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Abstract Background modeling has emerged as a popular foreground detection tech-
nique for various applications in video surveillance. Background modeling methods
have become increasing efficient in robustly modeling the background and hence de-
tecting moving objects in any visual scene. Although several background subtraction
and foreground detection have been proposed recently, no traditional algorithm today
still seem to be able to simultaneously address all the key challenges of illumination
variation, dynamic camera motion, cluttered background and occlusion. This limita-
tion can be attributed to the lack of systematic investigation concerning the role and
importance of features within background modeling and foreground detection. With
the availability of a rather large set of invariant features, the challenge is in determin-
ing the best combination of features that would improve accuracy and robustness in
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detection. The purpose of this study is to initiate a rigorous and comprehensive sur-
vey of features used within background modeling and foreground detection. Further,
this paper presents a systematic experimental and statistical analysis of techniques
that provide valuable insight on the trends in background modeling and use it to draw
meaningful recommendations for practitioners. In this paper, a preliminary review of
the key characteristics of features based on the types and sizes is provided in addition
to investigating their intrinsic spectral, spatial and temporal properties. Furthermore,
improvements using statistical and fuzzy tools are examined and techniques based
on multiple features are benchmarked against reliability and selection criterion. Fi-
nally, a description of the different resources available such as datasets and codes is
provided.

Keywords Background modeling · Foreground Detection · Features · Local Binary
Patterns

1 Introduction

Background modeling and foreground detection are important steps for video pro-
cessing applications in video-surveillance [86], optical motion capture [68], multi-
media [20], teleconferencing and human-computer interface. The aim is to separate
the moving objects, called ”foreground”, from the static information, called ”back-
ground”. For example, Fig. 1 shows an original frame of a sequence from the BMC
2012 dataset [552], the reconstructed background image and the moving objects mask
obtained from a decomposition into the low-rank matrix and sparse matrix based
model [56]. Conventional background modeling methods exploit the temporal vari-
ation of each pixel to model the background and hence use it in conjunction with
change detection for foreground extraction. The last decade witnessed very signifi-
cant contributions to this field [52][48][49] [51][56][57][53][50][191] [55]. Despite
these works and advances to background modeling and foreground detection, the
dynamic nature of visual scenes attributed by changing illumination conditions, oc-
clusion, background clutter and noise have challenged the robustness of such tech-
niques. Under this pretext, focus has shifted towards the investigation of features and
their role in improving both the accuracy and robustness of background modeling and
foreground detection. Although fundamental low-level features such as color, edge,
texture, motion and stereo have reported reasonable success, recent visual applica-
tions using mobile devices and internet videos where the background is non-static,
require more complex representations to guarantee robust moving object detection
[54]. Furthermore, in order to generalize existing background modeling and fore-
ground detection schemes to real-life scenes where dynamic variations are inevitable
and the pose of the camera is little known, automatic feature selection, model selec-
tion and adaptation for such schemes are often desired.

Considering the needs and challenges aforementioned, in this paper, a compre-
hensive review of low-level and hand-crafted features used in background modeling
and foreground detection is initiated for benchmarking them against the complexities
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Fig. 1 Background Modeling and Foreground Detection: Original image (309), reconstructed background
image, foreground mask (Sequences from BMC 2012 dataset [552]).

of typical dynamic scenes. Thus, the aim of this survey is then to provide a first com-
plete overview of the role and the importance of features in background modeling and
foreground detection by reviewing both existing and new ideas for (1) novices who
could be students or engineers beginning in the field of computer vision, (2) experts
as we put forward the recent advances that need to be improved, and (3) reviewers
to evaluate papers in journals, conferences, and workshops. In addition, this survey
gives a complete overview Moreover, an accompanying website called the Features
Website1 is provided. It allows the reader to have a quick access to the main resources,
and codes in the field. So, this survey is intended to be a reference for researchers and
developers in industries, as well as graduate students, interested in robust background
modeling and foreground detection in challenging environments.

Some of the main contributions of this paper can be summarized as follows:

– A review regarding feature concepts: A first complete overview of low-level
and hand-crafted features used in background modeling and foreground detec-
tion over the last decade concerning more than 600 papers. After a preliminary
overview on the key concepts in the field of features in Section 2, a survey of
spectral features including color features are detailed in Section 4. Then, spatial
features such as edge, texture and stereo features are studied in Section 5, Sec-
tion 6 and Section 7, respectively. Temporal features such as motion features are
reviewed in Section 8. In Section 15, features that are extracted in alternative do-
mains other than the pixel domain are described. Finally, the different strategies
of combining multiple features using fusion operators and feature selection mech-
anisms are discussed in Section 17 and Section 18.

– A description of the different resources available to allow fair comparisons
of the features. We present the color datasets and recent RGB-D datasets with
accurate ground-truth providing a balanced coverage of the range of challenges
which are present in the real world. Furthermore, we present the LBP Library
which provide a common framework for the implementation of the local texture
patterns.

1https://sites.google.com/site/featuresbackgroundforeground/
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The rest of this paper is organized as follows. First, a preliminary overview that inves-
tigates the classification of low-level and hand-crafted features by size and type of the
features are considered within the context of background modeling and foreground
detection in Section 2. Moreover, basic concepts on feature reliability, feature fusion
and feature selection are detailed in Section 2.6.1, Section 2.6.2 and Section 2.6.3, re-
spectively. Further, each individual feature is reviewed with their crisp description in
Section 4 to Section 8. For each feature, the paper shall also present an investigation
of their intrinsic properties that facilitate robustness against the challenges in real-
life videos. Also, the paper shall provide an insight on strategies to combine multiple
features using fusion operators (Section 17) and hence apply feature selection us-
ing boosting algorithms (Section 18). Finally, a description of the different resources
available such as datasets and codes is provided in Section 19. Section 21 concludes
with remarks on future research directions.

2 A Preliminary Overview

Features (descriptors or signatures) characterize a picture element captured in the
current frame of a video sequence and are compared against a known background
model to classify it as either foreground or background. Features can be (1) low-level
features directly obtained from the sensors as color features, (2) low-level computed
features as gradients, (3) hand-crafted features as texture features, and (4) features
learned by machine learning methods such as deep learning method which is able
to learn deep and hierarchical features, which turn out to be much more powerful
than classical hand-crafted features (also called hand-design features) for comparing
image patches [667][60][582]. Furthermore, feature representations can take multiple
forms and can be computed for and from: a pixel, a block around the central pixel and
a cluster (a region with the same value of feature than the current pixel). Practically,
there are several types of features which can be computed either in the spatial or trans-
form domains. Some of the features commonly used within the background modeling
literature includes: color features, edge features, stereo features, motion features, tex-
ture features, local histogram features and Haar-like features [557]. These different
features have intrinsic properties that allow the model to take into account spectral,
spatial and/or temporal characteristics. Furthermore, these features use mathematical
concepts in their design that facilitate computing them using well-known statistical
or fuzzy concepts. Thus, features used in background/foreground separation can be
classified from four different view points: their size, their type in a specific domain,
their intrinsic properties and their mathematical concepts (Section 2.1 to Section 2.4).
Then, we investigate how features can be used in terms of reliability, fusion and se-
lection in Section 2.6.

2.1 Classification by Size

The size of the picture element chosen for interpreting necessary features that faith-
fully represent its characteristics plays a crucial role in modeling. As mentioned ear-
lier, features can be computed from and for a pixel [512], a block [147] or a cluster
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[41]. That is, the size of the picture element that is used to model the background
and hence for comparing the current image frame to the background model, can ei-
ther be a pixel [512], a block [147], a region (Regions of difference [338], shape
[241], behavior [265], cluster [41], super-pixel [253], global appearance [680]) with
a feature value. During practical implementations, a feature value at a given pixel can
either depend on the feature value at the pixel itself or on the feature values around a
predefined neighborhood in the form of a block or a cluster.

– Pixel-based Features: These features, otherwise known as point features, con-
cern only the pixel at a given location (x, y). This is the case of intensity and
color features but in some cases include stereo features too. The background
model applied in this case of pixel-based modeling and comparison is an inde-
pendent process on each individual pixel. Practically, these features are used in
uni-modal or multi-modal pixel-wise background modeling and foreground de-
tection. Furthermore, pixel-based feature can be used to compute the mean or an
other statistic value over spatial and/or temporal neighborhood to take into ac-
count spatial and/or temporal constraints. Then, the statistic value is assigned to
the central pixel. For example, Varadarajan et al. [554][553] proposed a region-
based Mixture of Gaussians called (R-MOG) instead of a pixel based MOG. Each
region is a square neighborhood which is effectively a block of size 4× 4. Then,
the color mean obtained from the neighborhood is assigned to the central pixel.

– Block-based Features: This category of features is a generalization of the pixel-
type, where in the element size a block of 1× 1 or any arbitrary block size m×n
it represents an individual feature. In contrast to the previous case of pixel-based
feature, which equally applies, spatial and/or temporal information can also be
computed depending on the spatial and temporal interaction of the element to its
neighborhood as in edge, texture and motion features. To completely exploit their
potential, the spatial and/or temporal properties of these features need to be taken
into account in all the background subtraction steps to be fully addressed. Prac-
tically, these block-based features can be assigned to a central pixel of a block
(or neighborhood), or to all the block. For example, textures such as Local Bi-
nary Pattern can be assigned at each central pixel of a block size 3 by moving
this block all over the frame, or to all the block as in the works of Heikkila
and Pietikainen [206], and Heikkila et al. [207] which used a pixel-wise LBP
histogram based one (LBP-P) and a block-wise LBP histogram based approach
(LBP-B), respectively. Thus, the block-based features can be used in pixel-wise
or block-wise background modeling and foreground detection. When the fea-
tures are obtained from the video compressed domain, the approach is mandatory
block-based because the block are pre-defined and thus they can not be moved
over the frame. However, in block-based modeling and comparison, blocks (also
called patches [684][681][146][619]) can overlap or not [183]. A block is usu-
ally obtained as a vector of 3 × 3 neighbors of the current pixel. The advan-
tage is to take into account the spatial dimension to improve the robustness and
to reduce the computation time. Furthermore, blocks can be of spatio-temporal
type called spatio-temporal blocks [429], spatio-temporal neighborhoods [562],
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spatio-temporal patches [321][595][596] or bricks [605][337][678]) that intrin-
sicly encapsulate temporal information within spatial relationships of a group of
pixels. In Pokrajac and Latecki [429], a dimensionality reduction technique is
applied to obtain a compact vector representation for each block. These blocks
provide a joint representation of texture and motion patterns. One advantage is
their robustness to noise and to the movement in the background. However, the
disadvantage is that the detection is less precise because only blocks are detected,
making them unsuitable for applications that require detailed shape information.

– Region-based Features: Region-level (cluster-level, superpixel-level) features
consider element sizes that are non-uniform across the image frame considered,
and then specific features are computed on the corresponding element size. First,
pixels in an image frame are grouped using an application-specific homogeneity
criteria, typically exploiting partitioning mechanisms as follows: 1) region-based
mechanisms as in Lin et al. [338] with the notion of Regions of Difference (RoD),
2) shape mechanisms as proposed in Jacobs and Pless [241], 3) behavior mecha-
nisms as in Jodoin et al. [265], 4) clustering mechanisms as discussed by Bhaskar
et al. [41][40][42], and Park and Byun [419], and 5) super-pixel mechanisms as in
Sobral et al. [253], Ebadi et al. [141][140], Zhao et al. [671] and Chen et al. [79].
For example in Bhaskar et al. [41], each cluster contains pixels that have simi-
lar features in the color space. Then, the background model is applied on these
clusters to obtain cluster of pixels classified as background or foreground. This
cluster-wise approach gives less false alarms. Instead of the block-wise approach,
the foreground detection is obtained at a pixel-level precision.

Pixel-based features need less time to be extracted than block-based or region-based
features which require to be computed. In literature, in general, it can be summarized
that the size of the feature and the comparison element determines the robustness
of background modeling to noise and the challenges met in the videos, and often
controls precision of foreground detection. A pixel-based modeling and comparison
gives a pixel-based precision but it is less robust to noise compared to block-based
or region-based based modeling and comparison. However, there are several works
which combined block-based (or region-based) and pixel-based approaches to reduce
computation time by first using a block (or region) approach, and second to obtain a
pixel precision by using a pixel-based approach, and they can be classified as follows:
(1) multi-scales strategies [668][113][112][106][85][180], (2) multi-levels strategies
[545][249][642][689][405][533][101][102][103][529][623], (3) multi-resolutions strate-
gies [353][569][683][599],(4) multi-layers strategies [289][286] [664][489][596][597]
[521][163][182][612][367][386][259], (5) hierarchical strategies [184][185][186][81]
[16][616][575][686][94][675], and (6) coarse-to-fine strategies [37][36] [157][555][690].
The analysis of these different approaches is out of the scope of this review, and the
reader can found details about these strategies in [55].
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2.2 Classification by Type

Features can be computed in the pixel domain or in a transform domain. In this sec-
tion, features those are predominantly computed in each domain and their robustness
to critical situations in real videos, are discussed.

2.2.1 Features in the Pixel Domain

Features are popularly computed in the pixel domain as the value of the pixel is di-
rectly available. The following features are commonly used:

– Intensity features: Intensity features are the most basic features that can be pro-
vide by gray-level cameras or infra-red (IR) cameras (See Section 3).

– Color features: The color features in the RGB color space are most widely used
because it is directly available from the sensor or the camera. But the RGB color
space has an important drawback: its three components are dependent to each
other which increases its sensitivity to illumination changes. For example, if a
background point is covered by the shadow, the three component values at this
point could be affected because the brightness and the chromaticity information
are not separated. Thus, the three component values increase or decrease together
as the lighting increases or decreases, respectively [349]. Alternative color spaces
that have also been explored in the literature include YUV or YCrCb spaces.
Several comparisons between these color spaces are available in the literature
including [298][450][273][28][350] and usually YCrCb is selected as the most
appropriate color space. Although color features are often very discriminative
features of objects, they have several limitations in the presence of challenges
such as illumination changes, camouflage and shadows (See Section 4). In order
to solve such issues, authors have also proposed to use other features like edge,
texture and stereo features in addition to the color features.

– Edge features: The ambient light present in the scene can significantly affect the
appearance of moving objects. However, spectral features, are limited by their
ability to adapt to such changes in appearance. Thus, edge features emerged as
a robust alternative for moving object detection. Edge features are generally com-
puted using a gradient approaches such as Canny, Sobel [240][210][17][349][326]
[285][234] or Prewitt [339][579] edge detector. It is commonly believed that edge
features can handle local illumination changes, thus eliminating the chances of
leaving ghosts when foreground objects begin to move. Despite some compelling
advantages, edge features (high pass filters) tend to vary more than other compa-
rable features based on low pass filters [349]. For example, edge features in the
horizontal and vertical directions have different reliability characteristics, since
textured objects have high values in both directions, whereas homogeneous ob-
jects have low values in both directions (See Section 5).
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– Texture features: Texture features are appropriate to cope with illumination changes
and shadows. Some common texture features that are generally used within this
domain include the Local Binary Pattern (LBP) [207], and the Local Ternary
Pattern (LTP) [332]. Numerous variants of LBP and LTP can be found in the lit-
erature as can be seen summarized in Table 5. Furthermore, statistical and fuzzy
textures can be used as developed in Section 6.

– Stereo features: The extraction of stereo features rely on the need and use of
specific acquisition systems such as a stereo, 3D, multiple, Time of Flight (ToF)
cameras or RGB-D cameras (Microsoft Kinect2, or Asus Xtion Pro Live3) to ob-
tain the disparity information that usually represent the depth in the visual scene.
It has become well-known that stereo features allow the model to deal with the
camouflage in color [144][167][202][494][66][148][153] (See Section 7).

– Motion features: Motion features are usually obtained via optical flow but with
the limitation of the computational time. Motion features allow the model to deal
with irrelevant background motion and clutter [532][230][229][228][231][227][226]
(See Section 8).

– Local histogram features : Local histograms are usually computed on color fea-
tures [324][363][406][407][323][247][318][660][661][687]. But, local histograms
can also be computed on edge features [252][145][218][386][415] to obtain His-
tograms of Oriented Gradients (HOG) (See Section 9).

– Local histon features: Histon [90] is a contour plotted on the top of the his-
tograms of three primary color components of a region in a manner that the col-
lection of all points falling under the similar color sphere of predefined radius,
called similarity threshold, belongs to one single value. The similar color sphere
is the region in RGB color space such that all the colors falling in that region
can be classified as one color. For every intensity value in the base histogram, the
number of pixels falling under similar color sphere is calculated, and this value is
added to the histogram value to get the histon value of that intensity. Histon can
be extended to 3D histon and 3D Fuzzy histon as developed by Chiranjeevi and
Sengupta [90] (See Section 10).

– Local correlogram features: Correlogram was originally proposed for computer
vision applications like object tracking [676]. Since, correlogram captures the
inter-pixel relation of two pixels at a given distance, spatial information is ob-
tained in addition to the color information. Thus, correlograms can efficiently
alleviate the drawbacks of histograms, which only consider the pixel intensities
for calculating the distribution. The main drawback of correlograms is their com-
putation time due to their size of 2563 × 2563 in RGB, and 256 × 2563 in grey
level. Hence, the single channel is quantized to a finite number of levels l. Due to
this, the correlograms’ size is further reduced to l× l with l� 256. Correlogram
can be extended to fuzzy correlogram [87] and multi-channel fuzzy correlogram
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[91] (See Section 11).

– Haar-like features: Some authors [293][294][195][675], used the Haar-like fea-
tures [557]. Haar-like features are features defined in real-time face detector and
based on the similarity with Haar wavelets. Haar-like features are computed from
adjacent rectangular areas at a given location in a detection window by adding
the pixel intensities in each area and by calculating the difference between these
sums. The main advantage of Haar-like features is their computation speed. With
the use of integral images, Haar-like features of any size can be computed in con-
stant time (See Section Section 12).

– Location features: The location (x,y) can be used as a feature to exploit the de-
pendency between the pixel [481][479][394][395][396] (See Section 14).

Table 3, Table 4, Table 5, Table 6 and Table 7 present an overview of the features
in the pixel domain. Pixel domain features are generally robust and perform well
provided more accurate representation of the visual scene is available. However, its
high computational complexity restricts its real-time use in some applications. The
features in the pixel domain are analyzed in details from Section 4 to Section 14.

2.2.2 Features in a Transform Domain

In order to accomplish some of the real-time demands of visual scene analysis, feature
computation in a transform domain has gained importance.

– Frequency domain: The frequency domain offers a good framework to detect
periodic processes that appear in dynamics backgrounds such as waving trees
and waves in the ocean. For this, there is a need to transform the data values
in the pixel domain into the frequency domain via a transformation such as the
Fourier Transform (FFT) [591][547], Discrete Cosine Transform (DCT) [437],
Wavelet Transform [158][175][156], Curvelet Transform [278], Walsh Trans-
form [534][536][535], Hadamard Transform [30], Slant Transform [193] and Ga-
bor Transform [607][609][588]. Practically, FTT processes blocks much faster in
comparison with DCT. But, DCT outperforms slightly FFT in terms of precision,
similarity and F-measure [555].

– Video compressed domain: As videos are usually compressed before transmis-
sion and storage, a number of compressed domain approaches have also been
developed to improve the computational complexity of feature extraction. To ob-
tain moving objects, the compressed video stream is partially decoded. Thus, the
compressed domain data, such as motion vectors (MVs), transform coefficients,
are employed to extract moving objects. Initially, compressed domain algorithms
focussed attention on the MPEG standard. According to the classification of mov-
ing object detection, those methods can be mainly divided into three groups:

2http://www.microsoft.com/en-us/kinectforwindows/
3http://www.asus.com/Multimedia/
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MVs based method [18], coefficients based method [645] [577], and combin-
ing MV and coefficients based methods [435] [436]. Other compressed domain
algorithms used the video coding standard such as the H.264/AVC which process
each video frame in units of a MacroBlock (MB) [541]. Thus, these MacroBlocks
could be used as features. A Rate Distortion Cost (RDCost) value for each MB
which changes depending on the frame content can be used as an indicator of
changes. Typically, more cost will be spent on high motion and/or detailed MBs
and less cost for low motion and/or homogenous MBs, which was verified in the
experiments of [541]. The reasons for the effectiveness of the RDCost for fore-
ground/background separation can be attributed to the following reasons. First,
RDCost reflects the overall coding cost of a MB, which considers the effect of
each factor on coding efficiency during video coding, such as prediction mode,
MB partition size, motion vectors, residuals, etc. So RDCost can reflect true mo-
tion. Second, RDCost is in unit of MB. Only one MB has an RDCost value, as the
basic coding unit in H.264/AVC is MB. Thus, RDCost is less affected by noise
when compared with MVs [18]. Finally, compressed domain algorithms recently
focused attention on the HEVC standard [674][673][73].

Table 5 shows an overview of the features in a transform domain. The features in the
transform domain are analyzed in details in Section 15.

