζ−1‖L∞([R0,+∞[)

+‖(βk − βk−1)ζ−1ν2)‖L∞([R0,+∞[)) (3.74)

and for j = 2, 4

r2|(αk+1 − αk)ζ−1|(r) ≤
C

r2
(‖(αk − αk−1)ζ−1ν2‖L∞([R,+∞[)

+‖(βk − βk−1)ζ−1‖L∞([R,+∞[)) (3.75)
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and

|(βk+1 − βk)ζ−1|(r) ≤
C

r2
(‖(αk − αk−1)ζ−1ν2‖L∞([R,+∞[)

+‖(βk − βk−1)ζ−1‖L∞([R,+∞[)) (3.76)

Then we define

x(r) = α0(r) +
∑
k≥0

(αk+1 − αk)(r) and y(r) = β0(r) +
∑
k≥0

(βk+1 − βk)(r) (3.77)

Since C is independent of R0, we choose R0 > 0 such that (CR−20 ) < 1, the sums
ζ−1x(r) and ζ−1ν2y(r) (or ζ−1ν2x(r) and ζ−1y(r)) converge, uniformly wrt (d, γ1, γ2) ∈
K. Consequently, we get together the existence of a solution (x, y) having the desired
behavior at +∞ and the continuity of the map (d, γ1, γ2) 7→ (x(r), y(r)).
Then we prove the continuity of (d, γ1, γ2) 7→ (x′(r), y′(r)) in K and the behavior of
(x′, y′) at +∞ by the uniform convergence of

ζ−1
∑
k≥0

(α′k+1 − α′k)(r) and ζ−1ν2
∑
k≥0

(β′k+1 − β′k)(r).

We prove the derivability wrt γi, for i = 1, 2, of (x(r), x′(r), y(r), y′(r)) by the the uniform
convergence of∑

k≥0

∂

∂γi
(αk+1 − αk)(r), and ζ−1ν2

∑
k≥0

∂

∂γi
(βk+1 − βk)(r)

and

ζ−1
∑
k≥0

∂

∂γi
(α′k+1 − α′k)(r), and ζ−1ν2

∑
k≥0

∂

∂γi
(β′k+1 − β′k)(r).

(For j = 2, 4 we change the place of ν2).

We will use the following estimate, which is not difficult to prove, by an integration
by part. Let α ∈ R and β > 0 be given. Then∫ +∞

t
sαe−βsds ≤ 2

β
tαe−βt for all t ≥ 2α

β
(3.78)

and ∫ t

R
sαeβsds ≤ 2

β
tαeβt for all t ≥ R ≥ −2α

β
(3.79)

In what follows, K is compact and is as in (3.70).
We will detail the proof of the construction only for the first solution (x1, y1) and we will
only indicate the way to adapt it for the other three solutions.
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3.1 The greatest behavior at +∞ : the solution (x1, y1).

Proposition 3.11 For every compact subset K of {(d, γ1, γ2); 0 ≤ γ1 ≤ γ2; d ≥ 0;
γ21+γ

2
2

2 −
d2 > 0}, there exists a solution (x1, y1) of (3.69), such that there exist C and R0 depending
only on K and such that

|x1(r)−
e
√
2r

√
r
|+ |y1(r)| ≤ C

e
√
2r

√
r
r−2

|x′1(r)− (
e
√
2r

√
r

)′| ≤ Cr−3 e
√
2r

√
r
, |y′1|(r) ≤ Cr−4

e
√
2r

√
r

and for all r > 0

(d, γ1, γ2) 7→ (x1(r), x
′
1(r), y1(r), y

′
1(r)) is continuous on K.

Moreover (x1, x
′
1, y1, y

′
1)(r) is derivable wrt γ1 and γ2 and we have, for i = 1, 2

for r ≥ R0 |∂x1
∂γi
|(r) + |∂y1

∂γi
|(r) ≤ C e

√
2r

√
r
r−2 log r

and

|∂x
′
1

∂γi
|(r) + |∂y

′
1

∂γi
|(r) ≤ C e

√
2r

√
r
r−3 log r (3.80)

where C remains the same when (d, γ1, γ2) ∈ K.

Let us remark that at this stage, the solution (x1, y1) depends on K.

Proof Let R0 > 0 be given. Let us consider the following fixed point problem, with
x and y defined in [R0,+∞[

x = J+ + J+
∫ r
+∞(J+)−2 1t

∫ t
R0
sJ+( ξ

2

s2
y − 3(1− f2d −

d2

s2
)x)dsdt

y = rn
∫ r
R0
t−2n−1

∫ t
R0
sn+1( ξ

2

s2
x− (1− f2d −

d2

s2
)y)dsdt.

Let us denote it by
(x, y) = Φ(x, y).

Let ζ = J+. We define (αk, βk) by (3.71). Let us denote

B = C(K, C([R0,+∞[)).

First, we prove that, for R0 large enough,

when ((αj − αj−1)(J+)−1, (βj − βj−1)(J+)−1ν2) ∈ B2 then

((αj+1 − αj)(J+)−1, (βj+1 − βj)(J+)−1ν2) ∈ B2 (3.81)

For this purpose, we write∫ t

R0

sJ+(
ξ2

s2
|βk − βk−1|+ 3|1− f2d −

d2

s2
||αk − αk−1|)ds
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≤
∫ t

R0

sJ+
ξ2

s2
J+s

−2ds‖(J+)−1ν2(βk−βk−1)‖L∞([R0,+∞])+

∫ t

R0

s
M

s4
(J+)2‖(J+)−1(αk−αk−1)‖L∞([R0,+∞])

where we have used |1− f2d −
d2

s2
| ≤ M

s4
.

Then there exists C, depending only on K such that ξ2 ≤ C. Using (3.79) and (3.78), we
deduce that

(J+)−2
1

t

∫ t

R0

sJ+(
ξ2

s2
(βk − βk−1) + 3(1− f2d −

d2

s2
)(αk − αk−1))ds

is integrable on [r,+∞[, when R0 ≥ 6
2
√
2
, uniformly for (d, γ1, γ2) ∈ K and, by the

Lebesgue Theorem, that αj+1 − αj is continuous wrt (d, γ1, γ2) ∈ K.
Now, we write ∫ t

R0

sn+1|ξ
2

s2
(αk − αk−1)− (1− f2d −

d2

s2
)(βk − βk−1)|ds

≤
∫ t

R0

Csn+1J+(
1

s2
‖(J+)−1(αk−αk−1)‖L∞([R0,+∞])+

M

s4
s−2‖(J+)−1ν2(βk−βk−1)‖L∞([R0,+∞]))ds

We use (3.79), with α = n− 1 and for α = n− 3. In any case, we have |α| ≤ C, for some

C > 0 depending only on K. Then, we chose R0 ≥
−2(n−5− 1

2
)√

2
in order to conclude that

t−2n−1
∫ t

R0

sn+1|ξ
2

s2
(αk − αk−1)− (1− f2d −

d2

s2
)(βk − βk−1)|ds

≤ Ct−n−2J+(‖(J+)−1(αk − αk−1)‖L∞([R0,+∞]) + ‖(J+)−1ν2(βk − βk−1)‖L∞([R0,+∞]))

where C depends only on K. Moreover 3 ≤ n+ 2 ≤ c, where c depends only on K. Then,
this quantity is integrable in [R0, r[, uniformly wrt (d, γ1, γ2) ∈ K. We deduce, by the
Lebesgue Theorem, that βj+1 − βj is continuous wrt (d, γ1, γ2) ∈ K.
We have proved (3.81).
Now, in order to prove (3.73), we estimate, in view of (3.79) and for R0 ≥ 8

2
√
2

J+

∫ +∞

r
(J+)−2

1

t

∫ t

R0

s(J+)2s−4dsdt

≤ J+
∫ +∞

r
(J+)−2

1

t

2

2
√

2
t−4e2

√
2tdt ≤ J+

∫ +∞

r

2

2
√

2
t−4dt ≤ Cr−3J+. (3.82)

This gives (3.73), with ζ = J+, and this gives also

|α1 − α0|(r) ≤ Cr−3J+. (3.83)

In order to prove (3.74), we estimate, for

R0 ≥
−2(n− 7

2)
√

2
and R0 ≥

2(n+ 7
2)

√
2

(3.84)

rn
∫ r

R0

t−2n−1
∫ t

R0

sn+1J+
s4
dsdt
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= rn
∫ r

R0

t−2n−1(
2√
2
tn−

5
2 e
√
2t)dt ≤ rn

∫ r

R0

2√
2
t−n−

7
2 e
√
2tdt ≤ Cr−3J+. (3.85)

This gives (3.74)
and gives also

|β1 − β0|(r) ≤ Cr−3J+. (3.86)

By (3.73) and (3.74) give, for all k ≥ 1 and r > R0

(J+)−1|αk+1 − αk|(r) + (J+)−1|βk+1 − βk|(r)

≤ Cr−3(CR−30 )k−1(‖(J+)−1(α1 − α0‖L∞([R0,+∞[ + ‖(J+)−1(β1 − β0‖L∞([R0,+∞[). (3.87)

Defining x1 and y1 by (3.77) and choosing R0 to have CR−20 < 1, the sums converge
uniformly wrt (d, γ1, γ2) ∈ K and then the continuity of (x1(r), y1(r)) wrt (d, γ1, γ2) is
now complete. But while the first condition given in (3.84) remains to R0 ≥ 3√

2
(since

n ≥ 1), the second one makes R0 depending on K, and consequently, the definition of
(x1, y1) depends on K. We remark also that C depends on K, too.
Then, we write

|x1(r)− J+| ≤
∑
k≥0
|αk+1 − αk|(r)

≤ Cr−2J+
∑
k≥1

(CR−10 )k−1(‖(J+)−1(α1 − α0)‖L∞([R0,+∞[ + ‖(J+)−1(β1 − β0)‖L∞([R0,+∞[)

+|α1 − α0|(r)

and (3.83) gives the desired behavior at +∞ for x1. A similar proof gives the desired
behavior of y1 at +∞.
Now, let us turn to (x′1(r), y

′
1(r)). We write

(α′k+1 − α′k)(r) = (J+)′J−1+ (αk+1 − αk)(r)

+
J−1+

r

∫ r

R0

sJ+(
ξ2

s2
(βk − βk−1)− 3(1− f2d −

d2

s2
)(αk − αk−1)ds.

