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Abstract.
We consider a linear system of ordinary differential equations from the two dimensional
Ginzburg-Landau equation. We prove that this system doesn’t admit globally bounded
solutions, except those that come from invariance of the Ginzburg-Landau equation un-
der the action of the group of the translations and rotations.

AMS classification : 34B40: Ordinary Differential Equations, Boundary value prob-
lems on infinite intervals. 35J60: Nonlinear PDE of elliptic type.

1 Introduction

Let n and d be given integers, n > 1, d > 1. We define the following system

r2

AR Gl S 2 =—(1-2f%a
" 17;’ (n+d)? 2 2 (1'1)
V'+ 5 ——7-b— fija =—(1-2f)b

and for n = 0, we define the following equation

{a@"+2 - LGa=—(1-fa (1.2)

with the variable r > 0.
Both problems come from the Ginzburg-Landau Theory. Here f; is the only solution of
the differential equation

2

od
R L i1 (1.3

with the conditions f;(0) = 0 and lim; fg = 1. The equation (1.3) is entirely studied
by Hervé and Hervé in [4].
Let us consider the Ginzburg-Landau equation

—Au = u(l — |ul?) in R? (1.4)



where u takes its values in C. The system (1.1) and the equation (1.2) appear when we
linearize the Ginzburg-Landau operator A'(u) = Au+u(1 — |u|?) around the solutions of
the form fy(r)e’®, d € N*. The linearized operator has been studied by several authors,
amongst them [5], [8], [6] and [7]. In the third chapter of the book [9], Pacard and Riviere
study the system (1.1) for d = 1. The aim of these authors is the construction of some
solutions for the Ginzburg-Landau equation on a bounded connected domain (2,

—Au = E%u(l —|ul?) in Q

u =g in 0N (1.5)

where € > 0 is a small parameter, u and g having complex values and degree (g, 92) > 1.
The study of the minimizing solutions of equation (1.1) is in the book of Bethuel, Brezis
Hélein, [2].

Let us call a bounded solution of (1.1) any solution (a,b) which is defined at » = 0 and
which has a finite limit as » — +o00. Concerning the bounded solutions of (1.1) or (1.2),
the following theorem is known

Theorem 1.1 For alld > 1 and for n = 0, the real vector space of the bounded solutions
of (1.2) is one-dimensional, spanned by fq. For n = 1, the vector space of the bounded
solutions of (1.1) is also a one dimensional vector space, spanned by (f,+ %fd, fh—= %fd).
Ford =1 and n > 2, there are no bounded solutions. For d > 1 and for n > 2d — 1,
there are no bounded solutions.

For all d > 1, the known bounded solutions, for n = 0 and n = 1, come from the invari-
ance of the Ginzburg-Landau equation with respect to the translations and the rotations.

The aim of the present paper is to prove the following
Theorem 1.2 For alld > 1 and for alln > 1, the system (1.1) has no bounded solution.

We will have to allow n to be a real parameter. To begin with, let us consider the
system

nod V2 g2 (1 42
{ a’ + < T22a fib—fja =—(1—f7a (1.6)
V4L —Bb— fla— 3 =—(1— b

where 71 and -9 are real parameters verifying
Y2 >m 2 0.

Letting + = a + b and y = a — b, we will have to consider also the system verified by
(x,y), that is

’ 2 2
x//+%_%x+%y—2f3$ :_(1_f3)$ (1.7)
V' + L — Ly + Sy =~ =iy

with ) ) ) )
S = TN d 2= 2N
2 2
Let us give a precise description of two basis of solutions for the system (1.6), one
base being defined near 0, and one other base being defined near +o0c. Let us give the
following definition



Definition 1.1 We say that

1. a=0(f) at 0 if there exists R > 0 and C > 0 such that

vr €]0,R], |a(r)| < C|f(r)].

2. a has the behavior f at 0, and we denote a ~q f, if there exists a map g, such that

limg =0, |a—f|=0(fg).

3. a=o(f) at 0 if there exists a map g, such that

li(r)ng:O, a=fg.

We will use the same convention at +o00.
We will consider that (d,~1,72) is allowed to move into the set
D={(d,71,72) € (RL)*d>1;799>1; 0< vy <<y +2d+2}.

The condition 1 < 79 < 1 +2d+2 and 2 > 1 is satisfied for v; = |[n—d| and v2 = n+d,
whenever d > 1 and n > 1. Moreover, we don’t need to use more general (7y1,72) in the
course of the paper. We will need the following subsets of D.

Dy = {(d,71,72) € D;71 >0}, thatisn#d

and
1
Dy ={(d,y1,72) € D;0< 7 < Z;—71—72+2d+2>0;—’yz+2d+1 > 0},

that is [n — d| < 1. (1.8)

Let us recall the following expansion for fy (see [4])

d? 1
falr)=1- 22 + O(r—4) near +o0o (1.9)
and a
_od_ O dy2 d+4
fa(r) =ar T+ 1)7" + O(r"™®) near 0, (1.10)

for some a > 0.
Then, we can state the following theorem, about a base of solutions defined near 0.

Theorem 1.3 For all (d,v1,72) € D, there exist four independent solutions (a,b) of
(1.6) verifying the following conditions

1.

(@(1).ba (1)) ~o (O(7#242),172) and (@} (1), b4 (r)) ~ (077 241),507271),



7“2 ). r—72 1
(az(r),b2(r)) NO{ (O((OT’(Vﬁ(ZCI)JZ’Q),r’)YQ) fif (détzl’;fij 5%2

(ay(r), by(r)) ~ (O@0(r)), —er™>™1) if (d;m.72) € D1
2 0 (O(r772+2d+1)7 _'727.77271) Zf (d7 ’71772) € DQ

— 12 p—v2+2d .
0(r) = s U mtre—2d-2#0
" 2logr  if 4y +v2—2d—2=0.

(az(r), b3(r)) ~o (1, O F24T2)) and, if 1 # 0 (ah(r), by(r)) ~o (yar?t~L, O(r1 24y

while, if 1 =0, (a4(r),b5(r)) = (O(r), O(r¥+1)).

(r=,0(r20(r)) if (d,y1,72) €D
@b~ { (0 Gty i e b,

and
1= o@0(r))  if (d ) €D
" (r), b, ~ (r ’ Y1572 1
(a4(7")7 4(7’)) 0{ (T’(T),O(T’(T)T2d+2)) Zf (d771’72) €Dy
where . y
—r2=24p i+t .
Gy = | Tiraare ¥ mtn—2-240
—r72_210g7‘ if Mt+yre—2d-2=0
and

1 —p71 .
T(r) = 271 .Zf n#0
—logr if v =0.

. For j =1 and for j =3, for all r > 0, the maps
(d,71,72) = (aj(r),aj(r),b;(r),b(r)) are continuous in D.

. For j =1 and for j = 3, and for all v > 0, (a;(r),a}(r),b;(r),b}(r)) is derivable
wrt to y1 and wrt 2, whenever (d,v1,7v2) € D, and v2 > 71.

Moreover the map (d,~1,72) — a%i(aj(r), as(r),bj(r),bi(r)) is continous, for i =1
and © = 2. And we have

s 0y o
Ovi' 0y’ Ovi’ O

and, if y1 70

)(r) ~o log r(O(r72H2842) O (p12 24 HY) 492 qpp2 1) (111)

(

8&3 8&% 8b3 8bg
((9%" i 7 3%'7 i )(T)

~o log r(r”%vmfﬂ_l + O(r71+1), O(r71+2d+2), O(r”1+2d+1)) (1.12)




7. For j = 2 or for j = 4, the same notation (aj,b;) is used for two solutions,

one of them being defined for (d,v1,7v2) € Di, the other one being defined for
(d,71,72) € Ds.
Moreover, for each domain D;, i = 1,2 and for all r > 0 the maps (d,v1,72)
(aj(r),aj(r),b;(r),b;(r)) are continuous in D;. For each r > 0, the partial deriv-
ability of (a;(r),a’(r),b;(r),bi(r)) wrt y1 or wrt 72 is also true separatly in each
domain D;, 1 =1, 2.

Let us remark that our method of construction near 0 doesn’t permit to obtain smooth
solutions wrt the parameter (d,~1,72) € D and keeping the behavior of (az,bs) or the
behavior of (a4, bs) at 0 for all (d,v1,72) € D. It is not a problem for us, since in our final
proof of Theorem 1.2, we only need two independent smooth solutions wrt (d, 1, v2) and
having bounded behaviors at 0. Also, we don’t have to use the derivability of (az,b2)
and (a4, bq) wrt 1 and 7s.

The second theorem is about a base of solutions defined near +oo.

2 2
Theorem 1.4 We suppose that @ —d? > 0. Let us denote

[ ~/2 2
- ’71—;’72_d2.

1. We have a base of four solutions (a,b) of (1.6), with given behaviors at +o00. In
order to to distinguish these solutions from the solutions defined in Theorem 1.3,
we use the notation (u;,v;), i =1,...,4, for these solutions. We have

eV2r oVor oy,
(u1(r),v1(r)) ~r—to0 (77 7)(1 +O0(r—));

e~V o=Vor 9
oo (e ) (14 0(72);
(u2(r), v2(r)) ~rostoo ( N )AL +0(r7))
and
(u3(r), v3(r)) ~rospoo (r " =17 (1 + O(r™2));
(wa(r), va(r)) ~rosoo (", =1") (1 + O(r 7).
2. Except for j = 2, the construction of (uj,v;) is done separatly for each compact
subset K of D. For each of the four solutions and for all r > 0 the map (d,~v1,72) —

(uj(r), uj(r),v;(r)),vi(r)) is continuous on K. There partial derivatives wrt v1 and
wrt o exist whenever v1 < o and are continuous. We have

Jup Ou) Ovy OV
(3%‘ PO Oy O )(r)

6\/§T
~r——+oo T
r

logr(O(r—%),0(r™%),0(r™*),0(r™%))



Quy Ouly vy OV

B 3% o B

e~ V2r
C  logr(O(r2),0(r3),0(72),0(r~%))

~r—+oo \/;
Ouz Ouf Ovs Ovh
(3% PO Oy O )(r)
~rostoo log r(r™, O(r™ ), =™, O(r" 1)) (1 + O(r™?))

Ouy Ou)y vy OV}
(8% ) 87%’ 87%7 8%)(T)

~rogoo log r(r T O(r ), =T O(r ) (14 O(r2)).

)(r)

Let us remark that, by our construction, the solution (u;,v;) depends on the given com-
pact set KC, except for j = 2. But, for j = 1, we can say that this difficulty disappears after
the proof of Theorem 1.3, since the definition of (a1, b1) is the same for all (d,v1,72) € D.
For the other solutions, called (us,vs) and (ug4,v4), we will have to make sure that the
parameter (d,v1,72) stays in a compact set, as soon as we want and use the continuity
and the derivability of these solutions wrt the parameters.

In [1] we have already give the behaviors of a base of solutions at 0 and at +oo.
But the smooth dependence of the solutions wrt the parameters, announced in Theorem
1.3 and Theorem 1.4, was not taken into account in this previous paper. In the present
paper, the continuity wrt to (d,v1,72), specially of the five solutions (a3, bs) and (a,b1)
(defined at 0) and (u1,v1), (u2,v2), (us,vs), (ug,vs) (defined at +00) and there deriv-
ability wrt 1 and 79, are essential and are not entirely trivial facts. Indeed, although it
is clear by the ODE theory that for any given Cauchy data (ao, af, by, b)) € R* at some
ro > 0, there exists a solution of (1.6) that is continuous wrt (d,y1,72) and derivable wrt
~v1 and 72, it is not clear that this solution keeps the same behavior at 0 and at +oco for
all the values of (d,~1,72) € D, and this is generally false.

Now, let us rely the problem (1.6) to an eigenvalue problem.
Let 0 <1 < 72, p € R and € > 0 be given and let us consider the following system

, 2
{GHW_Z@G_MC“M% = —anll= e (1.13)
Pt — Gy L L2 = —Lu(l— )
for r €]0, 1], with the notation
r

£r) = fal5)

and the condition
a(l) =b(1) = 0.

Let us explain in which sense this can be considered as an eigenvalue problem.
We define, for a given ;1 >0

Hoy = {r = (a(r),b(r)); (ae™?, be™) € Hy(B(0,1)) x Hy(B(0, 1))},



where (r,6) are the polar coordinates in R2.
We endow H,, with the scalar product

1 : . 1 2 1
< (a,b)|(u,v) >= — V(ae?).V (be?)dx = / (ra'u’ + rb'v' + Mg+ —bv)dr
2T B(O,l) 0 T T

and then H., is a Hibert space.

Let Hlm be the topological dual space of H.,.
We consider the following operator 7y, ~, : H,, — H.,

—e MmN - L f20 + L 2 )

TYL’YQ(G’J b) = < _6—i729A6i729b_’_ 7f2b+ ingCl- (114)

Then we have
< 7-%,72 (a7 b)’ (uv U) >?—L’,?—L
1

= (V(eM%).V (e=M%) + V(e2h).V (e~ 12%F) + %fQ(a +b)(u+v))dx
2 B(O,l) g

1 ,72 72 r
= / (ra’u’ + rb'v’ + %au + Tva + 6—2f2(a +b)(u+v))dr.
0
We remark that

((a,b), (u,v)) — (V(eM0).V (e~ 0%) + V(e20h). 7 (e~ 1120y)
B(0,1)

+;12f2(a +b)(u+v))dr

is a scalar product on H,,. So, T, -, is an isomorphism, by the Riesz Theorem.
Last, let us define the embedding

I: Hy —H,
(a,b) — ((u,v) — fol r(au + bv)dr)

Since the embedding HE(B(0,1)) x H}(B(0,1)) € L?(B(0,1)) x L*(B(0,1)) is compact,
then I is compact.

For u € R, we define the operator

W
¢ = 77?1,’72 - ?(1 - fz)I-
Then

-1 . -1
7:/1,72(1) - Zd%wl o 'Lﬂjn,wc’

where we define

1 2
. . . . 71 71 .
Since C is a compact operator and thanks to the continuity of 7, =, then 7.~ C is a

compact operator from H,, into itself. By the standard theory of self adjoint compact

7



operators, we can deduce that the kernel N (75, 5, — pC) has a finite dimension in .,
and that the range R(75, ,, — uC) is closed in H’, and that

R(7:/1,72 —uC) = N(IIYL’YQ - Mc)l'
When N (75, 4, — uC) # 0, we say that p is a C-eigenvalue of 75, .

There exists a Hilbertian base of H,, formed of eigenvectors of T, -, 'C. Let = € H.,
be an eigenvector associated to an eigenvalue v of 7, 772_1(? . Then v # 0 and we have

1
7:)/1772 ($) - ;C:B = 0'

Then % is a C-eigenvalue of 7, ,. In what follows, we simply call ;» an eigenvalue. Be-
cause of the dependence on ¢, we denote it by u(e).

Now let us define m., -, () as the first eigenvalue for the above eigenvalue problem
in H,,, that is

. fol(ra/Q +7‘bl2 71 2 + ’Yz b2 62f3(£)(a+b)2)dr
mn
(avb)eH’Yl XH’Yl/{(O7O)} fO ]. - fd2 )(a2 + b2)d7'

My 72 (5) =

(1.16)
and let us define 1 d2
2 a2
2 a)d
mo(e) = inf o raTF ral)dr (1.17)
aeHa/{0} L fo )anr

It is classical that these infimum are attained. Considering the rescaling (a,b)(r) =
(a(er),b(er)) and an extension by 0 outside [0, 1/¢], we see that € — m., ~,(¢) decreases
when € decreases. Then lim._,o m., ,(€) exists.