2.3 Classification by Intrinsic Properties

According to Li et al. [326], features can be classified by their intrinsic properties
into the following categories:

– Spectral features: The intensity or color features are directly available from the
images. Spectral features can easily detect changes if the difference in color be-
tween the foreground and the background are sufficient. However, spectral fea-
tures produce 1) false positive detections particularly when there are illumination
changes, and 2) false negative detections when foreground objects have similar
color to the background (camouflage). Spectral features do not take into account
or exploit the neighbourhood relationship of the considered pixel to deal with its
poor robustness. Further, stereo features can also be considered as spectral fea-
tures in the depth domain.

– Spatial features: Spatial features are edge and texture features. These features
help to detect foreground objects that camouflage with the background and sup-
press shadows. Spatial features are however not applicable to non-stationary back-
ground objects at pixel level since the corresponding spatial features vary over
time.

– Temporal features: Temporal features concern the motion between consecutive
image frames. One way to obtain temporal features is to estimate the consistency
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of optical flow over a short duration of time.

In order to achieve robust background modeling and foreground detection, fea-
tures in each category are required to deal with a number of challenges commonly
encountered in video surveillance as indicated in Bouwmans [51]. Table 1 shows an
overview of the features classified following their intrinsic properties.

2.4 Classification by Mathematical Concepts

Some of the mathematical concepts that underlie during the computation of robust
features can present an other useful categorization of features into crisp, statistical
and fuzzy types.

– Crisp Features: Crisp features are those features which are computed without
the use and need of any statistical or fuzzy concepts. It is the case of the color
features (RGB, YUV, HSV, etc...), edge features obtained by a filter (Canny, So-
bel, Prewitt), motion features obtained through optical flow or temporal operator,
and stereo features.

– Statistical Features: Statistical features can be obtained by exploiting some of
the statistical properties of the representation of the visual. The first work de-
veloped by Satoh et al. [462] proposed a Radial Reach Correlation (RRC) fea-
ture which has several variants: Bi-polar Radial Reach Correlation (BP-RCC)
[457], Fast Radial Reach Correlation (F-RRC) [235][236], and Probabilistic Bi-
polar Radial Reach Correlation (PrBP-RCC) [631]. In a similar way, Yokoi [629]
used Peripheral Ternary Sign Correlation (PTESC). Recently, Yoshinaga et al.
[634][635] proposed the Statistical Local Difference Pattern (SLDP). The aim
of these statistical features is to be more robust to illumination changes and dy-
namic backgrounds. Thus, SLDP integrates both pixel-based multi-modal model
with color feature and spatial-based unimodal model with texture feature in one
model feature taking into account the advantages of their respective robustness.

– Fuzzy Features: Fuzzy features are used to take into account the imprecision and
the incertitude in features that represent a visual scene. For example, Chiranjeevi
and Sengupta introduced fuzzy 3D Histons [90], fuzzy correlograms [87][91] and
fuzzy statistical texture features [89][93]. The aim is to deal with illumination
changes and dynamic backgrounds.

Table 2 shows an overview of the features classified following their mathematical
concepts.
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2.5 Exhaustive Overview of all the Features

The reader can refer to Table 3, Table 4, Table 5, Table 6 and Table 7 for an exhaus-
tive overview of all the features. The first column indicates the category model and
the second column the name of each method. Their corresponding acronym is indi-
cated in the first parenthesis and the number of papers counted for each method in
the second parenthesis. The third column gives the name of the authors and the date
of the related publication. Furthermore, prospective features not currently used for
background modeling and foreground detection but in other computer vision appli-
cations are indicated in each table.

Fig.3 shows the distribution of research papers which used the corresponding
type of features in their background modeling and foreground detection. It shows the
domination of following types of features: 1) texture features due their robustness in
presence of shadows and gradual illumination changes, and sometimes in dynamic
backgrounds, 2) features in a transform domain due to the fact they allow to reduce
computation time, and 3) multiple features because it combines features from other
categories and allow to combine their advantages.

For texture features, we can see in Fig. 4 that local pattern textures such as LBP
and LTP are the most investigated. They are followed by spatio-temporal patterns
and statistical texture features. Fuzzy texture features are less investigated although
they appear to be very suitable and robust in presence of dynamic backgrounds and
illumination changes as can be seen in the work of Chiranjeevi and Sengupta [89].

This exhaustive overview shows the activity and the importance of the research
on features in the field of background modeling and foreground detection. To have
a quantitative view of the activity, we have counted the number of papers in terms
of publication in conferences and journals. From Fig. 2, we can see how the research
focus on the development of background modeling and foreground detection methods
has grown in the last 20 years. However, we can note that compared to the number
of papers (more than 15000 in the field), this field is less investigated although the
role and the importance of the features is primordial in the robustness of the methods
against challenges as developed in Section 2.6.5.
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Fig. 2 Number of papers by years. Note that the ratio between journal and conference publications
increased in favor of journal publications, and thus testifies the importance of this field.

Fig. 3 Number of papers by type of features: Texture features, features in a transform domain, multiple
features are the most predominant features investigated.
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Fig. 4 Number of papers by type of textures. Local pattern textures, spatio-temporal patterns and sta-
tistical texture feature are the most investigated.

Spectral Features Spatial Features Temporal Features Spectral/Spatial Features Spatial/Temporal Features

Color features Edge Features Motion Features Local Histogram Texture Features
RGB, Normalized RGB Canny, Sobel, Prewitt Optical Flow LCH,LK-CH STLBP, SCS-LBP, ST-CS-LBP
YUV, HSV Texture Features Temporal Operator HOG, LOH, LK-HOG MV-LBP, SLBP-AM
HSI, Luv PISC, PTESC LDH, LHFG CS-ST-LTP, ST-SITLP
Improved HLS, Ohta LBP, ELBP Texture Features CS-SILTP
YCrCB, Lab, Lab2000HL CS-LBP,HCS-LBP SC-LBP, SCS-LBP, OC-LBP

DLBP, ULBP iLBP
ExtLBP, RI-LBP MC-SITLP
LN-LBP, SALBP Frequency Features
WB-LBP FFT, DCT, WT
LTP, SILTP HT, GT
SCS-LTP Video Compressed Features
SILS MPEG (MVs, Coefficients, Mixed)
Stereo features H.264/AVC (MBs)
Disparity, Depth HEVC (MBs)

Table 1 Classification by Intrinsic Properties: An Overview.

2.6 Features and Their Usage

Different features have different properties that enable them to handle critical situa-
tions such as illumination changes, motion changes and structure background changes,
differently. Therefore there is a need to characterize features so that benchmarking
becomes possible. In this context, reliability has been considered. Furthermore, each
feature can be characterized by its reliability (Section 2.6.1). If more than one feature
is required to be used, then there is a need for fusion schemes that can aggregate the
results of each one (Section 2.6.2). Finally, feature selection can be used to optimize
the discrimination between the background and foreground classes (Section 18).
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Crisp Features Statistical Features Fuzzy Features

Color features Intensity features Color Coherence Vector
RGB, Normalized RGB Rank Order Statistic [598] FCC [438][438]
YUV, HSV, HSI OSID [531] Local Color Histogram
Luv, Improved HLS Color features LFCH [290][272][299][624][190]
Ohta, YCrCb, Lab, Lab2000HL Standard Variance Feature [685] LFCDH [416]
Edge features Color co-occurences [326] Local Gradient Histogram
Canny [249], Sobel [240], Prewitt [339] Entropy [355][262][76] HOFG [455]
Motion Features IISC [291] Local Histon
Optical Flow, Temporal Operator [682] NCC [428] 3D Fuzzy Histon [90]
Stereo Features Edge features Local Correlogram
Disparity [237], Depth [202] Gradient Deviations [269] Fuzzy Correlogram [87]
LCH [363], LK-CH [406] Projection Gradient Statistics [656] Multi-channel Kernel FC [91]
LCH [363], LK-CH [406] Texture features Local Fuzzy Pattern [412]
LCH [363], LK-CH [406] PISC [459], PETSC [629] Fuzzy Statistical Texture
HOG [252], LOH [247], LK-HOG [407] RRC [462], BP-RCC [457] FST [89][93]
LDH [660], LHFG [687] F-RRC [235], PrBP-RCC [631]
Local Histon ABP-RCC [374]
Histon [90], 3D Histon [90] RRF [464]
Local Correlogram RPF [375], MRPF [376]
Correlogram [676] SRF [292]
Location [481] ST [92]
Haar like Features [293]

Table 2 Classification by Mathematical Concepts: An Overview.

2.6.1 Feature Reliability

Although efforts have been made to perform reliable foreground detection, in reality,
results are not 100% reliable. This is mainly because, applications are often consid-
ered in controlled environments, where closed world assumptions could be applied.
However, in general, one has to deal with a real-world scenario, which means that
the background or foreground may significantly change dynamically making it liter-
ally impossible to predict possible changes. For example, the light conditions may
suddenly fluctuate in some parts of the image, video compression or transmission
artefacts may cause noise, a wind may cause a stationary camera to tremble, and so
on. The fundamental problem lies in building an appropriate and robust background
modeling that is capable of accurate detect moving objects without compromising
model against background changes, and thus fail to detect all changes.

One potential solution is in monitoring the reliability of the features by analyz-
ing their general properties. For example Latecki et al. [430] considered statistical
properties of feature value distributions as well as temporal properties as a source of
tracking feature reliability. The proposed strategy is to estimate the deviations of the
feature to the distribution and if found reliable then compute feature properties, else
detect as being unreliable. As computed features will never be 100% reliable, it is in-
teresting to compute reliability measures. This way decisions will only be made when
features are sufficiently reliable. This means that in addition to feature computation,
an instantaneous evaluation of their reliability should also be made, and then adapt
the decision in accordance to the detected level of reliability. For example, if the goal
of the application is to monitor motion activity, and to signal an alarm if the activity
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Pixel Domain Features Categories Authors - Dates

Intensity features 1) Well-Known Intensity Features
Visible cameras
Intensity (4) Silveira et al. (2005) [493]
IR cameras
Intensity (5) Davis and Sharma (2004) [320]
2) Designed Illumination Invariant Features
Illumination Ratio (1) Paruchuri et al. (2011) [423]
Brightness (1) Wang et al. (2015) [564]
Reflectance (7) Toth et al. (2000) [544]
Surface Spectral Reflectance (SSR) (1) Sedky et al. (2014) [469]
Radiance (1) Xie et al. (2004) [598]
Photometric Variations (1) Di Stefano et al. (2007) [513]
3) Statistical Intensity Features
Rank Order Statistics (1) Xie et al. (2004) [598]
Gray level Co-occurrence Matrix (GLCM) (2) Qu et al. (2010) [439]
Local GLCM (1) Subudhi et al. (2016) [516]
4) Prospective Intensity Features
Ordinal Spatial Intensity Distribution (OSID) Tang et al. (2014) [531]

Color features 1) Well-Known Color Spaces
RGB Stauffer and Grimson (1999) [512]
Normalized RGB Xu et Ellis (2001) [601]
YUV Harville et al. (2001) [202]
HSV Sun et al. (2006) [520]
HSI Wang and Wu (2006) [576]
Luv Yang and Hsu (2006) [622]
Improved HLS Setiawan et al. (2006) [471]
Ohta Zhang and Xu (2006) [654]
YCrCb Baf et al. (2008) [655]
YIQ Thangarajah et al. (2015) [538]
Lab Balcilar et al. (2013) [27]
Lab2000HL Balcilar et al. (2013) [27]
CIEDE2000 Thangarajah et al. (2016) [538]
2) Designed Shape Color Spaces
Cylinder Color (CY) (5) Horprasert et al. (1999) [212]
Hybrid Cone-Cylinder Color (2) Doshi and Trivedi (2006) [131]
Arbitrary Cylinder Color (ACY) (2) Zeng and Jia (2014) [646]
Ellipsoidal Color (EC)(1) Sun et al. (2011) [519]
Box-based Color (1) Tu et al. (2008) [549]
Cubic Color (1) Noh and Jeon (2011) [403]
Spherical Color (1) Hu et al. (2012) [216]
Double-Trapezium Cylinder Color (DTC) Huang et al. (2015) [222]
Conical Color -
3) Designed Illumination Invariant Color Features
Color Illumination Ratio (2) Pilet et al. (2008) [428]
RGB-HSV (1) Takahara et al. (2012) [522]
RGB-YCrCb (1) Sajid and Cheung (2014) [454]
Color Illumination Invariant (1) Yeh et al. (2012) [627]
4) Color Filter Array (CFA) Features
CFA patterns (1) Suhr et al. (2011) [518]
Bayer CFA patterns (1) Suhr et al. (2011) [518]
5) Statistics on Color Features
Standard Variance Feature (1) Zhong et al. (2010) [685]
Color co-occurrences (2) Li et al. (2004) [326]
Entropy (5) Ma and Zhang (2001) [355]
IISC (1) Kim and Kim (2016) [291]
Normalized Cross Correlation (NCC) (2) Pilet et al. (2008) [428]
6) Multiscale Color Features
Multiscale Color Description (1) Muchtar et al. (2011) [385]
7) Fuzzy Color Features
Fuzzy Color Coherence Vector (1) Qiao et al. (2014) [438]
7) Prospective Color Features
Scale-Invariant Feature Transform (SIFT) -
Speeded Up Robust Features (SURF) (1) Shah et al. (2014) [473]
Weber Local Descriptor (WLD) Chen et al. (2009) [77]

Multispectral features Multi-spectral features (3) Benezeth et al. (2014) [35]
Edge Features 1) Crisp Edge

Gradient (Magnitude/Direction) (3) Javed et al. (2002) [249]
Sobel Edge Detector (7) Jabri et al. (2000) [240]
Prewitt Edge Detector (2) Lindstrom et al. (2006) [339]
Local Hybrid Pattern (LHP) (1) Kim et al. (2015) [285]
Local Directional Number (LDN) (1) Roy et al. (2017) [452]
2) Statistical Edge
Gradient Deviations (1) Kamkar-Parsi (2005) [269]
Projection Gradient Statistics (1) Zhang (2012) [656]

Table 3 Features in the Pixel Domain: An Overview (Part 1).
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Pixel Domain Features Categories Authors - Dates

Motion Features Optical Flow (9) Tang et al. (2007) [532]
Temporal Operator (4) Zhong et al. (2008) [682]
SIFT flow (1) Dou and Li (2014) [133]
Magno channel (1) Martins et al. (2016) [362]

Stereo Features 1) Disparity
Disparity (5) Ivanov et al. (1997) [237]
Variational Disparity (1) Javed et al. (2015) [250]
2) Depth
Depth (Stereo System) (4) Harville et al. (2001) [202]
Depth (ToF) (6) Silvestre (2007) [494]
Depth (Microsoft Kinect) (13) Camplani and Salgado (2013) [66]

Local Histograms Features 1) Local Histograms of Color
1.1) Crisp Local Histograms of Color
Local Color Histogram (LCH) (1) Mason and Duric (2001) [363]
Local Kernel Color Histograms (LK-CH) (1) Noriega et al. (2006) [406]
Estimated Local Kernel Histogram (ELKH) (1) Li et al. (2008) [323]
Local Color Difference Histograms (LDCH) (1) Li (2009) [324]
Local Dependency Histograms (LDH) (2) Zhang et al. (2008) [660]
Spatiotemporal Condition Information (SCI)(1) Wang et al. (2014) [562]
1.2) Fuzzy Local Histogram of Color
Local Fuzzy Color Histograms (LFCH) (6) Kim and Kim (2012) [290]
Local Fuzzy Color Difference Histograms (LFCDH) (1) Panda et al. [416]
2) Local Histograms of Gradient
2.1) Crisp Local Histograms of Gradient
Local Histogram on Gradient (LGH) (1) Mason and Duric (2001) [363]
Local Histogram of Oriented Gradient (L-HOG) (3) Fabian (2010) [145]
Local Adaptive HOG (LA-HOG) (1) Hu et al. (2010) [218]
Local Orientation Histograms (LOH)(1) Jang et al. (2008) [247]
Local Kernel Histograms of Oriented Gradients (LK-HOG) (1) Noriega and Bernier (2006) [407]
Prospective Histograms
2.2) Fuzzy Local Histograms of Gradient
Local Histograms of Fuzzy Gradient (HOFG) (1) Salhi et al. (2013] [455]
3) Local Histograms of Figure/Ground
Local Histogram of Figure/Ground (LHFG) (1) Zhong et al. (2009) [687]

Local Histon Features 1) Crisp Local Histon
Histon (1) Chiranjeevi and Sengupta (2012) [90]
3D Histon (1) Chiranjeevi and Sengupta (2012) [90]
2) Fuzzy Local Histon
3D Fuzzy Histon (2) Chiranjeevi and Sengupta (2012) [90]

Local Correlogram Features 1) Crisp Local Correlogram
Correlogram Zhao and Tao (2005) [676]
2) Fuzzy Local Correlogram
Fuzzy Correlogram (FC) (1) Chiranjeevi and Sengupta (2011) [87]
Multi-channel Kernel Fuzzy Correlogram (MKFC) (1) Chiranjeevi and Sengupta (2013) [91]

Location Features Location Features (6) Sheikh and Shah (2005) [481]
Invariant Moments (1) Marie et al. (2011) [361]

Haar-like Features Haar-like features (7) Klare (2008) [293]
Haralick Features Haralick features (1) Subudhi et al. (2016) [516]

Table 4 Features in the Pixel Domain: An Overview (Part 2).

is high, the system is allowed to make reliable decisions only if there exist a subset of
the computed motion activity features that is sufficiently reliable. The monitoring of
features reliability and adjusting the system behaviour accordingly, seems to be the
best mechanism to deploy autonomous video surveillance systems.

To determine whether a particular feature is reliable, Latecki et al. [430] assumed
that the feature bears more information if its distribution differs more significantly
from a normal (Gaussian) distribution. The assumption is that the feature becomes
unreliable if an addition random noise is superimposed, which would lead the dis-
tribution of such noisy feature to become more Gaussian like. Hence, by measuring
to what extent a feature distribution differs from a Gaussian distribution, it would be
possible to get an notion of how useful the feature is and importantly detect if such
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Transform Domain Features Categories Authors - Dates

Frequency Features Fourier Transform (FT)(2)
Fast Fourier Transform (FFT)(1) Wren and Porikli (2005) [591]
Discrete Fourier transform (2D-DFT)(1) Tsai and Chiu (2008) [547]
Discrete Cosine Transform (DCT) (10) Porikli and Wren (2015) [437]
Wavelet Transform (WT) (28)
Discrete Wavelet Transform (DWT) (3) Huang and Hsieh (2003) [221]
Binary Discrete Wavelet Transform (BDWT) (4) Gao et al. (2008) [158]
Modified directional lifting-based 9/7 DWT (MDLDWT)(1) Hsia and Guo (2014) [215]
Orthogonal non-separable Wavelet (OW) (1) Gao et al. (2008) [156]
Wavelet multi-scale Transform (2D dyadic WT) (5) Guan et al. (2008) [175]
Daubechies Complex Wavelet Transform (DCWT)(9) Jalal and Singh (2011) [245]
Multi-Resolution Wavelet Transform (MRWT) (1) Mendizabal and Salgado (2011) [365]
Undecimated wavelet transform (2D-UWT) (3) Antic et al. (2009) [15]
Three-Dimensional Discrete Wavelet Transform (3D-DWT) (1) Han et al. (2016) [197]
Curvelet Transform (CT) (1) Khare et al. (2013) [278]
Walsh Transform (WalshT) (3) Tezuka and Nishitani (2008) [534]
Hadamar Transform (HT) (1) Baltieri et al. (2010) [30]
Gabor Transform (GT) (3) Xue et al. (2010) [607]
Slant Transform (ST) (2) Haberdar and Shah (2013) [193]
Prospective Frequency Features
Sparse FFT -

Video Compressed Features MPEG domain
MVs based Features (1) Babu et al. (2004) [18]
Coefficient based Features (2) Zeng et al. (2003) [645]
MVs and Coefficient based Features (2) Porikli (2014) [435]
H.264/AVC domain
MacroBlock based Features (MB) (2) Dey and Kundu (2013) [124]
Enhanced MacroBlock based Features (EMB) (1) Dey and Kundu (2016) [125]
HEVC domain
MVs based Features (3) Zhao et al. (2013) [674]

Compressive Features Compressive measurements
Orthonormal basis (4) Cevher et al. (2008) [70]
Linear compressive measurements (5) Needell and Tropp (2008) [397]
Cross-validation measurements (ARCS-CV) (2) Warnell et al. (2012) [585]
Low-resolution measurements (ARCS-LR) (1) Warnell et al.(2012) [585]
Orthonormal wavelet basis (1) Li et al.(2010) [325]
Wavelets transform (5) Wang et al. (2015) [581]
Canonical sparsity basis (1) Xu and Lu (2011) [602]
Random projections basis (1) Shen et al. (2016) [482]
Walsh-Hadamard measurements (1) Liu and Pados (2016) [345]
Random Gaussian or Fourier Scrambled matrices (1) Li and Qi (2014) [328]
Three-dimensional Compressive Sampling (3DCS) (2) Shu and Ahuja (2011) [488]
Three-Dimensional Circulant CS (3DCCS) (2) Kang et al. (2015) [271]

Table 5 Features in a Transform Domain: An Overview.

usefulness drops. Latecki et al. [430] proposed an entropy-based technique for fea-
ture reliability assessment. The proposed parametric negentropy estimation, inspired
from information theory, can be efficiently used to evaluate the usability of a motion
measure employed for the detection of moving objects. This approach is useful for
one-dimensional features and works under assumption that the noise, which corrupts
the observed feature, is additive Gaussian. Some future extensions of this work could
be to generalize it for the multidimensional case and for the feature reliability detec-
tion with non-Gaussian and non-Additive noise.