Consequently, using successively (3.79) and (3.87)

J−1+ |α′k+1 − α′k|(r) ≤ CJ−1+ |αk+1 − αk|(r)

+Cr−2(‖J−1+ ν2(βk − βk−1)‖L∞([R0,+∞[) + ‖J−1+ (αk − αk−1)‖L∞([R0,+∞[))

≤ Cr−3(CR−30 )k−1(‖J−1+ (α1 − α0)‖L∞([R0,+∞[) + ‖J−1+ (β1 − β0)‖L∞([R0,+∞[)). (3.88)

This gives the convergence of ∑
k≥1

J−1+ (α′k+1 − α′k)(r)

uniformly wrt r ∈ [R0,+∞[ and wrt (d, γ1, γ2) ∈ K. Then we directly estimate

|α′1(r)− α′0(r)|(J+)−1 ≤ (J+)−1|α1 − α0|(r) + Cr−4J+(J ′+)−1 ≤ Cr−3
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and we deduce the desired behavior at +∞

J−1+ |x′1(r)− J ′+| ≤ Cr−3.

Now we write

(β′k+1−β′k)(r) = nrn−1r−n(βk+1−βk)(r)+r−n−1
∫ r

R0

sn+1(
ξ2

s2
(βk−βk−1)−(1−f2d−

d2

s2
)(αk−αk−1)ds

and consequently, using (3.79) and (3.87), we get for k ≥ 1

r3(J+)−1|β′k+1 − β′k|(r) ≤ nr2J−1+ |βk+1 − βk|(r)

+Cr−2(‖J−1+ (αk − αk−1)‖L∞([R0,+∞[) + ‖J−1+ ν2(βk − βk−1)‖L∞([R0,+∞[))

≤ Cr−2(CR−30 )k−1(‖J−1+ (α1 − α0)‖L∞([R0,+∞[) + ‖J−1+ ν2(β1 − β0)‖L∞([R0,+∞[)). (3.89)

This gives the convergence of ∑
k≥1

r3(J+)−1|β′k+1 − β′k|(r)

uniformly wrt r and to (d, γ1, γ2) ∈ K. Now we estimate

|β′1 − β′0|(r) ≤ nr−1|β1 − β0|(r) + Cr−4J+ ≤ Cr−4J+

and we deduce the desired estimate

|y′1(r)| ≤ Cr−4J+.

Let us turn to the derivability of (x1(r), y1(r)) wrt γ1 and γ2.
Let us assume that αk − αk−1 and βk − βk−1 are derivable wrt γi, for i = 1 or i = 2
and that (log ν)−1(J+)−1 ∂

∂γi
(αk − αk−1) and (log ν)−1(J+)−1 ∂

∂γi
(βk − βk−1) belong to

L∞([R0,+∞[) and are continuous wrt (d, γ1, γ2).

On one hand, we write for i = 1 or i = 2, using ∂ξ2

∂γi
= (−1)iγi,

| ∂
∂γi

(J+(
ξ2

s2
(βk − βk−1)− 3(1− f2d −

d2

s2
)(αk − αk−1))|

≤ C(J+)2s−4(‖(J+)−1ν2(βk−βk−1)‖L∞([R0,+∞])+log s‖(log ν)−1(J+)−1ν2
∂

∂γi
(βk−βk−1)‖L∞([R0,+∞[)

+ log s‖ log ν)−1(J+)−1
∂

∂γi
(αk − αk−1)‖L∞([R0,+∞])).

Then we deduce that αk+1−αk is derivable wrt γi, by the Lebesgue Theorem. Moreover,
since C is independent of (d, γ1, γ2) ∈ K, we have that ∂

∂γi
(αk+1 − αk) is continuous wrt

(d, γ1, γ2) and we have, using (3.79)

(J+)−1| ∂
∂γi

(αk+1−αk)|(r) ≤
∫ +∞

r
(J+)−2

1

t

∫ t

R0

s| ∂
∂γi

(J+(
ξ2

s2
(βk−βk−1)−3(1−f2d−

d2

s2
)(αk−αk−1)))|dsdt
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≤ C
∫ +∞

r
t−4(‖(J−1+ (βk − βk−1)‖L∞([R0,+∞[)

+ log t(‖J−1+ (log ν)−1ν2
∂

∂γi
(βk−βk−1)‖L∞([R0,+∞[)+‖J−1+ (log ν)−1

∂

∂γi
(αk−αk−1)‖L∞([R0,+∞[)))dt

that is

(J+)−1| ∂
∂γi

(αk+1 − αk)|(r) ≤ Cr−3(‖(J−1+ ν2(βk − βk−1)‖L∞([R0,+∞[)

+ log r(‖J−1+ (log ν)−1ν2
∂

∂γi
(βk − βk−1)‖L∞([R0,+∞[)

+‖J−1+ (log ν)−1
∂

∂γi
(αk − αk−1)‖L∞([R0,+∞[))) (3.90)

where C is independent of (d, γ1, γ2) ∈ K.

On the other hand, we use ∂n
∂γi

= 1
4
γi
n and we estimate, for s ≥ R0 ≥ e

| ∂
∂γi

(sn+1(
ξ2

s2
(αk − αk−1)− (1− f2d −

d2

s2
)(βk − βk−1))|

≤ CJ+
s2
sn+1 log s(‖(J+)−1(αk−αk−1)‖L∞([R0,+∞])+‖(log ν)−1(J+)−1

∂

∂γi
(αk−αk−1)‖L∞([R0,+∞]))

+C
J+
s6
sn+1 log s(‖(log ν)−1(J+)−1ν2

∂

∂γi
(βk−βk−1)‖L∞([R0,+∞])+‖(J+)−1ν2(βk−βk−1)‖L∞([R0,+∞])).

And then we use the Lebesgue Theorem to prove by induction that βk+1−βk is derivable
wrt γi and we use (3.79) to get

t−2n−1| ∂
∂γi

∫ t

R0

(sn+1(
ξ2

s2
(αk − αk−1)− (1− f2d −

d2

s2
)(βk − βk−1)))ds|

≤ CJ+t−n−2 log t(‖(J+)−1(αk − αk−1)‖L∞([R0,+∞]) + ‖(J+)−1ν2(βk − βk−1)‖L∞([R0,+∞])

+‖(log ν)−1(J+)−1
∂

∂γi
(αk−αk−1)‖L∞([R0,+∞])+‖(log ν)−1(J+)−1ν2

∂

∂γi
(βk−βk−1)‖L∞([R0,+∞]))

with C independent of (d, γ1, γ2) ∈ K.
Integrating this inequality on [R0, r], we get the same upper bound, with r in place of t.
Then we can estimate∫ r

R0

∂

∂γi
(t−2n−1)|

∫ t

R0

(sn+1(
ξ2

s2
(αk − αk−1)− (1− f2d −

d2

s2
)(βk − βk−1)))dsdt|

by the same upper bound. Finally, we get, when log r > 1

(J+)−1(log r)−1r2| ∂
∂γi

(βk+1 − βk)|(r) ≤ Cr−2(‖(J+)−1(αk − αk−1)‖L∞([R0,+∞])

+‖(J+)−1ν2(βk − βk−1)‖L∞([R0,+∞]) + ‖(log ν)−1(J+)−1
∂

∂γi
(αk − αk−1)‖L∞([R0,+∞])
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+‖(log ν)−1(J+)−1ν2
∂

∂γi
(βk − βk−1)‖L∞([R0,+∞])). (3.91)

But the sum of (3.87), (3.90) and (3.91) leads for all k ≥ 0 to

‖(J+)−1(αk+1 − αk)‖L∞([R0,+∞[) + ‖(J+)−1ν2(βk+1 − βk)‖L∞([R0,+∞[)

+‖(log ν)−1(J+)−1
∂

∂γi
(αk+1−αk)‖L∞([R0,+∞])+‖(log ν)−1(J+)−1ν2

∂

∂γi
(βk+1−βk)‖L∞([R0,+∞])

≤ C0(CR
−2
0 )k

for some C and some C0 depending only on K.
So, using the sum of (3.90) and (3.91) again, we deduce, for all k ≥ 1

(log r)−1(J+)−1(| ∂
∂γi

(αk+1 − αk)|(r) + r2| ∂
∂γi

(βk+1 − βk)|(r))

≤ Cr−2C0(CR
−2
0 )k−1

Choosing R0 large enough (since the constants are independent of R0), we deduce
that the sums ∑

k≥0
‖(J+)−1(log ν)−1

∂

∂γi
(αk+1 − αk)‖L∞([R0,+∞[)

and
∑
k≥0
‖(log ν)−1(J+)−1ν2

∂

∂γi
(βk+1 − βk)‖L∞([R0,+∞[)

are convergent, uniformly wrt (d, γ1, γ2) ∈ K. Recalling the definition of x1 and y1 by
(3.77), we deduce that x and y are derivable wrt γ1 and γ2. Moreover, since ∂α0

∂γi
= ∂β0

∂γi
=

0, we get

(log r)−1(J+)−1|∂x1
∂γi
|(r) ≤

∑
k≥1

(log r)−1(J+)−1(αk+1 − αk)(r)

≤ Cr−2
∑
k≥1

C0(CR
−2
0 )k

and this gives

(log r)−1(J+)−1|∂x1
∂γi
|(r) ≤ Cr−2.

The same proof works for (log r)−1(J+)−1r2|∂y1∂γi
|(r). This gives the first part of (3.80).

The proof of the behavior of
∂x′1
∂γi

and of
∂y′1
∂γi

at +∞ is left to the reader.
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3.2 The intermediate blowing up behavior at +∞ : the solution (x3, y3).

Proposition 3.12 For all K as in (3.70) and for some R0 > 0 depending on K, there
exists a solution (x3, y3) of (1.7), verifying the following property
there exists C depending only on K and such that for all r > R0

|x3(r)|+ |y3(r)− rn| ≤ Crn−2, |x′3|(r) + |y′3(r)− nrn−1| ≤ Crn−3

and for all r > 0

(d, γ1, γ2) 7→ (x3(r), x
′
3(r), y3(r), y

′
3(r)) is continuous on K.

Moreover, (x3, y3) is derivable wrt γ1 and γ2 and we have

|∂x3
∂γi
|(r) + |∂y3

∂γi
(r)− rn log r| ≤ C| log r|rn−2

|∂x
′
3

∂γi
|(r) + |∂y

′
3

∂γi
|(r) ≤ C| log r|rn−1 (3.92)

for r ≥ R0 and for C depending only on K.