Moreover, m., ~,(€) is a simple eigenvalue and there exists an eigenvector (a, b) verifying

a(r) > —b(r) > 0 for all » > 0.

Also, mg(e) is realized by some function a(r) > 0.

We consider that d > 0, that 7o > 1 > 0 are given and we suppose that

2 2
%>d2.

Let p(e) be a bounded eigenvalue. Then, we can suppose that
we) - pu ase—0

where p > 0. Let
We = (a57 ba)

be an eigenvector associated to p(e). We define

@e(r) = we(er), forre[0,1],



An examination of the proof of Theorem 1.3 gives, for some constants A, and B.,
B2 gm0 A 0(7) + B(olr), 7).
We may suppose that max{|A.|,|B:|} = 1. Then by the ODE theory
We = wg, ase — 0,

uniformly on each compact subset of [0, +00], where wy = (ag, bp) verifies

o o s

b+ — By — f3b0 — flao = —p(1— [3)bo

It seems to us that this eigenvalue problem is better suited to our purpose than that
used in previous work. Nevertheless, the following theorem can be deduced from previous
work on the subject [5], [8], [6] and [7].

Theorem 1.5 For alld > 1,

(i) there exists C > 0 and g9 > 0 such that, for all € < e, % > C; mo(e) = 1
and there ezists an associated eigenvector a such that a. — fq, uniformly on each [0, R],
R >0.

(ii) mg_1,4+1(¢) > 1 and %21(5)_1 — 0.

(iii) for d > 1 and n > 2d — 1, there exists C > 0 and g9 > 0 such that, for all € < e,
mld—n\,g;n(e)_l > C.

(iv) There exists an eigenvector w. associated to the eigenvalue mg—1 44+1(¢) such that

II(1— fd2) (Qe Fd)||L2 1) — 0, as e — 0, where Fg = (f;+ dfd,fc’l — gfd) appears
i Theorem 1.1.

Let us remark that the function f used here (f(r) = f4(%)) is not the same as the one
used in the previous works [8], [6] and [7]. For this reason, we will give a direct proof of
(i) in the appendix and we will give a proof of (iv) in the course of the paper. The norm
L, used in [7] is a nonsense here, since Fy(1) # 0 and @-(1) =0.

We have

Proposition 1.1 (i) With the notation above, if p(e) — p, if 0 — wo, i 'fvgJW% —ud® >0
and if wy blows up at +oo, then “(E)
pendent of €.

(ii) If there exists some bounded solution (a,b) of (1.6), then there exists an eigenvalue
wu(e) verifying pu(e) —1 — 0.

With the additional condition 7§+7% —d? > 1 and M.y, ~,(€) > 1, there exists an eigen-

value u(e) verifying “ ) L 0.

> C, where C is a given positive number, inde-

And we have



Proposition 1.2 Let d > 1 be given. For all n €]1,d + 1|, there exists C,, > 0 indepen-
dent of € such that
MYd—n|din(€) <1 —Chp.

None of the propositions above are very new, because we have already given the proof
of Proposition 1.2, in [1]. Also, Proposition 1.1 can be found there, but for a slighly dif-
ferent eigenvalue problem.

There are two new results in this paper, that will allow us to reach our goal, that is
to prove Theorem 1.2. The first one is that the solution having the least behavior at 0
(ie (a1, b1), that tends the faster to 0 as r — 0) blows up exponentially at +o0c and that
the solution having the least behavior at +o0o (ie (ug,v2), that tends exponentially to 0
as r — +00) has the greater blowing up behavior at 0. In other words

Proposition 1.3 When d > 0 and when vo > 71 > 0, (73 +~2)/2 > d?, then the
behavior of (a1,b1) at +00 is the behavior of (u1,v1) and the behavior of (ug,vs) at 0 is
the behavior of (ag, bs).

The second result is the following

2 2
Proposition 1.4 When % —d? > 0, if there exists a bounded solution w = (a,b)
of (1.6), then we have m, 5,(¢) =1 — 0 and there exists an eigenvector w. = (ae, be)
associated to m~, ~,(€) and such that @, tends to w, uniformly on each [0, R], R > 0.

Propositions 1.3 and 1.4 allow us to achieve the proof of Theorem 1.2. More, we can
also enonce

Theorem 1.6 Ford > 1, n > 1, 4 = |n —d| and y2 = n + d, there is no eigenvalue
p(e), with eigenvector in Hy,_q|, such that “(27)2_1 —0, ase — 0.

Let us remark that the Hilbert space H,, does depend on ;. In other words, the
notation m., ~,(¢) doesn’t mean the continuity on this simple eigenvalue wrt the param-

eter (y1,72). The theorem on this subject, in [3], doesn’t work here.

In Part II and Part 111, we give detailed proves of Theorem 1.3 and of Theorem 1.4,
although the proves are altogether technical and classical. But these theorems play a
crucial role in our final proof.

In Part IV, we prove Proposition 1.3. In Part V, in order to make the paper as self
contained as possible, we give the proof of Proposition 1.1 and of Proposition 1.2. In
Part VI, we give the proof of Proposition 1.4 and also the proof of Theorem 1.5 (iv). We
chose to give a direct proof of this claim, since the eigenvalue problem is not exactly the
same as in the previous works on the subject and the function f; is not exactly the same,
too. In Part VII, we conclude the proof of Theorem 1.2. Last, in the appendix, we give
a direct proof of Theorem 1.5 (i).

We will use Theorem 1.2 in a separated paper.

10



2 The possible behaviors at zero and the dependence of
the solutions wrt the parameters

Let us explain the way to prove the existence and the continuity wrt the parameter
(d,v1,72) € D of a solution having a given behavior at 0, eg the solution (aj,b;). We
construct some solution (a1, b;) such that for all compact subset K of D, there exists
some R > 0, depending only on IC and some C > 0, also depending only on K, such that
for all r €]0, R] and all (d,v1,72) € K, we have

lag (r)| + |by (1) — 72| < Crr2H2d+l

and such that, for all r €]0, R], (d,71,72) +— (a1(r),a)(r),b1(r),b}(r)) is continuous on
IC, and derivable wrt v, and wrt ~,. First, the construction is done for r €]0, R]. Then
the definition of this solution in [0, +oo[ and the continuity wrt (d,v1,72) € K, for all
r > 0, follows from the ODE Theory.

We use a constructive method, similar to the proof of the Banach fixed point Theorem.
For each solution, we define a fixed point problem of the form

(a,b) = ®(a,b)

whose solutions verify the differential system that we have to solve. Then we define two
maps 7 — (1(r) and 7 — (o(r). In order to construct a solution (a, b), verifying, for each
compact subset K of D,

la(r)¢ ()] + [b(r) G () — 1] < Cr?
for all r < R and with R and C' depending only on /C, we define two sequences
ap=0 Po=0C
2.19
{ (ky1, Brr1) = ©(ar, Br)- (2.19)

Then, for each compact subset K of D, we prove that for all 0 < r < 1 and for all
(d,71,72) € K we have

|1 — el (r) < CCr)r? (167 (o — ar—1)ll oo 0, + 16 (Br = Br—1) e o,r7))» (2-20)

Bt — Bel(r) < CG(r)r* (16 (o — 1)l e o) + 1165 (B — Br—1)ll (o)) (2:21)
and

a1 — ao|(r) < Cr2Gu(r),  [B1 — Bol(r) < Criea(r) (2.22)

where C' depends only on .
Then we deduce that

167 (k1 — @)l ooy + 165 (Brrr — Bi)ll o (o,0)

< (Cr)** (167 (a1 — @)l zoo o) + 1165 (B = Bo)ll 2 (j0.07))
We choose R such that CR < 1 and we define,

k=-+oc0 k=-+oc0o
foral0<r <R a(r)= Z (g1 —ag)+ag, b(r) = Z (Br+1—Br)+Bo- (2.23)
k=0 k=0

11



Then we have (a,b) = ®(a,b) and the continuity of (a(r), b(r)) wrt (d,~1,2) follows from
the continuity of (ay, ) for all k and from the convergence of the sums uniformly wrt

(d, ’71,’)/2) exK.
Then we have to prove the uniform convergence wrt (d,~1,72) € K of the sums

k=+o00 k=+o00
> (g —ap), and Y (B — B,
k=0 k=0

in order to prove the continuity of (a'(r),t(r)) wrt (d,v1,72).

Then, since the derivability of (a, a’, b,b’) wrt 71 and wrt 9 is needed only for the solutions
(a1,b1) and (as,bs), we will prove it only for the solution (a1, b;), but the proof can be
adapted for the other solutions.

In what follows, we will use the following forms of the first equation of (1.6)

(r2H (@)Y = P (f25 — (1 = f2)a) (2.24)

or
(r 2t (@Y = L (F2h (1 — £2)a) (2.25)

or, when ~; may reach 0,
(rr(r7ta)) = rr(f3b — (1 — 2f3)a) (2.26)

where

P71 .
(r) = T ifyy >0
—logrif vy =0.

and the following form of the second equation of (1.6)

(P2t (pr2)) = 24 (£2q — (1 — 2f2)b) (2.27)
or
(7“_272“(()7072),), _ T—72+1(fd2a —(1- Qﬁ)b)_ (2.28)
We denote
VirT T

2.1  The solution (ay,by).

Let us consider the integral system

a =714 f(;” —2m-1 fg s““(fib —(1- 2f3)a)dsdt
(2.29)
h =2 for 2721 f(f 372+1(f3a —(1- 2f§)b)dsdt.

By the reformulation given at the begining of the section, it is clear that any solution of
this system is a solution of (1.6).
Let us denote by
®(a,b)
the rsm of (2.29).
Following the method described just above, we prove

12



Proposition 2.5 There erists a solution (a1,b1) of (1.6) such that, for any compact
subset IC of D, there exist some real numbers R and C' verifying

forallr < R, |ai(r)r~2| + |by(r) — r2| < Cr2t2

where C' and R remain the same for all (d,v1,7v2) € K, and (d,v1,72) — (a1(r),ay(r), b1 (r), b} (r))
s continuous. Moreover

@k ()2 + [y ) = per | < €y

for all r < R and for some C depending only on K.
For allr >0, (a1(r),a)(r),b1(r),b)(r)) is derivable wrt v1 and with respect to 2, as soon
as 2 >y and (d,y1,72) € D and, for i =1,2

d 0b
(S (r) < Crr 22 logr|, |2 (r) =177 logr] < Cr*2|logr],  (2.30)
Vi i
and
day Yo+2d+2 ob} yo—1 Yot1
\a’y' |(r) < Cr |log 7|, |37' (r) — 7yar logr| < Cr |log r|. (2.31)

with the same property for C' and R as above.

Proof We define ¢1(r) = 772724 and (3(r) = r? and we define (ay, Bx) by (2.19).
For k > 1, assuming that ay — ap—1 and By — Bx—1 are continuous wrt (d,y1,7v2), we
prove the continuity of ag+1 — ag and Bryr1 — B in K by use of the Lebesgue Theorem.
Then, involving the estimate f7(t) < Mt?? and |1 — 2f3|(t) < M, the desired estimate
(2.20) remains to the estimation for all » > 0, r < 1,

< Opre+2d+2

r t
prag} / t*Q’Yl*l / S’Y1+1+’72+2ddsdt _
0 0 (= +72+2d+2)(n+y2+2d+2)

where C' depends only on K.
This gives (2.20) and also the estimate of |a; — ayg.
Now the desired estimate (2.21) follows from both estimations

T t T72+2
7472/ t—272—1/ 8272+1dsdt - < C,r2+72
0 0 2272 +2) ~

and

T t
7’72/ t2721/ 8272+1+4dd3dt < CT'yg+2+4d
0 0

where C' depends only on K. This gives the proof of (2.21) and also the estimate of
181 = Bol-

This terminates the proof of the existence of (a1, b1), the continuity wrt (d,~1,v2) and
the desired behavior at 0.
To prove the continuity of (a’(r),b'(r)) wrt to (d,y1,72), we compute

(o1 =) (r) = mr ™ appr—ag) (r)+r~ 17! /OT ST (f7(Be—Br—1)+(1—2f7) (o ——1))dsdt

13



that gives, for £k > 1
r 272 (=g (1)] < (Cr) e ([[(ar—a0)v ™22 Lo o,y + 1 (B1=B0)v [l e f0.11))
+C(Cr?)F 22 ([ (ar — ao)v ™27 Lo o,09) + [1(B1 = Bo)v ™2 L= 0.r)))
with C' depending only on K, and consequently
P — o)1) < OO

with another C' depending only on K. Then the sum

+o0

> (o — el

k=1

converges for all » < R, uniformly wrt (d,v1,72) € K. Thus d/(r) is continuous wrt
(d,~1,72). Moreover, a direct estimate gives

@ ()] < OreH2!
for all » < R. We deduce that
\a’(’r)] S Cr’yz+2d+1

with C' depending only on .
Now we compute, for £ > 1

(Brs1=B)(r) = 72T1(5k+1—ﬂk)(7“)+7“721/0 s (f7 (o —ak—1)+(1=2£3) (Bo—Br—1))dsdt
that gives )
P 2B — Be)(1)] < ((Cr?)fyar™ + C(Cr?)F )
(1(B1 = Bo)v [l oo (o)) + Il — )™ 27| oo (10,47))

and consequently )
P (B — BR) ()] < C(Or*)

with C' depending only on K. Recalling

“+o0

V(r)=> (Biy1— B)(r) + Bl

k=1

a direct calculation gives
1
|81 — Byl < Cret,

This gives that b/(r) is continuous wrt (d,y1,72) and that for all »r < R
b (r) — yr?2 7 < Cr2

with C' depending only on K.

14



Now, let us prove the derivability, wrt 72, of (ai(r),b1(r)), for 0 < r < R and for
Y2 > 71, 71 = 0 and d > 0 being given, and the continuity of the derivative function wrt
(d,~1,72). First, we use the Lebesgue Theorem to prove by induction that a1 — ay and
Br+1 — Br are derivable wrt 1 and wrt 2. Then, since a and b are defined for r € [0, R]
by (2.23), it is sufficient to prove that the sums

Z Oags1 — and Z O(Brt1 —

o 372 = 6’72

are convergent, for all r € [0, R], uniformly wrt (d,~1,72) € K, for any compact subset
K of {(d,v1,72) € D,d > 0,72 > ~1}. In fact, we are going to prove that

_ 1 0(agq1 — ag) _ _19(Br+1 — Br)
1 10 12 1+— oo and 1 10 12 1+— oo
;ZO 11 [log v| 97 o= ([0, R)) j§20 165 [log v| 972 | zo ([0, R])

are convergent, uniformly wrt (d,71,72) € K. This will give the desired derivability
result, and also the estimate (3.80).