In an an other study, Latecki et al. [310][314][315] described a simple temporal
method to determine the reliability of motion features. The input motion feature has
binary values for each 8 × 8 block with 1 for ”motion detected” and 0 for ”no mo-
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Textures Methods-Acronym-Number of papers) Authors - Dates

1) Crisp Textures (Part 1)

Local Binary Pattern (25 variants)

Local Binary Pattern (LBP) (9) Heikkila et al. (2004) [207]
Spatio-temporal Local Binary Pattern (STLBP) (2) Zhang et al. (2008) [659]
Epsilon Local Binary Pattern (ε-LBP) (2) Wang and Pan (2010) [568]
Center-Symmetric Local Binary Patterns (CS-LBP)(3) Tan et al. (2010) [523]
Space-Time Center-Symmetric Local Binary Patterns (ST-CS-LBP) (1) Li et al. (2011) [322]
Spatial Extended Center-Symmetric Local Binary Pattern (SCS-LBP) (1) Xue et al. (2010) [608]
Hybrid Center-Symmetric Local Binary Pattern (HCS-LBP) (1) Xue et al. (2011) [606]
Spatial Color Binary Patterns (SCBP) (1) Zhou et al. (2011) [692]
Opponent Color Local Binary Patterns (OCLBP) (1) Lee et al. (2011) [316]
Double Local Binary Pattern (DLBP) (1) Xu et al. (2009) [600]
Uniform Local Binary Patterns (ULBP) (1) Yuan et al. (2011) [636]
Extended Local Binary Patterns (Ext-LBP) (1) Yu et al. (2011) [637]
Rotation Invariant Local Binary Patterns (RI-LBP) (1) Yu et al. (2011) [637]
Larger Neigborhood Local Binary Patterns (LN-LBP) (1) Kertesz (2011) [275]
Motion Vectors Local Binary Patterns (MV-LBP) (3) Yang et al. (2012) [617]
Scene Adaptive Local Binary Pattern (SALBP) (1) Noh and Jeon (2012) [404]
Stereo Local Binary Pattern based on Appearance and Motion (SLBP-AM) (1) Yin et al. (2013) [628]
Window-Based LBP (WB-LBP) (1) Kumar et al. (2014) [300]
Intensity Local Binary Pattern (iLBP)(2) Vishnyakov et al. (2014) [558]
BackGround Local Binary Pattern (BGLBP) (1) Davarpanah et al. (2015) [111]
eXtended Center-Symmetric Local Binary Pattern (XCS-LBP) (1) Silva et al. (2015) [490]
Uniform XCS-LBP (UXCS-LBP) (1) Du and Qin (2016) [134]
Local SVD Binary Pattern (LSVD-BP)(1) Guo et al. (2016) [187]
Multi-Block Temporal-Analyzing LBP (MB-TALBP) (1) Chen et al. (2016) [80]
Perception-based Local Binary Pattern (P-LBP) (1) Chan. (2016) [75]
Extended Symmetrical-Diagonal Hexadecimal Pattern (ES-DHP)) (1) Jeyabharathi and Dejey (2017) [256]
Prospective LBP
Multi-scale Region Perpendicular LBP (MRP-LBP) (1) Nguyen and Miyata (2015) [399]
Scale-and Orientation Adaptive LBP (SOA-LBP) (1) Hegenbart and Uhl (2015) [205]

Local Ternary Pattern (7 variants)

Local Ternary Pattern (LTP) (1) Liao et al. (2010) [332]
Scale Invariant Local Ternary Pattern (SILTP) (1) Liao et al. (2010) [332]
Scale-invariant Center-symmetric Local Ternary Pattern(SCS-LTP) (2) Zhang et al. (2011) [670]
Multi-Channel Scale Invariant Local Ternary Pattern (MC-SILTP) (1) Ma and Sang (2012) [354]
Center Symmetric Spatio-temporal Local Ternary Pattern (CS-ST-LTP) (2) Xu (2013) [605]
Spatio Temporal Scale Invariant Local Ternary Pattern (ST-SILTP) (1) Ji and Wang (2014) [258]
Center-Symmetric Scale Invariant Local Ternary Pattern (CS-SILTP) (1) Wu et al. (2014) [592]

Local States Pattern Scale Invariant Local States (SILS) (1) Yuk et al. (2011) [638]
Local Derivative Pattern Center-Symmetric Local Derivative Pattern (CS-LDP) (1) Xue et al. (2011) [606]

Uniform CS-LDP (UCS-LDP) (1) Du and Qin (2016) [134]
SpatioTemporal Center-Symmetric Local Derivative Pattern (STCS-LDP) (1) Jmal et al. (2016) [263]

Local Difference Pattern
Local Difference Pattern (LDP) (1) Yoshinaga et al. (2010) [633]
Statistical Local Difference Pattern (SLDP) (2) Yoshinaga et al. (2011) [634]

Local Self Similarity Local Self Similarity (LSS) (1) Jodoin et al. (2012) [264]
Local Similarity Statistical Descriptor (LSSD) (1) Zeng et al. (2017) [644]

Local Similarity Binary Pattern Local Similarity Binary Pattern (LSBP) (6) Bilodeau et al. (2013) [43]
Uniform LSBP (U-LBSP) (1) Yan et al. (2016) [613]
Color LSBP (C-LBSP) (1) Zhang et al. (2017) [658]

Directionnal Rectangular Pattern Directionnal Rectangular Pattern (DRP) (1) Zhang et al. (2009) [649]
Local Color Pattern Local Color Pattern (LCP) (3) Chua et al. (2012) [95]
Local Neigborhood Pattern Local Neigborhood Pattern (LNP) (1) Amato et al. (2010) [10]
Local Ratio Pattern Local Ratio Patterns (LRP) (1) Zaharescu and Jamieson (2011) [641]
Local Ray Pattern Local Ray Pattern (LRP) (2) Shimada et al. (2013) [484]
Spatio-Temporal Vector Spatio-Temporal Vector (STV) (11) Pokrajac and Latecki (2003) [429]
Spatio-Temporal Texture Space-Time Patch (ST-Patch) (2) Yumiba et al. (2011) [639]
Spatio-Temporal Features Spatio-Temporal Features (STF) (3) Nonaka et al. (2012) [530]

Table 6 Features in the Pixel Domain (Texture Features): An Overview (Part 3).
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Textures Methods-Acronym-Number of papers Authors - Dates

1) Crisp Textures (Part 2)

Texture Pattern Flow Texture Pattern Flow (TPF) (3) Zhang et al. (2011) [648]
Binary Map Binary Map (BM) (1) Lai et al. (2013) [306]
Textons Textons (T) (2) Spampinato et al. (2014) [504]
Galaxy Pattern Galaxy Pattern (GP) (2) Liu et al. (2013) [344]
Bayer-Pattern Bayer-Pattern (BP) (1) Suhr et al. (2011) [518]
Structure-Texture Decomposition Structure-Texture Decomposition (STD) (2) Elharrouss et al. (2015) [143]

2) Statistical Textures
Peripheral Increment Sign Correlation Peripheral Increment Sign Correlation (PISC) (1) Satoh et al. (2004) [459]
Peripheral TErnary Sign Correlation Peripheral TErnary Sign Correlation (PTESC) (2) Yokoi (2006) [629]

Radial Reach Correlation

Radial Reach Correlation (RRC) (7) Satoh et al. (2002) [462]
Bi-Polar Radial Reach Correlation (BP-RCC) (2) Satoh (2005) [457]
Fast Radial Reach Correlation (F-RRC) (2) Itoh et al. (2008) [235]
Probabilistic Bi-Polar Radial Reach Correlation (PrBP-RCC) (1) Yokoi (2009) [631]
Adaptive Bi-Polar Radial Reach Correlation (ABP-RCC) (1) Miyamori et al. (2011) [374]

Radial Reach Filter Radial Reach Filter (RRF) (5) Satoh et al. (2002) [464]

Radial Proportion Filter
Radial Proportion Filter (RPF) (1) Miyamori et al. (2012) [375]
Multi Radial Proportion Filter (MRPF) (1) Miyamori et al. (2012) [376]

Statistical Reach Feature Statistical Reach Feature (SRF) (2) Iwata et al. (2009) [292]
Statistical Texture Statistical Texture (ST) (2) Chiranjeevi and Sengupta (2014) [92]

3) Fuzzy Textures
Local Fuzzy Pattern Local Fuzzy Pattern (LFP) (2) Ouyang et al. (2012) [412]

4) Fuzzy Statistical Textures
Fuzzy Statistical Texture Fuzzy Statistical Texture (FST) (2) Chiranjeevi and Sengupta (2012) [89]

Table 7 Features in the Pixel Domain (Texture Features): An Overview (Part 5).

tion detected”. Let f(n) be the number of 1s in the frame number n, i.e., f(n) is the
number of detected moving blocks as function of frame number. The finite difference
approximation of first derivative of f is used to monitor the reliability of the motion
feature. If the jump in values of f is above a certain threshold for a given time inter-
val, the binary feature is unreliable in this interval. The threshold necessary to detect
the unreliable features is not static and is determined by a dynamic thresholding al-
gorithm.

Harville et al. in [144] detected invalid depth and chroma components in the man-
ner as follows: 1) The chroma (U and V) components become unstable when the
luminance is low. So, Harville et al. [144] defined a chroma validity test based on
luminance and set a predicate that operated it on a Gaussian model by applying it to
the luminance mean of the distribution. When one of the test is failed, the chroma
components of the current observation or the Gaussian distribution are not used, and
2) The depth computation relies on finding small area correspondences between im-
age pairs, and therefore does not produce reliable results in regions of little visual
texture and in regions, that are visible in one image but not the other. Most stereo
depth implementations attempt to detect such cases and label them with one or more
special values. Harville et al. [144] relied on the stereo depth system to detect invalid
depth data and define a depth validity predicate. When the test is false, the depth is
not used.

In an other work, Mittal et al. [373] briefly described methods that might be used
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for obtaining measurements of normalized RGB and optical flow features, and their
associated uncertainties. But, the uncertainties were finally not used in the model.

According to the literature in this area, feature reliability has been less inves-
tigated and only the works of Latecki et al. [430][310][314][315] specifically ad-
dressed this problem. Thus, the determination of the features’ reliability and then
when to use them is still an open problem and may be one of the main future devel-
opments in this field.

2.6.2 Feature Fusion

It has been discussed that the use of multiple features could bring complementary
advantages to the modeling and detection techniques. However, the feature aggrega-
tion procedure requires reliable operators that can efficiently fuse features. There are
several operators which can be used for feature aggregation. These operators can ei-
ther be of basic (logical AND, logical OR), statistical or fuzzy types (Sugeno integral
[654], Choquet integral [21], interval valued Choquet integral [93]) as follows:

1. Basic operators: Logical operators such as OR and AND are the simplest ways
to combine different results. AND is more useful when the aim is to suppress false
positive detections which appear in one mask and not in the other. But it presents
the disadvantage to suppress true positives which appear in one mask and not in
the other one. On the other hand, OR is more suitable when the aim is to suppress
false negative detections which appear in one mask and not in the other one. But
it presents the disadvantage to add false positive which appear in one mask and
not in the other one. Other basic operators include mean, median, minimum and
maximum operators, as well as some generalizations like the Ordered Weighted
Average (OWA) having the minimum and the maximum as particular cases.

2. Statistical operators: The simplest way to statistically combine features con-
sists of a basic product formulation of the likelihoods [670][326] but it has the
limitation that a single close to zero probability in one of the sensors may lead
to the cancellation of the overall combination. In order to avoid the zero proba-
bility problem, which could lead to critical misclassification errors, Logarithmic
Opinion Pool can be used as proposed by Gallego and Pardas [153]. Thus, by
taking logarithms, a weighted average of the log-likelihoods can be obtained.
The weighting factors is central to the correct working of the sensor fusion sys-
tem. The weighting factors can be according to the reliability that each one of the
sensors presents. An an other possible way is to exploit the similarity between
foreground and background classes for each one of the sensors, assuming that (1)
high similarity implies that both classes are modeling the same space in a cam-
ouflage situation, and thus, the decision is not reliable, and (2) small similarity
implies classes separated enough to achieve a correct decision. In this idea, Gal-
lego and Pardas [153] computed the Hellinger distance between the pdf’s that
model the ith pixel of the jth-sensor color or depth for the foreground and back-
ground classes, respectively. Thus, this distance detects the degree of similarity
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between foreground and background models that each one of the sensors present.
Moreover, the Hellinger distance presents two main characteristics that are very
interesting for the application of background/foreground separation: Unlike the
Bhattaharyya distance, or the Kullback-Leibler divergence, which give a similar-
ity distance bounded between [0,∞), the Hellinger distance gives a normalized
distance among models bounded between [0, 1]. Furthermore, unlike the Kulback-
Leibler divergence, the Hellinger distance is symmetric. Finally, the weighting
factors are defined as a function of the Hellinger distance. Thus, sensors that
present a higher degree of similarity between foreground and background classes
have a close-to-zero weight, thus avoiding misclassification errors in case of color
or depth camouflage problems.

3. Fuzzy operators: The family of fuzzy integrals is a generalization of the weighted
average technique using the Choquet integral, as well as the minimum and the
maximum using the Sugeno integral. The advantage of fuzzy integrals is that they
take into account the importance of the coalition of any subset of criteria. A brief
summary of the basic concepts around fuzzy integrals (Sugeno and Choquet) is
described below:

– Sugeno and Choquet integrals: Let µ be a fuzzy measure on a finite set X
of criteria and h : X → [0, 1] be a fuzzy subset of X .

Definition 1 The Sugeno integral of h with respect to µ is defined by:

Sµ =Max
(
Min

(
h
(
xσ(i)

)
, µ
(
Aσ(i)

)))
(1)

where σ is a permutation of the indices such that
hσ(1) ≤ . . . ≤ hσ(n) and Aσ(i) = {σ (1) , . . . , σ (n)}
Definition 2 The Choquet integral of h with respect to µ is defined by:

Cµ =

n∑
i=0

h
(
xσ(i)

) (
µ
(
Aσ(i)

)
− µ

(
Aσ(i+1)

))
(2)

with the same notations as above.
An interesting interpretation of the fuzzy integrals arises in the context of
source fusion. The measure µ can be viewed as a factor that describes the
relevance of the sources of information where h denotes the values that the
criteria has reported. The fuzzy integrals then aggregates nonlinearly the out-
comes of all criteria. The Choquet integral is adapted for cardinal aggregation
while Sugeno integral is more suitable for ordinal aggregation. Additionaly,
Sugeno integral calculates only minimum and maximum weightage and the
Choquet integral has the same functionality as Sugeno integral but it also uses
additional operations like arithmetic mean and Ordered Weighted Averaging
(OWA). Thus, Choquet integral is more suitable for background/foreground
separation.
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– Fuzzy measures: While fusing different criteria or sources, fuzzy measures
take on an interesting interpretation. A pixel can be evaluated based on a cri-
teria or sources providing information about the state of the pixel whether
pixel corresponds to background or foreground. The more the criteria pro-
vides information about the pixel, the more relevant the decision of pixel’s
state. Let X = {x1, x2, x3}, with each criterion, a fuzzy measure is associ-
ated, µ (x1) = µ ({x1}), µ (x2) = µ ({x2}) and µ (x3) = µ ({x3}) such
that the higher the µ (xi), the more important the corresponding criterion
in the decision.To compute the fuzzy measure of the union of any two dis-
joint sets whose fuzzy measures are given, an operational version proposed
by Sugeno which called λ-fuzzy measure can be used. To avoid excessive no-
tation, let denote this measure by µλ-fuzzy measure, where λ is a paramater
of the fuzzy measure used to describe an interaction between the criteria that
are combined. Its value can be determined through the boundary condition,
i.e. µ (X) = µ ({x1, x2, x3}) = 1. The fuzzy density values over a given set
K ⊂ X is computed as:

µλ (K) =
1

λ

[ ∏
xi∈K

(1 + λµλ (xi))− 1

]
(3)

– Interval-valued fuzzy integrals: Although discrete (or real-valued) Sugeno
and Choquet integrals defined in Equation 1 and Equation 2 can be used as
a decision making operator to fuse the information from multiple sources, it
does not consider the uncertainty. But in practice information sources have
wide range of possible values (i.e., high uncertainty) and hence cannot be
represented by a single number. To solve this problem, interval-valued fuzzy
sets (IVFSs) [248][621][652] can be used to model the uncertainty in these
values. Thus, the value are represented as an interval. In this context, an ag-
gregation operator is needed to integrate the information sources, represented
by IVFSs. Thus, modifications of the discrete integrals called interval-valued
integrals are used as in Chiranjeevi and Sengupta [93].

Dempster-Shafer theory can be also used in feature fusion as in the work of
Munteanu et al. [388]. According to the literature in this area, these different fea-
ture fusion schemes have been applied when multiple features are used as can be
seen in Section 17 and Table 12.

2.6.3 Feature Selection

As seen in Section 2.2.1, there is not a unique feature that performs better than any
other feature independently of the background and foreground properties because
each feature has its strengths and weaknesses against each challenge. Thus, a way
to take advantage of the properties of each feature is to perform feature selection.
The aim is to use the best feature or the best combination of features on a per-pixel
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[170][172][171][417][491][492] or per-block [316] basis. A set of feature could be
composed of (1) homogeneous features that are feature from the same category, and
then the idea is to reinforce the reliability fo the concerned type of features, or (2)
heterogeneous features to complement the features each others [567]. Once the set of
features is determined, ensemble learning methods such as the boosting classifier can
be used for feature selection. Boosting algorithms usually generate a weighted linear
combination of some weak classifiers that perform only a little better than random
guess. So, weak classifiers can be learned from the feature values at a pixel and com-
bined to perform better than the others alone. This combination produces a strong
classifier. Thus, this method can effectively select different features at each pixel to
distinguish foreground objects from the background.

Extensions of this conventional algorithm are available in the form of on-line
boosting algorithms [170][172][171] which use several classifier pools, and each pool
contains several weak classifiers. Once an input image is given, each classifier pool
selects the best classifier for the given image. The selected classifiers form a strong
classifier group, and the final classification is performed using those strong classi-
fiers. At the same time, each classifier pool selects the worst classifier as well. The
worst classifier is replaced with a randomly selected classifier so that a better classi-
fier can be included in the classifier pool. Instead of selecting the best classifier from
each classifier pool as the previous method does, an improvement according to [316]
selects several good classifiers from each pool. While the previous method replaces
the worst classifier in each pool, instead this improvement replaces several bad clas-
sifiers.

According to the literature in this area, feature selection has been less investi-
gated in background modeling and foreground detection methods with only 9 papers.
Practically, only five approaches have so far been used in the literature: (1) Adaboost
[150] used with the classifier-based background model [170][172][171][316], (2) Re-
alboost [467] used with the KDE model [417], (3) dynamic feature selection [254]
with OR-PCA model [255], (4) generic feature selection [59] with the ViBe model
[32], and 5) One-class SVM [491][492]. These different approaches and their char-
acteristics are analyzed in Section 18.

2.6.4 Feature Relevance and Learning

To choose the most discriminative features in a multiple features or feature selection
scheme, feature relevance may be addressed. More generally, feature relevance can
be determined in feature learning scheme which can be classified as developed in
Zhong et al. [688]:

1. Traditional feature learning: This category includes linear algorithms and their
kernel extension, and manifold learning method. Practically, an learning algo-
rithm can be linear or nonlinear, supervised or unsupervised, generative or dis-
criminative, global or local. For example, Principal Component Analysis (PCA)
is a linear, unsupervised, generative and global feature learning method, while
Linear Discriminant Analysis (LDA) is a linear, supervised, discriminative and
global method. Global methods aim to preserve the global information of data
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in the learned feature space, but local ones focus on preserving local similarity
between data during learning the new representations. For instance, unlike PCA
and LDA, Locally Linear Embedding (LLE) is a locality-based feature learning
algorithm. Locality-based feature learning like LLE as manifold learning, since it
is to discover the manifold structure hidden in the high dimensional data.

2. Deep learning algorithms: Deep learning models includes models like Convo-
lutional Neural Network (CNN) [468] and Recurrent neural network (RNN). A
survey of deep learning models can be found in Schmidhuber [468].

Feature relevance has been less investigated in background modeling and foreground
detection methods than manual image feature methods, such as Local Binary Patterns
(LBP) [207], histogram of oriented gradients (HOG) [252], and Scale-Invariant Fea-
ture Transform (SIFT) [133]. For traditional feature learning, the one work which
concerns feature relevance is the work of Molina-Giraldo et al. [378][379]. The fea-
ture relevance analysis is made through a Principal Component Analysis (PCA),
searching for directions with greater variance to project the data. Thus, the relevance
of the original features is quantified with weighting factors. Finally, Molina-Giraldo
et al. [378][379] developed a background subtraction method based a multi-kernel
learning in which the weight are selected from the feature relevance analysis. Exper-
imental results [378][379] on the I2R dataset [326] show that the proposed Weighted
Gaussian Kernel Video Segmentation (WGKVS) model outperforms SOBS [356].
For deep learning algorithms, the approaches available in literature can be classi-
fied as follows: 1) Deep Auto-encoder Networks (DAN) [603][604][667], 2) Con-
volutional Neural Networks (CNN) [60][582][33][440], 3) Neural Reponse Mixture
(NeREM) [472].