Proof We follow the proof of Proposition 3.11, with the same notation. Let us
indicate only what is different. We consider the following fixed point problem, with x
and y defined in [R0,+∞[

x = J+
∫ r
+∞(J+)−2 1t

∫ t
R0
sJ+(µ

2

s2
y − 3(1− f2d −

d2

s2
)x)dsdt

y = rn + rn
∫ r
+∞ t

−2n−1 ∫ t
R0
sn+1(µ

2

s2
x− (1− f2d −

d2

s2
)y)dsdt

We chose ζ(r) = rn and (α0, β0) = (0, ζ).
We let the reader prove, for all r ≥ R0 ≥ 1

r−n+2|αj+1 − αj |(r) ≤
C

r2
(‖(αj − αj−1)ν−n+2‖L∞([R0,+∞[)

+‖(βj − βj−1)ν−n‖L∞([R0,+∞[)) (3.93)

and

r−n|βj+1 − βj |(r) ≤
C

r2
(‖(αj − αj−1)ν−n+2‖L∞([R0,+∞[)

+‖(βj − βj−1)ν−n)‖L∞([R0,+∞[)) (3.94)

We also remark that the constant C is independent of R0 and does depend on K. In the
course of the construction of (x3, y3), we need the condition CR−20 < 1. We can conclude
that the choice of R0, and consequently the solution (x3, y3) depend on K. The end of
the proof of Proposition 3.12 is left to the reader.
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3.3 The least behavior at +∞ : the solution (x2, y2).

Proposition 3.13 There exists a solution (x2, y2) of (1.7) verifying, for all compact
subset K as in (3.70) there exist C and R0 depending only on K and such that for all
r > R0

|x2(r)− J−|+ |y2(r)| ≤ Cr−2J−, |x′2(r)− (J−)′|+ |y′2(r)| ≤ Cr−3J−

and, for all r > 0,

(d, γ1, γ2) 7→ (x2(r), x
′
2(r), y2(r), y

′
2(r)) is continuous on {(d, γ1, γ2); 0 ≤ γ1 ≤ γ2; d ≥ 0;

γ21+γ
2
2

2 − d2 > 0}.

Moreover, (x2(r), x
′
2(r), y2(r), y

′
2(r)) is derivable wrt γ1 and γ2 and, for i = 1, 2

|∂x2
∂γi
|+ |∂y2

∂γi
| ≤ CJ−r−2| log r| and |∂x

′
2

∂γi
|+ |∂y

′
2

∂γi
| ≤ CJ−r−3| log r| (3.95)

for r ≥ R0 and for C depending only on K.

Proof Let us consider the following fixed point problem
x = J− + J−

∫ r
+∞(J−)−2 1t

∫ t
+∞ sJ−( ξ

2

s2
y − 3(1− f2d −

d2

s2
)x)dsdt

y = r−n
∫ r
+∞ t

2n−1 ∫ t
+∞ s

−n+1( ξ
2

s2
x− 3(1− f2d −

d2

s2
)y)dsdt

We define, with the usual notation, ζ = J− and (α0, β0) = (J−, 0).
Let (d, γ1, γ2) ∈ K, where K is a compact set, as usual. We let the reader use (3.79) and
(3.78) and verify that, if R0 > 0 is large enough, depending only on K, we have for all
r > R0

|(J−)−1(αj+1 − αj)|(r) ≤
C

r2
(‖(αj − αj−1)(J−)−1‖L∞([R0,+∞[)

+‖(βj − βj−1(J−)−1ν2)‖L∞([R0,+∞[)) (3.96)

and

r2(J−)−1|(βj+1 − βj)(J+)−1|(r) ≤ C

r2
(‖(αj − αj−1)(J−)−1‖L∞([R0,+∞[)

+‖(βj − βj−1)(J−)−1ν2)‖L∞([R0,+∞[)) (3.97)

where C depends only on K and is independent of R0.
The rest of the proof is left to the reader, too.
We remark that, for this solution, the construction doesn’t depend on K.

3.4 The intermediate vanishing behavior at +∞ : the solution (x4, y4).

Proposition 3.14 For all compact subset K as in (3.70), there exists a solution (x4, y4)
of (1.7), verifying the following property
there exists C and R0 depending only on K and such that for all r ≥ R0

|x4(r)|+ |y4(r)− r−n| ≤ Cr−n−2, |x′4(r)|+ |y′4(r) + nr−n−1| ≤ Cr−n−3
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and, for all r > 0

(d, γ1, γ2) 7→ (x4(r), x
′
4(r), y4(r), y

′
4(r)) is continuous on K.

Moreover, (x4, x
′
4, y4, y

′
4) is derivable wrt γ1 and γ2 and, for i = 1, 2

|∂x4
∂γi
|+ |∂y4

∂γi
| ≤ Cr−n−2 log r and |∂x

′
4

∂γi
|+ |∂y

′
4

∂γi
| ≤ Cr−n−3 log r (3.98)

for r ≥ R0 and for C depending only on K.

Proof Let R0 > 0 be given and let us consider the following fixed point problem
x = J−

∫ r
R0

(J−)−2 1t
∫ t
+∞ sJ−( ξ

2

s2
y − 3(1− f2d −

d2

s2
)x)dsdt

y = r−n + r−n
∫ r
+∞ t

2n−1 ∫ t
+∞ s

−n+1( ξ
2

s2
x− 3(1− f2d −

d2

s2
)y)dsdt

We define ζ(r) = r−n and (α0, β0) = (0, r−n).
Using (3.79) and (3.78), we can verify that for R0 > 0 large enough depending on K and
for all r ≥ R0

rn+2|αj+1 − αj |(r) ≤
C

r2
(‖(αj − αj−1)νn+2‖L∞([R0,+∞[)

+‖(βj − βj−1)νn‖L∞([R0,+∞[)) (3.99)

and

rn|βj+1 − βj |(r) ≤
C

r2
(‖(αj − αj−1)νn+2‖L∞([R0,+∞[)

+‖(βj − βj−1)νn‖L∞([R0,+∞[)) (3.100)

where C depends only on K and is independent of R0. The proof of the proposition is
left to the reader.

4 The smallest behavior at zero is relied with the greatest
behavior at infinity

For all (d, γ1, γ2) ∈ D, the solution that has the smallest behavior at 0, is well defined,
to a multiplicative factor. In all what follows, we call ω1 this solution, that is (a1, b1) in
Theorem 1.3. In the same way, η2 = (u2, v2) is a solution that has the smallest behavior
at +∞, without ambiguity. Now we can enonce

Proposition 4.15 When d > 0 and when γ2 ≥ γ1 ≥ 0, (γ22 + γ21)/2 ≥ d2, then the
behavior of ω1 at +∞ is an exponentially increasing behavior.

Proof Let us denote ω1 = (a, b) and let us define x = a+b and y = a−b. Using Theorem
1.3, we have x(r) ∼0 r

γ2 and y(r) ∼0 −rγ2 . Then we have x(r) > 0 and y(r) < 0 near
r = 0.
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Let us prove that for all r we have x(r) > 0 and y(r) < 0. Let us suppose that
x(r) > 0 and y(r) < 0 in [0, R[. Combining the first equation of the system (1.7) with
the equation (1.3), we get, for all r ≤ R

[rx′fd − rf ′dx]r0 +

∫ r

0

−γ2 + d2

s
xfdds+ µ2

∫ r

0

y

s
fdds− 2

∫ r

0
sf3dxds = 0.

We deduce that

rf2d (
x

fd
)′(r) ≥ 2

∫ r

0
sf3dxds. (4.101)

then x
fd

increases in [0, R] and consequently x > 0 in [0, R]. We deduce that x(R) > 0.
Moreover, combining the second equation of the system 1.7 and 1.3, we get

[ry′fd − rf ′dy]r0 +

∫ r

0

−γ2 + d2

s
yfdds+ ξ2

∫ r

0

x

s
fdds = 0

and consequently

rf2d (
−y
fd

)′(r) ≥
∫ r

0

γ2 − d2

s
yfdds. (4.102)

Then −y
fd

increases in [0, R] and consequently y < 0 in [0, R]. We have proved that
x(r) > 0 and y(r) < 0 for all r > 0. We have now that (4.101) and (4.102) are valid for
all r > 0 and we know that fd ∼+∞ 1. Then the behavior of x and of −y at +∞ cannot
be a polynomial increasing behavior. Now let us use Theorem 1.4 and let us identify the
behavior of (x, y) at +∞. Then x and y have an exponentially increasing behavior at +∞.

We can now prove the following

Corollary 4.1 When d > 0 and when γ2 ≥ γ1 ≥ 0, (γ22 + γ21)/2 ≥ d2, then the behavior
of η2 at 0 is the greater blowing up behavior.

Proof Let (a, b) and (u, v) be two solutions of (1.6). Multiplying (1.6) and integrating
by parts, we get easily, for all r1 > 0 and r2 > 0

[r(a′u− u′a+ vb′ − v′b)]r2r1 = 0.

Then, if (a, b) and (u, v) correspond respectively to ω1 and η2, we get a real number
C 6= 0 such that

lim
+∞

r(a′u− u′a+ vb′ − v′b)(r) = C

and consequently
lim
0
r(a′u− u′a+ vb′ − v′b)(r) = C.

Considering that (a, b) ∼0 (o(rγ2), rγ2) and in view of Theorem 1.3, that gives all
the possible behaviors at 0, we conclude that the only fitting behavior at 0 for (u, v) is
(u, v) ∼0 D(o(rγ1), r−γ2), for some real number D 6= 0.

39



5 The eigenvalue problem

In this part, we give the proves of Proposition 1.1 and Proposition 1.2.
In what follows, we consider that d > 0, that γ2 > γ1 ≥ 0 are given and we suppose that
γ22+γ

2
1

2 > d2.

5.1 Proof of Proposition 1.1.

To begin with, using the notation of Proposition 1.1, we suppose that µ(ε)→ µ and that

ω̃ε → ω0 on [0, R], for each R > 0. If
γ22+γ

2
1

2 − µd2 > 0, we define n0 =

√
γ22+γ

2
1

2 − µd2.

Lemma 5.1 If ω0 blows up either exponentially, or like (rn0 ,−rn0) and if
γ22+γ

2
1

2 −µd2 >
0, then we have µ(ε)−1

ε2
> C, for all ε small enough, where C > 0 is independent of ε.