We have 5
Y% _ ) and 9% =7r7?logr.
2 02

Let k > 0 be given. We easily verify that

O(ok+1 — o) v /T —2y1-1 /t 1,208k — Br—1) 9\ Olar — ap_1)
—= = [t it —— — (1 =2f])———F—")dsdt
8’}/2 r 0 0 s (fd 8'}/2 ( fd) 8’72 ) S

and that

_ T t
8(5kgy2 Bi) _ e IOgT/O 2t /0 s (f7 (o — ap—1) — (1= 2£3) (B — Br—1))dsdt

, t
72 /0 (—272 — 1)t_272_2/ S (S ok — ar—1) = (1= 20)(Br — Br—1))dsdt

0

r t
472 / —ot~ 221 logt/ gretl log s(fg(ak —ak-1)— (1 - 2f3)(ﬂk — Br—1))dsdt
0 0

772 /Tﬂw—l /t svzﬂ(fg—a(o"“ —et) (1- 2f§)—8(6k — 5’“*1))dsdt.
0 0 V2 02

Now we estimate, for all » > 0

_ —190(Br—Pr—
d(agt1 —ak)|(T) - Mr?||ly=7 (log v) 1%|le([0,¢])
o = (e—m+2d+2) (e +m +2d+2)

r_72_2d(10g r)_1|

— 0
27“2”1/ Y2— 2d(10g V) 1 (akB'yak 1) HL°° (0])

(2 +m+2d4+4)(y2 — 7 +2d+4)

_10 —
1 (51@5;2 5k)<7,)

(2.32)

Now, let us estimate the first term for =72 (logr)

15



r t
| / I / ([0 — o) — (1= 202) (B — Brr))dsd]

0

MrAa2|| =272 (o — )| poogio,r)y TRV T2 (B — Br—1)ll Lo (0, 7))
- (4d +2)(2y2 + 4d + 2) 2(2v2 + 2)

We can estimate the second term as follows

r t
log )~ /0 (~29y — 1)t7222 / 220y, — o) — (1 — 202)(By — Br_r))dsdl

0

MrAdt2||y=r2=2d () — k1)l (j0,R) 2|l (B — Br—1)ll Lo ([0,R))
= (4d + 2) (272 + 4d + 2) 2(27, + 2)

We have a similar estimate for the third term. The fourth term gives

r t o o
I(log 7,)—1/ t—272—1/ 372+1(f3M (- 2f§)M)d5dt‘
0 0 072 072
MrAa2||y=72724 (0 — 1) || oo (0, 1)) N 2|72 (B — Be—1) |l oo ([0, R))
- (4d +2)(27y2 + 4d + 2) 2(2v2 + 2)

Finally, we can find some constant C, independent of (d,~1,72) € K, such that, for all
0<r<l,

rﬂz*?d‘ 1OgT’*1‘M‘(T) < CT2(HV’“’2 (log V)AM

97 97s [l Loe ([0,1])
vy — _ 8(0% — Oék,l)
—|—1/722dloyl—oor
| (logv) 97 | o ([0,17))
nd O(Brsr — B)
P log 7| THZE () < Or (I o = ) oy
-2 —v2—2d -1 8(0% - 0%—1)
72 (Br = Br—1)ll oo (o)) + IV (logv) T||L°°([O,r])
_ _19(Br — Br-1)
1
+[[v" 72 (log v) R — | o ([0,7))

Summing the both inequalities just above and (2.20) and (2.21) (with ¢; = 72724 and
(2 = V™), we get

O(Br+1 — Br)

Tf'ygf2d| logr|71|a(ak+1 _ Oék)
02

V2
(b1 — Po)

< (CrH)F(lv (logv) 2 | peo o) + 17272 (01 — o) || oo ((0.0)

D)
_10(a1 — ap) _109(B1 — Bo)

(o + lv " (logv) ™ ————=|| Loo(i0.N) )-
P I oo f0,r)) + |l (logv) 97 I zo<([0,r]))

|(r) + 72| log || [(r)

+Hu77272d(log v)
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Then, we directly estimate

e _10(B1 — Bo) r?
r~?|(log ) o7 |(1) po—— (2.33)
and
2 (og )1 AU 00) ) My? (2.34)

972 T (2= +2d+2)(ye +m +2d +2)

and we deduce that, choosing r < R, where R depends only on K, the sum

X _10(agq1 — S ~19(Bkt1 =
ZHV 12-2d(Jog 1)) 1W||L°°([O,R])+ZHV 2 (logv) 1WHHL00([0,R})
k=0

(2.35)
converges, uniformly wrt (d,v1,72) € K. Consequently, the same claim is true for

fa(akﬂ— k and Z 5k+1

=0 02 372
We can deduce that a and b, defined by (2.23), are differentiable wrt v2 and that the

partial differential is continuous wrt (d,~y1,72) € K. Moreover, we get the behavior of
the derivatives near 0.

Now let us prove the differentiability of (a1 (r),b1(r)) wrt v1. We have
dag 9By

o om

35k

By induction, we have that a‘if and exist for all k.

Then we write

I(ag+1 — o) oy ' +1(r2 2
e = r7 logr/ t—m / ST 7B — Br—1) — (1 = 2f7) (g — 1)) dsdt
0 0

+7’71 /OT _21‘,_2'}/1—1 logt/t S’Yl-i—l (fg(ﬁk _ kal) . (1 _ 2f3)(ak B akil))det

0

r t
4 /0 t2711/ s log s(f7(Bk — Be—1) — (1 — 2f7) (o — a_1))dsdt

0
" ! Bk — Br-1) d(a — ag—1)
7 / t_271_1/ st 2R TR (1 —2f) ) dsdt
0 0 Ua om ( a) om )
We can estimate the first three terms of 7~27272¢| log r\*l\a(a’“gi;l_a’“)(r)\ by

(1 (Be = Br—1)v" || oo (0.1 + (ke — k1) 2724 1o 10.07)

where C' is independent of r and of (d,~1,72) € K.
The estimate of the fourth term gives

T t _ —
Rl e B e
0 0 om om
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O(Br — Br—1) _ _ olag — ap—1) _
SC""Q(HWV ” (log v 1”L°°([0,r])+H(ka,ylkl)V ¥2 Qd(logv) 1HL°°([0,7”])
where C' is independent of r and of (d,v1,72) € K.

Finally
O(ak1 — k), yog ~1
———\r)r logr
L ()2 2 1og ) |
< Cr(I1(Br — Br—1)v 2 |l Lo (o + Il (k= ar—1)v ™2 72| oo 0.0 (2.36)
OBk — Br—-1) _ _ 0oy — ap—1) __ _
A0 ), g ) o+ 1 2 2 o) o)
Now,
OB+l /r a1 /t Doy 9Bk
— =7 2 s72 L f2 1-2 dsdt.
- O ot - a2 3
Then, we get
_ 4,0 olagy — ag—1) _~_ _
r2 logr| I|W< >§0r2<u<’“8%’“”u 2 log ¥) | o (o)
b —bi1) _ B
2 g ) e o) (2.7

Recalling (2.37),2.36), (2.20) and (2.21), we can conclude as in the proof of the derivability
wrt 2. Now, the same proof as for @’ and ¥ permit to prove that the sums

Jf 8(O‘;c+1 —ap) and = a( /Bk+1 Br)
k=0 aryi 8’)/1

converge, uniformly wrt (d,v1,72) € K and to get (2.31).

2.2 The solution (ag, bs).

Proposition 2.6 There exist a solution (as,bs) of (1.6) and, for any compact subset
K € D, some real numbers R and C verifying

forall0<r <R, |ag(r)—r"|< crnt? | |bs(r)] < C’r71+2d+2,

lah(r) — T < Ot and ()| < Ot

where C' and R remain the same for all (d,v1,72) € K. Moreover, for all r > 0
(d,v1,72) = (as(r),as(r),bs3(r),bs(r)) is continuous on D and is derivable wrt v, and
Yo whenever v < 2 and we have for all 0 < r < R and fori=1,2,

|gfly3 (r) = (log r)r™| < Cri*2|logr], ‘g,bﬁ(r)l < Cr1 a2 og r| (2.38)
and
Jaly b

(r)| < CrM T2t og r| (2.39)

| o, (r) — (log r)yr 1 < O log 7|, !3%
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Proof We consider the fixed point problem

o =l 4—2n—1 fg s (f2b — (1 — 2f2)a)dsdt

(2.40)
b =124 [Pt fot s (f2a — (1 —2f2)b)dsdL.
We define by induction
(Oéo, 50) = (7‘71,0) and, for all j € N, (Ozj+1,ﬁj+1) = ‘I)(Oéj,ﬁj). (241)
and we define ¢1(r) = v and (o(r) = r1t2e,
We have to verify (2.20). For this purpose, we estimate
r t r2+’}/1
r”l/ t—%—l/ sNTLeM Jodt = < Ormt2,
0 0 22+2m) ~
where C' depends only on K, and
r t r2tm
r / 1 / nFlgm+4d+2 .1 < Oypnit2tad.
0 0 22+ 2m) —
The both inequalities give (2.20), for all 0 < r < 1, and give also
log — ag|(r) < Cr L,
In order to verify (2.21), we compute
"ot [ optit2ds r2ont? +2d+2
r? 2T / s7? Ndsdt = <Ccrm
/0 0 (=12 +2d+2)(y2+2d+2) ~

where C' depends only on K. This gives (2.21), and gives also
’/81 _ /80’(7.) S CT’YI+2d+2.
Then, as explained at the beginning of the chapter, we can deduce that
for all ¥ < R, |a(r) — | + [b(r)| < Cr7+2d+2

with R and C' depending only on &, and we have the continuity of (d,~y1,v2) — (as(r), bs3(r)).
Now, the continuity of (d,7v1,72) — (a5(r),b5(r)) and the estimate near 0 of (aj, b5) can
be proved exactly by the same proof as the continuity of (d,y1,7v2) — (a}(r),b)(r)), and
we obtain

forall0<r <R \aé(r) — 'ylr71*1| < Oorntl and ]bg(r)] < Cpt2d+1

Now, when ~; # 0, the proof of (2.38) and of (2.39) are similar to the corresponding
property of (a1,b1) and are left to the reader.
When ~; = 0, we write, for £ > 1

oy — all(r) < 77! / S35k — Brr) — (1— 2£2) ok — 1)l ds
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7“4d+1

4d + 2
< Cr(Cr®) 1By — Bo)v | 1o o) + Il — aoll Lo (o,07)-

Then the sum ), (), — a}) converges, uniformly wrt (d,v1,72) € K. We estimate
directly B

_ T
< C( |(Br — Br—1)v 2d”L°°([0,r] + 5”% — ag—1l| Lo (0

|1 = ag|(r) < Cr

that gives
las(r)| < Cr.

The estimate of |b5(r)| is left to the reader. The proof of the derivability wrt 1 and 72
and the behaviors of the derivatives works as for (aj, b;) and is left to the reader, too.
2.3 The solution (as, by).

We distinguish the construction of (ag, b2) when (d,~y1,72) € D1 and the construction of
(ag, b2) when (d,v1,72) € Da.

2.3.1 (CLQ, bg), for Y1 75 0.

First, we construct a solution, for (d,v1,72) € D1 = {(d,v1,72) € D;y1 > 0}.

Proposition 2.7 For all (d,v1,7v2) € D, such that y1 # 0, there exists a solution (az,bs)
of (1.6) having the following property : for all compact set K C Dy, there exists R and
C' depending only on IC, for which we have

forall0 <r <R |by(r)—r 2| < Cr2t2 (2.42)

and
forall0<r <R |ag(r)| < C(r?0(r) + ) (2.43)

where

— -2 = 2d .
e i —m—m+2d+2£0

o(r) =
—r"=2]ogr if —v2—71+2d+2=0

(We have 0(r) >0 for all0 <r < 1).
Moreover, for all0 <r < R,

lab(r)| < C(ro(r) + 7Y and |bhy(r) + yor 27 < Cr2 (2.44)
where C' and R depend only on IC, and, for all T >0

(d,y1,72) = (az(r), ay(r), ba(r), by(r))

18 continuous on Dy.
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Proof
We consider the following fixed point problem

a =r M f(;" $2n-1 flt 5—’71+1(f3b —(1- 2f§)a)dsdt

(2.45)
b= e [Tl [Lemetl(f2g (1 - 2f3)b)dsdt.
We define
G(r) = 0(r) + 172 and Golr) =1
and
(040,50) = (O,T'_’YQ) anda for all k € N’ (ak-‘rlv 6k‘+1) = q)(alﬁﬁk) (246)
We give (d,v1,72) € K, a compact subset of Dj.
Then we have 71 > ¢, for some ¢ > 0, depending only on K.
In order to prove (2.20), we estimate, for r < 1
/ 27— 1/ —’Y1+1 )+ s Q)dsdt
“logt— 1—¢t—v2—7v1+2d+2
r —r2—7+2d+2  gp Y1+72—2d—2#0
_ / P =202 “logt)dt  (2.47)
0
(logt)?if 1 +92—2d—2=0
P11 p—v2t+y1+2d42
71 71 Py oy reare
— 5, logr+ —
_ m <2$i72+2d+721 2R iy e —2d —2#0 r 1 s
= — 5 logr + ——5
. 2m (2m)
%(logr)2 — 26,2 ) logr+2(’”l)3 ify1+v—2d-2=0
< Cr2(—logr)(O(r) +r732)
for some C' depending only on .
Then we compute
/ 2l / —mnH1+2d=y2 go 0t
. e i 4 —2d-2#0
! / $2m—1 (2.48)
0

—logtif M +1—-2d-2=0
7*71

0(r) ) L
- +r? <Cre(f(r) +rm

where C' depends only on K.
Now (2.47) and (2.48) give, for all £ > 2 and in place of (2.20)

|1 — | (r) < CG(r)r? (= log ) (16 (ak — ar—1) || oo o) + 162 (e — k1)l oo 0,07))
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and gives also
lag — ag|(r) < Cr3(0(r) + 7 72).

To obtain (2.21), we compute

1
r2 /rtQ'yg—l/ 5_72+1+2d(0(s)+571_2)d5dtS
0 t

1—¢—v1—v2+2d+2 | ;—2v2+4d

Y1+v2—2d—2
,
r 2 2721 *logt*w )
/0 ( w1+v2—;712_+;d ify+v—2d—2#0,v1 —v2+2d=0,v # 2d
tv1—v2+2d $r1—vet2d B
( — e logt+ o e 2 —2d—2=0

1—p—2+71+2d

+ )dt (2.49)

—logrifyy—v+2d=0

272 ptvet2d 2v9 2d
279 v1tvet2d 2yg —2d

71ﬂ~31+jf/2—2d—2ﬂ2+2d ify1+7%—-2d-2#0,71—72+2d#0
B 22 _ 24
= 2 r22122(_10gr)+%_% .
’Yl+’)’2722d72 if 71""}’2—261—2 #0771 _72+2d:()

rY1+72 +2d(, log 1”)
(y1+y2+2d) (1 —v2+2d

rY1t+y2+2d rY1t72+2d
Y1+72+2d)?2 (1+v2+2d) (71 —72+2d)

7+ zify1+92-2d-2=0

Y2 vyo+v1+2d 1 .
(5 — Srrngoa) =arngea Em+ 72 —2d—2#0
+
—2 logrif 11 + 92 — 24 —2 =0
< Op~2t2
where C' depends only on .
Now we compute
" ! 7‘2_’72
re / 202! / s dsdt < ———— < Cr? T (2.50)
0 t 2(2v2 — 2)

where C' depends only on K.

Then (2.49) and (2.50) give (2.21), and also
B1 = Bol(r) < Crm72*2,

We conclude for all (d,~1,72) € D1, there exists a solution (ag, be), satisfying the desired
behavior at 0 and such that (d,vy1,v2) — (a2(r),b2(r)) is continuous on D;. The behavior
of (ah(r),bh(r)) at 0 is left to the reader.
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2.3.2 (ag,b9), for 71 small.

Let us consider K, a compact subset of Dy. For (d,v1,72) € K, we have in particular
1 < co, =2+ 2d+1>c1, v2 > coand —y; — v + 2d + 2 > c3, where ¢y < %, c >0,
ca > 1 and ¢3 > 0 depend only on K.