2.6.5 Features and Challenges

In this section, we grouped all the advantages and disavantages of the different fea-
tures in terms of robustness against the different challenges met in video and detailed
in Bouwmans [51], and they can be summarized as follows:

– Color features: Although intensity and color features are often very discrimina-
tive features and allow basic foreground detection, they are not robust in chal-
lenges such as illumination changes, foreground aperture, camouflage in color
and shadows. However, intensity can be used in complementarity of color to deal
with different color problems such as dark foreground and light foreground. Fur-
thermore, this combination solves saturation problems and minimum intensity
problems [233], and reduces the number of false negatives, false positives and in-
crease true positives. But, the intensity as colors can not work with intense shad-
ows and highlight that often occur in indoor and outdoor scenes, and in presence
of gradual or sudden illumination changes [449]. Then, different strategies can be
found in literature to alleviate the limitations of the basic color spaces: (1) the use
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of well-known color spaces which separate the luminance and the chrominance
information such as HSV and YCrCb, (2) the use of designed shape color space
models such as the cylinder color model [212][213][287][646], the hybrid cone-
cylinder [131][132], the ellipsoidal color model [519], the box-based color model
[549], and the double-trapezium cylinder model [222], (3) the use of characteris-
tics in addition of the intensity or color value (mean, variance, minimum, maxi-
mum, etc..) (See Section 16), (4) the use of designed illumination invariant inten-
sity or color features obtained by normalization [428][566][522][423], (5) the use
of illumination compensation methods [556][281][280][83][548][372][496][122][498][418],
and (6) the addition of other features (See Section 17). Normalization based fea-
tures sacrifice discriminability while texture features cannot operate on texture-
less regions. Both types of features produce large missing regions in the fore-
ground mask.

– Edge features: Edge features are obtained with edge detectors which operate on
the difference between neighboring pixels, hence an edge detector should be rea-
sonably insensitive to global shifts in the mean level, i.e. to global illumination
changes. Therefore it is interesting to run background/foreground separation algo-
rithms on the output from edge detectors, hopefully reducing the effects of rapid
illumination changes. So, the edge could handles the local illumination changes
but also the ghost leaved when waking foreground objects begin to move. How-
ever, edge features are not sufficiently good to segment the foreground objects
isolatedly. Indeed, edge features can sometimes handle dark and light camouflage
problems and it is less sensitive to global illumination changes than color feature
[234]. Nevertheless, problems like noise, false negative edges due to local illumi-
nation prob-lems, foreground aperture and camouflage do not allow an accurate
foreground detection. Furthermore, due to the fact that it is sometimes difficult to
segment the foreground object borders, it is not possible to fill the objects, and
solve the foreground aperture problem. Since it is not possible to handle dark and
light camouflage problems only by using edges due to the foreground aperture
difficulty, the brightness of color model is used to solve this problem and help to
fill the foreground objects.

– Texture features: Texture features allow to be robust in presence of shadows and
gradual illumination changes, and sometimes in dynamic backgrounds. Texture
features can produce false detections due to textures induced by local illumina-
tion effects like in cast shadows. Furthermore, an algorithm based only on texture
may cause detection errors in regions of blank texture and heterogeneous texture.

– Motion features: Motion features can handle irrelevant background motion and
clutter such as waving trees and waves.

– Stereo features: Stereo features allow the model to deal with the camouflage in
color but not in depth.
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Thus, multiple features approaches with two, three or a set of features obtained from
a bag-of features or by feature selection are suitable to address multiple challenges
in the same video (See Section 17). A representative work developed by Li et al.
[326] consists in a sets of features built following the type of background (static or
dynamic) as follows:

– Features for static background pixels: For modeling pixels belonging to a sta-
tionary background object, the stable and most significant features are its color
and local structure (gradient). As the gradient is less sensitive to illumination
changes, the two types of feature vectors are integrated under the Bayes frame-
work in the basic product formulation of the likelihoods.

– Features for dynamic background pixels: For modeling dynamic background
pixels associated with non stationary objects, color co-occurrences are used as
their dynamic features. This is because the color co-occurrence between con-
secutive frames has been found to be suitable to describe the dynamic features
associated with non stationary background objects, such as moving tree branches
or a flickering screen.

2.6.6 Features and Strategies

There are several strategies in literature such as multi-scales strategies, multi-levels
strategies, multi-resolutions strategies, multi-layers strategies, hierarchical strategies,
and coarse-to-fine strategies (See Section 2.1). Practically, different features can be
used following the scale, the level or the resolution. For example, a feature can be
used at the block level (such as Haar-like features in [675]), and other features can be
used at the pixel level (such as RGB in [675]). Thus, these strategies employed multi-
ple features schemes. Please see Table 9, Table 10, and Table 11 for a quick overview.

2.6.7 Features and Similarities

The foreground mask is usually obtained from a similarity/dissimilarity measure be-
tween 1) the direct value of the feature in the background model and the current
frame, or 2) a value computed from the direct value of the feature (mean, variance,
probability, etc...) in the background model and the current frame. This value can
be a scalar (intensity value, mean, probability, etc..), a vector (2D spatial vector, 3D
spatiotemporal vector, etc...) or a histogram (correlogram, etc..). Practically, com-
parison of features can be made by using similarity/dissimilarity measures obtained
with 1) a crisp, statistical or fuzzy distance for scalar cases, 2) a ratio for scalar
cases, 3) linear dependence measure for vector cases, and 4) a intersection measure
for histogram (correlogram) case. The choice of the suitable similarity/dissimilarity
measure is guided by the properties and the distribution of the concerned features.
Furthermore, spatial and temporal features such as LBP and LTP need also measures
for their computing as follows: 1) a measure for the distance in the spatial neigh-
borhood, and 2) a measure for the distance in the temporal neighborhood. Thus, for
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spatial and temporal features like texture, it needs to choose three distances. We list
below the different similarity/dissimilarity measures used in the literature for fore-
ground detection (See Table 8 for a quick overview):

A) Similarities for scalar case: Scalar value is the most common case in the lit-
erature and the similarities used can be classified as follows:

– Difference: The difference computed in a pixel-wise manner between the feature
in the background model and the current frame is the most measure used. So, the
difference is obtained by a distance and then a threshold is used to classify the
pixel as background or foreground as follows:

distance(B(x, y)− I(x, y)) < T (4)

where B(x, y) and I(x, y) are the values of the feature in the background image
and in the current image, respectively. distance(, ) is a distance function. Several
distance functions have been used in the literature and they can be classified as
follows:

1. Crisp distance: The most common distance function used for intensity/color
values is the absolute distance [5][544]. Aach et al. [6] used a total least
squares distance measure. In an other work, Yadav and Sing used a quasi-
euclidian distance. To compare Spatiotemporal Condition Information (SCI),
Wang et al. [562] designed a specific measure called Neighborhood Weighted
Spatiotemporal Condition Information (NWSCI). Using compressive features
[84], Yang et al. [618] developed a (Pixel-to-Model) P2M distance.

2. Statistical distance: To compare the K distribution in the original MOG,
Stauffer and Grimson [512] used the Mahalanobis distance with the RGB fea-
tures. An alternative to the Mahalanobis distance is the Kullback-Leibler (KL)
divergence used in Makantasis et al. [359] with the infrared features and Pat-
wardhan et al. [424] with the RGB features. In a further work, Pavlidis et al.
[381] claimed that the MOG algorithm needs a divergence measure between
two distributions so that if the divergence measure between the new distribu-
tion and one of the existing distributions is ”too small”, these two distributions
could be merged together. Thus, Pavlidis et al. [381] used the Jeffreys diver-
gence measure to check if the incoming pixel value can be ascribed to any
of the existing K Gaussians. Experimental results presented by Pavlidis et al.
[381] show that the false positives are reduced in comparison with the Maha-
lanobis distance and the KL divergence. In an other work, Santoyo-Morales
and Hasimoto-Beltran used the Chi-2 distance with YUV features instead of
the Mahalanobis distance. In a non parametric model based on KDE, Ko et
al. [296] choose the Bhattacharyya distance due to its low computational cost.
In an other work, Mukherjee et al. [386] developed a distance measure based
on support weight to compare RGB features. St-Charles and Bilodeau [505]
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employed the Hamming distance to compare LSBPs.

3. Order-Consistency Measure: Xie et al. [598] used an explicit model for the
camera response function, the camera noise model, and illumination prior.
Assuming a monotone and nonlinear camera response function, Xie et al.
[598] show that the sign of the difference between two pixel measurements
is maintained across global illumination changes. Noise statistics are used to
transform each frame into a confidence frame where each pixel is replaced
by a probability that it is likely to keep its sign with respect to the most
different pixel in its neighborhood. Hence, an order consistency measure is
defined as a distance between two distributions. Xie et al. [598] used the
Bhattacharyya distance due to its properties to the Bayes error. Finally, an
Illumination Invariant Change Detector via order consistency (IICD-OC) is
developed. Experimental results [598] on videos taken by an omni-directional
camera show the robustness of IICD-OC against illumination changes. But,
the ordinal measure required a reordering of blocks and it is computation-
ally expensive. To solve this problem, Singh et al. [495] explicitly modeled
noise under which rank-consistency is tested, and used a probabilistic genera-
tive model under which frame blocks are generated. The order-consistency is
posed as a hypothesis validation problem using fast significance testing based
on PAV. In a further work, Parameswaran et al. [418] used the same order-
consistency measure in an illumination compensation approach.

– Ratio: The ratio computed in a pixel-wise manner between the feature in the
background model and the current frame is also used in several works. Thus, the
ratio is obtained by a division and then a threshold is used to classify the pixel as
background or foreground:

ratio(B(x, y), I(x, y)) < T (5)

where B(x, y) and I(x, y) are the values of the feature in the background im-
age and in the current image, respectively. For example, Baf et al. [21][24][22]
computed the ratio of color components and LBP that are further aggregated with
the Choquet integral. In a further work, Baf et al. [23] used the ratio of the IR
intensity and LBP. In a similar approach, Ding et al. [130][127] computed the ra-
tio between the difference and the number of gray level for the color components
and LBP. In a further work, Ding et al. [128] developed a specific ratio measure
to compare gradients. This measure is a ratio between a product and a sum of the
gradient in the background and the current images. Azab et al. [17] used a similar
scheme than Ding et al. [130][127] but with statistical values. In a change detec-
tion approach, Aach et al. [4] and Aach an Kaup [3] used a ratio of probabilities.

B) Similarities for vector case: Linear dependence measures and colinearity
measures are the most used similarity measure to compare vector. First, Durucan and
Ebrahimi [136] proposed to use a linear dependence measure (colinearity measure)
to test the depence/independence properties of each vector that represented informa-
tion on the neighborhood region of the concerned pixel. The idea is that illumination
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changes do no change the colinearity of the vector. Thus, a Linear Dependence Detec-
tor (LLD) which is invariant to transformations was defined for change detection, and
applied to the vector composed by the reflectance for change detection. Experimental
results [136] show that LDD outperforms the Statistical Change Detector (SCD) de-
veloped by Aach et al. [5] in presence of noise as well as global illumination changes
and local shadows and reflection. LLD presents the advantage to detect semantic ob-
jects but object interiors maybe not well detected and it requires high computational
complexity. To solve these problems, Durucan and Ebrahimi [137] used a more rig-
orous test based on the Wronskian determinant. The corresponding detector called
Wronskian Detector (WD) outperforms both SCD and LDD. In a further work, Du-
rucan and Ebrahimi [138][139] used an other test based on the Gramian determinant
which provides low computational cost and is easy to implement. Thus, Durucan and
Ebrahimi [138][139] proposed a Gramian Detector (GD) which can be applied on
color images in the RGB color space. In practice, other than illumination changes,
change detection is also influenced by the noises of cameras and reflections but the
previous linear algebra detectors have intrinsic weakness in case of noises [155].
To solve this problem, Gao et al. [155] developed a Linear Approximation Detector
(LAD). Experimental results on the PETS 2001 dataset show that LAD show more
robustness against noise than LDD and WD. In an other work, Ming et al. [370][371]
proposed a local linear dependence based Cauchy Statistical Model (LLD-CSM).
Experimental results [370][371] demonstrate that LLD-CSM can tolerate the local or
global slow or sudden illumination changes, noise due to small motion in the back-
ground.

C) Similarities for histogram case: Intersection measures are the most used
similarity measure to compare histograms or correlograms. First, Mason and Duric
[363] used an intersection measure to compare Local Color Histograms (LCH). In an
other work, Fabian [145] first used simple metric to compare Histograms of Oriented
Gradients (HOG) in a discrete metric space. But, this metric made no difference be-
tween two different bins. Due solve to this problem, Fabian [145] proposed a complex
metric. Several works [90][406][323] [660][661][687][218] used the Bhattacharyya
distance as can be seen in Table 8. The chi-squared measure is used to compare lo-
cal gradient histograms in Mason and Duric[363]. The Bhattacharyya distance is the
most statistical used distance and was employed for the following histograms: 3D
HRI [90], Local Kernel Color Histograms [406], ELKH [323], LDH [660][661], LH-
FGs [687] and adaptive HOG [218]. In an other approach, Mukherjee et al. [386]
developed a HoG distance.

In the following sections, we present and analyze the different features currently
used in background modeling and foreground detection in terms of robustness against
the challenges met in videos taken by a fixed cameras.
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Categorie Sub-categories Features

Scalar Case
Difference 1) Crisp Measure

Absolute Distance Reflectance [544], Intensity, Color
Total Least Squares Distance Reflectance [6]
Logarithmic Distance Reflectance [594]
Quasi-Euclidian Distance RGB [610]
Cosine Measure Gradient [654], Texture [134]
Exponential Cosine Measure Gradient [654]
Angular Deviation Intensity Vector [269]
P2M Distance Compressive Feature [84][618]
Neighborhood Weighted Spatiotemporal Condition Information (NWSCI) SCI [562]
2) Statistical Measure
Mahalanobis distance RGB [512]
Bhattacharyya distance RGB [296]
Chi-2 distance YUV [456]
Kullback-Leibler divergence IR [359], RGB [424]
Jeffreys divergence RGB [381]
Distance Measure based on Support Weight RGB [386]
Hamming distance LSBP [505]
l1 distance RGB [563]
l2 distance RGB [563]
3) Fuzzy Measure
Interval-valued fuzzy similarity FST Features [93]

Ratio 1) Direct values IR Intensity [23]
RGB [24], YCrCb [24]
LBP [24], ULBP [351]
Intensity Vector Magnitude [269]

2) Differences Crisp values:
RGB [130], YCrCb [130], HSI [130]
LBP [130]
Statistical values:
RGB [17], LBP [17]

3) Other values Product/Difference:
Gradient [128], LBP [130]
LBP [130]
Probabilities: [3]
[3]

Vector Case
Linear Dependence Measure 1) Linear Dependence Measure

LDD [136] Reflectance (Vector)
Wronskian Detector (WD) [137] Reflectance (Vector)
Gramian Detector (GD) [138][139] Color (Vector)
3) Linear Approximation Measure
Linear Approximation Detector (LAD) [155] Reflectance (Vector)
4) Local Linear Dependence Measure
Local Linear Dependence Measure (LLD-CSM) [370][371] YCbCr (Vector)
5) Spectral Distance Measure
Spectral Distance Measure [35] Spectral Feature (Vector)

Order Consistency Measure Order-Consistency Measure
Bhattacharyya distance [598] Reflectance
PAV [495] Color
qPAV [495] Color

Histogram Case
1) Intersection Measure LCH [363]
Simple metric (discrete metric space) HOG [145]
Complex metric (discrete metric space) HOG [145]
l1 distance metric HSV [565]
Earth movers distance metric HSV [565]
Normalized Histogram Intersection LFCH [290]
2) Proximity Measure LBP [17]
3) Bhattacharyya distance 3D HRI [90], Local Kernel Color Histograms [406]

ELKH [323], LDH [660][661], LH-FGs [687]
adaptive HOG [218]

4) Chi-Squared Measure LGH [363]
5) HoG distance HOG [386]

Table 8 Similarities Measures: An Overview. The first column indicates the type of the measure for each
category of feature in terms of value (scalar, vector and histogram). The second column gives the name of
the measures and the third column indicates the corresponding features on which the measure is applied.

3 Intensity Features

Intensity features are the most basic features that can be provide by gray-level cam-
eras [493][242][267][47] or infra-red (IR) cameras [116][117][115][346][359][402][611][478][34][107][360][626][614][448].
Practically, several works combined both of them by using a fusion scheme strategy
[118][119][121][120][392][393][39][100][98][99][196][320] [319] to combine their
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respective advantages. In other works, several designed illumination invariant fea-
tures based on intensity have been developed as follows:

– Reflectance: Several reflectance models have been developed to describe the re-
flectance due to normal, forescatter and backscatter distributions such as the Lam-
bertian model, the Phong shading model, the dichromatic reflection model [295]
and the Ward model [583]. Toth et al. [544] were the first authors who used the re-
flectance in change detection and they proposed to obtain the illumination and the
reflectance components with a homomorphic filtering [413] based on the Lamber-
tian model. Then, only the reflectance components are compared by using a sum
of absolute differences within a sliding window for foreground detection between
consecutive frames. Toth and Aach [542] used this approach to detect and further
distinguish between humans, vehicles, and background clutters. In further works,
Toth et al. [543][2] improved this method by using a Bayesian framework. In an
other way, Aach et al. [6] used a total least squares distance measure instead of
sum of absolute differences. Aach and Condurache [1] used a threshold transform
by significance invariance.

– Surface Spectral Reflectance: Sedky et al. [469] developed a method called
Spectral-360 which adopted a physics-based model called the dichromatic re-
flection model [295]. This approach is different from the previous work, in that
it relies on models, which can represent wide classes of surface materials. Then,
the feature used is the Surface Spectral Reflectance (SSR). Thus, the background
model based on the mean SSR as well as its maximum correlation and its mini-
mum correlation, is built during a training step and updated continuously. Experi-
mental results [469] on the ChangeDetection.net 2014 dataset show that Spectral-
360 outperforms MOG [512] and KDE [142] in terms of F1-measure. In IR cam-
era, Nadimi and Bhanu [392] obtained the reflectance throught the dichromatic
reflection model too, and they combined visible and IR intensity feature via a
physics-based fusion. In further works, Nadimi and Bhanu [393][39] used an
evolutionary-based fusion method.

– Radiance: Based on the Phong shading model, Xie et al. [598] used the radi-
ance obtained by considering both ambient and diffuse reflection, and thus take
into account an explicit model for the camera response function, the camera noise
model, and illumination prior. Then, Xie et al. [598] developed an illumination-
invariant foreground detection via order consistency.

– Photometric Variations: Di Stefano et al. [513] adopted a visual correspondence
measure called Matching Function (MF) [513]. This measure matches corre-
sponding blocks of two images by checking an ordering constraint. Since pho-
tometric variations tend to respect the ordering of intensities in a neighborhood
of pixels, MF allows to handle sudden and strong illumination variations between
the background scene and the current frame. Practically, MF matched the high
contrast regions corresponding to the intensity edges of two blocks, since only
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high intensity differences can provide high contributions to the correlation score.
In a second step, Di Stefano et al. [513] used a tonal alignment technique. Hence,
the background is tonally aligned to the current frame by applying a histogram
specification method [166], and then Di Stefano et al. [513] obtained a back-
ground image where the photometric distortions have been removed. Finally, a
pixel-wise difference between the background image and the current frame ex-
tracts the foreground regions.

4 Color Features

Color features provide spectral information, and are the natural features as they are
directly available from the sensor or the camera. Although they are often used for
facilitating easy discrimination between the background and the foreground, color
features are generally not robust against illumination conditions and shadows cast by
the moving objects. Furthermore, similar colors between background and foreground
lead to the well-known problem of camouflage in color.

4.1 Features in Well-Known Color Spaces

Several color features in different color space have been proposed in the literature
and are described as follows:

– RGB color space: The RGB color space is the most popularly used feature due
to their direct availability from the sensor or the camera. Red, Green, and Blue
channels of each pixel are usually measured with 8-bits resolution, where 0 is
no color (black) and 255 is the maximum color (white), therefore, a total of 24-
bit true color definition. But the RGB color space has several limitations: 1) it
is well known that the RGB color space does not reflect the true similarities
among colors, 2) depending on the scene one color component could be more
informative than the others, so it should be given more importance than others,
3) the three components are dependent on each other which increase its sensi-
tivity to illumination changes. For example, global illumination changes shift the
mean level of the entire RGB image, possibly with shifts of different magnitude
for each color component, and 4) as the three channel components are corre-
lated, there is a need to compute inter-correlation terms in the covariance matrix
which shall be incorporated into existing background models such as in the MOG
model [512]. Stauffer and Grimson [512] demonstrated that by not computing
these inter-correlations terms, computational speed improves with increased false
detections.