Proof Let ωε = (aε, bε) ∈ Hγ1 be an eigenvector associated to µ(ε). Using (1.13), we
write

µ(ε)

ε2

∫ 1

0
r(1− f2)(a2ε + b2ε)dr =

∫ 1

0
(ra′2ε + rb′2ε +

γ21
r
a2ε +

γ22
r
b2ε +

r

ε2
f2(aε + bε)

2)dr.

We use the definition (1.17) of m0(ε) to get

µ(ε)

ε2

∫ 1

0
r(1− f2)(a2ε + b2ε)dr

≥ m0(ε)

ε2

∫ 1

0
r(1− f2)(a2ε + b2ε)dr +

∫ 1

0
(
γ21 − d2

r
a2ε +

γ22 − d2

r
b2ε +

r

ε2
f2(aε + bε)

2)dr.

Now, we use the trick of TC Lin (see [6]). Letting b̃ε = τ ãε, we consider the map

H : τ 7→ γ21 − d2

r
+
γ22 − d2

r
τ2 + rfd

2(1 + τ)2 (5.103)

and we minimize this map. The minimum is attained for τ0 verifying

τ0(
γ22 − d2

r
+ rf2d ) + rf2d = 0

and then

1 + τ0 =

γ22−d2
r

γ22−d2
r + rf2d

and consequently

H(τ0) =
γ21 − d2

r
+ (

rf2d
γ22−d2
r + rf2d

)2(
γ22 − d2

r
) + rf2d (

γ22−d2
r

γ22−d2
r + rf2d

)2.

We have

H(τ0) ∼r→+∞
γ21 + γ22 − 2d2

r
.
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Moreover
for all τ > 0, H(τ) ≥ H(τ0)

Since we have suppose that
γ21+γ

2
2

2 − d2 > 0, there exists some constants C1 > 0 and
R0 > 0, independent of τ , such that for all τ > 0

H(τ) ≥ C1

r
for all r > R0.

Then, for all R > R0 and all ε < 1
R , we write∫ 1

ε

0
H(r)ã2ε(r)dr ≥

∫ R0

0
H(r)ã2ε(r)dr +

∫ R

R0

H(r)ã2ε(r)dr.

Now a0 blows up exponentially at +∞, or as rn0 . We can choose R0 large enough and a
constant C2 > 0 to have also

a20(r) ≥ C2(
e
√
2r

√
r

)2 or C2r
2n0 for all r > R0.

Since ãε → a0 as ε→ 0, uniformly in [0, R0], we can chose ε0 such that for all ε < ε0∫ R0

0
H(r)ã2ε(r)dr ≥

1

2

∫ R0

0
H(r)a20(r)dr.

Moreover, for all R > R0, ãε → a0 as ε → 0, uniformly in [R0, R]. Then, there exists
ε(R) such that for all ε < ε(R) we have∫ R

R0

H(r)ã2ε(r)dr ≥
C2

2

∫ R

R0

1

r
r2n0dr or

∫ R

R0

H(r)ã2ε(r)dr ≥
C2

2

∫ R

R0

1

r
(
e
√
2r

√
r

)2dr.

And finally, for ε < ε(R), we have

(
µ(ε)−m0(ε)

ε2
)

∫ 1

0
r(1− f2)(a2ε + b2ε)dr ≥

1

2

∫ R0

0
H(r)a20(r)dr

+

{
C1C2

2

∫ R
R0

1
r r

2n0dr

or C1C2
2

∫ R
R0

1
r ( e

√
2r
√
r

)2dr
.

where C1 and C2, given above, are independent of R and ε. But we can choose R such
that the lhs is positive.
We deduce that

µ(ε)−m0(ε) > C0,

for some C0 > 0, independent of ε, and for ε small enough. Then we use Theorem 1.5
(i), that gives m0(ε)−1

ε2
≥ C. The lemma is proved.

Now let us enonce the following

Lemma 5.2 If ω = (a, b) is a bounded solution of (1.6), then there exists an eigenvalue
µ(ε) such that (µ(ε)− 1)→ 0.
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Proof Let us suppose that ω = (a, b) is a solution of (1.6), a and b being real valued
functions. Let 1

2 < N < 1 be given, let us define ωcut = (acut, bcut) by

(acut, bcut)(r) =

{
(a, b)(r) for 0 ≤ r ≤ N

ε

((a, b)(r)(1− h(r)) for N
ε ≤ r ≤

1
ε

where

h(r) =
(r − N

ε )3

(1ε −
N
ε )3

.

We have

ωcuteidθ ∈ (H2 ∩H1
0 )(B(0,

1

ε
)).

We use, for ε small enough

|a(r)| ≤ Cr−n for
N

ε
< r <

1

ε
, |acut| ≤ |a| and r(1− f2d ) = O(

1

r
) at +∞

and we verify that

< ωcut − ω, (1− f2d )(ωcut − ω) >(L2×L2)(B(0, 1
ε
))=∫ 1

ε

N
ε

r(1− f2d )((a− acut)2 + (b− bcut)2)dr = O(ε2n) as ε→ 0. (5.104)

Then, let us define

ωcut(r) = ωcut(
r

ε
) 0 < r < 1.

Let (ζi)i∈J be a Hilbertian base of Hγ1 , associated to the eigenvalues µi(ε), and such that

< Cζi, ζi >(L2×L2)(B(0,1))= 1.

We have
ωcut =

∑
i∈J

αiζi

and

< Cωcut, ωcut >(L2×L2)(B(0,1))=< (1− f2d )ωcut, ωcut >(L2×L2)(B(0, 1
ε
))=

∑
i∈J

α2
i .

Since

< (1− f2d )ωcut, ωcut >L2(B(0, 1
ε
))−→

∫ +∞

0
r(1− f2d )(a2 + b2)dr as ε→ +∞,

there exists I ⊂ J , such that

I 6= ∅ and for all i ∈ I, α2
i 6→ 0, as ε→ 0.

Now we write
−(T + C)ωcut =

∑
i∈J

αi(µi − 1)Cζi
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that gives

< −(T + C)ωcut,
∑
i∈J

αi(µi − 1)ζi >H′γ1 ,Hγ1
=
∑
i∈J

α2
i (µi − 1)2. (5.105)

But (T + C)ωcut is represented by a function of L2(B(0, 1))×L2(B(0, 1)), and C = 1−f2
ε2

.
So, using this identification, we can estimate the rhs of (5.105) as follows,

− < (T +C)ωcut,
∑
i∈J

αi(µi−1)ζi >H′γ1 ,Hγ1
=< (T +C)ωcut, ε2

1− f2
(T +C)ωcut >(L2×L2)(B(0,1))

=

∫ 1

N

rε2

1− f2
((acut

′′
+
acut

′

r
− γ21
r2
acut − 1

ε2
f2(acut + b

cut
) +

1

ε2
(1− f2)acut)2

+(b
cut′′

+
b
cut′

r
− γ22
r2
b
cut − 1

ε2
f2(acut + b

cut
) +

1

ε2
(1− f2)bcut)2)dr.

=

∫ 1
ε

N
ε

r

1− f2d
((acut

′′
+
acut

′

r
− γ21
r2
acut − f2d (acut + bcut) + (1− f2d )acut)2

+(bcut
′′

+
bcut
′

r
− γ22
r2
bcut − f2d (acut + bcut) + (1− f2d )bcut)2)dr.

Let us estimate each term, as ε→ 0.
We use

r

1− f2d
= O(r3) at +∞

to get ∫ 1
ε

N
ε

r

1− f2
(acut)2

r4
dr = O(ε2n).

Taking advantage that a+ b = O(r−n−2) at +∞, a similar estimate for acut + bcut gives∫ 1
ε

N
ε

r

1− fd2
f2d (acut + bcut)2dr = O(ε2n).

Now

acut
′
= a′(1− h) + ah′ and |a′| ≤ Cr−n−1 and

∫ 1
ε

N
ε

h′2dr = O(ε).

We deduce that ∫ 1
ε

N
ε

r

1− f2d
(acut

′
)2

r2
dr = O(ε2n).

Now, since

|a′′| ≤ Cr−n−2 and

∫ 1
ε

N
ε

h′′2dr = O(ε3)
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we get ∫ 1
ε

N
ε

r

1− fd2
(acut

′′
)2dr = O(ε2n).

We have proved that∫ 1
ε

N
ε

r

1− f2d
((acut

′′
+
acut

′

r
− γ21
r2
acut − f2d (acut + bcut)− (1− f2d )acut)2 = O(ε2n)

and with the same proof we have∫ 1
ε

N
ε

r

1− fd2
(bcut

′′
+
bcut
′

r
− γ22
r2
bcut − f2d (acut + bcut)− (1− f2d )bcut)2)dr = O(ε2n)

and finally

− < (T + C)ωcut,
∑
i∈J

αi(µi − 1)ηi >H′γ1 ,Hγ1
= O(ε2n) (5.106)

But (5.106) and (5.105) give ∑
i∈J

α2
i (µi − 1)2 = O(ε2n).

So, for all i ∈ J we have
|αi(µi − 1)| = O(εn).

Since n > 0, we are led to

µi(ε)− 1→ 0 as ε→ 0, for all i ∈ I.

We have proved the lemma.

Now, under the conditions of Lemma 5.2 and with the additional condition that n ≥ 1
and that the least eigenvalue is greater than 1, we can improve the conclusion of Lemma
5.2 as follows.

Lemma 5.3 If n ≥ 1, if mγ1,γ2(ε) ≥ 1 and if there exists a bounded solution of (1.6),
then there exists an eigenvalue µ(ε) such that

µ(ε)− 1

ε2
→ 0.

Proof Using the notation of the proof of Lemma 5.2, we write

ωcut =
∑
i∈J

αiζi

and consequently

− < (T + C)ωcut, ωcut >H′γ1 ,Hγ1=
∑
i∈J

α2
i (µi − 1).
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To make the proof more easy, and since we don’t need anymore the continuity of the
second derivatives at N

ε , we use another definition for ωcut, that is now

ωcut(r) =

{
ω(r) if 0 < r < N

ε

ω(r)(1− h(r)) if N
ε < r < 1

ε

where

h(r) = (
r − N

ε
1
ε −

N
ε

)2

and N > 1
2 . We will have to chose a suitable N , depending on ε.

Then

− < (T + C)ωcut, ωcut >H′γ1 ,Hγ1= − < (T + C)(ωcut − ω), (ωcut − ω) >H′γ1 ,Hγ1

=

∫ 1
ε

N
ε

(r(acut − a)
′2

+r(bcut − b)′2+γ21
r

(acut−a)2+
γ22
r

(bcut−b)2−r(1−f2d )((acut−a)2+(bcut−b)2)

+rf2d (acut − a+ bcut − b)2)dr.