We have

Proposition 2.8 There exists a solution (ag,bs) of (1.6) having the following property
: for all compact set IC C Ds, there exists R and C, depending only on K, for which we
have

forall0<r <R |bao(r) —r 72| < Cr—et? (2.51)

and
forall0 <r <R |ag(r)| < Cr2t2d+2 (2.52)

Moreover, for all0 <r < R,
lahy(r)| < Cr= 2 T2 and by (r) + yor 27t < O (2.53)
where C' and R depend only on K, and, for all r >0
(d,71,72) = (az(r), ag(r), ba(r), by(r))
18 continuous on Dy

Proof Let us consider the following fixed point problem

o = fOT‘ t—2m-1 f(f S'Yl+1(f3b - (1- 2fd2)a)d8dt

(2.54)
b =r2 4 [Fg2e] [fs7H(f3a — (1 — 2f2)b)dsdt.
We define (;(r) = r~7212d and (o(r) = 7772,
In order to prove (2.20), we verify that
¢
7“71(/7“ t_zyl_l/ snHlgd=gsqp < Op~2+2d+2 (2.55)
0 0
Then (2.55) gives (2.20) and gives also
lag — ag|(r) < Cr 22442
Now, in order to prove (2.21), we compute
. 1 p2r2 pddt2
P2 t2v2—1/ g2t g2d—ya+2d ge gy —v2 202 4d+2
< Crir— (2.56)

and

T_/Y? 7'-272 Tn2
- ) < OrZpe 2.57
e (257)

r 1
P2 / 2721 / g V2 tlg=2v2+1 o —
0 t
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Then (2.56) and (2.57) give (2.21) and gives also
181 — Bol(r) < Cr2r2,

So we have the existence and the continuity wrt (d,~y1,7v2) € Dy of a solution (ag, bs),
and we have the desired behavior at » = 0. The behavior at r = 0 of (a), b)) is left to
the reader.

2.4 The solution (ay,by).
2.4.1 (a4,by) when ~; # 0.
First we construct a solution (a4, bs) when v > 0. We have to prove

Proposition 2.9 There exists a solution (aq,bs) of (1.6) having the following property :
for all compact subset K of Dy, there exist R < 1 and C depending only on KC, such that,
forall0<r <R

lag(r) —r | < Cr M2 and  |by(r)] < C(r20(r) + r?),
where, for 0 <r <1, 0 is defined by

Y272 2d .
i+ —2d—2#0

—r2 2 logr if v + 72 — 2d — 2 = 0.
Moreover
ay(r) + e T < Or T and [By(r)] < O(rf + 172 7Y).
And (d,v1,7v2) = (aa(r),a)(r),ba(r), b (r)) is continuous on D;.
Proof Let us consider the following fixed point problem

a = e T TN [T (3 — (1 - 2f3)a)dsdt
(2.58)
bo=r [Tl [LsTetl(f2a — (1 — 2f3)b)dsdt.

Let us define ¢;(r) = 7" and (Go(r) = 0(r) + r7272,
Let K be a compact subset of D;. Then we have 1 > ¢, where ¢ > 0 depends only on K.
In order to prove (2.20), we estimate

r2'71 _ r2

27v1 2 .
r 1 ity #1
_ _ _ _ —2v1+2
r / e / s st = p 0 "
0 t

—%logr—i—% ify1 =1

2 2v1—-2_1 2 .
— r (j2¥1+2)271 +24Tﬁ if " 7& 1
—5logr+ T ifyp =1
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Crmr2if<e <m <1
< Cr=r2(—logr) if y1 =1 (2.59)
Cr—m+2 if v >1

Now, we return to (2.49). Exchanging v; and 72, we get
T 1 5
r“/ t2711/ NI 2= dsdt < Or T2, (2.60)
0 t

Then, (2.60) and (2.59) give, in place of ( 2.20), and for some ¢ > 0 depending only
on K

a1 — gl (r) < CQr)re(1¢T (o — an—1)l o + 165 (Be = Br—1)ll o (0.7))

and gives also
lar — agl(r) < Cr11te,

Now to obtain (2.21), we return to (2.48). Exchanging 1 and 2, we get
T 1 _
1“_72/ t272_1/ s T2 gsqr < Cr2(0 + r272) (2.61)
0 t

where C' depends only on K.
Then, returning to (2.47), we get

r 1 _ _
r 2 / 221 / 572N 4 272 dsdt < Cr?(—logr)(0 + 177272). (2.62)
0 t

We have proved the existence of (a4, bs), for all (d,~1,7v2) € D, and the continuity of
(d,v1,72) v (a4(r),ba(r)). The behavior of (aly(r),by(r)) at r = 0 is left to the reader.

2.4.2 (ay4,bq) for small ~;.
Now we give (d,v1,72) € Da. We have

Proposition 2.10 There exists a solution (a4,bs) of (1.6) having the following property
: for all compact subset KC of Da, there exist R <1 and C and ¢ > 1 depending only on
IC, such that, for all 0 <r < R

lag(r) — 7(r)| < Crer(r) and |bsa(r)| < Cr2d+27(r),

where, for 0 <r <1, T s defined by

P —pY1 -
7(r) = { 271 iy >0

—logr if 1 = 0.

Moreover
lay(r) —7'(r)] < OTC_IT(T) and |b)(r)] < Cr2d+17'(r).

And (d,v1,7v2) = (aa(r),a)(r),ba(r), by (r)) is continuous on Ds.
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Proof
In view of (2.26), let us consider the following fixed point problem

a=7(r)+7(r) J§ §772() Jo s7(s) (30 — (1 = 2f7)a)dsd
(2.63)
b=r= [ 2t [T (ffa — (1 - 2f3)b)dsdi

We define
G(r)=7(r) and Go(r) =r*r(r).
Let us consider K a compact subset of Dy. Then we have v; < ¢1 and —v; —v2+2d+2 > co,
where ¢ < % and co > 0. But 1 can be equal to 0. Since e > 1 4 u, we have for all
t €]0,1]
" (=logt) < 7(t) <t " (—logt) (2.64)

In order to prove (2.20), we estimate, assuming that r < exp(—1)

T 1 t T t*Q'yl*l t
T(r)/ T_Q(t)/ STQ(S)det<T(T)/ 5 / 5_271+1(10g5)2d3dt
0 0 0

t log“t Jo

r—2n—1 22 +—271+2 t—2m+2
oy )dt
0

——logt+2———
log?t (—271 +2 (=271 +2)2 & (—271 +2)3
< Cr7471+27'(7“) <rr(r) (2.65)
where C' > 0 and ¢ > 1 are independent of (d,~1,72) € K.

Following the same proof, we get, for r < exp(—1)

7(r) /07" 17’2(t)/ s7(s)s%7(s) s> dsdt

0
< Cr7471+4d+27'(r) < CT‘2T(T). (2.66)
Then, (2.65) and (2.66) give (2.20), with r¢ instead of r2, and give also

a1 — ag| < Crér(r).
| |

Now, in order to prove (2.21), we compute

T t
2 / t2721/ 51220 (5)dsdt
0 0

T t
<r 7 / tQW_l/ s g2 (og §)dsdt
0 0
< Or 222 og ) < O 222 (2.67)
where C' depends only on K. Then (2.56) gives (2.21) and gives also

|B1 — Bo|(r) < Cr—2t2dt2,

We have proved the desired result for (a4(r),bs(r)). The proof concerning (a)(r), b (r))
is left to the reader.
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3 The possible behaviors at infinity and the dependence of
the solutions wrt the parameters.

Our goal is to prove Theorem 1.4.
We use the system (1.7) and we construct a base of four solutions, (z;,y;), i =1,...,4,
characterized by there behavior at +00. Then the solutions (u;,v;) announced in Theo-
rem 1.4 are obtained by u; = % and v; = %
Let us consider the first equation of (1.7). As is usual with regard to Bessel’s equa-
tions, we let
z(r) =rzx(r).

Then the system (1.7) becomes

(Y 3dx+3(1—fd Ut +% =0
" 2 2 d2 (3.68)
y+%—”’ “y+ 53:+(1— -4y =0
We can replace the first equation of this system by
2
(V2 (@ V)Y = eV¥q(r)E - 25y
or by
2
(VP (@e ™YY = e VPrq(r)i — 5y
2 Y
where ) ) )
—v* —3d d
q(r) = — 7 +3(1-f1+ 72)~
Let us suppose that v2 — d? > 0. Then we let
n =2 —d2.
The second equation of the system (1.7) can be written as
2 2
_ o d
(@ y)) = g = (- £ = 5)w)
or
—2n+1/,.n, \/\/ _ 7n+1M72 o _ 2_d72
(2 Yy = e — (- 1= S,
Finally, the system (1.7) can be written as
(e:I:Q\/ﬁfr(T%e:F\fr ) ) %e ‘[Tq(r)x _ gy (3 69)
5 .
(FAB )Y =t (S — (1= £ = G)y)
We denote
V2r —2r 2 2
J+:e ) Jo =5 and n = il d?.
vr vr 2



We are going to construct four solutions of (3.69). The plan is almost the same for
each solution. Let us explain it. First, for some given Ry > 0, we define a fixed point
problem of the form

(z,y) = @(z,y),

for (z,y) defined on [Ry, +oo[, and whose solutions are solutions of (3.69). The function ®
will depend on Ry, except for one solution denoted by (x2, y2) (that vanishes exponentially
at +00). Let us remark that the present construction does not allow us to construct the
solutions (z;,y;), j # 2 without taking into account a given compact subset

N+B o
K c{(d,7,7%):0<m <72;T—d > 0}. (3.70)

Indeed, Ry depends on K. Then we give a map ¢ and we want to prove the existence of
a fixed point (x,y) verifying, for some C depending only on K, an estimate of the form

|2 (r) = ()| + ly;(r)] < C¢(r)r™ if j=1,3,

or |z;(r)] + ly;(r) = ¢(r)| < CC(r)r™ if j = 2,4.

Moreover we want (d,~y1,72)) — (a(r),d’(r),b(r),t(r)) to be continuous, and derivable
wrt 1 and wrt 9, for any given r > Ry.
We define by induction, for (z1,y:) and for (x3,ys3)

(a0, Bo) = (¢,0) and  (oy1, Brt1) = (o, Br). (3.711)

For (z2,y2) and for (x4,y4), we exchange the role of z and y, that gives

(0, 680) = (0,¢) and (agy1,Ber1) = P, Br)- (3.72)

The proof of the continuity of (d,v1,v2) — (ag, &}, Bk, B, )(r), for all k follows from
the Lebesgue Theorem and from an induction. We denote v : 7+ r.
Then we prove that there exists C' > 0 depending only on X and independent of Ry, such
that for all » > Ry and all & > 0,

for j=1,3
_ -1 < g _ -1
(@41 = a)C(r) < 5 ([(ar — ar—1)C | oo (Ro 400
1Bk = Br=1)¢ V2| oo ([Ro 00D (3.73)
and o
| (Bra1 — Be)H(r) < e — a-1)C | oo ((Roy 400
1Bk = Br=1)¢ )| oo ((Ro 00D (3.74)
and for j = 2,4
_ C _
(g1 — ar)CH(r) < 72(”(0% — 1) V|| Lo (R0

I (Br = Be=1)C l poo (R, 400]) (3.75)
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and

|(Bet1 — Be)¢H(r) <

+[1(Br — Be=1)¢ I Loo (R 400]) (3.76)

C _
;EOKak_(%—ﬁC]VﬂhwﬂR+wD

Then we define

2(r) = ao(r) + Y (akr1 —ax)(r) and  y(r) = Bo(r) + Y (Brs1 — Br)(r)  (3.77)

k>0 k>0

Since C is independent of Ry, we choose Ry > 0 such that (CR; 2) < 1, the sums
¢7'z(r) and ¢~ '2y(r) (or (~'v2x(r) and (~ly(r)) converge, uniformly wrt (d,y1,72) €
K. Consequently, we get together the existence of a solution (x,y) having the desired
behavior at +oo and the continuity of the map (d,y1,7v2) — (x(r),y(r)).

Then we prove the continuity of (d,v1,7v2) — (2'(r),y'(r)) in K and the behavior of
(2',y') at +00 by the uniform convergence of

¢S (b —ap)(r) and (T2 (B — Br)(r).

k>0 k>0

We prove the derivability wrt ~;, for i = 1,2, of (z(r), 2'(r), y(r),y'(r)) by the the uniform
convergence of

> (e - a0, ad Y

k>0 k>0

52%(6k+1 — Br)(r)

and

5 9
Y 5y (@i —a)(), - and 7Y 3, B = Bu)(r).

k>0 k>0

(For j = 2,4 we change the place of v2).

We will use the following estimate, which is not difficult to prove, by an integration
by part. Let o € R and 8 > 0 be given. Then

Foo 2 2
/ s%ePids < St Bt forall t > (3.78)
¢ B B
and .
2 —2
/ s%eP5ds < 2Pt forallt > R > —ea (3.79)
R B B

In what follows, K is compact and is as in (3.70).
We will detail the proof of the construction only for the first solution (z1,y;) and we will
only indicate the way to adapt it for the other three solutions.
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3.1 The greatest behavior at +oo : the solution (zy,y;).

Proposition 3.11 For every compact subset K of {(d,v1,72);0 < 11 < 72;d > 0; ghaul +V2

d? > 0}, there exists a solution (x1,y1) of (3.69), such that there exist C and Ry dependmg
only on IC and such that

V2r V2r
e e
|$1(7“)—7|+|?/1(7")| <C \/;7“_2
/ eV / BeﬂT / 4eﬁr
— < - < -
|2 (1) = ( \/77)!*07" ik ly1|(r) < Cr 7

and for all r >0

(d,v1,72) = (x1(r), 2 (r), y1(r), 1 (r)) is continuous on K.
Moreover (x1,2),y1,9})(r) is derivable wrt v1 and v2 and we have, for i =1,2

V2r

63:1 8y1 e _9
> < (——
forr > Ry ] () ()_Cﬁr logr
and 3
833,1 391 A
< .
o |(r) \(r) <C W r—logr (3.80)

where C' remains the same when (d,'yl,’yz) e K.

Let us remark that at this stage, the solution (z1,y;) depends on K.

Proof Let Ry > 0 be given. Let us consider the following fixed point problem, with
x and y defined in [Ry, +00]

r _ 2
vo= T T [T (T0)72 [y 8T (Goy = 3(1 = f7 — S)a)dsdt

y =" féo t—2n—1 f;; "+1( x—(1 —fd ?)y)dsdt.