– Normalized RGB (rgb) color space: The normalized RGB space is derived from
the traditional RGB color space to be illumination invariant. Xu and Ellis [601]
used the normalized RGB to allow the MOG to be robust to fast illumination
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changes in an outdoor environment lit by sunlight and shadowed by clouds.

– YUV color space: The YUV space separates luminance and chroma and so it
is more suitable for improving the robustness of the model against illumination
changes. For example, Wren et al. [589] used the normalized components, U/Y
and V/Y to remove shadows in a relatively static indoor scene. Using the MOG
model, Harville et al. [202] defined a chroma validity test based on the luminance
Y as the chroma (U and V) components become unstable when the luminance is
low. When the test is not verified, the chroma components of the current obser-
vation are not used and so are its current Gaussian distributions. Furthermore, the
detection in luminance was combined with the detection in depth improve robust-
ness to color camouflages.

– HSV color space: The HSV color space is used to improve the discrimination
between shadow and object, classifying shadows as those pixels having approxi-
mately the same hue and saturation values compared to the background, but lower
luminosity. For example, Sun et al. [520] used the Hue-Saturation-Value (HSV)
color space, because the likelihood term in the MOG model shows stronger con-
trast in HSV space rather than the RGB space, especially for objects that share
similar appearance to the background (Camouflage in color). In an other study,
Kanprachar and Tangkawanit [273] compared the RGB and HSV color spaces.
Experimentally, HSV color space was very suitable under low illumination in-
tensity conditions. Kanprachar and Tangkawanit [273] showed that not all three
parameters in HSV color system are useful for the detection. Saturation (S) and
Value (V) are the two key parameters to be used.

– HSI color space: HSI color space is closer to human interpretation of colors in
the sense that brightness, or intensity, is separated from the base color. HSI uses
polar coordinates. In the original MOG model, shadows are extracted as part of
object mask when using the RGB color space. To address this problem, Wang and
Wu [576] used the HSI color space which tends to be shadow-removable. How-
ever, the obtained results are not satisfactory due to the fragmented segmentation
obtained by using hue and saturation. In order to achieve both ”shadow-rejection”
and ”segmentation stability over time”, Wang and Wu [576] employed the MOG
on chroma (hue and saturation) and luma (intensity) separately. The fused re-
sults obtained by combining chroma and luma is prepared using two criteria. This
scheme reserves the advantage of using chroma (i.e. avoiding shadow) and that
of luma (i.e. stability of segmentation). The foreground mask is refined using an
Hidden Markov Model (HMM) for improved performance.

– Luv color space: Yang and Hsu [622] used the Luv components assuming inde-
pendence in the computation of covariance matrix required in the MOG model.
Then, Yang and Hsu [622] built an hybrid feature space with spatial and color fea-
tures to obtain a 6-dimensional hybrid feature vector for each pixel. A mean-shift
procedure classified each hybrid feature vector to its corresponding local maxi-
mum along the gradient direction. Thus, a set of neighbouring pixels associated
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with the same local maximum (i.e. mode) is highly similar in this hybrid feature
space. Yang and Hsu [622] then assign pixel-wise background likelihood for each
pixel using the MOG likelihood, and further obtain a smoothed version of MOG
in terms of spatial and color coherency.

– Improved HLS color space: Setiawan et al. [471] proposed to use the IHLS
color space which has the following advantage against the RGB color space. That
is to identify shadow region from object by utilizing luminance and saturation-
weighted hue information directly, without any calculation of chrominance and
luminance. By exploiting this color space in the MOG model, Setiawan et al.
[471] obtained good sensitivity to color changes and shadow.

– Ohta color space: The axes of the Ohta space are the three largest eigenvectors
of the RGB space, found from the principal components analysis of a large selec-
tion of natural images. This color space is a linear transformation of RGB. Using
the mean model, Zhang and Xu [654][655] used the Ohta color space. The three
orthogonal color features of Ohta color space are important components for rep-
resenting color information. Good results in the case of illumination changes and
shadows in outdoor scenes are achieved by using only the first two components
which are combined with the texture feature (LBP).

– YCrCb color space: YCbCr uses Cartesian coordinates. El Baf et al. [21][24]
used the YCrCb color space combined with the texture feature (LBP) to be robust
to illumination changes and shadows. Experimental results in [21][24] showed
that YCrCb color space is more robust in these cases than the Ohta and HSV
color spaces.

– Lab/Lab2000HL color space: Lab color space is a color space which indi-
cates proper changes in the direction of human color perception. Its components
are the lightness of the color and two color opponent dimensions. Lab2000HL
color space, which is an improved version of Lab color space, was introduced
and is thought to perform a better modeling of human perception. Particularly,
Lab2000HL color space has linear hue band. So, Balcilar et al. [27] investigated
the performance of the Lab2000HL color space. The average precision value of
Lab2000HL is the greatest in all videos in comparison to all other color spaces.
In terms of the computational costs for each color space (YCrCb, Luv, Lab,
Lab2000HL), RGB color space leads the lowest. The reason is that it does not
require any transformation since the information gathered from the camera sen-
sors is directly in RGB. Lab2000HL color space, on the other hand, has the most
computational cost, since a computationally intensive procedure is required to
apply first the Lab transformation, and then the computation of transformation
value with respect to the transition map using interpolation. The conclusion is that
the Lab2000HL color space increases foreground detection rate significantly, in
spite of its high computational cost. Balcilar et al. [26] improved the performance
obtained by the Lab2000HL color space with a spatial and temporal smoothing
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scheme.

– CIEDE2000 color space: Thangarajah et al. [537] used the CIEDE2000 color-
difference described in Sharma et al. [477].

Several comparisons on the color spaces can be found in the literature [298][450]
[273][28][350][475][108][301]. First, Kumar et al. [301] studied five color spaces
using the single Gaussian model: RGB, XYZ, YCrCb, HSV and the normalized rgb.
YCrCb obtained the highest true detection rate and thelowest miss rate on traffic
video sequences.

The most complete comparison made by Kristensen et al. [298] compared the
following color spaces using the MOG model: RGB, HSI, YCbCr, rgb, C1C2C3 and
l1l2l3. rgb, C1C2C3 and l1l2l3 are all invariant to changes in brightness, a color space
that should decrease the sensitivity to shadows. This investigation showed that the
HSI, rgb, C1C2C3, l1l2l3, and m1m2m3 are noisy but less sensitive to shadows than
RGB and YCbCr. YCbCr is less noisy than RGB, due to its more independent color
channels. Even though both HSI and l1l2l3 are sensitive to changes close to the gray
scale, the result is much worse for l1l2l3. The light invariant color spaces do not detect
as much shadows as the other color spaces, at a cost of missed detection of bright ar-
eas. With the m1m2m3 color space the segmentation algorithm becomes more of an
edge detector, since it is based on two neighboring pixels. Overall, the most suitable
color space for the segmentation algorithm is YCbCr. It is least sensitive to noise, due
to numerical stability and more independent color channels. No information is lost
when it is transformed from RGB in comparison to other normalized color spaces in
which brightness information is usually lost. Finally, YCbCr is affected by shadows
and compared to RGB, is too insensitive in some cases but Kristensen et al. [298]
presented compensation methods for these two cases.

In the case of self-organizing neural network model [356], Lopez et al. [350]
compared five different color spaces : RGB, Lab, Luv, HSV and YCrCb. Further-
more, they proposed a color component weighting selection process to take into ac-
count the different importance of each component in a color space. A set of 22 dif-
ferent configurations was then evaluated on the I2R dataset [326]. The performance
of color spaces has been different in each sequence but YCrCb is the best choice in
most cases, and it remains as an interesting option. YCrCb gives the best results when
setting the weight to 1 or close to this value for Y, which indicates that the most im-
portant channel for a robust detection is the one that corresponds to lightness, while
the remaining channels often add nothing to the result.

For moving shadow elimination, Shan et al. [142] determined the optimal color
space in which to remove shadow among the following set of color spaces: RGB,
HSV, YCrCb, XYZ, L*a*b*, c1c2c3, l1l2l3, and normalized RGB. Practically, there
are three key points with moving shadow detection and elimination [142]: (1)It exists
different classes of shadow due to the variety of scenes and different properties of
shadow, (2) shadows in each color spaces are different, which provide different fore-
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ground detection results, and (3) there might be not one but different optimal color
space following the prominent properties of the shadow. Shan et al. [142] focused in
detecting two kinds of shadows: shadows illumination and shadows reflection. Then,
shadows are reclassified as invisible and visible. Experimental results [142] show
that every space cannot be suitable for all kinds of shadows. HSV, c1c2c3, normal-
ized RGB spaces are appropriate for visible shadow, and YCbCr, L*a*b* spaces are
appropriate for invisible shadow. Even if all types of shadows can be removed in one
color space with special methods, different application can selected suitable color
space, which can provide twice the result with half effort.

4.2 Features in Designed Shape Color Spaces

In literature of background modeling and foreground detection, several color space
models were designed with a particular shape for the test volume around a back-
ground pixel, whose space defines the cluster associated with that pixel. In other
words, the test pixels which is inside this volume are associated with the correspond-
ing background. The shape of the volume determines its robustness to highlight and
shadows and the different shapes can be classified as follows:

– Cylinder Color Model: Horprasert et al. [212][213] separated the brightness and
the chromaticity components to deal with shading and shadows. Thus a brightness
distortion and a color distortion are computed from the RGB components. This
color model is called the cylinder color model,and allows to discriminate a RGB
color pixel into shadow, highlight, background, and foreground under static back-
ground. In the case of the codebook model, Kim et al. [287] used also a cylinder
color model which separated the color and brightness component to cope with the
problem of illumination changes such as shading and highlights. Thus, a color
distortion feature is computed from the current RGB components and the RGB
components stored in the codebook. For brightness changes, Kim et al [287] com-
puted a brightness distortion computed from statistics on the intensity to allow
the brightness to vary in a certain range that limits the shadow level and highlight
level. In an other work, Guo and Hsu [184][185] improved this cylinder color
model by using an adaptive threshold instead of a fixed threshold to increase its
ability to distinguish highlight and shadow.

– Arbitrary Cylinder Color Model: However, the CY model is valid only if the
spectrum components of the light source change in the same proportion. In fact,
it is not true in many practical scenes, where the variations of each spectrum
component of the light source would not be in proportion. In these cases, the
CY model is inaccurate and much less efficient. To solve this problem, Zeng and
Jia [646][647] used an Arbitrary CYlinder based color (ACY) model. The ACY
model uses cylinders whose axes needs not going through the origin, so that the
CY model is extended to more general cases. Furthermore, the ACY model re-
duces the false classification rate of CY model by more than 50% without loss
of real-time performance. Practically, the CY models only a special case of the
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ACY model.

– Hybrid Cone-Cylinder Color Model: In the cylinder color model, almost ev-
ery low-intensity test pixel are assigned to the cylinder of a background pixel
of very small intensity. Thus, as two similarly grouped pixels increase intensity,
they have less chance of being in the same cluster, even though their respective
chrominance remains the same. As a more suitable shape, a cone corrects these
problems and more precisely covers the color space but a pure conical highlight
detector attracts too many pixel values within its space and thus increases the false
negative rate. For sensitive detections, the highlight volume should be limited to a
cylinder. Thus, Doshi and Trivedi [131][132] presented a Hybrid Cone-Cylinder
Codebook (HC3) model for a 24-7 long-term surveillance system. Experimental
results [131] on videos taken by a fixed camera and an omni-directional camera
show that the hybrid cone-cylinder color model in HSV outperforms the cylinder
color model in RGB.

– Ellipsoidal Color Model: In the CY model, the two opposite margins of the
cylinder cell are not sufficient to model the background pixel with changed illu-
mination. Indeed, it is not optimal in case of illumination changes to use cylin-
drical cells of the same size with the same threshold. Furthermore, false negative
detections may occur due to the dark background pixels of which the cylinder
codewords are located near the origin. The closer to the origin the cylinder code-
word is, the larger possibility that the corresponding dark background pixels may
be easily miss-classified as a foreground pixel because of the small illumination
changes. To handle this problem, Sun et al. [519] described the color distribu-
tion of each background pixel by ellipsoidal shape codewords based on multiple
3D Gaussian distributions. The variation of every stationary background pixel is
limited so that they may be described by only one ellipsoidal cell. Experimental
results [519] show that the ellipsoidal color model outperforms the cylinder color
model.

– Box-based color model: To reduce computation time, Tu et al. [549] used a box-
based color model which using box-based subspace to represent a codeword. The
three edge-lengths values of the box are usually set to the same in the RGB color
space, so the box is a cubical box. This model reduces computation complexity.
Letting a 24-bit color image sequences, its color mode consisting of RGB uses 8
bits to represent red, blue and green separately. Thus, the color space can be con-
sidered as a large cubical box 256 × 256. Then the input pixel value is encoded
into the center of cluster when its value lies within a cubical box. So, the pixel
value is represented by the cluster center.

– Double-Trapezium Cylinder Color Model: Huang et al. [222] proposed a Double-
Trapezium Cylinder Color Model on YUV, called DTCC-YUV. First, Huang et
al. [222] located the shadow detection area in the lower part of the model based
on the low luminance of shadows in comparison with the background. Then, a
trapezium cylinder is built as the structure of the shadow detection area by us-
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ing the variable chrominance of shadows. Second, Huang et al. [222] located the
highlight detection area in the upper part of the model based on the high lumi-
nance of highlights in comparison with the background. An inverted trapezium
cylinder is built as the structure of the highlight detection area based on the vari-
able chrominance of highlights. Finally, the main background area is built with a
cylinder structure in the middle part of the model and then DTCC-YUV model is
completel built. Experimental results [222] on the PETS 2001 dataset show that
the DTCC-YUV model outperforms the cylinder color model [212] and the hy-
brid cone-cylinder codebook model [131].

4.3 Designed Illumination Invariant Color Features

Design of illumination invariant color features was investigated to be robust with illu-
mination changes because the well-known color spaces show limitations in this case.
So, Pilet et al. [428] adopted a color illumination ratio as feature to deal with sudden
illumination changes. This illumination ratio does not depend of the surface albedo.
It depends of the surface orientation and on the illumination environment. Therefore,
Pilet et al. [428] used the MOG model with this color illumination ratio instead of
RGB with a spatial feature which is the Normalized-Cross Correlation (NCC). Ex-
perimental results [428] show that MOG with the color illumination ratio is more
robust to illumination changes than the improved MOG of Zivkovic [695] with RGB.
In a further work, Wang and Yagi [566] used the same ratio but with a more effi-
cient learning model which improved the robustness against illumination changes. In
a multi-backgrounds approach, Takahara et al. [522] used both RGB and HSV fea-
tures be robust againts various illumination changes while Sajid and Cheung [454]
used both RGB and YCrCb features. In an other work, Yeh et al. [627] developed a
color illumination-invariant.

4.4 Color Filter Array (CFA) Features

A color image is composed of three channels per pixel which are usually acquired
by using three spatially aligned sensors. But, this method present two main disadvan-
tages: 1) it increases the camera size, and cost, and 2) it requires a complicated pixel
registration procedure. So, most digital color cameras employ a single image sensor
with a Color Filter Array (CFA) in front. Each pixel measures only one color and
spatially neighboring pixels which correspond to different colors are used to estimate
unmeasured colors. Among all the CFA patterns, the Bayer CFA pattern is the most
widely used pattern [518]. Practically, the Bayer CFA pattern is a 2×2 pattern which
has two green components in diagonal locations, and red and blue components in the
other locations. An image based on this pattern is called a Bayer-pattern image. The
interpolation process which allow to obtain a full-color image is called ”demosaic-
ing”. Suhr et al. [518] used the Bayer pattern instead of RGB in the original MOG
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[512]. This method presents almost the same accuracy as the original MOG using
RGB features while maintaining computational resources in terms of time and mem-
ory similar to the original MOG using grayscale feature.

4.5 Statistics on Color Features

Statistics on color feature can be defined and used as features such as:

– Standard Variance: Zhong et al. [685] divided each image into patches by repre-
senting each image patch as a standard variance feature computed on the intensity.
Then, assuming that standard variance feature fits a MOG distribution, Zhong et
al. [685] used the MOG model [512]. The advantages of using the standard vari-
ance feature as co-occurrence statistics features for dynamic background model-
ing are the following: 1) It explicitly considers correlation between pixels in the
spatial vicinity. Indeed, an image patch’s center pixel in current frame would be
a neighbouring pixel in the next frame due to the small movements of objects in
dynamic scenes. The center pixel’s intensity will change non-periodically. How-
ever, the image patch’s standard variance feature is unchanged due to the spatial
co-occurrence correlations between the center pixel and its neighboring pixels.
2) Image noise is largely filtered out with the average filter during the compu-
tation of standard variance feature; 3) The standard variance feature is invariant
to mean changes such as identical shifting of intensities. This is very suitable
in the case of illumination changes; 4) The standard variance feature results in a
low dimensional scalar representation of each image patch. This avoids expensive
computation during the background modeling phase. Experimental results [685]
on several dynamic backgrounds show that the MOG model is more robust with
this feature than RGB features.

– Color co-occurrences: Li et al. [326] used in feature selection scheme the color
co-occurrences which are more significant features for dynamic background pix-
els (See Section 2.6.5). In an other work, Adam et al. [7] used co-occurrences
of intensities in the spatio-temporal neighborhood of a pixel for dynamic back-
ground modeling in an ocean scenes. There are three approaches to used inten-
sities and color co-occurrences [7]: 1) The intensities are collected into a vector.
Then similarity between two spatio- temporal neighborhoods is measured by the
norm of the difference vector or by correlation between the two vectors. This ap-
proach is too strict for dynamic environments because we cannot expect a good
correlation between two space-time volumes of a waving tree or an ocean for ex-
ample, 2) Based only on the histogram of the intensities, the two spatio-temporal
neighborhoods are compared with their histograms. Instead of the first approach,
the order of the samples is completely irrelevant. Furthermore, it ignores impor-
tant spatio-temporal relationships between pixels, and 3) a compromise between
the two previous approaches which robusly combines each corresponding frag-
ments similarity scores to obtain an overall similarity measure between the spatio-
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temporal neighborhoods.

– Entropy: Entropy is a measure of uncertainty. The pixel value changes over time
from frame to frame due to the following reasons: (1) changes in the background
as in the case of illumination changes and dynamic backgrounds, and (2) Mo-
tion objects which make the pixel value change from background to object or
from object to background. Thus, in Ma and Zhang [355], the change of pixel
value is considered as the state transition of pixel, e.g. in a 256 level gray image,
each pixel has 256 states. Pixel states change brought by noises would be in a
small range, but those brought by motion will be large. So the diversity of state
at each pixel can be used to characterize the intensity of motion at its position.
With this assumption, the probability distribution of each pixels state is observed
along temporal axis. Ma and Zhang [355] used a temporal histogram to present
state distribution in a sliding window. The probability density function of pixels
state is obtained by histogram normalization. Once the histogram is obtained, the
corresponding probability density function for each pixel is computed as follows:

Pi,j,q =
Hi,j,q

N
(6)

where Hi,j,q denotes the spatial-temporal histogram i.e. w×w×L pixels are ac-
cumulated to form the histogram of pixel (i,j), q denotes the bins of the histogram,
the total number of bins isQ,N is the total number of pixels in the histogram and∑Q
q=1 Pi,j,) = 1. Once the pdf of the pixel is known, the state diversity level of

this pixel is computed using entropy definition as follows:

Ei,j = −
Q∑
q=1

Pi,j,qlog(Pi,j,q) (7)

where Ei,j is called the spatial-temporal entropy of pixel (i,j). Ei,j is quantized
into 256 gray levels to form an energy image, named as Spatial Temporal En-
tropy Image (STEI). In STEI, the lighter the pixel is, the higher its energy is, and
the more intensive its motion is. But, STEI cannot differentiate the high entropy
caused by motion and spatial structure of the image. Thus, Jing et al. [262] pro-
posed a method based on difference image. The entropy images formed this way
is denoted as Difference-based Spatial Temporal Entropy Image (DSTEI). Experi-
mental results on the PETS 2001 dataset show that DSTEI shows more robustness
than STEI in presence of gradual illumination changes and dynamic backgrounds
but false detections occur in the case of shadows or sudden illumination changes.
In an other way, Chang and Cheng [76] used the entropy image with an adaptive
state-labeling technique. Similar to the STEI and DSTEI methods, Chang and
Cheng [76] construct a spatio-temporal sliding window for each pixel (i, j) to ac-
quire the corresponding spatio-temporal histogram but the histogram is based on
the distribution of pixels state labels instead on the distribution of pixels intensity.
A state label by a simple three-frame differencing rule is assigned to each pixel,
and the state label might be changed adaptively when the algorithm proceeds
over time. This algorithm leads to lower computational complexity compared to
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to STEI and DSTEI. The detection has a more precise outline and the algorithm
is more robust and less sensitive to the changes of parameters. In an other ap-
proach, Park et al. [422][421] used an entropy-based adaptive Gaussian mixture
model based on the idea that the increment of entropy generally means the incre-
ment of complexity. Because objects in unstable conditions cause higher entropy
variations, pixels with large changes in entropy in moments can be considered as
moving objects. Therefore, Park et al. [422][421] applied the Clausius entropy
theory to convert the pixel value in an image domain into the amount of energy
change in an entropy domain. Second, Park et al. [422][421] applied a MOG
algorithm on these entropy features. Experimental results [422][421] show that
the entropy-based method outperforms the original MOG in presence of dynamic
backgrounds and illumination changes.