We have
|acut − a|2

r
≤ Cε2n+1h2(r)

where C is independent of N , when 1
2 < N < 1.

Since we have ∫ 1
ε

N
ε

h2(r)dr =
1

7
(
1

ε
− N

ε
),

and
|acut + bcut − a− b| ≤ Cr−n−2

we deduce that∫ 1
ε

N
ε

(
γ21
r

(acut − a)2 +
γ22
r

(bcut − b)2 + r(1− f2d )((acut − a)2 + (bcut − b)2

+r(1− f2d )(acut − a+ bcut − b)dr ≤ C1(1−N)ε2n

where C1 is independent of N .
Now

(acut − a)′ = −a′h− ah′.

On one hand, we have∫ 1
ε

N
ε

ra′2h2dr ≤ Cε2n+1

∫ 1
ε

N
ε

h2(r)dr ≤ Cε2n(1−N).

On the other hand, we use ∫ 1
ε

N
ε

h′2(r)dr =
4

3

ε

1−N
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to get ∫ 1
ε

N
ε

a2h′2dr ≤ Cε2n+1 1

1−N
.

Finally
| < (T + C)ωcut, ωcut >H′γ1 ,Hγ1 |

≤ C1ε
2n(1−N) + C2

ε2n+1

1−N
,

where C1 and C2 are positive and independent of ε and of N , when 1
2 < N < 1.

Then, we take
1−N = εα where 0 < α < 1,

to obtain
| < (T + C)ωcut, ωcut >H′γ1 ,Hγ1 | ≤ C(ε2n+α + ε2n+1−α),

where C > 0 is independent of ε.
Then

|
∑
i∈J

α2
i (µi(ε)− 1)| ≤ C(ε2n+α + ε2n+1−α).

And, since we have supposed, for all i, that µi(ε)− 1 ≥ 0, we have

0 ≤
∑
i∈J

α2
i (µi(ε)− 1) ≤ C(ε2n+α + ε2n+1−α).

But we verify that we still have∫ 1
ε

N
ε

r(1− f2d )((acut)2 + (bcut)2)dr → 0

to deduce, as in the proof of Lemma 5.2, that

∃I 6= ∅, ∀i ∈ I, αi 6→ 0.

Then,
∀i ∈ I, 0 ≤ µi(ε)− 1 ≤ C(ε2n+α + ε2n+1−α).

The lemma is proved.

The proof of Proposition 1.1 follows from Lemma 5.1 and Lemma 5.2.

5.2 Proof of Proposition 1.2.

The proof for n = 2 and d = 2 is originally in [8].

For d ≥ 1 and n ≥ 1, let x =
f ′d
rn−1 and y = d fdrn . A calculus gives{

−(rx′)′ + γ2

r x−
ξ2

r y − r(1− 3f2d )x = −2 n−1
rn−1 fd(1− f2d )

−(ry′)′ + γ2

r y −
ξ2

r x− r(1− f
2
d )y = 0

(5.107)
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For a = x+y
2 and b = x−y

2 , we deduce that{
−(ra′)′ +

γ21
r a+ f2d b− r(1− 2f2d )a = − n−1

rn−1 fd(1− f2d )

−(rb′)′ +
γ22
r b+ f2da− r(1− 2f2d )b = − n−1

rn−1 fd(1− f2d )
(5.108)

where, as usual, γ1 = |n− d|, γ2 = n+ d, γ2 =
γ21+γ

2
2

2 and ξ2 =
γ22−γ21

2 .
We verify that

x ∼0 y ∼0 dr
d−n +O(rd−n+2) and, at +∞, x = O(r−n), y = O(r−n),

and consequently that

a ∼0 2drd−n +O(rd−n+2) and b ∼0 O(rd−n+2).

let us suppose that d ≥ 1 and that 1 < n < d + 1. We can multiply the system (5.108)
and integrate by parts. We obtain that∫ +∞

0
(ra′2 + rb′2 +

γ21
r
a2 +

γ22
r
b2 + rf2d (a+ b)2 − r(1− f2d )(a2 + b2))dr

=

∫ +∞

0

−(n− 1)

rn−1
fd(1− f2d )(a+ b)dr

This gives ∫ +∞
0 (ra′2 + rb′2 +

γ21
r a

2 +
γ22
r b

2 + rf2d (a+ b)2)dr∫ +∞
0 r(1− f2d )(a2 + b2)dr

= 1− Cn

with

Cn =

∫ +∞
0

(n−1)
rn−1 fd(1− f2d )(a+ b)dr∫ +∞

0 r(1− f2d )(a2 + b2)dr
> 0.

Now we use an approximation argument, valid as soon as n > 0. For example for a given
constant 0 < N < 1 we define

(aε, bε)(r) =

{
(a, b)( rε) in [0, N ]

= (a(r) (1−r)2
(1−N)2

, b(r) (1−r)2
(1−N)2

) in [N, 1].

We have that (aε, bε) ∈ H|n−d| and that∫ 1
0 (ra′2ε + rb′2ε +

γ21
r a

2
ε +

γ22
r b

2
ε + r 1

ε2
f2(aε + bε)

2)dr
1
ε2

∫ 1
0 r(1− f2)(a2ε + b2ε)dr

=

∫ N
ε

0 (ra′2 + rb′2 +
γ21
r a

2 +
γ22
r b

2 + rf2d (a+ b)2)dr +O(ε2n)∫ N
ε

0 r(1− f2d )(a2 + b2)dr +O(ε2n)
(5.109)

→ 1− Cn, as ε tends to 0.

We deduce that, if 1 < n < d+ 1

md−n,d+n(ε) < 1− Cn
2

for ε small enough and the proof of the proposition is complete.
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6 The proof of Theorem 1.4.

Let us consider d > 1. We can write the system (1.6) as

X ′ = MX with X = (a, ra′, b, rb′)t (6.110)

and

M =


0 1

r 0 0

−r(1− 2f2d ) +
γ21
r 0 rf2d 0

0 0 0 1
r

rf2d 0 −r(1− 2f2d ) +
γ22
r 0


We are going to use a resolvant matrix for (6.110). First, we have

Lemma 6.4 Let us suppose that there exists a bounded solution of (1.6). Then we can
chose a base of solutions, X1, X2, X3, X4, for (6.110), whose third vector is a bounded
solution, and such that if we denote by R(s) the resolvant matrix, whose columns are the
vectors Xi, i = 1, . . . , 4 and if we denote the second and the fourth column of R−1(s) by
C2 and C4, we have

at 0 and when (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0

C2 =


O(sγ1)

O(sγ1+2γ2)
O(s−γ1)
O(sγ1)

 and C4 =


O(s−γ2)
O(sγ2)
O(sγ2)

O(s2γ1+γ2)


and

at 0 and when (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0

C2 =


O(s−γ2+2d+2)
O(sγ2+2d+2)
O(s−γ1)
O(sγ1)

 and C4 =


O(s−γ2)
O(sγ2)

O(s−γ1+2d+2)
O(sγ1+2d+2)


and

at 0 and when (d, γ1, γ2) ∈ D2

C2 =


O(τ(s)s−γ2+γ1+2d+2)
O(τ(s)sγ1+γ2+2d+2)

O(τ(s))
O(sγ1)

 and C4 =


O(sγ1−γ2τ(s))
O(sγ1+γ2τ(s))
O(s2d+2τ(s))
O(sγ1+2d+2)


and in any case, at +∞

C2 ∼+∞
1

−16n
√
2


4nJ−
4nJ+
−4
√

2sn

−4
√

2s−n

 and C4 ∼+∞
1

−16n
√
2


4nJ−
4nJ+
4
√

2sn

4
√

2s−n


where −16n

√
2 is the determinant of R(s).
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Proof We can choose R(s) as follows

R(s) ∼+∞


J+ J− s−n sn

s(J+)′ s(J−)′ −ns−n nsn

J+ J− −s−n −sn
s(J+)′ s(J−)′ ns−n −nsn


where, as usual, the notation J+ stands for e

√
2s
√
s

and the notation J− stands for e−
√
2s

√
s

.

To give the behaviors at 0, we return to Theorem 1.3. We have, for some ci 6= 0,
i = 1, . . . , 4

If (d, γ1, γ2) ∈ D1, R(s) ∼0


O(sγ2+2d+2) O(sγ̃1) c3s

γ1 c4s
−γ1

O(sγ2+2d+2) O(sγ̃1) c3γ1s
γ1 −c4γ1s−γ1

c1s
γ2 c2s

−γ2 O(sγ1+2d+2) O(sγ̃2)
c1γ2s

γ2 −c2γ2s−γ2 O(sγ1+2d+2) O(sγ̃2)


where we use the notation

γ̃1 = min{γ1,−γ2 + 2d+ 2} and γ̃1 = min{γ2,−γ1 + 2d+ 2} if γ1 + γ2 − 2d− 2 6= 0

(if γ1+γ2−2d−2 = 0, we have to replaceO(sγ̃1) byO(sγ1 log s) andO(sγ̃2) byO(sγ2 log s))
and

If (d, γ1, γ2) ∈ D2, R(s) ∼0


O(sγ2+2d+2) O(s−γ2+2d+2) c3s

γ1 c4τ(s)
O(sγ2+2d+2) O(s−γ2+2d+2) c3γ1s

γ1 −c4sτ ′(s)
c1s

γ2 c2s
−γ2 O(sγ1+2d+2) O(τ(s)s2d+2)

c1γ2s
γ2 −c2γ2s−γ2 O(sγ1+2d+2) O(τ(s)s2d+2)


where

τ(s) =

{
s−γ1−sγ1

2γ1
if γ1 6= 0

− log s if γ1 = 0

The determinant W of R(s) is independent of s, due to the fact that the matrix M
of the differential system has a null trace. Moreover, J+J− = 1

s . Using the behavior at
+∞ of R(s), given above, we deduce that W is the principal term, as s→ +∞ of

1

s

∣∣∣∣∣∣∣∣
1 1 1 1

s
√

2 −s
√

2 −n n
1 1 −1 −1

s
√

2 −s
√

2 n −n

∣∣∣∣∣∣∣∣
that is

W = −16n
√

2.

A direct calculation of the suitable determinants gives the estimate of C2 and C4.

Now let us enonce
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Lemma 6.5 Let mγ1,γ2(ε) be the first eigenvalue, and let m be such that mγ1,γ2(ε)→ m
as ε → 0. If there exists a bounded solution (a, b) of the system (1.6), then we have
necessarly m = 1.