Let us denote it by
(z,y) = ®(z,y).
Let ¢ = J4. We define (ag, i) by (3.71). Let us denote

B =C(K,C([Ro, +o0])).
First, we prove that, for Ry large enough,
when ((aj —a;—1)(J4) ™ (8 = Bj-1)(J4)"'v?) € B®  then
((ej41 = a)(J4) ™ (Bj1 = B)(J4) " 1v?) € B (3.81)

For this purpose, we write

t 52 5 d2
/ ST (1B — B | 4311 — 12— L flog — ap [)ds
Ro S S
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Ro

where we have used |1 — fg — g—§| < 5M4'
Then there exists C, depending only on K such that ¢2 < C. Using (3.79) and (3.78), we
deduce that

t 2 2
(727 [ s C3(B= Aien) +30 £ = Slen = an )

is integrable on [r,+oo[, when Ry > %, uniformly for (d,~1,72) € K and, by the

Lebesgue Theorem, that a1 — «; is continuous wrt (d,y1,72) € K.
Now, we write

t 52 d2
[t an = ai) = (0= £ = )0~ Aiolds

o2
Ry S

e 1 B M _ B
< g Cs +1J+(§H(J+) l(ak—ak—l)||L<><>([Ro,+oo})+g8 210 2 (Br—Br—1) | oo (R +00) )5
0

We use (3.79), with o = n — 1 and for &« = n — 3. In any case, we have |a| < C, for some

72(n757%)

C > 0 depending only on K. Then, we chose Ry > in order to conclude that

d2
82

75—2n—1 /t STH‘I g(ak — Olk—l) — (1 - f2 - )(Bk - ﬁk—1)|d8
Ro 52 ’

< Ct" 2T (1) ™ Hak = ap—1) | 2o ((Ro +00]) + 11(T4) T 2 (B = Bre1) o ([Ro +-00]))

where C' depends only on K. Moreover 3 < n+2 < ¢, where ¢ depends only on K. Then,
this quantity is integrable in [Ry,r[, uniformly wrt (d,~1,72) € K. We deduce, by the
Lebesgue Theorem, that §;11 — (; is continuous wrt (d, v1,72) € K.

We have proved (3.81).

Now, in order to prove (3.73), we estimate, in view of (3.79) and for Ry > -2

2V2
“+o00 1 t
J+/ (J+)2/ s(J1)%s Adsdt
T t Ro
+oo 1 2 too 2
<J I e A / 4t < Cr 3. 3.82
<h [ ST ttaes eI 382)
This gives (3.73), with ¢ = J, and this gives also
|l — apl(r) < Cr3J,. (3.83)
In order to prove (3.74), we estimate, for
—9p -7 9 7
Ry > M and Ry > M (3.84)
V2 V2

r t J
T"/ t_Q"_l/ S”H—Idsdt
Ro Ro §
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r 9 T
—gn [ gl oV g < / iR < Or 3, 3.85
/R e ) 5 . (385)

This gives (3.74)
and gives also

81— Bol(r) < Cr2J,. (3.86)
By (3.73) and (3.74) give, for all k > 1 and r > Ry

(J4) Haker — ak|(r) + (J4) 7 Begr — Bel(r)

< Cr Y (CRG®) HI(4) ™ (o = aollzoe o oot + 1(71) ™ (B = Bolloe (o 4sep)- (3:87)

Defining x; and y; by (3.77) and choosing Ry to have CR;? < 1, the sums converge
uniformly wrt (d,v1,72) € K and then the continuity of (z1(r),y1(r)) wrt (d,v1,72) is
now complete. But while the first condition given in (3.84) remains to Ry > % (since

n > 1), the second one makes Ry depending on K, and consequently, the definition of
(z1,y1) depends on K. We remark also that C' depends on K, too.
Then, we write

21 (r) = T4 < lonsr — axl(r)

k>0

< Or2 T4y J(CRYFHI() ™ e = a0) o qrooof + 1(74) ™ (B = Bo)l| o= (10 +o01)
E>1

a1 — apl(r)

and (3.83) gives the desired behavior at +oo for ;. A similar proof gives the desired
behavior of y; at 4o0.
Now, let us turn to (2 (r), y;(r)). We write

(A1 — @) (1) = (J2) T (r — ag)(r)

2

~1 2
[ a1 (66— ) = 30— 77 - ) an — an )i

Ro

Consequently, using successively (3.79) and (3.87)
Ty = agl(r) < CI g — ag|(r)
+Cr 2 (| J57 2(Brk — Br=1) | Lo ([Ro o0 + 195 (0 = k1)l Lo (o 00
< Cr(CRy) (115 (01 = o) e roroc + 15 (B1 = Bo)lLs(iRo.+ocp))- (3-88)

This gives the convergence of

Z J ak+1 aj,)(r)

k>1

uniformly wrt r € [Rg, +o0o[ and wrt (d,~1,72) € K. Then we directly estimate

|y (r) = ap(MI(J4) ™" < (J1) " Han = aol(r) + Cr L (J4) 7 < Cr?
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and we deduce the desired behavior at +o00
T () = T < 0

Now we write

" n+1 i _ (1 Q_CLQ .
s (82(5k Br—1)—(1—f3 82)(0% ag_1)ds

(B =Br)(r) = ”Tn_lr_n(ﬁkﬂ—5k)(7“)+7“_n_1/

Ry
and consequently, using (3.79) and (3.87), we get for k > 1
3 (J4) By = Bil(r) < T B — Bil(r)
+Cr 2 (17 (o — ak—1) | 2o (o ooy T 1527 (Br = Bre1) | 2o (o 00
< Cr 2 (ORG) (5 (01 — 00) e gt o + 195721 — o)l (e ep)- (3:59)

This gives the convergence of

> 3T T Bry — Bil (1)

k>1
uniformly wrt 7 and to (d,7y1,72) € K. Now we estimate
181 — Bol(r) < nr Y By — Bol(r) + Cr~ T, < Or~tJ,
and we deduce the desired estimate
ly1(r)] < Crty.

Let us turn to the derivability of (z1(r),y1(r)) wrt 1 and ~e.
Let us assume that ap — ap_1 and By — Br_1 are derivable wrt ~;, for i = 1 or ¢ = 2
and that (log V)_l(J+)_1%(ak — ag—1) and (log V)_l(JJr)_l%(Bk — Br—1) belong to
L>®([Ro, +o0[) and are continuous wrt (d,v1,72).

On one hand, we write for i =1 or ¢ = 2, using g%j = (—=1)%y;,
0 &2 , d?
|8%(J+(?(ﬂk‘ = Br-1) = 3(1 = fa = —5)(ak — ag-1))|

_ _ _ _ 0
< C(J)?s (1T V2 (Br=Br—1) || L ({Ro 400 Hlog 5]l (log v) 71 (1) 1V2877(6k_5k71)HLOO([RO,—i—oo[)

_ 1 0
+log s| logv) 7! (J4) 187,(041@—Oék—l)\|Loo([Ro7+oo}))-

Then we deduce that ay41 — ay is derivable wrt v;, by the Lebesgue Theorem. Moreover,
since C is independent of (d,~1,72) € K, we have that %(akﬂ — ) is continuous wrt
(d,v1,7v2) and we have, using (3.79)

0

-1
()7 I

+o0 t 2 2
@n=anl() < [ 07 [ sl 0GB =30 gm0 st
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+0o0
< C/ T B — Br=1) |l oo ((Ro,+-00])

_ _ _ 1 0
+logt(]|.J; " (log v) 1V287,(5k—5k71)||L°°([Ro,+oo[)+\|J+1(10gV) 187,(ak_akfl)HL"O([RO,Jroo[)))dt

that is

(Oék+1 —ap)|(r) < Cr3 ([T P (Br = Bre=1)ll Lo (R 400

1.2

_ _ 0
+logr([|J7 ! (logv) 1w 7,(5k—5k—1)HLw([Ro,+oo[)

! (3.90)

_ 4 0
+[|J5" (log v) 9; (%~ k1) Lo 4o0))

where C' is independent of (d,~y1,7v2) € K.

(9n

On the other hand, we use = i% and we estimate, for s > Ry > e

) 2
0 8n+1(£(ak —ap_1)—(1— f7 — %)(51@ = Br-1))|

52

J o - a
< 055" M logs(l1(J+) ™" (==l o (o ool H 108 ) ™ (J1) ™" 5 (k=)< (o o0))

I. . .0 )
+CS%FS log s(||(log v) 1 (J4) 1’/28 -(Be—Br—1)l Lo ([Ro,+-00]) I (J+) "2 (Be—Br-1) | (R +00]) )-

And then we use the Lebesgue Theorem to prove by induction that ;1 — 8y is derivable

wrt v; and we use (3.79) to get

o t 2 d2
et [ o= ) = (0= = 538~ B

< CJt7" 2 log t(1(J1) ™ ak — k1) | 1oo (R 4o00)) + I1(JH) T2 (B = Be—1) | 120 ([Ro,+00))

_ 4 0 _ _ 0
+[l(logv) "' (Jy) 187,(Oék—akfl)HLOO([RO,+<>O})+H(logV) Y(J4) 1’/287‘(5k_/3k71)HL°°([RO,+oo]))

with C' independent of (d,~1,72) € K.
Integrating this inequality on [Rg, 7], we get the same upper bound, with r in place of ¢.

Then we can estimate

" 8 —2n—1 ¢ n+1 52
SO (M gk — o) = (1= fi - )(ﬂk—ﬁk 1)))dsdt|

Ro 8774 Ro

by the same upper bound. Finally, we get, when logr > 1

(J+) ™' (logr)~'r 8i(5k+1 = Bo)l(r) < Cr2([1(J4) ™ (o — 1)l o= (Ro,+oc))

_ _ .0
+[(J£) "2 (Be = Br1)ll oo ((Ro 0] + I(log ) () 187- (ak — k1) Loo ([Ro,400])
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0
+[(log ) ~H(J1) T2 8; P = Bre=1)lloe1ro,+oc))- (3.91)

But the sum of (3.87), (3.90) and (3.91) leads for all £ > 0 to

1(J5+) ™ (kg1 = )l Loo ((Ro,oop) + I1(TH) ™ 02 (Brtt — Bi) | Lo (o +00()

1,441 0 1,4 \—1.2 O
HlQog )™ ()™ 5 (or—an) o o ool H1 (08 2) ™ ()™ 5 (Bras =Bl o (o ool

< Co(CRy*)*

for some C' and some Cj depending only on K.
So, using the sum of (3.90) and (3.91) again, we deduce, for all k£ > 1

(08 7) (1) (@ = anlr) + 72 (Bt = B01(1)

< Cr2Cy(CRy?)F1

Choosing Ry large enough (since the constants are independent of Ry), we deduce
that the sums 5
> I(T+)(logw) ™ 18 (k1 — ) || Lo (R, +o0])
k>0 i

0
and Z” logl/ J+) 14 a(ﬁlﬁkl ﬁk)HLoo([Ro,+OOD

k>0
are convergent, uniformly wrt (d,~1,72) € K. Recalling the definition of x; and y; by
(3.77), we deduce that x and y are derivable wrt v; and 7,. Moreover, since dao‘o = g—g(i’ =
0, we get
am
(logr) ™ (J4) M5 1(r) < > (ogr) ™ (J1) (kg1 — aw)(r)
k>1
Cr=2> " Co(CRy?)*

E>1

and this gives
81‘1

(log) ~H(J4) "5 I(r) < Or 72

07
The same proof works for (logr)=*(Jy)™? 2|8y1 |(r). This gives the first part of (3.80).
The proof of the behavior of g—ﬁ and of 8%1 at +oo is left to the reader.
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3.2 The intermediate blowing up behavior at +occ : the solution (z3,ys).

Proposition 3.12 For all K as in (3.70) and for some Ry > 0 depending on K, there
exists a solution (xs,ys) of (1.7), verifying the following property
there exists C' depending only on K and such that for all r > Ry

|3 ()| + lys(r) — "] < "2, a5 (r) + g3 (r) — ™| < Cr 3
and for all r > 0

(d,y1,72) = (23(r), 253(r), y3(r), y3(r)) is continuous on K.

Moreover, (x3,ys) is derivable wrt y1 and v2 and we have

81'3 8y3 n n—>2
—Z2(p) — <
5 )+ 152 () = " logr] < Cllogrlr
ox! 0 _
5o l) + \y3\<><cuogrrr"1 (3.92)

forr > Ry and for C dependmg only on K.

Proof We follow the proof of Proposition 3.11, with the same notation. Let us
indicate only what is different. We consider the following fixed point problem, with z
and y defined in [Ryp, +00[

z =Jy [ (Jy) 21fR sJo( SQy 3(1— f2 — L)z)dsdt

y =rtn [[ ot s (M — (1— 2 — B)y)dsdt
We chose ((r) =™ and («ap, Bo) = (0, ().
We let the reader prove, for all r > Ry > 1

r" oy — ayl(r) < (II( — i)V oo (g o)

H[(Bj = Bi—1)v™ " || Lo ((Ro,4-00])) (3.93)

and

r B = Bil(r) < 5 (ll(ey — 1)V 2| Lo ((Ro o0))

+1(85 = Bi—1)v™") Lo (R, +00)) (3.94)

We also remark that the constant C is independent of Ry and does depend on K. In the
course of the construction of (x3,y3), we need the condition CRy 2 < 1. We can conclude
that the choice of Ry, and consequently the solution (z3,y3) depend on K. The end of
the proof of Proposition 3.12 is left to the reader.
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3.3 The least behavior at +oco : the solution (z9,¥s).

Proposition 3.13 There exists a solution (x2,y2) of (1.7) verifying, for all compact
subset KC as in (3.70) there exist C' and Ry depending only on K and such that for all
r > Ry

w2 (r) = J-| + Jy2(r)| < Cr72J_,  |2h(r) — (J-)'| + |ya(r)] < Cr—2J

and, for all r > 0,

2 2
(d,71,72) = (2(r), 25 (r), y2(r), y4(r)) is continuous on {(d,71,72);0 < 1 < y25d > 0; 1322 —

Moreover, (x2(r), xb(r), y2(r), y5(r)) is derivable wrt v1 and 2 and, fori=1,2

\ < CJ_r?|logr| 2\ + ’8y2| < CJ_r73|logr| (3.95)

for r > Ry and for C' depending only on IC.

Proof Let us consider the following fixed point problem

x :J,+J,fioo( 21f+oos,] (SQy 3(1—fd —8—) x)dsdt

2 2
y =r" fioo 2l fioo s*”H(%x —3(1—f3— ‘j—g)y)dsdt

We define, with the usual notation, ¢ = J_ and («, 5o) = (J—,0).
Let (d,v1,72) € K, where K is a compact set, as usual. We let the reader use (3.79) and
(3.78) and verify that, if Ry > 0 is large enough, depending only on X, we have for all
r > Ry

[(J) " a1 — ag)l(r) < %(H( = 0j=1)(J=) " e ((Ro +oo)

+H1(8; = Bi—1(J=) ") oo ([Ro 400]) (3.96)

and
C
2

r?(J) 7 NBjr = B) (T M (r) < = (e = aj1)(T=) ™l oo (R, +00])

H1(Bj = Bi=1)(J=) ") oo (R 400])) (3.97)

where C' depends only on K and is independent of Ry.
The rest of the proof is left to the reader, too.
We remark that, for this solution, the construction doesn’t depend on K.

3.4 The intermediate vanishing behavior at +oco : the solution (z4,ys).

Proposition 3.14 For all compact subset K as in (3.70), there exists a solution (x4, y4)
of (1.7), verifying the following property
there exists C' and Ry depending only on K and such that for all v > Ry

24 (r)| + lya(r) — 7" < Cr™720 [ (r)] + [ya(r) + ner " < Cr S
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and, for all >0
(d,v1,72) = (24(r), 24 (r), ya(r), y4(r)) is continuous on K.
Moreover, (x4, 2, ya,y)) is derivable wrt 1 and o and, for i =1,2
n—2 9y, n—3
| < Cr~"*logr and | | + | | < Cr~"“logr (3.98)

for r > Ry and for C' depending only on K.

Proof Let Ry > 0 be given and let us consider the following fixed point problem
r _ 2
v o=J [p (JO) 2L s (Sy—3(1— f3 — G)a)dsdt

y =T [L T [ s (G = 31— - B)y)dsd

We define ((r) = r~" and (ao, So) = (0,77™).
Using (3.79) and (3.78), we can verify that for Ry > 0 large enough depending on K and
for all » > Ry

n C
r +2|0‘j+1 —a5l(r) < 72(”( — o))" 2||Loo([Ro,+oo[)
(85 = Bi—)v" | Lo ((Ro,+o0D)) (3.99)
and c
1841 = Bil(r) < 72(”(0‘3' - ijfl)Vn+2||Loo([Ro,+oo[)
(85 = Bi—1)V" | ((Ro,+o0D)) (3.100)

where C depends only on K and is independent of Ry. The proof of the proposition is
left to the reader.