– Illumination-Invariant Structural Complexity (IISC): Based on the idea that
the orthogonal decomposition is effective for separately handling structural fea-
tures from the illumination effects in a small local region, Kim and Kim [291]
used the singular value decomposition (SVD). Thus, SVD coefficients normal-
ized by the largest singular value provide the illumination-invariant feature space.
Due to the fact that pixel values in the small local region are mainly determined by
the illumination, its variation is well revealed in the largest singular value in the
SVD-based scheme. Then, Kim and Kim [291] defined the unit brightness level
in which all the singular values are divided by the largest one. The illumination-
invariant structural information are revealed by such normalized singular values.
Therefore, the sum of those values is employed as feature called Illumination-
Invariant Structural Complexity (IISC). The background model used the tradi-
tional on-line updating scheme, i.e the running average. Experimental results
[291] on the PETS2001 dataset and OTCBVS dataset show that IISC has the
ability to discriminate structural changes due to moving objects from those due
to illumination effects.

4.6 Discussion on Intensity and Color Features

According to the literature, it appears that 1) Spectral-360 [469] based on the dichro-
matic reflection model is the best reflectance approach for intensity features, 2) YCrCb
color space seems to be the most suitable space for category of color features in
well-known color spaces as demonstrated in case of the MOG model and the self-
organizing neural network model [350] even if it is affected by shadows and it is
too insensitive in some cases. But, compensation methods [298] can be employed for
these two cases, 3) for features in designed shape color spaces, the double-trapezium
cylinder color model [222] in YUV color space appears as the most suitable shape
model for the codebook model, 4) color illumination ratio [428] provides a robust
illumination-invariant color features, and 5) When a single image sensor with a Color
Filter Array (CFA) is used , Bayer CFA pattern [518] allows the MOG model to keep
the same accuracy as the RGB features while maintaining computational resources
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in terms of time and memory similar to the gray scale feature. Furthermore, statistics
on color features are useful to be more robust in presence of dynamic backgrounds
and illumination changes.

All the intensity and color features can be combined with edge, texture, motion or
stereo features to take advantage of these features. In literature, edge features are one
the first features used in addition of color features and are detailed in the following
section.

5 Edge Features

5.1 Intensity Edge Features

Edge based on intensity features give spatial information, and are computed using
a gradient approach such as Canny, Sobel [240][210][17][349][326][234] or Prewitt
[339][579] edge detector. The gradients can be calculated from the gray level image
or in each components of a color space. The edge features are generally used in addi-
tion to intensity or color features [240][249][339][452] or alone [243] [390][444][283][391][282][443][284][211]
as follows:

– In addition with intensity or color features: First, Jabri et al. [240] used in ad-
dition to the intensity features the intensity gradient obtained by the Sobel edge
detector. Large changes in either intensity or in edges are fused. However, the
involvement of the intensity model retains the sensitivity to sudden changes in
illumination. In Javed et al. [249], the edge and color information obtained from
pixel level is integrated at the region level. The basic idea is that any foreground
region that corresponds to an actual object will have high values of gradient based
background difference at its boundaries. It requires significant changes in both
the intensity and intensity gradient. The use of a gradient feature removes many
false alarms due to small illumination changes. However, intensity gradients aris-
ing from large illumination changes can still generate false detections. As edge
detection consists of first filtering the image using a suitable approximation of
derivatives followed by a thresholding, it gives an image where the pixel values
come from a binary distribution. This image is difficult to model using Gaussian
mixtures. Skipping the thresholding gives pixel values that come from a con-
tinuous distribution. However, since a majority of the picture usually contains
no edges such a distribution will be extremely skewed, and thus still difficult to
model using Gaussian mixtures. To solve this problem, Lindström et al. [339]
proposed to use a Prewitt edge detector without the thresholding independently
to each color component followed by a log-transformation, to reduce skewness,
gives a color edge image with pixel values that can be modeled using Gaussian
mixtures. Experimental results [339] shows better performance against illumina-
tion changes for the log-transformed detection using the Prewitt edge detector. In
an other work, Kim et al. [285] used edge and non-edge (texture) features in a
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hybrid background model to generate the background model. Thus, theses fea-
tures are encoded into a coding scheme called Local Hybrid Pattern (LHP). LHP
selectively models edges and non-edges features of each pixel. Then, each pixel
is modeled with an adaptive code dictionary to take into account the background
dynamism. In the background maintenance, stable codes are added in the model
while unstable ones are discarded. The incoming codes that deviate from the dic-
tionary are classified as edge or inner region. Experimental results [285] on the
ChangeDetection.net dataset show that this Adaptive Dictionary Model (ADM)
with LHP features outperforms the original MOG [512], the original LBP [206]
and SALBP [404]. ADM achieves similar results than ViBe [32] and PBAS [209].
In other works, Li et al. [330] and Gu et al. [174] used the gradient feature with
the KDE model [142]. The reader can see how the color features and edge fea-
tures are fused in these different approaches in Section 17.

– Edges alone: First, Kim and Hwang [279] proposed to use only edges to model
the background, and thus this approach used binary information as existence of
edge on each pixel. But, regions in consecutive frames may not have exactly
the same edge position, and have shape and length changes due to presence of
noise. This strategy may generate many false alarms in the foreground mask due
to edge distortion from consecutive frames. To solve the edge-distortion prob-
lem, edge-segment-based methods have emerged to take advantage of the edge
existence and its shape information [214]. An edge-segment approach consists
of the concatenation of adjacent edges, and it inherits the problems of edges:
shape and position changes. Thus, basic comparison of edge-segments produces
similar results as edge-pixel-based approaches. To solve this problem, statistical
edge-segment-based methods extract movement of edge-segments including edge
distortion [390][444][283][391][282][443][284]. Thus, these methods solve the
edge-variation problem by accumulating edge existence from a training sequence
[285]. Practically, each accumulated region represents an edge- segment distri-
bution. Each region refines their statistical properties after each frame to provide
a stable background model. Since edge-based and edge-segment-based methods
detect foreground as edges, these methods depend on a post-processing to extract
the regions defined by the detected edges. Moreover, these methods have prob-
lems updating their background model to adapt the background.

5.2 Subpixel Edge-Maps Features

A key limitation of intensity gradient features is that they do not take spatial inter-
actions into account. Alternatively, edge maps tag those background pixels which
maximize local gradient in a neighborhood of pixels. This tagging increases selectiv-
ity which in turn reduces both the number of pixels which would have been discarded
from the background model and the pixels would have been erroneously labeled as
foreground [625][657]. Discretization errors in pixel-based edge maps generate un-
necessary broad background models: a background edge halfway between the pixels
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will require both pixels modeled as background, thus unnecessarily ”blurring” the
background model, which in turn reduces sensitivity to detecting regions. Instead of
intensity gradient features, Jain et al. [243] proposed to use subpixel edge-maps by
modeling the position and the orientation of subpixel edges which disambiguates be-
tween edges of the same orientation but at different positions and vice versa. Subpixel
edge-maps has high precision and accuracy with invariance to illumination changes
and suitable for small translations. An other advantage is that it requires fewer frames
to build the background model even in case of slow moving objects and bootstrapping
when edges from a region can share the same pixel as well as the same orientation.

5.3 Statistics on Gradient Features

Statistics on gradient features are also used as follows:

– Gradient deviations: Kamkar-Parsi [269] proposed to model the probability of
appearance and disappearance of edges due to moving objects in the scene. This
probability model is similar to the order consistency criteria described in [598]
applied to gradient deviations instead of intensity values.

– Projection Gradient Statistics: Zhang [656] used projection gradient statistics
as features. In the projection statistics curves, the largest change of the statistical
value is caused by the moving objects. Thus, the gradient of the curve can reflect
the statistical curve change clearly but also the position of the moving objects.
First, the background is identified by projection statistics and projection gradient
statistics of sub-images. Second, the background is reconstructed according to the
results of each sub-image. Experimental results [656] show that this approach has
a good anti-interference to low intensity vehicles in highway traffic scenes, and
the processing time is less as well.

5.4 Discussion on Edge Features

The influence of the edge detector (Canny, Sobel, Prewitt) on robustness have not be
studied in literature. Edges based approaches used in addition with intensity or color
features are the most investigated approaches and allow to combine the advantage
of the two features. For the approaches based on edges alone, only two main works
emerged that are the works of based on edge segments[390][444][283][391][282][443][284]
and the work based on subpixel edge [243]. These approaches appear to be relevant
too and merit to be more investigated. Statistics on gradient features are useful to be
more robust in presence of low intensities.
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6 Texture Features

Texture features give spatial information, and are the most investigated features in
the field as can be seen in Table 5. The Local Binary Pattern (LBP) [207], and the
Local Ternary Pattern (LTP) [332] are the most used with numerous variants. Further-
more, some improvements are developed in literature or can be developed to allow
texture features to integrate both:

1. Spectral and temporal information such as Spatial-Color Binary Patterns (SCBP)
[692], Opponent Color LBP (OCLBP) [316], Uniform LBP (ULBP) [636], Scene
Adaptive LBP (SALBP) [404], Intensity LBP (iLBP)[558], eXtended Center-
Symmetric [490] and Multi-Channel Scale Invariant LTP (MC-SILTP) [354].

2. Spatial and temporal information such as Spatial-Temporal LBP [486][659],
Space-Time Center-Symmetric LBP (ST-CS-LBP) [322], Spatial Center-Symmetric
LBP (SCS-LBP) [608], Motion Vectors Local Binary Patterns (MV-LBP) [617][573][572],
Stereo LBP based on Appearance and Motion (SLBP-AM) [628], Space-Time
Center-Symmetric Local Binary Patterns (ST-CS-LBP) [322], Center Symmetric
Spatio-temporal LTP (CS-ST-LTP) [605], Spatio Temporal Scale Invariant LTP
(ST-SILTP) [258], Texture Pattern Flow (TPF) [648][650] and dynamic texture
patterns [628][74][387][96][694][257].

3. Spectral, spatial and temporal informations: There are no improvements in
this category. Thus, investigation can be made in this direction.

Other approaches [568][570][593][523][606][300][638][43] reduce memories and
computation cost of texture features. Moreover, other improvements was made by
the use of statistical or fuzzy concepts. We classified them as follows :

1. Crisp features: such as local patterns [207][332][638][264][43][649][95][10][484]
and spatio-temporal patterns [429][312][313][639][640].

2. Statistical texture features: such as peripheral patterns [459][629][630] and
reach patterns [462][465][457][235][236][631][374].

3. Fuzzy texture features: Local Fuzzy Pattern (LFP) [340][412] and Fuzzy Statis-
tical Texture (FST)[89][93].

In the following sub-sections, we brieftly describe each texture feature in each cate-
gory and the reader can see how the texture features are fused with other features in
Section 17.
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6.1 Local Patterns

6.1.1 Local Binary Pattern (LBP)

Heikkila et al. [207] proposed to use a texture feature called Local Binary Pattern
(LBP) computed from the intensity feature. Based on this texture feature, a block-
wise LBP histogram based approach (LBP-B) [207] and pixel-wise LBP histogram
based one (LBP-P) [206] were developed. These methods can deal with gradual and
sudden illumination changes due to the robustness of the texture feature to illumi-
nation variations. But these methods only use one learning rate that is a trade-off
between different rates of change in background. When a high learning rate is used,
the model updates quickly and slow-moving objects are incorporated into the back-
ground model which causes in a high false negative rate. When a low learning rate is
used, these methods cannot handle sudden changes in background which causes in a
high false positive rate. To address this problem, Goyal and Singhai [168] proposed a
LBP texture-based algorithm which uses adaptive learning rate to deal with different
rates of change in background. In an other approach, intead of computing LBP from
the intensities, Satpathy et al. [466] proposed to apply LBP on the background and
current edge images obtained by a Difference of Gaussians (DoG) edge detectors. Li
et al. [321] combined the LBP difference between the background and the current
images, the single Gaussian [590] and the codebook [288] for foreground detection
to combine complementary advantages of each method. In a further work, Wu et al.
[595][596] proposed a layered background modeling. First, every block on the first
layer is modeled via texture based on local binary pattern (LBP) operators. Then,
the modeling granularity is deflated onto the second layer to model via codebook.
Layered match is done from top down when a new video frame enters. Experimental
results [595][596] show that this approach efficiently avoids the false negative detec-
tion rate in the pixel-based background modeling when the object color is similar to
the background, and also stops the false positives occurring on the contour areas of
the moving objects due to the block model. In an other work, Zhong et al.[663] used
intensity, LBP code and the norm of the first order derivative of the intensity with
respect to x and y in a covariance based model to deal with dynamic backgrounds.
In a further work, Zhong et al. [682] developed a background subtraction algorithm,
which takes both texture and motion information into account. Texture information is
represented by local binary pattern (LBP), which is tolerant of illumination changes
and is computational simplicity. Assuming that there is significant structure in the
correlations between observations across time, an operator to extract motion infor-
mation is used. Then, each pixel is modeled as a group of texture pattern histograms
and motion pattern histograms respectively. Finally, the texture pattern-based and
motion pattern-based background model are combined using a weighted rule. A mix-
ture factor γ is used to control the influence of the texture pattern-based background
model and the motion pattern-based background model. Practically, it was taken to
0.5. This combination is more robust to dynamic backgrounds. These methods ap-
plied the original LBP in different ways compared to Heikkila et al. [207]. However,
there are numerous variants of LBP and some of them have been developed for back-
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ground/foreground separation. They can be classified as follows:

– Spatial-Temporal LBP (STLBP): A spatial background model, like LBP [207]
(and RRF [460]), has the following problem. Their method uses spatial invariant
features to monotonic changes in a local area. When pixel values change in a part
of the local area, spatial invariant features are no longer good. Such a situation
often occurs especially in outdoor scene changing of weather conditions. To ad-
dress this problem, Shimada and Taniguchi [486] proposed an invariant feature
using both spatial invariance and temporal invariance called Spatial-Temporal
LBP (STLBP) suitable for outdoor scene in which the illumination condition can
change gradually. In a similar way, Zhang et al. [659] extended the ordinary LBP
from spatial domain to spatio-temporal domain, and proposed a new online dy-
namic texture extraction operator, named spatio-temporal local binary patterns
(STLBP). Then, Zhang et al. [659] developed a dynamic background modeling
and subtraction based on STLBP histograms which combine spatial texture and
temporal motion information together. However, the computational load was in-
creased and comparative results with the original LBP [207] were not presented.

– ε-LBP: The main limitation of LBP is that both memories and computation costs
increase greatly with the increasing of the images resolution. To solve it, Wang
and Pan [568] proposed a fast background subtraction method based on the novel
LBP called ε-LBP. Furthermore, it overcomes two drawbacks brought by the LBP
operator, i.e. the neighboring pixels are conditional independent under the center
pixel, and it is weakly to measure the difference between the center pixel and
its neighborhood. Compared with the LBP, ε-LBP improves greatly memories
and computation efficiency by a simple measurement, which is linearly propor-
tional of the images resolution. But, ε-LBP needs a threshold which is empiri-
cally selected as a global constant. Thus, this method only performs well when
the illumination variation is global. To address this problem, Wang et al. [570]
improved th ε-LBP by adding local adaptive property. The threshold is adaptively
selected for each pair of two neighboring pixels. With two evaluation criterions,
i.e. the description stability and the discriminative ability, a simple yet effective
approach is presented to adaptively estimate the threshold by classifying all the
pixels into two groups, i.e. the edge pixels and the texture pixels. In background
modeling procedure, a naive Bayesian technique is adopted to effectively model
the probability distribution of local patterns in the pixel level. The utilization of
single ε-LBP (pixel level) improves the robustness to the illumination variation
and reduces the computation cost compared with LBP.

– Center Symmetric Local Binary Patterns (CS-LBP): Tan et al. [523] proposed
to use the Center Symmetric Local Binary Patterns (CS-LBP) [208], which effec-
tively decreases the influence of noise, illumination changes and shadows. This
method firstly computes the CSLBP feature images, then it calculates integral
histogram as basic feature of background model, and finally establishes a back-
ground model containing K models. Finally, it classifies pixels as background



49

or foreground and updates the background model by comparing the similarity
of histogram within L square neighborhood. This methods increases processing
speed effectively by the use of one integral histogram and two integral histograms,
respectively. To decrease the computation time, Wu and Zhu [593] proposed to
compute the CS-LBP eigenvalue in the current image and to subtract it with the
eigenvalue of the same pixel in the background image. The difference is then
thresholded to classify pixel as background or foreground. This method could
meet the requirements of real-time detection. In a further work, Zhang et al. [653]
used an adaptive strategy based on CS-LBP. Then, foreground detection is used
for detecting moving object by using a confidence factor to determine whether the
current pixel is a background or foreground pixel. The confidence factor of the
current pixel is computed in terms of the difference values of its neighbourhood
pixels. Experimental results made with PETS 2009, BMC 2012 [552] and SABS
[61] datasets demonstrate that this approach can robustly detect moving object
under various scenes. An other approach proposed by Li et al. [322] consists
in a space-time symmetrical ST-CS-LBP operator which integrates time predic-
tion and texture information. A ST-CS-LBP histogram is built and merges the
advantages of time-domain statistics and spatial distribution. Results show more
robustness to long and short luminance changes than the CSLBP.
In an other way, Xue et al. [608] proposed to use a Spatial Center-Symmetric
Local Binary Pattern (SCS-LBP). This operator not only has the property of il-
lumination invariance, but also produces short histograms and be more robust to
noise. So, Xue et al. [608] extended the CS-LBP operator from spatial domain to
spatial-temporal domain and proposed a texture operator named SCS-LBP which
extracts spatial and temporal information simultaneously. Then, combining the
SCS-LBP operator with an improved temporal information estimation scheme,
Xue et al. [608] obtained a background modeling approach which reach high ac-
curate detection in dynamic scenes while reducing the computational complexity
compared to the LBP based method. The LBP operator produces long feature set
since it only adopts the first-order gradient information between center pixel and
its neighbors. Xue et al. [606] developed a second-order center-symmetric local
derivative pattern (CS-LDP) operator which extracts more detail local informa-
tion than CS-LBP. Then, Xue et al. [606] concatenated the CS-LBP histogram and
CS-LDP histogram to get a new hybrid feature. This LBP pattern is called Hy-
brid Center-Symmetric LBP (HCS-LBP) Experiments on challenging sequences
indicate that this method can produce comparable results while using less com-
putation time (25%) compared to the LBP based method.

– Spatial-Color Binary Patterns (SCBP): Zhou et al. [692] proposed an spatial-
color feature extraction operator named spatial-color binary patterns (SCBP). It
extracted spatial texture and color information. In addition, a refine module is de-
signed to refine the contour of moving objects. For each pixel, first, a histogram
of SCBP is extracted from the circular region, and then a model consist of sev-
eral histograms is built. For a new observed frame, each pixel is labeled either
background or foreground according to the matching degree between its SCBP
histogram and its model, then the label is refined and finally the model of this
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pixel is updated.

– Opponent Color Local Binary Pattern (OC-LBP): Lee et al. [316] developed a
novel training process for classifiers which use block based Opponent Color Lo-
cal Binary Pattern (OC-LBP). So, the pixel based OC-LBP [168] was extended to
to block-level.

– Double Local Binary Pattern (DLBP): Xu et al. [600] developed a Double Lo-
cal Binary Pattern (DLBP).

– Uniform Local Binary Pattern (ULBP): Yuan et al. [636] proposed in a K
histograms model a combination of color feature, i.e hue, and an uniform local
binary pattern (ULBP) texture to be robust to shadows. The results from each
features are combined with a weighted average. ULBP with the hue outperforms
LBP [207] and DLBP [600].

– Extended and Rotation Invariant LBP (Ext-LBP): Yue et al. [637] developed
an extended LBP (Ext-LBP) and a Rotation Invariant LBP (RI-LBP). Ext-LBP is
obtained by expanding the adjacent area of original LBP. Combined RI-LBP with
MOG effectively removes shadow influences.

– Larger neighborhood LBP (LN-LBP): Kertesz [275] used a larger neighbor-
hood than the original LBP (LN-LBP). It is calculated inside a 5 × 5 neighbor-
hood, therefore, it is not defined two pixels wide on the image borders. The algo-
rithm specified a correction value to the LN-LBP calculation in order to handle
the flat color areas where the color values almost do not change. Furthermore,
Kertesz [275] used a Markov Random Field (MRF) as a higher level classification
of the LN-LBP histograms into foreground and background. LN-LBP with MRF
is quite invariant for the resolution and provides better performance at higher res-
olutions than the original LBP [206].

– Motion Vectors Local Binary Patterns (MV-LBP): Yang et al. [617], Wang et
al. [573] and Wang et al. [572] proposed a moving object detection method to-
wards H.264 compressed surveillance videos. First, the motion vectors (MV) are
accumulated and filtered to achieve reliable motion information. Second, con-
sidering the spatial and temporal correlations among adjacent blocks, spatio-
temporal Local Binary Pattern (LBP) features of MVs are extracted to obtain
coarse and initial object regions. Finally, a coarse-to-fine segmentation algorithm
of boundary modification is conducted based on the DCT coefficients.