Proof From the definition of mγ1,γ2(ε), we have that it decreases as ε decreases to 0,
then we can define its limit m ≥ 0. But we have supposed that there exists µ(ε) → 1,
then we have m ≤ 1. Moreover, we can define ωε ∈ Hγ1 an eigenvector associated to
mγ1,γ2(ε) such that there exists ω0 = (a0, b0) such that ω̃ε → ω0 on each compact subset

of [0,+∞[. The condition m ≤ 1 gives
γ21+γ

2
2

2 −md2 ≥ 0.
Since a0 ≥ −b0 ≥ 0, an examination of the proof of Theorem 1.4 gives that the possible
behavior at +∞ for (a0, b0) is

either (r−n0 ,−r−n0), or (rn0 ,−rn0)

where

n0 =

√
γ21 + γ22

2
−md2. (6.111)

In what follows, we suppose that m < 1, so we have n0 > n, and we want to reach to a
contradiction.
Since m < 1, we have by Lemma 5.1, that ω0 has a bounded behavior at +∞ and
consequently

(a0, b0) ∼0 (r−n0 ,−r−n0)

and we recall that
a0 + b0 = O(r−n0−2).

At 0, in view of a0 ≥ −b0 ≥ 0, the only possible behavior is

(a0, b0) ∼0 (crγ1 , O(rγ1+2d+2)),

for some c 6= 0.

Let us denote X0 = (a0, ra
′
0, b0, rb

′
0)
t, the vector corresponding to ω0. We have

X ′0 = MX0 − (m− 1)(1− f2d )(0, ra, 0, rb)t.

let us define X1, X2, X3 and X4 as in Lemma 6.4. We are going to prove that there exist
some constants Ci such that

X0 =

4∑
i=1

CiXi − (m− 1)

4∑
i=1

X̂i,

with
X̂i = X0O(r2) at 0 (6.112)

and

X̂i =

{
X0O(r−2) at +∞ for i = 1, 2
XiO(1) at +∞ for i = 3, 4

(6.113)
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We write

X0 =
4∑
i=1

Ai(r)Xi (6.114)

We will name Ai(r)Xi the ith term of X0.
For all i = 1, . . . , 4, we have

Ai(r) = Ai − (m− 1)

∫ r

1
[R−1(s)s(1− f2d )


0
a0
0
b0

 ds]i (6.115)

where the notation [ ]i means the ith line of the vector, and Ai is a constant.
Let us examine the behavior of each term Ai(r)Xi at +∞ and at 0, using Lemma

6.4.
For the first term, we use the first terms of C2 and C4, given in Lemma 6.4, to obtain

[R−1(s)s(1− f2d )


0
a0
0
b0

]1 ∼+∞ O(
1

s
J−(a0 + b0))

and ∼0


s(O(sγ1a0 +O(s−γ2b0)) if (d, γ1, γ2) ∈ D1, γ1 + γ2 − 2d− 2 < 0

s(O(s−γ2+2d+2a0 +O(s−γ2b0)) if (d, γ1, γ2) ∈ D1, γ1 + γ2 − 2d− 2 > 0
s(O(τ(s)sγ1−γ2+2d+2a0 +O(τ(s)sγ1−γ2b0)) if (d, γ1, γ2) ∈ D2.

(6.116)
Let us define

B1 = −(m−1)

∫ +∞

1
[R−1(s)s(1−f2d )


0
a0
0
b0

]1ds and X̂1 = X1

∫ r

+∞
[R−1(s)s(1−f2d )


0
a0
0
b0

]1ds

We can write
A1(r)X1 = (A1 +B1)X1 − (m− 1)X̂1

and, using Lemme (3.78), we see that

X̂1 = X1O(r−n0−2J−) at +∞ and X̂1 = X1O(1) at 0. (6.117)

For the second term, we obtain

[R−1(s)s(1− f2d )


0
a0
0
b0

]2 ∼+∞ O(
1

s
J+(a0 + b0))

and ∼0


s(O(sγ1+2γ2a0) +O(sγ2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0
s(O(sγ2+2d+2a0) +O(sγ2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0

sτ(s)(O(sγ1+γ2+2d+2)a0 +O(sγ1+γ2)b0) if (d, γ1, γ2) ∈ D2

(6.118)
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Denoting

B2 = −(m−1)

∫ 0

1
[R−1(s)s(1−f2d )


0
a0
0
b0

]2ds and X̂2 = X2

∫ r

0
[R−1(s)s(1−f2d )


0
a0
0
b0

]2ds

we get
A2(r)X2 = (A2 +B2)X2 − (m− 1)X̂2

with
X̂2 = X2O(r−n0−3J+) at +∞

and, at 0

X̂2 = X2


O(rγ1+2γ2+2a0) +O(rγ2+2b0) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0
O(rγ2+2d+4a0) +O(rγ2+2b0) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0

τ(r)(O(rγ1+γ2+2d+4)a0 +O(rγ1+γ2 + 2)b0) if (d, γ1, γ2) ∈ D2

at 0.

(6.119)
For the third term, we obtain

[R−1(s)s(1− f2d )


0
a0
0
b0

]3 ∼+∞
−1

16n
√

2

4
√

2d2

s
sn(−a0 + b0)

and

∼0


s(O(s−γ1a0) +O(sγ2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0

s(O(s−γ1a0) +O(s−γ1+2d+2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0
s(O(τ(s)a0) +O(τ(s)s2d+2b0)) if (d, γ1, γ2) ∈ D2

(6.120)
Letting

B3 = −(m−1)

∫ 0

1
[R−1(s)s(1−f2d )


0
a0
0
b0

]3ds and X̂3 = X3

∫ r

0
[R−1(s)s(1−f2d )


0
a0
0
b0

]3ds

and keeping in mind n− n0 < 0, we find

A3(r)X3 = (A3 +B3)X3 − (m− 1)X̂3

with
X̂3 = X3O(1) at +∞

and

X̂3 = X3


O(r−γ1+2a0) +O(rγ2+2b0) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0

O(r−γ1+2a0) +O(r−γ1+2d+4b0) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0
τ(r)(O(r2a0) +O(r2d+4b0)) if (d, γ1, γ2) ∈ D2

.

(6.121)
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For the fourth term,

[R−1(s)s(1− f2d )


0
a0
0
b0

]4 ∼+∞
−1

16n
√

2

4d2
√

2

s
s−n(−a0 + b0)

and

∼0


s(O(sγ1a0) +O(s2γ1+γ2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0
s(O(sγ1a0) +O(sγ1+2d+2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0

sτ(s)(O(sγ1)a0 +O(sγ1+2d+2)b0) if (d, γ1, γ2) ∈ D2

(6.122)
Letting

B4 = −(m−1)

∫ 0

1
[R−1(s)s(1−f2d )


0
a0
0
b0

]4ds and X̂4 = X4

∫ r

0
[R−1(s)s(1−f2d )


0
a0
0
b0

]4ds

we find
A4(r)X4 = (A4 +B4)X4 − (m− 1)X̂4

with
X̂4 = X4O(1) at +∞

and

X̂4 = X4O


O(rγ1+2a0) +O(r2γ1+γ2+2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0
O(rγ1+2a0) +O(rγ1+2d+4b0) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0

τ(r)(O(rγ1+2a0) +O(rγ1+2d+4b0)) if (d, γ1, γ2) ∈ D2

(6.123)
Summing the four terms, we find

X0 =

4∑
i=1

(Ai +Bi)Xi − (m− 1)

4∑
i=1

X̂i.

We collect (6.117), (6.119), (6.121) and (6.123) and we use the expansions of X1, X2,X3

and X4 at 0 and at +∞, given in the proof of Lemma 6.4 (the columns of R(s)). We get
(6.112) and (6.113).
But X0 is bounded at 0. We infer that A2 +B2 = A4 +B4 = 0.
But X0 is bounded at +∞, too. And X̂i is bounded at +∞, for all i 6= 4. Since we have
also X1 >> X̂4 at +∞, we infer that A1 +B1 = 0 and that X̂4 must be bounded at +∞.
Returning to the definition of X̂4, we must have

∫ +∞

0
[R−1(s)s(1− f2d )


0
a0
0
b0

]4ds = 0
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and consequently

X̂4 = X4

∫ r

+∞
[R−1(s)s(1− f2d )


0
a0
0
b0

]4ds

that gives

X̂4 = X4

∫ r

+∞
[a0C2 + b0C4]4 ∼+∞ X4

∫ r

+∞

−8
√

2

−16n
√

2
s−n0−nd

2

s
ds

and thus

X̂4 ∼+∞ X4
−1

16n
√

2

8d2
√

2

n+ n0
r−n−n0 . (6.124)

Since we have now

X0 = (A3 +B3)X3 − (m− 1)
4∑
i=1

X̂i

and since X̂1 + X̂2 << X0 at +∞, we must have

X0 ∼+∞ (A3 +B3)X3 − (m− 1)X̂3 − (m− 1)X̂4 (6.125)

But, recalling (6.124) and recalling n < n0, this implies that

(A3 +B3)− (m− 1)

∫ +∞

0
[R−1(s)s(1− f2d )


0
a0
0
b0

]3ds = 0

and then

(A3 +B3)X3 − (m− 1)X̂3 = −(m− 1)X3

∫ r

+∞
[R−1(s)s(1− f2d )


0
a0
0
b0

]3ds

and consequently

(A3 +B3)X3 − (m− 1)X̂3 ∼+∞ −(m− 1)X3
−1

16
√

2

−8d2
√

2

n(n− n0)
rn−n0 . (6.126)

Finally, we sum (6.124) and (6.126) to get, by (6.125)

a0 ∼+∞ (m− 1)
−1

16

8d2

n
(
−1

n− n0
+

1

n+ n0
)r−n0

and thus

(m− 1)
−1

16

8d2

n
(
−1

n− n0
+

1

n+ n0
) = 1.
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But we have by (6.111)
n20 − n2 = (−m+ 1)d2.

We deduce that n0 = n, that gives m = 1, that is in contradiction with m < 1.
We have not written the proof of (6.112) and (6.113) for (d, γ1, γ2) ∈ D1 and γ1 + γ2 −
2d− 2 = 0, but this is true in this case, too.