4 The smallest behavior at zero is relied with the greatest
behavior at infinity

For all (d,~1,72) € D, the solution that has the smallest behavior at 0, is well defined,
to a multiplicative factor. In all what follows, we call w; this solution, that is (ai,b;) in
Theorem 1.3. In the same way, 72 = (u2,v2) is a solution that has the smallest behavior
at +o00, without ambiguity. Now we can enonce

Proposition 4.15 When d > 0 and when v5 > v1 > 0, (722 + 712)/2 > d?, then the
behavior of w1 at +00 is an exponentially increasing behavior.

Proof Let us denote w; = (a,b) and let us define z = a+b and y = a—b. Using Theorem

1.3, we have z(r) ~o 772 and y(r) ~o —r?2. Then we have x(r) > 0 and y(r) < 0 near
r=0.

38



Let us prove that for all » we have z(r) > 0 and y(r) < 0. Let us suppose that
x(r) > 0 and y(r) < 0 in [0, R[. Combining the first equation of the system (1.7) with
the equation (1.3), we get, for all r < R

d2

T 2
' fa = rfjali+ [ 2
0

We deduce that

xfdds+u2/ Zfdds—Q/ sf3zds = 0.
0 0

,
rfd( ) (r) > 2/ sfixds. (4.101)
fa 0
then + increases in [0, R] and consequently z > 0 in [0, R]. We deduce that z(R) > 0.
Moreover, combining the second equation of the system 1.7 and 1.3, we get
-y +d
[ry' fa — 7)o + / 7 yfdds 4 ¢2 / = fads =0
0

and consequently
2

eSOk /0 T s (4.102)

Then }— increases in [0, R|] and consequently y < 0 in [0, R]. We have proved that

x(r) > 0 and y(r) < 0 for all » > 0. We have now that (4.101) and (4.102) are valid for
all r > 0 and we know that f; ~yo 1. Then the behavior of x and of —y at +00 cannot
be a polynomial increasing behavior. Now let us use Theorem 1.4 and let us identify the
behavior of (x,y) at +o0c0. Then x and y have an exponentially increasing behavior at +oo.

We can now prove the following

Corollary 4.1 When d > 0 and when vo > v1 >0, (V2 +72)/2 > d?, then the behavior
of my at 0 is the greater blowing up behavior.

Proof Let (a,b) and (u,v) be two solutions of (1.6). Multiplying (1.6) and integrating
by parts, we get easily, for all r; > 0 and ro > 0

[r(a'u —u'a+vb —v'b)]12 =

T1

Then, if (a,b) and (u,v) correspond respectively to w; and 72, we get a real number
C # 0 such that
Em r(a'u —u'a+ob —v'b)(r)=C
o0

and consequently
li(r)n r(a'u —v'a+vb —v'b)(r) =C.

Considering that (a,b) ~o (o(r??),772) and in view of Theorem 1.3, that gives all
the possible behaviors at 0, we conclude that the only fitting behavior at 0 for (u,v) is
(u,v) ~o D(o(r"),r=72), for some real number D # 0.
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5 The eigenvalue problem

In this part, we give the proves of Proposition 1.1 and Proposition 1.2.
In what follows, we consider that d > 0, that v > 1 > 0 are given and we suppose that
BEE S P2

3 .

5.1 Proof of Proposition 1.1.

To begin with, using the notation of Proposition 1.1, we suppose that p(¢) — p and that

B+i o
2

@We — wp on [0, R], for each R > 0. If @ — pud? > 0, we define ng = pd?.

2 2
Lemma 5.1 Ifwy blows up either exponentially, or like (r"0, —r™) and if % — pd? >

0, then we have % > C, for all € small enough, where C > 0 is independent of €.

Proof Let w. = (ac,b.) € H,, be an eigenvector associated to u(e). Using (1.13), we
write

1 1 2 2
a8 |- ey = [Cra? e+ et e 2024 L P b r
0 0

We use the definition (1.17) of mg(e) to get

1
“&f)/o r(1— £2)(a2 + B2)dr

1 1 .2 2 2 2
mo(e —d —d r
> g§ )/0 r(1 —f2)(a§+b§)dr+/0 (B—a? + Zb? o+ 5 %(ac +b.))dr.

Now, we use the trick of TC Lin (see [6]). Letting b. = Ta., we consider the map

vi—d -

H:7— +

4 rf(1+7)° (5.103)

and we minimize this map. The minimum is attained for 7y verifying

2_d2
(2= f) +rfi =0
and then
3—d?
L+70=S5—0p ——
B
and consequently
2 _ 2 ) 3—d?
vy —d T V5 —d
)= B (B g2
— +rf] — +rf]

We have



Moreover

for all 7 > 0, H(1) > H(1)
Since we have suppose that ghast)} +72 — d? > 0, there exists some constants C; > 0 and

Ry > 0, independent of 7, such that forall 7 >0

H(r) > G for all » > Ry.
T

Then, for all R > Ry and all ¢ < }%, we write
Ro R
/ He@mdr > [ HEO@E@)dr + | HE)aEr)dr.
0 Ry

Now ag blows up exponentially at +o0, or as r™. We can choose Ry large enough and a
constant Cy > 0 to have also

2 eV
ap(r) > 02(7

Since a. — ag as € — 0, uniformly in [0, Rp], we can chose g such that for all € < g

)2 or Cor?™ for all r > Ry.

Ro 1 Ry
H(r)dz(r)dr > 5 H(r)ag(r)dr.
0 0

Moreover, for all R > Ry, a. — ag as € — 0, uniformly in [Ro, R]. Then, there exists
g(R) such that for all € < ¢(R) we have

R

~9 Cy R m R 9 R e\/ir )
H(r)az(r)dr > — —r"dr  or H(r)az(r)dr > — —( )=dr.
Ro 2 Ry r Ry

And finally, for € < ¢(R), we have

— mol& 1
PO [ a4y 5 [ B

22
CiC2 (R 1 2n0
" { 2 Jryr" dr
C1Cy R 1 e 2
or =L [p T( ﬁ ) dr
where C7 and (s, given above, are independent of R and . But we can choose R such

that the lhs is positive.
We deduce that

u(g) —mo(e) > Co,
for some Cy > 0, independent of e, and for £ small enough. Then we use Theorem 1.5
(i), that gives % > C. The lemma is proved.

Now let us enonce the following

Lemma 5.2 If w = (a,b) is a bounded solution of (1.6), then there exists an eigenvalue
w(e) such that (u(e) —1) — 0.
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Proof Let us suppose that w = (a, b) is a solution of (1.6), a and b being real valued
functions. Let % < N < 1 be given, let us define w = (a“, b4) by

cut pcut _ (CL, b) (T) fOI‘ 0 S r S g
(a5, )()_{(a,b)r)(l—h(r)) for ¥ <<l
where (r—g)?’
h(r) = (% — %)3
We have

, 1
wette'™ € (H* N Hy)(B(0, 2))-
We use, for € small enough
-n N 1 cut 2 1
la(r)| < Cr™"™ for —<r<o |a®| <la| and r(1-—f7) = O(;) at +00
and we verify that
< W — (1 — f2) (W™ — w) > (12x12)(B(0,1))=

1

/NE (1= £2)((a — )2 + (b— bU)2)dr = O(e2") as & — 0. (5.104)

€

Then, let us define
() =w (L) 0<r< 1.
€

Let ((;)ies be a Hilbertian base of H,, associated to the eigenvalues y;(g), and such that
< CGi, Gi >(r2xr2)(B(0,1)= 1.

—cut Z o CZ

e

We have

and

< CECUt7 LUCUt >(L2><L2)(B(0,1))_ (1 - f2) CUt Cut >(L2XL2)(B(O7%)): Z Oé?.
e

Since
+oo
< (1= fRweut eut >12(B(0,2) " / r(1— f2)(a® + b?)dr as e — +o0,
75 0
there exists I C J, such that
I#@andforallic I, afA0, ase— 0.
Now we write
—(T+C0)@™ =Y ai(ps — 1)CG

e

42



that gives
< —(T+ C)w"’“t, Zai(,ui -1 >’H91,’H71: Za?(ui — 1)2. (5105)
iceJ icJ
1-f2
e?

But (7 +C)w is represented by a function of L?(B(0,1)) x L?(B(0,1)), and C =
So, using this identification, we can estimate the rhs of (5.105) as follows,

2
—CU —CU € —CU
— < (THC)@™, Y " ai(pi=1)G >y, ., =< (THC)T™M, 7 (THC)@™ >(12x12)(B(0.1))

icJ
1 2 —cut! 2
- acut” a i 1 — —cut 1 N
= /N T fQ((aCut + T T%acut _ 5—2f2(a‘mt +5) + ;2(1 _ fZ)acut)Q

—cut!! ECUt/ ’}/% —cut 1 t . Teut 1 o\ TCut\ 9
1 r . acut’ 72
— /N - fg ((acut + o T%acut o fg(acut + bcut) + (1 o f(%)acut)Q
cut! bcut/ 7% cut 2( . cut cut 2\zcut)2
Let us estimate each term, as ¢ — 0.
We use
S O(r®) at 400
1—f2
to get

m |=

r (acut)Q .
/N deT = 0(52 )

Taking advantage that a +b = O(r~"72) at +o0, a similar estimate for a® 4 b gives

m |

r 2/ cu cut\2 2n
/N 1_7fd2fd(a t+b t) dT:O(c‘f )

Now
1
a =d'(1=h)+ah’ and |d|<Cr ™' and [VE h?dr = O(e).
We deduce that L ,
= r (acut )2 B on
/N —p e dr = O(e™).
Now, since
1

ld"| < Cr~™"2 and /NE R"2dr = O(£%)

€
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we get

% r cut!! n
/f! e = O™

We have proved that

1

€ r cut! aCUt, ’71 cut cut cut cut 2n
i T D ) — (- ) = 0
= d

and with the same proof we have

1
z bcut’ 2
cut” M2 pcut g2/, cut cuty _r2\pcut\2 _ 2n
[Vl—fd ® — = b = fa(a™ ) = (L= [)6) ) dr = OE™)

and finally
< (T +C)w* Zal wi — 1)n; >y

ied

2, = O™ (5.106)

71’

But (5.106) and (5.105) give
Y ai(u—1)* = 0",
e

So, for all 7 € J we have

|ai(ps — 1) = O(").
Since n > 0, we are led to

pi(e) =1 —0ase—0, foralliel.

We have proved the lemma.

Now, under the conditions of Lemma 5.2 and with the additional condition that n > 1
and that the least eigenvalue is greater than 1, we can improve the conclusion of Lemma
5.2 as follows.

Lemma 5.3 If n > 1, if my, 4,(€) > 1 and if there exists a bounded solution of (1.6),
then there exists an eigenvalue p(e) such that

p(e) — 1

— 0.
o2

Proof Using the notation of the proof of Lemma 5.2, we write

fcut Z a; Cz

ieJ

and consequently

— < (T +C0)w*, v >H My = Z o (i —

icJ
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To make the proof more easy, and since we don’t need anymore the continuity of the

second derivatives at g, we use another definition for w®?, that is now
W () = wir) if 0<r<?¥

wr)(1—=h(r)) if T <r<

where N
r_ N
hr) = (—=)?

e €

and N > % We will have to chose a suitable N, depending on €.

Then
— < (T +C0)m, vt >

wcut _ w) >y

Y1 ’H’Yl

= — < (T+O) (@™ —w),(

: ” 2 v 72
(T(acut o a) +T(bcut . b) _+_71(acut_a)2_’_72(bcut_b)Q_T(l_fg)((acut_a)2+(bcut_b)2)

B
N T r
1>

+rf2(a® — a + bt — b))dr.

We have . )
cut
‘CL CL‘ S C€2n+1h2(7“)
T

where C is independent of N, when % <N <1

Since we have )
B 1.1 N
R (r)dr = —(- — —
[, e =2C -5,
and
|acut + bcut —a-— b| < CT‘_n_Z

we deduce that

L 2 2
[ O B b (1= (@~ 0 0 -
+r(1 — £2)(a™ — a + b — b)dr < C1(1 — N)e™

where C] is independent of V.
Now
(a®* —a) = —d'h — ah'.

On one hand, we have

1 1
/NE rah2dr < Ce?t! /NE R2(r)dr < Ce¥(1 — N).

£

On the other hand, we use
1




to get

E 1
/N th/2dr S C€2n+1m.
Finally

ti
| < (T +C)@™, @™ >3 0., |

2n+1
— N’

where C and Cy are positive and independent of ¢ and of N, when 5 <N <L
Then, we take

< Cie®"(1—-N)+ 02

1—-N=¢% where0<a<l,
to obtain

‘ < (T+C) cut o >’H’ o, | < C(€2n+a _’_2,_:2n+lfo¢)7

10 —
where C > 0 is independent of .
Then

‘Za ,uz _1‘<C(2n+a+€2n+1 a)
icJ

And, since we have supposed, for all i, that u;(¢) — 1 > 0, we have

O<Za Nz _1 <C(2n+a+€2n+1 a)
i€

But we verify that we still have
1
[ = D+ a0
N
to deduce, as in the proof of Lemma 5.2, that
IAr#£0, viel, «a; A0.

Then,
Viel, 0<pu(e)—1< C(€2n+a n €2n+1—a)'

The lemma is proved.

The proof of Proposition 1.1 follows from Lemma 5.1 and Lemma 5.2.

5.2 Proof of Proposition 1.2.

The proof for n = 2 and d = 2 is originally in [§].
Ford>1andn>1,let z = r,{il and y = df—;‘f. A calculus gives

{ _(re) + 223 E:’g_r(1_3fd2)x = 22k fa(1 - f7) (5.107)
—(ry) + Ly —Sx—r(l—fHy =0
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For a = IQﬁ and b = 2 , we deduce that

2
{wdy+ﬁa+ﬁb7ﬂ.2ﬁm = -2 fa(1—f3)
n—1

—(Tb/)’+ﬁb+f2a—r(l—2f2)b _ (1—f2) (5.108)
r d d T yn—1 d d

2+ 2 2.2
where, as usual, y; = [n —d|, 2 =n+d, y% = % and &2 = %
We verify that
T~y ~o driT + 042 and, at +oo, £ = O(r ™), y=0(""),
and consequently that

a ~o 2dr" + O(r*"2) and b ~¢ O(ri"*2).

let us suppose that d > 1 and that 1 < n < d+ 1. We can multiply the system (5.108)
and integrate by parts. We obtain that

+0o0 ,72 ,72
| e D 0 ik b (1= f) ()
0

+oo _ n —
N / fnn_l”fdu ~ f)(a + b)dr

This gives

S (ra” + rb’2 71 a® + '72 V2 +rf3(a+ b)?)dr

0 (1—fd)(a2—|—b2)dr

=1-C,

with

o 0+°° %?fd( — f)(a+b)dr

0 (1—fd)(a2+b2)dr
Now we use an approximation argument, valid as soon as n > 0. For example for a given
constant 0 < N < 1 we define

(a,b)(%) in [0, N]
(ae,b:)(r) = { = (a(r) (1—r)2 b(r) ((lfr)z ) - [N, 1]'

(1-N)2> 1-N)2

We have that (ae,b:) € H|,,—q and that

a2 + 702 + a2 + 202 4 v f(a. + bo)2)dr
fo f2 a2 + b2)dr

N
_ fos (’I"CLIQ + rb]/j ’Yl 2 + 72 b2 + er(a’ + b) )dr + O(€2n) (5109)

JoF (1 = f3)(a? 4 b?)dr 4+ O(e??)
—1— (), as ¢ tends to 0.
We deduce that, if 1 <n <d+1

Ch

Ma—n,dn(€) <1 — >

for & small enough and the proof of the proposition is complete.
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6 The proof of Theorem 1.4.