– Scene Adaptive Local Binary Pattern (SALBP) : Noh and Jeon [404] devel-
oped a texture operator namely, Scene Adaptive Local Binary Pattern (SALBP)
that provides more consistent and accurate texture-code generation by applying
scene adaptive multiple thresholds. A background subtraction framework em-
ploying diverse cues (pixel texture, pixel color and region appearance) is pre-
sented. The SALBP information of the scene is clustered by the conventional
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codebook model [288], and utilized to detect initial foreground regions. Back-
ground statistics of the color cues are also modeled by the codebook model and
employed to refine the texture-based detection results by integrating color and
texture characteristics.

– Stereo Local Binary Pattern based on Appearance and Motion (SLBP-AM) :
Yin et al. [628] proposed a Stereo Local Binary Pattern based on Appearance and
Motion (SLBP-AM) descriptor. The motion of pixels is represented as dynamic
texture in ellipsoidal domain. Then, Yin et al. [628] combined texture histograms
in the XY, XT, YT planes in the ellipsoid. SLBP-AM is more robust to slight dis-
turbance, but also adapts quickly to the large-scale and sudden changes.

– Window-based LBP (WB-LBP): The histogram computation and construction
of LBP is a very time-consuming and complex process. Kumar et al. [300] pro-
posed to reduce the complexity to a large extent by using a window-based LBP
(WB-LBP) subtraction method. Moreover, the efficacy of the WB-LBP in terms
of correct classification is quite satisfactory as compared to the other LBP-based
methods.

– Intensity Local Binary Patterns (iLBP): The original LBP [207] has a main
drawback. Indeed, it ignores the intensity information when comparing LBP de-
scriptors. Because of this, there could be a paradoxical situation which generates
wrong pixel comparison result when intensity values of pixels differ drastically,
but their LBP descriptors are identical. To solve it, Vishnyakov et al. [558] pro-
posed a intensity Local Binary Patterns (iLBP) descriptor and built a fast back-
ground model on its basis. This feature allows stabilizing the value of the de-
scriptor and constructing a background model that is robust to lighting conditions
changes in the scene and is applicable for the real time multi-camera setup. In a
further work, Vishnyakov et al. [559] used iLBP in a background model based on
regression diffusion maps. This approach allows objects that move with different
speed or even stop for a short while to be uniformly detected.

– BackGround Local Binary Pattern (BGLBP): Davarpanah et al. [111] devel-
oped a BackGround LBP (BGLBP) which has been designed to inherit the posi-
tive properties of Direction Local Binary Pattern (D-LBP), CS-LBP [523], ULBP
[636], and RI-LBP [637]. Experimental results on the I2R dataset [326] show that
BGLBP outperforms several variants of LBP such as the original LBP, ULBP and
RI-LBP in presence of illumination changes and dynamic backgrounds.

– eXtended Center-Symmetric Local Binary Pattern (XCS-LBP): Silva et al.
[490] presented an extension of CS-LBP called XCS-LBP (eXtended CS-LBP)
by comparing the gray values of pairs of center symmetric pixels so that the pro-
duced histogram are short as well, but considering the central pixel also. This
combination makes the resulting descriptor less sensitive to noise. Experimental
results on the BMC dataset [552] show that XCS-LBP outperforms LBP, CS-LBP
and CS-LDP. For computation time, XCS-LBP has slightly better time perfor-
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mance than both CS-LBP and CS-LDP.

– Local SVD Binary Pattern (LSVD-BP): Guo et al. [187] developed the LSBP
feature descriptor which has the ability to gain the potential structures of local re-
gions. LSBP also inhibits the effect of illumination changes especially cast shad-
ows and noise. Experimental results on the ChangeDetection.net dataset [169]
show that LSBP allows robustness in the ”Shadow” and ”Thermal” categories
while LSBP seems to perform at a level comparable to PBAS [209] the ”Dy-
namic Backgrounds” and ”Baseline”.

In summary, three main properties are required for a designed LBP version for the
application of background modeling and foreground detection [111]: 1) It should be
fast to compute, 2) the number of bins in the plotted histogram should be the least,
and 3) It should be computed based on whole pixels values belonging to each block.
Thus, the original LBP [207][206] and the LBP based on gradient [466] are not op-
timal. Multi-Block LBP calculates a LBP value for each block instead of each pixel
separately. ULBP [636] is not rotation invariant. Finally, there are many bins in the
CS-LBP model. Regarding all of these limitations, BGLBP and XCS-LBP seem to
be the best LBP variants for background modeling and foreground detection.

6.1.2 Local Ternary Pattern (LTP)

– Local Ternary Pattern (LTP): First, Tan and Triggs [524] proposed to include
an additional buffering state to solve the instability problem of LBP, and intro-
duced the local ternary pattern (LTP) as a robust extension of LBP. Liao et al.
[332] proposed to use the Local Ternary Pattern (LTP) operator [524] for back-
ground/foreground separation. Practically, LTP is more robust by introducing a
small tolerative range. However, the descriptor is extended from LBP by simply
adding a small offset value for comparison, which is not invariant under scale
transform of intensity values by a multiplying constant. For example, LTP de-
scriptor can not keep its invariance against scale transform when all local pixel
values are multiplied by 2.

– Scale Invariant Local Ternary Pattern (SILTP): For background modeling and
foreground detection, the intensity scale invariant property of a local comparison
operator is very important, because illumination variations, either global or lo-
cal, often cause sudden changes of gray scale intensities of neighboring pixels
simultaneously, which would approximately be a scale transform with a constant
factor. Therefore, Liao et al. [332] proposed to extend LTP to Scale Invariant Lo-
cal Ternary Pattern (SILTP). Furthermore, Liao et al. [332] improved Heikkila
et al’s region histogram based method by modeling pixel process with a single
local pattern instead. However, local patterns are not ordinal numerical values,
thus can not be modeled directly into traditional density functions. Therefore,
Liao et al. [332] developed a Pattern Kernel Density Estimation (PKDE) tech-
nique to effectively model probability distributions of such patterns for handling
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complex dynamic backgrounds and a multiscale fusion scheme to consider the
spatial scale information. The SILTP operator was presented by 8 bits [332]. This
encoding strategy only used 4 pixels of its 8 neighborhoods which might result in
loss of the texture information. If all 8 neighboring pixels were used, the length
of encoding was 16 bits which led to computational complexity increasing.

– Scale Invariant Center-symmetric Local Ternary Pattern (SCS-LTP): Zhang
et al. [670] proposed a texture operator named Scale Invariant Center-symmetric
Local Ternary Pattern (SCS-LTP), and a corresponding Pattern Adaptive Kernel
Density Estimation technique for its probability estimation. Zhang et al. [670]
used a simplified Gaussian Mixture Models for intensity feature. Then, the results
from texture and intensity are combined in a multi-scale fusion scheme based on
the basic product formulation of the likelihoods. Zhang et al. [669] used a similar
scheme but based on Gaussian Mixture Models for both texture (SCS-LTP) and
color features (Normalized RGB). The results from texture and color are com-
bined in a multi-scale fusion scheme based on the weighted average. The weights
are a function of a parameter balancing texture distance and color distance which
is empirically set to 0.7. There are two advantages of the SCLTP operator in fore-
ground/background separation. The first one is that the SCLTP operator is robust
not only to noise but also to illumination by introducing a scale factor like SILTP.
The second one is that the SCLTP operator can represent more texture informa-
tion with less bits. The SCLTP operator can use 8 bits to express a pixel with
all its 8 neighboring pixels because of only comparing center-symmetric pairs
of pixels. Experimental results [670][669] on several complex real world videos
with illumination variation, soft shadows and dynamic backgrounds (I2R dataset
[326]) show that SCS-LTP outperforms slightly SILTP [332].

– Multi-Channel Scale Invariant Local Ternary Pattern (MC-SILTP): Ma and
Sang [354] proposed to extends the SILTP to feature space and to operate on the
three channels of RGB images rather than the only channel of gray images to get
the texture pattern. This texture descriptor is called Multi-Channel Scale Invariant
Local Ternary Pattern (MC-SILTP).

– Center Symmetric Spatio-temporal Local Ternary Pattern (CS-ST-LTP): Xu
[605] and Lin et al. [337] decomposed the scene background into a number of
regular cells, within which a batch of video bricks (e.g.pixels) are extracted as
observations. In order to better represent video bricks and enhance the robustness
to illumination variations, Xu [605] proposed a brick-based descriptor, namely
Center Symmetric Spatio-temporal Local Ternary Pattern (CS-ST-LTP), instead
of using pixel intensity. CS-ST-LTP is inspired by the 2D local pattern descriptor
and adapted to characterize video brick..

– Spatio-Temporal Scale Invariant Local Ternary Pattern (ST-SILTP): Consid-
ering the temporal persistence of texture sequences, Ji and Wang [258] extended
the SILTP [332] to the spatio-temporal domain called ST-SILTP. Second, Ji and
Wang [258] presented an adaptive fusion approach of color and texture to com-
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pensate for their respective defects. Furthermore, since a pixel of foreground or
not depends on not only itself but also its neighborhood, a lateral inhibition fil-
ter model incorporated the neighborhood information into calculating the pixel’s
confidence score. Practically, a pixel is classified as background or foreground
by using its probability computed from the similarities in each feature, and from
confidence of color and texture components. For color or texture feature of a
background mode, if its corresponding confidence is a larger value, it means that
it plays a more important role in making the decision about the label of the given
pixel, i.e., foreground or background. In the computation of updating the back-
ground model, the weight and confidences of color and text features are constantly
updated in the online learning way. Thus, in estimating the probability of a pixel
as background, the contribution of color and texture components can be adap-
tively adjusted and both kinds of information are fully fused together to segment
foreground object. Experimental results [258] on I2R dataset [326] show that ST-
SILTP gives silhouettes with less holes than the original SILTP [332].

– Center-Symmetric Scale Invariant Local Ternary Pattern (CS-SILTP): Wu et
al. [592] extended the SILTP descriptor by introducing a the Center-Symmetric
Scale Invariant Local Ternary Pattern (CS-SILTP) descriptor, by exploring spatial
and temporal relationships of neighborhood.

6.1.3 Local States Pattern (LSP)

Yuk et al. [638] introduced Scale Invariant Local States (SILS) as texture features for
modeling a background pixel, and a pattern-less probabilistic measurement (PLPM)
which is derived to estimate the probability of a pixel being background from its
SILS. An adaptive background modeling framework was also proposed for learning
and representing a multi-modal background model. Practically, consideringN neigh-
bors in the texture pattern and K background models, the memory space and oper-
ations required for the SILS based method are only O(3NK) comparing to SILTP
based method [332] which requires O(3NK). Experimental results [638] on the I2R
dataset [326] show that SILS based method runs nearly 3 times faster than SILTP
based method [332] with the same accuracy.

6.1.4 Local Difference Pattern (LDP)

Yoshinaga et al. [633] proposed a probabilistic background model which combined
pixel-based multi-modal model with color features and spatial-based uni-modal model
with texture features by considering the illumination fluctuation in localized regions.
Then, Yoshinaga et al. [633] used several pairs of a focused pixel and its peripheral
pixels, i.e., its surrounding pixels, in a localized region, and modeled the distribu-
tion of the difference between pixel values of each pair with a mixture of Gaussians.
These pixel value differences in the localized region is called Local Difference Pat-
tern (LDP). LDP presents several advantages: (1) There are little changes in a LDP
in presence of sudden illumination changes because the pixel values in a localized
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region similarly increase and decrease, and (2) LDP can also deal with periodic
changes of pixel values because MOG represents multiple hypotheses of the back-
ground. Thus, LDP used both properties of pixel-based and spatial-based features,
without decreasing the accuracy. In further works, Yoshinaga et al. [634][635] called
this feature Statistical Local Difference Pattern (SLDP). Experimental results on the
BMC dataset [552] show that SLDP outperforms adaptive RRF [460] in presence of
illumination changes and dynamic backgrounds.

6.1.5 Local Self Similarity (LSS)

LBP [207] and SPF [530] performed reasonably well, but the features that are used
can only capture change in texture, not change in intensity. Furthermore, because
these features are computed based on comparisons with a center pixel, change cannot
be detected if the intensity of the center pixel remains larger (or smaller) than each
neighboring pixel after a change in a scene. Recently, Jodoin et al [264] proposed
to use the local self-similarity (LSS) descriptor, but because the LSS descriptor is
calculated on a large region, there are borders of falsely detected pixels around the
detected foreground. Some morphological operations were applied to improve the de-
tected foreground by removing extra pixels, but holes or spaces between legs cannot
be recovered that way. Furthermore, LSS is slow to compute on complete image.

6.1.6 Local Similarity Binary Pattern (LSBP)

To solve the shortcomings of both LBP and LSS, Bilodeau et al. [43] proposed a
descriptor called Local Similarity Binary Pattern (LSBP) which is binary and fast to
compute, works on small regions, and captures both change in texture and change in
intensity. Practically, a binary vector is built from the comparisons of pixel intensities
centered around a point of interest over a small predetermined pattern. Unlike LBP
and LSS which compute the difference between two values, the LBSP approach re-
turns whether they are similar or not via absolute difference. Its temporal aspect and
sensitivity to illumination variation is due to its ability to use the central pixel inten-
sity of a previous frame for new comparisons. But, one of the disadvantages of LBSP
is that it is not a spatio-temporal descriptor because it does not keep both feature
information and pixel intensity information jointly up to date. To address this prob-
lem, St-Charles et al. [505] presented a spatio-temporal LSBP in the framework of an
adaptive background subtraction method called LOcal Binary Similarity segmenTER
(LOBSTER). This modification allows the spatio-temporal LSBP to be more suitable
in noisy or blurred regions and more robust to high illumination variations than the
original LSBP. In further works, St-Charles et al. used this spatio-temporal LSBP in
addition with color features with a flexible background subtraction algorithm called
Self-Balanced SENsitivity SEgmenter (SuBSENSE) [506][507], and a background
subtraction algorithm that analyzes the periodicity of local representations called
Pixel-based Adaptive Word Consensus Segmenter (PAWCS) [509][510].
In a further work, Yan et al. [613] improved LSBP by proposing an Uniform LSBP
(U-LSBP) which reduces computational complexity and is more robust to shadows
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and illumination changes. In an other work, Zhang et al. [658] proposed to combine
color and LBSP information to establish the background model.

6.1.7 Directionnal Rectangular Pattern (DRP)

Zhang et al. [649] developed a Directional Rectangular Pattern (DRP) based com-
plex background modeling method to detect the moving objects in a video sequence.
Different from LBP encoding the binary result of first-order derivative between the
central point and its neighborhoods, Directional Rectangular Pattern encoded the bi-
nary result of first and second order derivative direction in all neighborhoods among
a rectangular region. To model the distribution of the DRP micro-patterns, Zhang
et al. [649] used DRP integral histograms. The local gray-level feature based Gaus-
sian Mixture Model (GMM) is exploited to calculate an adaptive threshold for the
histogram similarity measure to decide which part/pixel is background or moving
object. Experimental results [649] show the effectiveness of DRP by comparing with
LBP.

6.1.8 Local Color Pattern (LCP)

All LBP-based algorithms are often invariant to local illumination changes but they
are unable to detect uniform foreground objects in large uniform background ex-
cept at the objects’edges. To solve this problem, Chua et al. [95] proposed a robust
texture-color based background modeling. The texture feature is the LBP histogram
and the color feature called Local Color Pattern (LCP) is is formed by concatenating
the quantized hue, luminance, and saturation histograms, summed over a structuring
element. For the initialization, LBP and LCP histograms are computed and stored
as background models for the first N image frames. Since the background model is
represented by LBP and LCP histograms, the final similarity is obtained by comput-
ing a weighted rule with a weight τ that controls the importance of texture and color
features. Higher τ indicates that texture is more important than color features. τ is
determined adaptively. The ability to adapt the weight of color and texture informa-
tion makes the algorithm very suitable for video surveillance applications especially
with dynamic scenes. Reckley et al. [446] used LCP features in a sensor selection
scheme in which spatiotemporal signatures of moving objects are integrated from dif-
ferent sensing modalities into a video segmentation method in order to improve object
detection and tracking in complex scenes such as dynamic backgrounds with mov-
ing water and high reflections. Experimental results [446] on two complex datasets
demonstrate that this technique significantly improves the accuracy and utility of the
original LCP [95][96], and largely outperforms CS-LBP [523].
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6.1.9 Local Neigborhood Patterns (LNP)

Amato et al. [10] used two discriminative features based on angular and modular pat-
terns, which are formed by similarity measurement between two sets of RGB color
vectors: one belonging to the background image and the other to the current image.
This Local Neighborhood Patterns (LNP) improved foreground detection in the pres-
ence of moving shadows.

6.1.10 Local Ratio Pattern (LRP)

In LBP and LTP, the very coarse binning of local intensity ratios may result in sub-
stantial feature noise when the true ratios fall close to a bin boundary. To solve this
problem, Zaharescu and Jamieson [641] proposed the Local Ration Pattern (LRP) in
a multi-scale multi-feature codebook-based background subtraction method. LRP is
similar to LBP and LTP, but extended to 4 bits, in order to divide the range of possi-
ble intensity ratios into 16 bins, instead of 2 or 3. This finer-grained encoding allows
the feature to respond more proportionately to a change in the underlying image.
Then, a similarity between two LRPs is defined with a ratio. Furthermore, Zaharescu
and Jamieson [641] addressed the LRP reliability by evaluating the confidence of a
match between two LRP features with their flatness (which are their similarity score
to a perfectly flat LRP).

6.1.11 Local Ray Pattern (LRP)

Light field camera was originally proposed for image-based rendering for computer
graphics. But, the light field camera has been applied to solve a difficult computer
vision and pattern recognition problem too [358]. In this context, Shimada et al.
[484][485] proposed a feature representation, called Local Ray Pattern (LRP) to eval-
uate the spatial consistency of light rays. The combination of LRP and GMM-based
background modeling realizes object detection on the infocus plane. Experimental
results [484][485] demonstrate the effectiveness and applicability for video surveil-
lance.

6.2 Spatio-temporal Patterns

6.2.1 Spatio-Temporal Vectors

Pokrajac and Latecki [429] proposed to use as features Spatio-Temporal Vectors
(STV), that are 3D blocks vectors. So, Pokrajac and Latecki [429] decomposed a
given video into spatio-temporal blocks (8 × 8 × 3 blocks). Then, a dimensionality
reduction technique is applied to obtain a compact representation of color or gray
level values of each block as vector of just a few numbers. The block vectors provide
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a joint representation of texture and motion patterns. Then, the MOG model is used
on the spatiotemporal blocks. So, the MOG model [512] is applied on the pixel and
region levels with a single level texture representation, that is the 3D block, whereas it
has been applied on pixel level in the original MOG. This method implicitly assumes
the feasibility of computing projection matrix from blocks that adequately represent
the texture. This approach provides good results on videos with comparatively high
stationarity in background. Furthermore, improvements are possible if the projection
matrix is computed dynamically. However, the techniques for adaptive estimation of
projection coefficients in time are not studied.

Texture at a given pixel is very likely to highly vary when a moving object is
passing through this location. Therefore, Latecki et al. [311][312][313] proposed to
use a local variation of the texture vectors. To robustly measure this variation, Late-
cki et al. [311][312][313] measure it in a limited and as short as possible window of
time, since at a given pixel a moving object can quickly appear or disappear. So, the
local variation is defined as the largest eigenvalue of spatio-temporal texture vectors
in a small time window. It is computed by applying PCA to the covariance matrix
of the SP texture vectors within a small temporal window. This way, Latecki et al.
[311] indirectly determined the magnitude of texture variability in the direction of its
maximal change. Thus, Latecki et al. [311][312][313] used PCA twice, first time to
compute the sp texture vectors, and the second time to compute the variation of a set
of texture vectors in a given time window. The decision whether a moving object or
a stationary background is identified at a given spatiotemporal location is then made
by dynamic thresholding of the obtained eigenvalues.

Zeljkovic et al. [643] and Pokrajac et al. [432] studied the resilience of moving
objects detection algorithm based on the spatio-temporal blocks on additive Gaussian
noise. Experimental results [643][432] on the PETS 2001 dataset show that the STV
is robust to strong additive Gaussian noise.

Pokrajac et al. [431] evaluated the STV on monochrome and multi-spectral IR
videos. Experimental results show that the STV can provide low false positive error
rates and successful identification of the front edge of the moving object.

Latecki et al. [309] extended the original method of STV [429] by replacing the
dynamic threshold with dynamic distribution learning and outlier detection signifi-
cantly improving the performance of the original approach.

Miezianko and Pokrajac [368] proposed a local background dissimilarity mea-
surement based on wavelet decomposition of localized texture maps. Dynamic thresh-
old of the normalized dissimilarity measurement identifies changed local background
blocks, and spatial clustering isolates the regions of interest. The use of STV pro-
vides accurate and illumination invariant separation of foreground and background
textures. The rough dissimilarity measurement of collected background texture maps
and the dynamic thresholding locate regions of interest in the background that exhibit
significant changes. The clustering of the blocks in localized spatial regions establish
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the boundaries of the background at different times. The texture maps are created
with gray level values to increase the computational speed of the wavelet decompo-
sition and background change detection.