Proof of Proposition 1.4 completed. With the notation of Lemma 6.5, we know
that m = 1, that ω0 verifies a0 ≥ −b0 ≥ 0 on [0,+∞[ and that it is defined at 0. If ω0 is
not equal to ω, up to a multiplicative constant, we can find C 6= 0 such that ω0−Cω has
the behavior of ω1 at 0 (that is the least vanishing behavior). But this implies an expo-
nentially blowing up behavior at +∞. Since ω is bounded, then ω0 has an exponentially
blowing up behavior at +∞. But this is in contradiction with a0 ≥ −b0 ≥ 0. So ω0 is a
bounded solution of (1.6). The Proposition 1.4 is proved.

Proof of Proposition 1.5 (iv).

First let us prove the following

Lemma 6.6 If max{ |µ(ε)−1|
ε2

, |µ(ε)−1|εn } → 0, then µ(ε) is an algebrically simple eigenvalue

and no other eigenvalue can be such max{ |µ(ε)−1|
ε2

, |µ(ε)−1|εn } → 0.

Proof Firstly, let us prove that if µ(ε)−1
εn → 0 and if ω̃ε → ω, where ω is a bounded

solution of (1.6), then we can chose an eigenvector, still denoted by ω̃ε and such that

ω̃ε = Cεω1 + ω − (µ(ε)− 1)ω̂ε (6.127)

for some constant Cε and some function ω̂ε, with the conditions

ω̂ε → ω̂0 as ε→ 0, for some limit function ω̂0 and uniformly on each [0, R]

and
|Cε| ≤ Cεn

√
εe−

√
2
ε . (6.128)

Here ω1 = (a1, b1), is, as usual, the solution defined in Theorem 1.3, that has a least
behavior at 0 and blows up exponentially at +∞.

In order to prove (6.127) and (6.128), we use Xε = (ãε, rã
′
ε, bε, rb̃

′
ε)
t and a resolvant

matrix, whose third vector is the bounded solution, and we write, with the notation of
the proof of Lemma 6.5

Xε =

4∑
i=1

Xi(Ai − (µ(ε)− 1)

∫ r

1
s(1− f2d )[C2ãε + C4b̃ε]ids).

Then we use the analysis at 0 of each term, given in (6.116), (6.118), (6.120) and (6.122),
in which we replace (a0, b0) by (ãε, b̃ε). And we write

Xε =

4∑
i=1

(Ai +Bi)Xi − (µ(ε)− 1)

4∑
i=1

X̂i,
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where

for i = 2, 3, 4, X̂i = Xi

∫ r

0
s(1− f2d )[C2ãε + C4b̃ε]ids = O(r2Xε) as r → 0;

X̂1 = X1

∫ r

1
ε

s(1− f2d )[C2ãε + C4b̃ε]1ds = O(X1) as r → 0

and

for i = 2, 3, 4, Bi = −(µ(ε)− 1)

∫ 0

1
s(1− f2d )[C2ãε + C4b̃ε]ids;

B1 = −(µ(ε)− 1)

∫ 1
ε

1
s(1− f2d )[C2ãε + C4b̃ε]1ds.

Now, in view of the behaviors at 0, we must have

A2 +B2 = A4 +B4 = 0.

The behavior at +∞ given in Lemma 6.4, ie

[C2]2 = O(J−) and [C4]2 = O(J−)

gives a finite limit for X̂1(r), as ε → 0, when r > 0 is fixed. Indeed, the behavior of
(ãε, b̃ε) at +∞ is at most (J+, J+). So, we have

for all r > 0 and for all i, (1− µ(ε))X̂i(r)→ 0 as ε→ 0.

We deduce that
A3 +B3 → 1 and A1 +B1 → 0.

By dividing the eigenvector in presence by A3 +B3, we are led to

A3 +B3 = 1.

Then let us give a large R and 1
ε > R. Using Lemma 6.4 and (3.79) and (3.78), we

obtain, for all R < r < 1
ε , and some C, independent of r and ε (by |X|, we mean each

component of X)

|X̂1| ≤ C|X1|
J−(R)

R
max
[R, 1

ε
]
(|ãε|+ |b̃ε|); |X̂2| ≤ C(1 + |X2|

J+(R)

R
max
[R, 1

ε
]
(|ãε|+ |b̃ε|));

|X̂3| ≤ C(1 + |X3|rn max
[R, 1

ε
]
(|ãε|+ |b̃ε|)); |X̂4| ≤ C(1 + |X4|max

[R, 1
ε
]
(|ãε|+ |b̃ε|)). (6.129)

Taking into account the behavior at +∞ for each Xi, together with

Xε = (A1 +B1)X1 +X3 − (µ(ε)− 1)

4∑
i=1

X̂i, (6.130)

we deduce, for r > R

|ãε + b̃ε| ≤ |A1 +B1||a1 + b1|+ |a3 + b3|+ C|µ(ε)− 1|(1 +
J+(r)J−(R)

R
+
J+(R)J−(r)

R
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+rn) max
[R, 1

ε
]
(|ãε|+ |b̃ε|)).

This gives, since µ(ε)−1
εn → 0

|ãε + b̃ε| ≤ C(|A1 +B1||a1 + b1|+ |a3 + b3|). (6.131)

This implies, for all R < r < 1
ε

4∑
i=2

|âi|(r) ≤ C(1 +
1

R2
+ ε−n)(|A1 +B1|J+(r) + r−n). (6.132)

Now, we use

ãε(
1

ε
) = 0

into (6.130) to get

0 = (A1 +B1)a1(
1

ε
) + a3(

1

ε
)− (µ(ε)− 1)

4∑
i=2

âi(
1

ε
)

and using (6.132), we get, for R large enough and R < r < 1
ε

|(A1 +B1)a1(
1

ε
) + a3(

1

ε
)| ≤ C |µ(ε)− 1|

εn
|(A1 +B1)a1(

1

ε
) + a3(

1

ε
)|

and consequently

|A1 +B1| ≤ Cεn
√
εe−
√
2r.

We have proved (6.127) and (6.128).

Secondly, We use Theorem 1.3 to see that the vector space of the bounded solutions
of (1.6) is at most one dimensional, spanned by some ω = (a, b). Then, in view of Lemma
5.1, if the property we have to prove is not true, there exist two eigenvalues µ1(ε) and
µ2(ε) (that may be equal), associated to some eigenvectors ωε and ηε and such that

max{|µ1(ε)− 1|
ε2

,
|µ1(ε)− 1|

εn
} → 0, max{|µ2(ε)− 1|

ε2
,
|µ2(ε)− 1|

εn
} → 0,

ω̃ε → ω and η̃ε → ω on each [0, R]

and
< T ωε, ηε >H′γ1 ,Hγ1= 0. (6.133)

and we have also
< Cωε, ηε >(L2×L2)(B(0,1))= 0. (6.134)

On one hand, we write
< T (ωε − ηε), ωε − ηε >H′γ1 ,Hγ1

= µ1(ε) < Cωε, ωε >(L2×L2)(B(0,1)) +µ2(ε) < Cηε, ηε >(L2×L2)(B(0,1)) (6.135)
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On the other hand, we let
ωε − ηε = (α, β)

and, using the same trick as in the proof of Lemma 5.1, we get

< T (ωε − ηε), ωε − ηε >H′γ1 ,Hγ1

≥ m0(ε)

ε2

∫ 1

0
r(1− f2)(α2

ε + β2ε )dr +

∫ 1
ε

0
H(τ0)α̃

2
εdr (6.136)

Where H is defined in (5.103). Defining R0 > 0 such that H(τ0) > 0, for all r ≥ R0, we
have ∫ 1

ε

0
H(τ0)α̃

2
εdr ≥

∫ R0

0
H(τ0)α̃

2
εdr.

Moreover, by (6.134), we have

1

ε2

∫ 1

0
r(1− f2)(α2

ε + β2ε )dr =< Cωε, ωε >(L2×L2)(B(0,1)) + < Cηε, ηε >(L2×L2)(B(0,1))

and consequently, (6.136) becomes

< T (ωε − ηε), ωε − ηε >H′γ1 ,Hγ1

≥ m0(ε)(< Cωε, ωε >(L2×L2)(B(0,1)) + < Cηε, ηε >(L2×L2)(B(0,1))) +

∫ R0

0
H(τ0)α̃

2
εdr.

(6.137)
By collecting (6.135) and (6.137), we obtain

(m0(ε)− µ1(ε)) < Cωε, ωε >(L2×L2)(B(0,1)) +(m0(ε)− µ2(ε)) < Cηε, ηε >(L2×L2)(B(0,1)) .

≤ −
∫ R0

0
H(τ0)α̃

2
εdr. (6.138)

And we have also, for all R > 0 and ε < 1
R

< Cωε, ωε >(L2×L2)(B(0,1))≥
∫ R

0
r(1− f2d )(a2ε + b2ε)dr →ε→0

∫ R

0
r(1− f2d )(a20 + b20)dr

So, there exists C > 0 such that, for ε small enough

< Cωε, ωε >(L2×L2)(B(0,1))> C and < Cηε, ηε >(L2×L2)(B(0,1))> C.

Then we use (6.127) and (6.128) to get∫ R0

0
H(τ0)α̃

2
εdr = o(ε4) as ε→ 0.

Then (6.138) gives

m0(ε)− µ1(ε)
ε2

→ 0 and
m0(ε)− µ2(ε)

ε2
→ 0.
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Recalling that m0(ε)−1
ε2

≥ C, for some C > 0 independing of ε, and that µi(ε)−1
ε2

→ 0,
i = 1, 2, we infer that (6.138) leads to a contradiction.
The lemma is proved.

Now let us complete the proof of Proposition 1.5 (iv).
We have that md−1,d+1(ε) > 1 (see a sketch of the proof in the appendix) and conse-

quently
md−1,d+1(ε)−1

ε2
> 0. But, since Fd is a bounded solution of (1.6) and since n ≥ 1,

we know by Lemma 5.3 that there exists an eigenvalue µ(ε) verifying µ(ε)−1
ε2

→ 0. We

deduce that
md−1,d+1(ε)−1

ε2
→ 0. By Lemma 6.6, we are led to µ(ε) = md−1,d+1(ε). Then

we return to the end of the proof of Lemma 5.2, with Fd instead of ω. We have now
that the set I defined there has one element. Denoting by i0 this element, we have
< C(F cutd − αi0ζi0), F cutd − αi0ζi0 >(L2×L2)(B(0,1))→ 0. This gives the proof of (iv), where
ωε = αi0ζi0 .