Let us consider d > 1. We can write the system (1.6) as

X' = MX with X = (a,rd’,b,r')" (6.110)
and

0 1 0 0

122+ % o rf2 0

M = d r d
0 0 0 1
2
rf3 0 —r(1—2f§)+772 0

We are going to use a resolvant matrix for (6.110). First, we have

Lemma 6.4 Let us suppose that there exists a bounded solution of (1.6). Then we can
chose a base of solutions, X1, Xo, X3, X4, for (6.110), whose third vector is a bounded
solution, and such that if we denote by R(s) the resolvant matriz, whose columns are the
vectors X;, i =1,...,4 and if we denote the second and the fourth column of R™'(s) by
Co and C4, we have

at 0 and when (d,v1,72) € D1 and v1 +v2 —2d —2 <0

O(s™M) O(s™2)
_ | o) _ O(s72)
Cg = O(S_ﬁﬂ) and C4 = 0(872)
O(S’Yl) O(SQ’YH-WQ)
and
at 0 and when (d,v1,72) € D1 and v1 +v2 —2d —2 >0
O(Sf'y2+2d+2) 0(8772)
O(S'yg+2d+2) 0(572)
C2 = O(s™) and  Cq = O(s~71+20+2)
O(s™M) 0(871+2d+2)
and

at 0 and when (d,y1,72) € Do

0(7(8)5*72+'Yl+2d+2) 0(8’71*’727-(8))

B 0(7(5)571+72+2d+2) B 0(571+w7.(8))
= O(r(s)) il Ci= | o(sreg(s)
0(371) O(S’Yl +2d+2)

and in any case, at +00

dnd_ dnd_

anJ dnJ

1 + 1 +

Corvvoe T | ayasn | MM G T | gy
—4/25™™ 4+/25™

where —16nv/2 is the determinant of R(s).
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Proof We can choose R(s) as follows

Ji J_ s~ s™
s(Jy) s(J2) —ns™™  ns™
R(s) ~+oo (J:) (J,) —s" ="
s(Jy) s(J2) nsT™  —ns™
e\/§ e—\/§s

\/; and the notation J_ stands for

To give the behaviors at 0, we return to Theorem 1.3. We have, for some ¢; # 0,
i=1,...,4

where, as usual, the notation J; stands for

O(s72H2042) (M) c38™M cqs™ N

0(8’72+2d+2) 0(8%) c3y1 8™ —cqyis N
If (d,71,72) € D1, R(s) ~o 1872 cy8 ™2 O(S'yl+2d+2) O(S%)
17287 —CoypsT2 O(sMH2+2)  O(s72)

where we use the notation
A1 = min{vy1, —vy2 + 2d + 2} and 1 = min{y2, —y1 +2d+ 2} f 1+ —2d—2#0

(if 71 +72—2d—2 = 0, we have to replace O(s7) by O(s7 log s) and O(s72) by O(s72 log s))
and

O(s72H2d42)  O(s7r2+2d+2) c3sT cat(s)
0(372+2d+2) 0(3772+2d+2) c3y18™ —cq87(5)
If (d,71,72) € Da,  R(s) ~o 1572 a8 2 0(571+2d+2) 0(7(5)52d+2)
172572 —Coyps T2 O(sMT2H2) O(1(s)s20+2)

where

s~V —g7M .
(s) = o Tf v # 0
—logsify1 =0

The determinant W of R(s) is independent of s, due to the fact that the matrix M
of the differential system has a null trace. Moreover, JJ_ = % Using the behavior at
+oo of R(s), given above, we deduce that W is the principal term, as s — 400 of

1 1 1 1
1 V2 —svV2 —-n n
S 1 1 -1 -1

V2 —svV2 n —n

that is
W = —16nv2.

A direct calculation of the suitable determinants gives the estimate of Co and Cy.

Now let us enonce
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Lemma 6.5 Let m., 1, () be the first eigenvalue, and let m be such that m., () = m
as ¢ — 0. If there exists a bounded solution (a,b) of the system (1.6), then we have
necessarly m = 1.

Proof From the definition of m., ~,(¢), we have that it decreases as € decreases to 0,
then we can define its limit m > 0. But we have supposed that there exists u(e) — 1,
then we have m < 1. Moreover, we can define w. € H,, an eigenvector associated to
My, 4, (€) such that there exists wo = (ao, bg) such that . — wp on each compact subset
of [0, +oo[. The condition m < 1 gives @ —md? > 0.

Since ag > —bg > 0, an examination of the proof of Theorem 1.4 gives that the possible
behavior at +oo for (ag, bp) is

either (r="°, —r=")  or (r™°, —r"0)

2 2
no = \/%—mdg. (6.111)

In what follows, we suppose that m < 1, so we have ng > n, and we want to reach to a
contradiction.
Since m < 1, we have by Lemma 5.1, that wy has a bounded behavior at 4+oco and
consequently

where

(ag,bo) ~o (r~ "0, —r="0)

and we recall that
ag + by = O(T’_no_2).

At 0, in view of ag > —bg > 0, the only possible behavior is
(a0, bo) ~o (er™, O(rMH27+2)),
for some ¢ # 0.

Let us denote Xy = (ag, ray, by, rbj,)!, the vector corresponding to wy. We have
X} = MXo— (m—1)(1 = £2)(0,7a,0,rb)".

let us define X, X5, X35 and X, as in Lemma 6.4. We are going to prove that there exist
some constants C; such that

4 4
XO = ZCZXl — (m — 1)2)21,
=1 =1

with R
X; = Xo0(r?) ato0 (6.112)

and

A~ —2 | —
{XQO(?” ) at +oofori=1,2 (6.113)

Xi = X;0(1)  at + oo fori=3,4
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We write

4
Xo=>_ Ai(r)X; (6.114)
i=1
We will name A;(r)X; the it term of Xo.
For alli=1,...,4, we have
0
" -1 2 ao
Ai(r) = A; — (m — 1)/ B @s -1 | 90 | as) (6.115)
1
bo

where the notation [ ]; means the ith line of the vector, and A; is a constant.

Let us examine the behavior of each term A;(r)X; at +o0o and at 0, using Lemma
6.4.
For the first term, we use the first terms of Cy and Cy4, given in Lemma 6.4, to obtain

0

R0 = 12) | % | ~roe OC T (a0 + b))

bo
s(O(s"apg + O(s™ b)) if (d,71,72) € D1, +72—2d—2<0

and ~q { s(O(s™212H 204 + O(s772by)) if (d,71,72) € D1, 71+ 72 —2d —2 >0
s(O(1(s)sM™12H2d+20) 1 O(1(5)sM ™ 2by)) if (d, v1,72) € Ds.

(6.116)
Let us define
0 0
+o0 . T
Bi=—(m-1) [ R s-gD | s ad %= [0 (R0 | D s
1 +oo
bg bO
We can write R
Al(’l“)Xl = (A1 + Bl)Xl — (m — 1)X1
and, using Lemme (3.78), we see that
X1 =X0(r™™72J) at +ooand X;=X;0(1) atO0. (6.117)
For the second term, we obtain
0
_ a 1
[R™1(s)s(1 - f3) 00 J2 ~400 O( (a0 + bo))
bo

s(O(sM22a0) + O(s72by)) if (d,v1,72) € D1 and v +v2 —2d — 2 < 0
and ~q { s(O(s72124244) + O(s72bg)) if (d,y1,72) € D1 and 71 + 72 — 2d —2 > 0
s7(8)(O(sMH12H2442) g0 + O(sMF72)by) if (d,v1,72) € Do
(6.118)
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Denoting

0 0
0 T
By = —(m—l)/ R (s)s(1=f7) | ) [lads and X5 = Xg/ R (s)s(1=f3) | [Jzds
1 0
b(] bO
we get .
AQ(T)XQ = (A2 =+ BQ)XQ — (m — 1)X2
with R
Xy = Xo0(r~ ™3], ) at 400
and, at 0

A O(rm+22+2q5) + O(r72+2by) if (d,71,72) € D1 and 71 +72 —2d — 2 < 0
Xo = Xo{ O(r2t2H4a0) + O(r72+2by) if (d,71,72) € D1 and 1 +72 —2d —2 >0 at 0.
7(r)(O(rntr22dtd) g0 1 O(r1 92 4 2)bg) if (d,71,72) € Do

(6.119)
For the third term, we obtain
0
—1  4v/2d?
R (s)s(1 — f? @0 ~Nico ——— s"(—ag+b
RS2 | e 1oy (a0t o)
bo

and
{ s(O(s™Mag) + O(s72by)) if (d,v1,72) € Dy and y1 + 72 —2d —2 <0
NO S(

O(s™"ag) + O(s™ 1 2442pg) ) if (d,~1,72) € D1 and 71 +72 —2d —2 > 0
s(O(7(s)ao) + O(7(s)s*2by)) if (d,71,72) € D2

(6.120)
Letting
0 0
0 R r
B3:—(m—1)/1 R (s)s(1=f7) | ) [Jads and X3:X3/0 R (s)s(1=f7) | 0 [Jads
bo bO

and keeping in mind n — ng < 0, we find
A3(T)X3 = (Ag + Bg)Xg — (m — 1)X3
with )
X3 = Xgo(l) at +00
and
) O(r=m*2ag) + O(r22by) if (d,71,72) € D1 and 1 +72 —2d —2 <0
X3 = X3¢ O(r —m*2aq) + O(r=n+24+4p0) if (d,y1,72) € Dy and 41 +y2 —2d —2 >0 .
7(r)(O(r?ag) + O(r*™by)) if (d, 71,72) € D2
(6.121)
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For the fourth term,

0
_ a -1 4d*v2 _,
[R™(s)s(1 = f3) 00 Ja ~too Tonva s s " (—ap + bo)
bo

and

s(O(sMag) + O(s271772bg)) if (d,v1,72) € D1 and vy +v2 —2d — 2 < 0
~o R 8(0(s7ag) + O(sMH2442p0)) if (d,y1,72) € D1 and v, + 92 —2d — 2 > 0
s7(s)(O(s7 )ag + O(s"F24+2)b) if (d,71,72) € Dy

(6.122)
Letting
0 0
0 T
Bu=~(m1) [ (B )s0-gD) | |lads and Ko = X [ (R0 | D [l
1 0
bo bo
we find R
A4(7’)X4 = (A4 + B4)X4 — (m — 1)X4
with X
X4 = X40(1) at 400
and

) O(rM+2ag) + O(r?1+7212p0)) if (d,y1,72) € D1 and 71 +y2 —2d — 2 < 0
X4 = X40 O(T'Yl+2a0) + O(T'Yl+2d+4bo) if (d, ’yl,’YQ) €Dyand y1+72—2d—2>0
T(r)(0(r"*2ag) + O(rM 2 4bg)) if (d,71,72) € D2

(6.123)
Summing the four terms, we find
4 4
=1 =1

We collect (6.117), (6.119), (6.121) and (6.123) and we use the expansions of X, Xo2,X3
and X4 at 0 and at +o0, given in the proof of Lemma 6.4 (the columns of R(s)). We get
(6.112) and (6.113).

But Xy is bounded at 0. We infer that Ay + By = A4 + B4 = 0.

But X is bounded at +o0, too. And X; is bounded at +oc, for all i # 4. Since we have
also X1 >> X4 at +oo, we infer that A; + B; = 0 and that X4 must be bounded at +oo.
Returning to the definition of X4, we must have

“+o0o
[ mEtesa-gh | fuds=o
0
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and consequently

0
Xy= X4/ [R™1(s)s(1 — f3) %0 Jads
+oo
bo
that gives
N r r —8\/5 d2
Xy=X aoCso + boC NOOX/ — 5 T (s
4 4AOO[02 0Cala ~+ ) Wiy 5
and thus 2 /3
A —1 8d°v2
Xy ~vioo Xyg—— —nTno, 6.124
A M ey n+no (6:124)
Since we have now
4
Xo=(As+B3)Xs— (m—1))_X;
i=1
and since Xl + Xg << Xp at +00, we must have
X0 ~4oo (A3 + B3) X3 — (m — 1) X3 — (m — 1) X4 (6.125)
But, recalling (6.124) and recalling n < ng, this implies that
0
+o0
-1 2 ao
(A3 + B3) — (m — 1)/ [R™(s)s(1 — f]) 0 Jads =0
0
bo
and then
0
A~ r _ a
(A3 + B3)Xs — (m — 1) X3 = —(m — 1)X3/ R (s)s(L=f) | g [lads
+oo
bo
and consequently
5 -1 —8d*V2
(A3 + B3) X3 — (m — 1) X3 ~y0o —(m — 1) X3 V2 o, (6.126)

164/2 n(n — ng)
Finally, we sum (6.124) and (6.126) to get, by (6.125)

—18d*, —1 1
— +
16 n n—nyg n-+ng

a0 ~4o0 (m — 1) Jrmo

and thus 2
—18 -1 1
!

16 n n—ng n-+ng

(m—1)
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But we have by (6.111)
nd —n? = (—m+1)d*

We deduce that ng = n, that gives m = 1, that is in contradiction with m < 1.
We have not written the proof of (6.112) and (6.113) for (d,y1,7v2) € D1 and 71 + 72 —
2d — 2 = 0, but this is true in this case, too.

Proof of Proposition 1.4 completed. With the notation of Lemma 6.5, we know
that m = 1, that wy verifies ag > —bp > 0 on [0, +oo[ and that it is defined at 0. If wy is
not equal to w, up to a multiplicative constant, we can find C' # 0 such that wg — Cw has
the behavior of wy at 0 (that is the least vanishing behavior). But this implies an expo-
nentially blowing up behavior at +oc0. Since w is bounded, then wy has an exponentially
blowing up behavior at +o0o. But this is in contradiction with ag > —by > 0. So wy is a
bounded solution of (1.6). The Proposition 1.4 is proved.

Proof of Proposition 1.5 (iv).

First let us prove the following

Lemma 6.6 Ifmax{%, W(Z#} — 0, then u(e) is an algebrically simple eigenvalue

and no other eigenvalue can be such max{%, ‘“(i#} — 0.

Proof Firstly, let us prove that if % — 0 and if @, — w, where w is a bounded

solution of (1.6), then we can chose an eigenvector, still denoted by &, and such that
We = Cewr +w — (u(e) — 1)@ (6.127)
for some constant C. and some function &., with the conditions
We = Wy as € — 0, for some limit function wy and uniformly on each [0, R]
and
_V2
|C| < Ce™fee = . (6.128)

Here wy = (a1,b1), is, as usual, the solution defined in Theorem 1.3, that has a least
behavior at 0 and blows up exponentially at 4oco.

In order to prove (6.127) and (6.128), we use X, = (a.,ra.,b.,rb.)" and a resolvant
matrix, whose third vector is the bounded solution, and we write, with the notation of
the proof of Lemma 6.5

4

X = 3= (ule) = 1) / "= £2)(Cote + CabJuds).