7 The proof of Theorem 1.2 completed

In this part, we consider d ≥ 1 and n ≥ 1 and γ1 = |n− d| and γ2 = n+ d.
First, we have

Proposition 7.16 When 1 < n < d + 1, there is no solution (a, b) of the system (1.6)
such that (aei(n−d)θ, beiθ) ∈ H1(R2)×H1(R2).

Proof This follows immediatly from Proposition 1.2 and from Proposition 1.4.

Now let ηi = (xi, yi), i = 1, 2, 3, 4, be defined by Theorem 1.4. Theorem 1.3 allows
us to use the solution ω1 = (a1, b1), defined in Theorem 1.3, in place of (x1, y1) and to
obtain a base (ω1, η2, η3, η4) of solutions of (1.6), whose behaviors at +∞ are known.
Now, let ω3 = (a3, b3) be defined in Theorem 1.3. Recall that ω3 is continuous wrt
(d, γ1, γ2) ∈ D and is derivable wrt γ1 and γ2.
With these definitions, we can write

ω3 = C1(n, d)ω1 + C2(n, d)η2 + C3(n, d)η3 + C4(n, d)η4.

Let us remark that ω1 and ω3−C1(n, d)ω1 form a base of the bounded solutions at 0, and
that ω3 − C1(n, d)ω1 = o(ω1) at +∞. So the problem of the existence of some bounded
solutions remains to the problem C3(n, d) = 0.
We define γ1 = |n − d| and γ2 = n + d. The real numbers Ci(n, d) can be computed
by the means of determinants involving only the values of the five solutions in presence,
(a, a′, b, b′)(r), for a given r > 0. So, as soon as (d, γ1, γ2) stays in a given compact subset
of D, Ci is continuous wrt (d, γ1, γ2) and consequently is continuous wrt (d, n). More-
over, with the same condition, each Ci is derivable wrt γ1 and wrt γ2 and consequently
is derivable wrt n. And ∂Ci

∂n is continuous wrt to (n, d), for i = 1, . . . , 4.

Now, we are going to prove
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Proposition 7.17 There is no bounded solution of (1.6), when d ≥ 1 and n ≥ d+ 1.

In what follows, we suppose by contradiction that there exists (n0, d0), d0 > 1,
n0 ≥ d0 + 1, such that there exists a bounded solution of (1.6). By Theorem 1.1, we have
n0 ≤ 2d0 − 1.
From now on, we allow (n, d) to be such that 1 ≤ d ≤ d0 + 1 and 1 ≤ n ≤ 2d. Clearly,
(d, |n − d|, n + d) stays in a compact subset of D. This is sufficient for each solution ηi,
i = 1, 2, 3, 4, to be defined without ambiguity, and consequently, for each Ci to be well
defined too. And each Ci is smooth wrt (n, d), as explained above.

Lemma 7.7 With the notation above, if C3(n0, d0) = 0, then there exists a continuous
map d 7→ n(d), defined for d closed to d0 and verifying C3(n(d), d) = 0.

Proof We can use the derivative of C3 wrt n. If we have ∂C3
∂n |n0 = 0, then ∂

∂n(ω3 −
C1(n, d)ω1)|n0 is bounded at +∞.
Let us denote (a, b) = ω3 − C1(n, d)ω1. Then, we consider∫ +∞

0
r(a′′ +

a′

r
− γ21
r2
a− f2d b+ (1− 2f2d )a)

∂a

∂n
dr

+

∫ +∞

0
r(b′′ +

b′

r
− γ2

2

r2
b− f2da+ (1− 2f2d )b)

∂b

∂n
dr

−
∫ +∞

0
r
∂

∂n
(a′′ +

a′

r
− γ21
r2
a− f2d b+ (1− 2f2d )a)adr

−
∫ +∞

0
r
∂

∂n
(b′′ +

b′

r
− γ2

2

r2
b− f2da+ (1− 2f2d )b)bdr.

where the derivation is taken at n0, and γ1 = |d0 − n0| and γ2 = d0 + n0.
Integrating by parts, and since n0 ≥ d0, we get∫ +∞

0
−2

n0 − d0
r

a2 − 2
n0 + d0

r
b2dr = 0

and we conclude that b = 0, that is false.

So, we have proved that ∂C3
∂n |n0 6= 0. The Implicit Functions Theorem gives a contin-

uous map d 7→ n(d) such that C3(n(d), d) = 0, and defined in a neighborhood of d0, with
values in a neighborhood of n0.

The proof of Proposition 7.17 completed.
With the definitions given above, let us define the set

E = {d ≥ 1; d ≤ d0 + 1; ∃n ≥ d+
1

2
, C3(n, d) = 0}.

If d ∈ E , then n ≤ 2d − 1, by Theorem 1.1. Thus it is not difficult to see that E is a
closed subset of [1,+∞[, thanks to the continuity of C3 wrt (n, d).
We have supposed that d0 ∈ E , then, letting d1 = inf E , we deduce from Lemma 7.7 that
we cannot have d1 > 1 and thus d1 = 1, and so d1 6∈ E . This contradiction proves that
E = ∅.

The proof of Theorem 1.2 is complete.
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8 Appendix

In this Appendix, we give a direct proof of Theorem 1.5, for the convenience of the reader.
The original proof can be find in [8], [7].

I. Proof of m0(ε)−1
ε2

≥ C. Using the Euler equation of the infimum problem (1.17),
we have

a′′ +
a′

r
− d2

r
a+

1

ε2
(1− f2)a = −m0(ε)− 1

ε2
(1− f2)a (8.139)

where r ∈ [0, 1], f(r) = fd(
r
ε) and a(r) ≥ 0 and a(1) = 0. And we have, for the

rescaled function ã

ã′′ +
ã′

r
− d2

r
ã+ (1− f2d )ã = −(m0(ε)− 1)(1− f2d )ã. (8.140)

Firstly, let us give a sketch of the proof of m0(ε)→ 1.
Multiplying the equation (8.140), by fd and integrating by parts on [0, 1ε ], we find m0(ε) >
1, for all ε > 0. Then, using a truncation of f , with value 0 for r ≥ 1, as a test function
for the infimum m0(ε), and since we know the existence of the limit, we have that
limε→0m0(ε) ≤ 1. This gives m0(ε)→ 1.
Secondly, we use the same technics as in the proof of Theorem 1.3 to analyse the possible
behaviors at 0. But in place of comparing the solution ã with rd, we compare it with fd.
More precisely, we know that fd is one solution of the equation

a′′ +
a′

r
− d2

r
a+ (1− f2d )a = 0. (8.141)

Then, as usual in matter of ODE, we seek a solution of (8.140) of the form fdg. We write

g′′fd + 2g′fd +
g′f ′d
r

= −(m0(ε)− 1)(1− f2d )fdg,

that is
(g′(rf2d ))′ = −(m0(ε)− 1)r(1− f2d )f2dg.

Letting ã = fdg, we are led to the following form of the equation (8.140)

(rf2d (f−1d ã)′)′ = −(m0(ε)− 1)r(1− f2d )fdã. (8.142)

On the other hand, we define the fixed point problem

a = fd − (m0(ε)− 1)fd

∫ r

0

f−2d
t

∫ t

0
s(1− f2d )fda(s)ds. (8.143)

We denote it by Φ(a) = a.
In view of (8.142), each solution of this fixed point problem is a solution of (8.140).
As usual, we define by induction

α0 = fd and αk+1 = Φ(αk)
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and we write, for all k ≥ 1

|αk+1 − αk|(r) ≤ fd(r)(m0(ε)− 1)

∫ r

0

f−2d (t)

t

∫ t

0
sf2ddsdt‖f−1d (αk − αk−1)‖L∞([0,r]

and, using f−2(t) ≤ f−2d (s) we get

|f−1d (αk+1 − αk)|(r) ≤ (m0(ε)− 1)
r2

4
‖f−1d (αk − αk−1)‖L∞([0,r]

and

|f−1d (α1 − α0)|(r) ≤ (m0(ε)− 1)
r2

4
.

Consequently

‖f−1d (αk+1 − αk)‖L∞([0,r] ≤ (
(m0(ε)− 1)r2

4
)k+1.

Thus we can define
fd +

∑
k≥0

(αk+1 − αk).

Since m0(ε)− 1→ 0, then for each r > 0, the sum is convergent for ε small enough,
depending on r. This sum is a solution of (8.140). If we name it ã, we have

|ã− fd|(r) ≤ fd(r)
m0(ε)− 1

4
r2

1

1− m0(ε)−1
4 r2

.

We remark that a similar proof gives the existence of a solution of (8.140) having the
behavior r−d at 0. Since the eigenvector ã is defined at 0, it must be the solution defined
above, to a multiplicative constant. We deduce two consequences.
Firstly, for all R > 0

|ã− fd|(r) ≤ Cr2fd(r)(m0(ε)− 1), for all ε < ε(R) and where C depends only on R,

and in particular, ã− fd tends to 0, as ε→ 0, uniformly in [0, R].
Secondly,

if
m0(ε)− 1

ε2
→ 0, then ‖ã− fd‖L∞([0, 1

ε
]) → 0, as ε→ 0.

This second possibility cannot occur, since ã(1ε ) = 0. We have proved that m0(ε)−1
ε2

≥ C.

The eigenvalue m|d−1|,d+1(ε).
Sketch of the proof of m|d−1|,d+1(ε) > 1 and m|d−1|,d+1(ε)→ 1.
Let (a, b) be an eigenvector associated to m|d−1|,d+1(ε). Let Fd = (A,B) be defined in
Theorem 1.1. Multiplying the system verified by (a, b) and the system verified by (A,B)
and integrating by parts on [0, 1ε ] we get m|d−1|,d+1(ε) > 1. This proof is in [8].
Then we can use the truncation of Fd and (5.109), where n = 1 and Cn = 0 or, alterna-
tively, Proposition 1.4, to get that m|d−1|,d+1(ε)→ 1.
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Now, the proof of
m|d−1|,d+1(ε)−1

ε2
→ 0 is done in [7], by use of a suitable test function.

The same proof works here, remarking that

λ1(ε) =
m|d−1|,d+1(ε)− 1

ε2

∫ 1
0 r(1− f

2)(a2 + b2)dr∫ 1
0 r(a

2 + b2)dr
,

although the function f is not exactly the same one. This author use the fonction f
defined by

f ′′ +
f ′

r
− d2

r2
f − f(1− f2) = 0 in [0, 1], f(0) = 0; f(1) = 0.

that is also studied by Hervé-Hervé [4], and that makes no difference in the proof. An
alternative proof is done in Part VI of the present paper.
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