Then we use the analysis at 0 of each term, given in (6.116), (6.118), (6.120) and (6.122),

in which we replace (ag,bp) by (a@e,b:). And we write

4

4
Xe =) (Ai+B)X; — (u(e) - 1) 2 Xi,

=1
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where

fori=2,3,4, X;= Xi/ s(1 — f3)[Code + Cyb)ids = O(r2X.) asr — 0;
0

Xl = X1ﬁ S(l — fg)[CQZLE +C45£]1d8 = O(Xl) asr — 0
and 0
fori=2,3,4, B;=—(u(e)— 1)/ s(1— fg)[@&s + C4I~)€]ids;
1
1
By = —(u(&) — 1)/ 8(1 — fc%)[CQCMLg + C4b€]1d8.
1
Now, in view of the behaviors at 0, we must have
Ay + By = A4+ By = 0.

The behavior at +o0o given in Lemma 6.4, ie

[CQ]Q = O(J_) and [64]2 = O(J_)

gives a finite limit for X1(r), as ¢ — 0, when 7 > 0 is fixed. Indeed, the behavior of

(Ge,be) at 400 is at most (J4, J4). So, we have
for all 7 > 0 and for all 7, (1 — pu())X;(r) = 0 ase — 0.

We deduce that
A3+Bg—>1 and A1+Bl — 0.

By dividing the eigenvector in presence by Az + B3, we are led to
As+ Bg =1.

Then let us give a large R and 1 > R. Using Lemma 6.4 and (3.79) and (3.78), we
obtain, for all R < r < %, and some C, independent of r and ¢ (by |X|, we mean each
component of X)

A J_(R B ~ A Ji (R B ~
%1 < 01X = max(lad + B 1% < €+ 1% 2D max(ad) + 15.0)):
R rd R rY

‘e ‘e

X1 < OO+ 1Kl (] + BeD)s 1Kl < OO+ Xl ma(fael + hl). (6129)

Taking into account the behavior at +oo for each X, together with
4
Xe = (A1 4 B) X1+ X3 — (u(e) - 1)) _ X, (6.130)
i=1

we deduce, for r > R

- Jo(r)J_(R) J.(R)J_
lae + be| < |A1 + Billar + b1] + |ag + b3| + Clu(e) — 1|(1 + +(T)R ( )+ +(;% (r)
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+r7) max(|ac| + (b))
(R.2]

‘e

This gives, since % —0
|Ge + be| < C(|A1 + Bi||a + by | + |as + bs]). (6.131)

This implies, for all R < r < %

4
~ 1 -n —n
D lail(r) < L+ g5 + ) (AL + Bil () +777). (6.132)
=2
Now, we use
21
as(g) =0

into (6.130) to get

4

0= (A1 + Biar(2) +as(2) = (0(e) ~ 1) Y ail2)
1=2

and using (6.132), we get, for R large enough and R < r < %

1 1 g)—1 1 1
(A1 + Bi)ai (=) +a3(-)| < CMHWM + Bi)ai(-) +as(-)|
€ € € € €
and consequently

|A1 + By| < Ce™\Jee V.
We have proved (6.127) and (6.128).

Secondly, We use Theorem 1.3 to see that the vector space of the bounded solutions
of (1.6) is at most one dimensional, spanned by some w = (a, b). Then, in view of Lemma
5.1, if the property we have to prove is not true, there exist two eigenvalues 1 (g) and
ua(e) (that may be equal), associated to some eigenvectors we and 7. and such that

|p2(e) = 1| |pa(e) — 1]

pa(e) =1 [ (e)
max{ = , n

_ 1‘
= , n } — 0, max{

}—0,

We >w and 7. —w on each [0, R]

and
< Twe, e >t ., = 0. (6.133)
and we have also
< Cwey Me >(12x12)(B(0,1))= 0- (6.134)
On one hand, we write
< T(we —1Me),we — ne >HL Hoy
= p1(€) < Cwe,we >(r2x12)(B(0,1)) TH2(€) < CneyMe >(12x12)(B(0,1)) (6.135)
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On the other hand, we let
We — Mg = (O[, 6)

and, using the same trick as in the proof of Lemma 5.1, we get

< T(Ws - ns)aws — Ne >H!

Y1 7HW1
m (8) 1 1
0 : ~
Z 2 /0 r(L = f2)(a2 + B2)dr +/0 H(ro)a2dr (6.136)
Where H is defined in (5.103). Defining Ry > 0 such that H(1p) > 0, for all » > Ry, we
have
: Ro
/ Hr)a2dr > [ H(m)aldr.
0 0

Moreover, by (6.134), we have

1 /!

= [ rd- FA) (02 + B2)dr =< Cwe,we >(12¢12)(B(0,1)) T < Clles e >(L2x12)(B(0,1)
0

and consequently, (6.136) becomes

< T(we = ne),we — 0 >

Y1 7HW1

Ro
> mo(e)(< Cwe,we >(r2x12)(B0,1)) T < CNey Me >(12x12)(B(0,1))) + ; H(ro)@2dr.

(6.137)
By collecting (6.135) and (6.137), we obtain

(mo(e) — p1(e)) < Cwe,we >(L2x12)(B(0,1)) T(Mo(e) — p2(e)) < CneyMe >(12x12)(B(0,1)) -

Ro
< — H(ro)a2dr. (6.138)

0
And we have also, for all R > 0 and ¢ < %
R R
< Cwe,We >(12x12)(B(0,1)) > / r(1— f) (a2 4+ b2)dr =0 / r(1— f3)(ag + b3)dr
0 0

So, there exists C' > 0 such that, for € small enough
< Cwe, we >(L2xL2)(B(0,1))~ C and < Cne,ne > (L2xL2)(B(0,1))~ C.

Then we use (6.127) and (6.128) to get

Ro
H(ro)a2dr = o(e?) ase — 0.
0

Then (6.138) gives

mo(e) — p(e)
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Recalling that % > C, for some C > 0 independing of ¢, and that ““5— i(g_l — 0,
i = 1,2, we infer that (6.138) leads to a contradiction.

The lemma is proved.

Now let us complete the proof of Proposition 1.5 (iv).
We have that mq_1441(¢) > 1 (see a sketch of the proof in the appendix) and conse-

quently %;(EH > (0. But, since Fj is a bounded solution of (1.6) and since n > 1,
we know by Lemma 5.3 that there exists an eigenvalue u(e) verifying % — 0. We

deduce that md’%;(e)_l — 0. By Lemma 6.6, we are led to pu(e) = mg_1 g41(g). Then
we return to the end of the proof of Lemma 5.2, with Fy instead of w. We have now
that the set I defined there has one element. Denoting by iy this element, we have
< C(FG™ — igGig), F5* — igCio >(12x12)(B(0,1))— 0. This gives the proof of (iv), where

We = G -

7 The proof of Theorem 1.2 completed

In this part, we consider d > 1 and n > 1 and 71 = [n — d| and v2 = n + d.
First, we have

Proposition 7.16 When 1 < n < d+ 1, there is no solution (a,b) of the system (1.6)
such that (ae'™= D% be?) ¢ H'(R?) x H(R?).

Proof This follows immediatly from Proposition 1.2 and from Proposition 1.4.

Now let n; = (x;,v:), i = 1,2,3,4, be defined by Theorem 1.4. Theorem 1.3 allows
us to use the solution w; = (ai,b1), defined in Theorem 1.3, in place of (x1,y1) and to
obtain a base (w1, 12,713, 74) of solutions of (1.6), whose behaviors at +o0o are known.
Now, let ws = (as,bs3) be defined in Theorem 1.3. Recall that ws is continuous wrt
(d,7v1,72) € D and is derivable wrt v; and 7.

With these definitions, we can write

w3 = 1 (7’L, d)wl + CQ(”? d)nQ + 03(n7 d)773 + 04(72, d)n4

Let us remark that wy and ws — C4(n, d)w; form a base of the bounded solutions at 0, and
that w3 — C1(n,d)w; = o(w1) at +00. So the problem of the existence of some bounded
solutions remains to the problem Cs(n,d) = 0.

We define 71 = |n — d| and 2 = n + d. The real numbers C;(n,d) can be computed
by the means of determinants involving only the values of the five solutions in presence,
(a,a’,b,b')(r), for a given r > 0. So, as soon as (d,y1,¥2) stays in a given compact subset
of D, C; is continuous wrt (d,71,72) and consequently is continuous wrt (d,n). More-
over, with the same condition, each Cj is derivable wrt v; and wrt 72 and consequently

is derivable wrt n. And 88%' is continuous wrt to (n,d), for i =1,..., 4.

Now, we are going to prove
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Proposition 7.17 There is no bounded solution of (1.6), when d > 1 and n > d+ 1.

In what follows, we suppose by contradiction that there exists (ng,dp), do > 1,

ng > dop + 1, such that there exists a bounded solution of (1.6). By Theorem 1.1, we have
ng < 2dy — 1.
From now on, we allow (n,d) to be such that 1 < d <dy+ 1 and 1 < n < 2d. Clearly,
(d,|n — d|,n + d) stays in a compact subset of D. This is sufficient for each solution 7;,
i =1,2,3,4, to be defined without ambiguity, and consequently, for each C; to be well
defined too. And each Cj is smooth wrt (n,d), as explained above.

Lemma 7.7 With the notation above, if C3(ng,do) = 0, then there exists a continuous
map d +— n(d), defined for d closed to dy and verifying C3(n(d),d) = 0.

Proof We can use the derivative of C3 wrt n. If we have 803 “3|ng = 0, then -2 5 (w3 —
Ci(n,d)w1)|no is bounded at +oc.
Let us denote (a,b) = ws — C1(n,d)w;. Then, we consider

—+o00 CL, '}’
[+ =B v - 2pha) g
0 T 7”

e RS 2 21y 90
+/0 T(b//+?_r72b—fda+(1—2fd) )a—dr

400 o a’ ,YQ
—/0 ra—n(a" +— - r—éa — 30+ (1 - 2f3a)adr

r

+o0o o b 9
_/0 an(b" T %b — fia+ (1 —2f7)b)bdr.

where the derivation is taken at ng, and vy = |dy — no| and v2 = dp + no.
Integrating by parts, and since ng > dy, we get

/+oo _2n0—d0a2 _2n0+d0
0 r r

bidr =0
and we conclude that b = 0, that is false.

So, we have proved that %’no 2 0. The Implicit Functions Theorem gives a contin-
uous map d — n(d) such that C3(n(d),d) = 0, and defined in a neighborhood of dy, with
values in a neighborhood of ng.

The proof of Proposition 7.17 completed.
With the definitions given above, let us define the set

1
E={d>1; d<do+1; 3n2d+§, Cs(n,d) = 0}.

If d € £ then n < 2d — 1, by Theorem 1.1. Thus it is not difficult to see that £ is a
closed subset of [1,4+o00], thanks to the continuity of Cs wrt (n,d).
We have supposed that dy € £, then, letting d; = inf £, we deduce from Lemma 7.7 that
we cannot have dy > 1 and thus d; = 1, and so dy € £. This contradiction proves that
E=10.

The proof of Theorem 1.2 is complete.
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8 Appendix

In this Appendix, we give a direct proof of Theorem 1.5, for the convenience of the reader.
The original proof can be find in [8], [7].

I. Proof of % > C. Using the Euler equation of the infimum problem (1.17),
we have ;P
1
a”+af——a+—2(1—f2)a:—
rooor £ 5
where r € [0,1], f(r) = fa(%) and a(r) > 0 and a(1) = 0. And we have, for the

rescaled function a

%2_1(1 — )a (8.139)

i+ L~ Lt (1 i = —(mole) - (1 - D (8.140)

Firstly, let us give a sketch of the proof of mg(e) — 1.

Multiplying the equation (8.140), by fq and integrating by parts on [0, %], we find mq(e) >
1, for all € > 0. Then, using a truncation of f, with value 0 for » > 1, as a test function
for the infimum mg(e), and since we know the existence of the limit, we have that
lim._,o mg(g) < 1. This gives mg(e) — 1.

Secondly, we use the same technics as in the proof of Theorem 1.3 to analyse the possible
behaviors at 0. But in place of comparing the solution @ with r¢, we compare it with fy.
More precisely, we know that f; is one solution of the equation

a d?
d'+———a+(1-fHa=0. (8.141)
rooor

Then, as usual in matter of ODE, we seek a solution of (8.140) of the form f;g. We write

9 _
T

g"fa+24 fa+ —(mo(e) = (1 = f7) fag,

that is
(9'(rf3)) = —(mo(e) = Vr(1 - f1)fdg-
Letting a = fyg, we are led to the following form of the equation (8.140)

(rfi(f7'a)) = =(mole) — Dr(1 — f3) fad. (8.142)
On the other hand, we define the fixed point problem
_ e 5
a= fa—(mo(e) —1)fa e s(1 — f3)faa(s)ds. (8.143)
0 0
We denote it by ®(a) = a.

In view of (8.142), each solution of this fixed point problem is a solution of (8.140).
As usual, we define by induction

ap = fg and apy = P(ayg)
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and we write, for all £ > 1

fa

r 2 t
ks — anl() < Jatr)mo(@) — 1) [ 2L [ pdasant g o = ana) oo

and, using f2(t) < fd_Q(s) we get

T2
f7 (g — an)|(r) < (mo(e) — 1)2\\51(% — ag—1)llzeo(j0,r]

and

2
£ (@1 — ao)|(r) < (mo(e) — 1)%,
Consequently
- mo(g) — 1)r?
Hfd 1(Oék+1 — ak)HLOO([O,r} < (%)k-&-l'

Thus we can define

fa+ Y (ks — o).

k>0

Since mg(e) — 1 — 0, then for each r > 0, the sum is convergent for € small enough,
depending on r. This sum is a solution of (8.140). If we name it a, we have

mo(e) — 11"2 1

4 1— mo(i)_l,rQ.

la — fal(r) < fa(r)

We remark that a similar proof gives the existence of a solution of (8.140) having the
behavior 7~ at 0. Since the eigenvector @ is defined at 0, it must be the solution defined
above, to a multiplicative constant. We deduce two consequences.

Firstly, for all R > 0

@ — fa|(r) < Cr?fq(r)(mo(e) — 1), for all £ < e(R) and where C' depends only on R,

and in particular, @ — f; tends to 0, as ¢ — 0, uniformly in [0, R].
Secondly,

mo(é‘) —1

if
£2

— 0, then |a— deLoo([oyl]) —+0, as —0.

This second possibility cannot occur, since &(%) = 0. We have proved that % >C.
The eigenvalue m ;1| 441(¢).

Sketch of the proof of mg_1) q41(¢) > 1 and m|g_y) 441(¢) — 1.

Let (a,b) be an eigenvector associated to m|q_1| 441(€). Let Fy = (A, B) be defined in

Theorem 1.1. Multiplying the system verified by (a, b) and the system verified by (A, B)

and integrating by parts on [0, %] we get m|g_1|,a+1(¢) > 1. This proof is in [8].

Then we can use the truncation of F; and (5.109), where n = 1 and C,, = 0 or, alterna-

tively, Proposition 1.4, to get that m|d,1|7d+1(€) — 1.
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Now, the proof of

~1 . . . .
w — 0 is done in [7], by use of a suitable test function.

The same proof works here, remarking that

Myg—1pa41(e) — 1 [ r(1 — f2)(a? + b?)dr

defined by

/\1 g) =
© e Jo r(a® + b2)dr
although the function f is not exactly the same one. This author use the fonction f
g, I 2 :

that is also studied by Hervé-Hervé [4], and that makes no difference in the proof. An
alternative proof is done in Part VI of the present paper.
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