Miezianko and Pokrajac [367] developed an effective method for extracting changed
backgrounds for regions observed by multiple overlapping cameras. A multi-layers
background is constructed, and spatio-temporal texture blocks are used to detect mo-
tion. Detected motion delineated temporally cohesive non-moving regions to extract
hyperspherical clusters and detect changed backgrounds. The proposed method al-
lows for detecting background changes in crowded environments exhibiting large
motion flows and significant occlusion.

6.2.2 Spatio-Temporal Textures

Yumiba et al. [639][640] proposed a spatio-temporal texture called Space-Time Patch
(ST-Patch) which describes motion in addition to appearance for detecting moving
objects in presence of dynamic changes. This approach can cover global changes
by using appearance information as conventional spatial textures. In addition, it can
cover local changes by using motion information. Yumiba et al. [639] applied the
MOG model with the ST-Patch. Experimental results [639][640] show that ST-Patch
allows the MOG to be more robust on videos with dynamic backgrounds and illumi-
nation changes.

6.2.3 Spatio-temporal Features

In a multi-level approach, Tanaka et al. [530][528] and Nonaka et al. [405] proposed a
integrated background modeling based on spatio-temporal features. First, foreground
objects are detected based on the pixel-level background modeling which is a KDE
model with the location (x,y) and the RGB color components as features and based
on the region-level background modeling with Radial Reach Correlation (RRC) as
feature. In the further step, the two foreground masks are combined. That is, pix-
els which are classified as foregrounds by both of the pixel-level and region-level
are classified as foregrounds and other pixels are classified as backgrounds. Then, a
frame-level background modeling which is based on brightness normalization of a
model background image Fukui et al. [152][151], is used to be robust against sud-
den illumination changes. Experimental results on the CD.net 2012 dataset show that
this multi-level approach with the considered spatio-temporal features outperforms
the original RRC [460], the original MOG [512] and the improved KDE [525] in
presence of dynamic backgrounds and illumination changes.
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6.3 Statistical Texture Features

6.3.1 Peripheral Patterns

– Peripheral Increment Sign Correlation (PISC): Satoh et al. [459] proposed
Peripheral Increment Sign Correlation (PISC) feature that encodes the intensity
differences between a target pixel and its peripheral pixels as a 0/1 binary code
similar to the case of Local Binary Pattern (LBP) proposed by Heikkila et al.
[207]. However, this leads to increase false positives because the code is reversed
easily with slight intensity changes in regions with small intensity differences, for
example in plain regions. Plain regions often occupy large spatial region within
images, which makes stabilizing on them very important.

– Peripheral TErnary Sign Correlation (PTESC): In order to alleviate the stabi-
lization issue of PISC, Yokoi [629] proposed a Peripheral TErnary Sign Correla-
tion (PTESC) features that stabilized the encoding by using -1/0/1 ternary code.

Though these texture-based methods are robust against illumination changes,
they cannot cope with regions that have poor texture. Plain foreground objects be-
fore plain background with different intensity from foreground cannot be detected by
these methods because both foreground and background have the same plain texture.
For this, Yokoi [630] proposed a texture descriptor combining Peripheral TErnary
Sign Correlation (PTESC) [629] and Bi-Polar Radial Reach Correlation (BPRRC)
[457][461]. The idea is to take advantages of the both descriptors. Indeed, Peripheral
TErnary Sign Correlation (PTESC) is robust against illumination changes by using
-1/0/1 ternary code for encoding the intensity difference between pixels in texture,
and Bi-polar Radial Reach Correlation (BPRRC) [457][461] yields high detectability
in a region with little texture.

6.3.2 Reach Patterns

– Radial Reach Correlation (RRC): Satoh et al. [462][465] defined a texture
feature called Radial Reach Correlation (RRC) (also called Radial Reach Filer
[458][464][463][460][560])which achieves robust detection of moving objects
while remaining insensitive to moving object intensity distribution and inten-
sity changes in scene objects. RRC evaluates foregroundness based on local tex-
ture described in the magnitude relation between the center pixel and its neigh-
bor pixel. In principle, this magnitude relation is not affected by the changes of
illumination and, thus, RRC is more robust than features which only use dis-
tribution information of the center pixel values. However, it cannot handle the
changes of the textural information caused by the small background fluctuation
such as swaying tree leaves [529]. In further works, Satoh and Sakaue [457][461]
proposed Bi-Polar Radial Reach Correlation (BP-RRC) which expands RCC in
cases where the image texture is feeble and the intensity distribution is biased.
Thus, Satoh and Sakaue [457][461] used a mechanism that simultaneously de-
fines and utilizes intensity differences (positive or negative) relative to a focal
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pixel. Experimental results [457][461] with the RCC showed that, even in cases
where image texture is weak or intensity distribution is biased, BP-RCC offers
superior detection performance and stability. BP-RRC is robust against grad-
ual illumination changes by using texture model but its present several weak-
ness: 1) it is not robust against background movements because of its rigid tex-
ture model [631], 2) Since BP-RRC uses the texture information, it does not
detect offset/gain change, and 3) it cannot respond to the texture change due
to illumination change under multiple light sources. To address the first weak-
ness, Yokoi [631] proposed the Probabilistic BP-RRC (PrBP-RRC) which pre-
serves BP-RRCs robustness against illumination changes and adds the robustness
against background movements. PrBPRRC introduces a probabilistic model for
background texture and learns a probabilistic background with inputs including
background movements and presence of moving objects. Experimental results
[631] on ATON dataset [369] and PETS 2007 dataset show that PrBP-RRC out-
performs BP-RRC. To solve the second problem and the third problem, Miyamori
et al. [374] proposed the Adaptive Bi-Polar Radial Reach Correlation Mixture
Model (ABP-RRC), which generates and selects several BP-RRC accommoda-
tive to background changes. Thereby, Miyamori et al. [374] developed a stable
background/foreground separation method, even when the texture changes oc-
curred which various illumination change causes. To reduce the computation time
of RRC, Itoh et al. [235][236] developed the Fast Radial Reach Correlation (F-
RRC). As a result, Itoh et al.[235][236] reduce the RRC calculation process to
about 1/4 in comparison with normal RRC. In an other approach, Tanaka et al.
[527][526][529] improved the original RRC [462][465] which is further used and
combined in pixel-level and region level method.

– Radial Proportion Filter (RPF): Miyamori et al. [375] defined the Radial Pro-
portion Filter (RPF). In a further work, Miyamori et al. [376] developed a Multi-
RPF (MRPF).

– Statistical Reach Feature (SRF): Iwata et al. [292] defined a set of statisti-
cal pair-wise features, derived by intensity comparison in a local neighborhood.
The classification for each pixel P is achieved by a set of selected N points Qn
(1 ≤ n ≤ N ), which are called reference points. Thus, SRF can be described as
the selection of Qn. Three factors impact the search of Qn : 1) the absolute value
of the intensity difference between P and Qn must exceed a given threshold T
which has an important role because it allows the background model to tolerate
noise, 2)Qn needs to meet a statistical requirement, that is its intensity remains T
units smaller (or larger) than that of P in most images, and 3)Qn is searched from
the starting point P to the edge of image in N (with N = 8) directions. Then,
two types of Qn can be selected. SRF defines the sign between P and Qn, which
satisfies It(P )− It(Qn) ≥ T in most images, as SRF (P,Q) = 1. It also defines
the sign between P and Qn, which satisfies It(P )− It(Qn) ≤ T in most images,
as SRF (P,Q) = −1. Then, comparing the signs in the background model with
that in the current image allows to classify P as a background or foreground pixel,
depending on whether the sign between P and Qn has changed. Due to the spe-
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cial properties of point pairs, SRF works well in object detection, but SRF present
three weakness: 1) SRF may not search a sufficient number of Qn because SRF
searches for Qn in only eight directions, implying that most pixels are not taken
into account. This may lead to an insufficient number of Qn that causes draw-
backs in the foreground detection step, 2) the searching way of Qn is not optimal
because SRF searchesQn in the order of space instead of the order of intensity
difference, which leads to an incomplete detection. The larger the intensity differ-
ence is, the less sensitive the model becomes. The intensity difference between P
andQn searched by SRF tends to be too large. This leads to incomplete detection,
and 3) the one-sided criterion in the SRF detection step results in false detections.
A one-sided criterion means that the two signs of SRF are combined into one
binary decision. In the case of presence of a moving object with much brighter
color, pixel are misclassified as background. To solve these problems, Zhao et al.
[677] improved SRF both in theory and algorithm.

6.4 Fuzzy Texture Features

– Local Fuzzy Pattern (LFP): Ouyang and Chen [412] proposed a texture descrip-
tor called the Local Fuzzy Pattern (LFP) histogram. The LFP histogram of each
pixel is calculated for each new frame and is compared to its corresponding val-
ues in the background model for classifying the pixel into foreground objects.
Experimental results [412] show that LFP possesses better adaption capability
and tolerance for dynamic conditions such as shadows and illumination variation
in comparison to LBP. Liu et al. [340] developed a similar LFP.

– Fuzzy Statistical Texture (FST): Chiranjeevi and Sengupta [89] proposed to ap-
ply a fuzzy membership transformation on the co-occurrence vector. The idea is
to derive a fuzzy transformed co-occurrence vector with shared membership val-
ues in a reduced dimensionality vector space, and called Fuzzy Co-occurrence
Vector (FCV). FCV can handled better the dynamic backgrounds than the crisp
Co-occurrence Vector (CV). Then, Chiranjeevi and Sengupta [89] defined a nor-
malized FCV (NFCV) from which fuzzy statistical texture features are derived.
Practically, the background model is initialized with a feature vector, composed
of intensity, energy, texture mean and local homogeneity, obtained from the first
frame of the video sequence. Then, FST are fused with intensity by using the
Choquet integral. This approach is called IFST. For a fair comparison, Chiran-
jeevi and Sengupta [89] implemented the approaches with Statistical Features
(FT), called IST. Experimental results [89] show that IFST handled better dy-
namic backgrounds than IST, the Choquet integral with (RGB) features [22], and
the Choquet integral with (R,G,LBP) features [24]. In a further work, Chiranjeevi
and Sengupta [93] used the same FST combined with intensity but aggregated
with he intervalued-valued fuzzy Choquet integral instead of the real-valued Cho-
quet integral used in Chiranjeevi and Sengupta [89].



63

6.5 Others Texture Features

6.5.1 Texture Pattern Flow

Both LBP and SILTP-based approaches do not consider the temporal variations in
patterns which contains inherent motion information derived from moving objects in
the video. In order to address this problem, Zhang et al. [648] developed a spatial-
temporal feature, dubbed as the Texture Pattern Flow (TPF), to compute inherent
motion information. TPF encodes texture and motion information in a local region
from both spatial and temporal aspects. TPF features are based on the gray-level im-
age in order to increase robustness against complex and dynamic backgrounds. The
integral histogram of the TPF is computed within a local region around the pixel and
is employed to extract statistically discriminative features. After estimating the TPF
integral histogram features, the background model is built and dynamically adapted
to complex scenarios as new frames begin to be processed. A similarity measurement
between the current image and the background model is made using a Kernel Similar-
ity Modeling (KSM) approach which integrates the TPF integral histogram features.
Zhang et al. [650] proposed an improvement to this method using an adaptive thresh-
old.

6.5.2 Textons

Texture Pattern Flow (TPF) [648] is based on the assumption that the movement
of the foreground is always towards a certain direction. While this assumption can
mostly work with human movements in constrained environments, it may not hold
for animals such as a fish as their movement is fairly erratic with frequent direction
changes [427][20][19][504]. However, other texture feature called textons have been
extensively adopted in texture analysis, and can be defined as sets of patterns shared
over an image [266]. Practically, several texton images have been proposed in the
literature [342]. For fish detection in underwater scenes, Spampinato [504] adopted
7 textons to capture even the slightest texture variations within any considered rect-
angular region of size w × w centered on the considered pixel. As a global texture
feature describing each pixel (x, y) and its neighbors in the region, the energy of the
texton is computed. Therefore, each pixel is represented with a feature vector which
contains the location (x, y), the three color components (RGB) and the energy of the
textons. The joint domain-range model consists in the corresponding 6-dimensional
space, on which the pdfs of the background and foreground models are built. This
is performed by means of KDE. Experimental results [504] on the Fish4Knowledge
dataset [502] show that the texton feature allow the KDE model to be more robust
than the original KDE with RGB [142], SILTP [332], VKS with rgb [394] and VKS
with Lab and SILTP. [394]. In an other work, Panda and Meher [414] used a Texton
Co-occurrence Matrix (TCM) feature with the original MOG model [512] to deal
with dynamic backgrounds. TCM is widely used in the field of image retrieval. The
TCM feature integrates both the color, texture, and shape features and is computed
in a neighborhood region of each pixel. Thus, TCM feature implicitly used image
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features and the spatial relationship between the pixels. Experimental results [414]
on the I2R dataset show that the MOG with the TCM feature show better robust-
ness than original OG with RGB, covariance-based background subtraction [663],
moments-based background subtraction [361], the original LBP [207] and intensity
and texture-based background subtraction [88] in presence of dynamic backgrounds.

6.5.3 Galaxy Pattern

Liu et al. [344] applied a binary descriptor called galaxy pattern [220] due to its
robustness in presence of illumination changes and its efficiency for computation
time compared to the state-of-the-art descriptors. Liu et al. [344] used background
instances of galaxy patterns computed on non-overlapped regions from observed
backgrounds to model the background. Experimental results [344] show that galaxy
patterns allow the model to more robust to illumination changes and dynamic back-
grounds than MOG [512], Codebook [288] and ViBe [32]. In a further work, Yang
et al. [620] improved this approach with a fine level detection method to identify the
label of each pixel.

6.6 Discussion on Texture Features

For local binary patterns, BGLBP [111]and XCS-LBP [490] appear to be the best
LBP variants for background modeling and foreground detection while ST-SILTP and
CS-SILTP seem to be the best LTP variants. SILS [638], LSS [264], LSBP [43] and
LRP [641] present a robust alternative to LBP. Furthermore, patterns can be extended
to spatio-temporal patterns, statistical patterns and fuzzy textures patterns to pro-
vide more robustness in presence of dynamic backgrounds and illumination changes.
Moreover, designed texture features are proposed as textons [504] to deal with spe-
cific challenges met in aquatic environments.

7 Stereo Features

Stereo features encapsulate spectral information in the depth domain, and are ob-
tained through a specific sensor which can provided a quantitative estimate of dispar-
ity [237] or depth [202]. Traditional stereo systems can provide both color and depth
information [237][202]. However, it requires the setup of two cameras. Practically,
stereo depth computation relies on finding small area correspondences between im-
age pairs, and therefore does not produce reliable results in regions with little visual
texture and in regions, often near depth discontinuities in the scene, that are visible in
one image but not the other. Most stereo depth implementations attempt to deal with
such cases of limitations and label them with one or more special values. Further-
more, noise and subtle lighting changes can cause the depth measurement at a pixel
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to erroneous, even if nothing actually changes in the scene. In this context, shadows
often provide the texture needed to extract valid depth in regions where measure-
ments are usually invalid.

On the other hand, Time of Flight Cameras (ToF) which is a range imaging cam-
era system obtains distance based on the known speed of light and by measuring the
time-of-flight of a light signal between the camera and the object for each point of
the image. Apart from their advantages of high frame rates and ability to capture the
scene all at once, ToF based cameras have generally the disadvantage of low resolu-
tion. Several other limitations of ToF cameras are detailed in [317]. Nevertheless, the
2D/3D cameras provide additional depth features when compared to ordinary video,
which makes it possible to deal with color camouflage issues during background
modeling [494][308][307].

Recently, low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s
Xtion Pro are completely transformed several scientific visual signal processing ap-
plications. For example, Camplani et al.[66][65][62][63][64] used a Microsoft Kinect
for objects detection through foreground/background segmentation. An other back-
ground subtraction algorithm based on RGB-D camera was developed by Fernandez-
Sanchez et al. [148][149]. RGB-D cameras based on structured light scanner (i.e.,
Microsoft Kinect) are not suitable for outdoor environments, due to the range limita-
tion and errors introduced by interference with the sunlight. Stereo features provided
by RGB-D cameras presents other challenging problems [66][148]:

1. Non-measured depth (NMD) pixels: NMD pixels are mainly caused due to 1)
occlusions (typically around object boundaries), 2) scattering of particular sur-
faces, 3) concave surfaces, 4) multiple reflections, 5) out-of-range points (very
distant points), and 6) randomly, in homogeneous image regions.

2. Noisy and irregular object boundaries: Depth measurements at object bound-
aries are also heavily affected by noise. Sharp depth transitions produce mislead-
ing reflection patterns that result in rough and inaccurate depth measurements that
are far from being correctly aligned to the actual object boundaries.

3. Time dependent measurement noise: Depth measurements are also affected by
instability over time and space. On one side, measurements taken for a static ob-
ject that correspond to the same image pixel vary with time. On the other side,
different depth values are obtained for spatially neighboring pixels that corre-
spond to points situated at the same distance from camera. The impact of this
error varies with the distance.

4. Distance dependent measurement noise: The theoretical dispersion of depth
measurements varies with the distance, following a quadratic law. This variation
pattern has been confirmed in the study made by Camplani et al. [65].
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5. Camouflage in depth: Similar depth between background and foreground lead
to the problem of camouflage in depth.

Other limitations of the Microsoft Kinect based depth features are detailed in [173].
The stereo features allows dealing with camouflage in color and hence are generally
used in conjunction with color features. However, the impact of using depth features
independently from other features has been studied in [45][173]. In the following
paragraphs, we review the different exiting approaches and the reader can see how
the stereo features are fused with other features in Section 17.

7.1 Disparity

Ivanov et al. [237][238][239] was among the first authors who proposed a background
subtraction method based on disparity verification. The use of disparity as a feature
within background modeling allows coping to changes in illumination. The set-up
for the extraction of the disparity map included three cameras called primary, left
and right auxiliary cameras. A basic background disparity verification algorithm is
applied on each two cameras views (primary, right) and (primary, left) for each pixel
in the primary image:

– Using the disparity map find the current pixel in the auxiliary image, which cor-
responds to the primary current pixel.

– If the two pixels have the same color, label the current pixel as background.
– If the pixels have different colors, then the current pixel either belongs to the

foreground class, or corresponds to occlusion/shadow (a region of the primary
image which is not seen in the auxiliary camera view due to the presence of the
actual object).

By cross-verifying each pixel across three camera views, Ivanov et al. [237][238][239]
can distinguish the foreground object from occlusion/shadows. Practically, this method
required the off-line construction of disparity fields mapping the background images
that contained no foreground objects. At runtime, foreground detection is made by
checking background image to each of the additional auxiliary color intensity val-
ues at corresponding pixels. When more than two cameras are available, more ro-
bust foreground detection could be achieved as in the case of occlusion/shadows. Be-
cause this method only assumed fixed background geometry, illumination variation
at runtime can be handled. Since no disparity search was performed, the algorithm
could be implemented in real-time on conventional hardware. Experimental results
[237][238][239] show that this method extracted robustly silhouettes even under illu-
mination changes in indoor scenes.

Eveland et al. [144] proposed the use of a disparity feature which was coded from
0 to 63, with higher values being brighter and closer to the camera, respectively. A
single Gaussian [589] background model is applied on the disparity feature to achieve
reliable foreground detection in indoor video scenes. Results have been applied to a
real-time tracking system.

Gordon et al. [167] modeled the background using a multidimensional mixture
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of Gaussians model with the (R,G,B,D) features. A significant advantage of incor-
porating both color and depth features within the background model is that, Gordon
et al. [167] could correctly estimate depth and color of the background when the
background is available in a fewer number of initialization frames. For pixels which
possessed significantly invalid range of values in depth, Gordon et al. [167] relied
on using only the color features. Finally, Gordon et al. [167] used a disjunction of
the results coming from each feature to obtain the final foreground detection. A pixel
classified as foreground based on either color or depth is taken to be foreground in
the final foreground detection.

7.2 Depth

Depth-based detections result in compact silhouettes, are not often affected by illu-
mination changes or shadows but is likely to show imprecise and noisy contours and,
unclassified pixels due to NMD pixels.

7.2.1 Depth from Stereo Systems

Harville et al. [202][201][200] modeled the background using a mixture of Gaussians
with the (Y,U,V, D) features. Color and depth features are considered independent
and the same updating strategy of the original MOG [512] is used to update the dis-
tribution parameters. The matching strategy of the original MOG [512] is adapted to
deal with combination of color (Y,U,V) and depth (D) features. At low luminance,
the chroma components U and V become unstable and hence chroma is disregarded
when comparing current observations. Similarly, when the depth becomes invalid,
it is ignored. One the contrary, if in case a reliable distribution match is found for
the depth component, the color-based matching criterion is relaxed thus reducing the
color camouflage error. Similarly, in case that the stereo matching algorithm becomes
unreliable, the color-based matching criterion is set to be harder to avoid problems
such as shadows or local illumination changes. As in Gordon et al. [201], a pixel that
is detected as a foreground based on either color or depth is classified as foreground
in the final foreground detection.

For more reliability when combining color with depth, Song et al. [499], instead
of appending depth information into a color vector, designed two probabilistic back-
ground models corresponding to color and depth based on MOG [512]. Then, the
combined probability and hence the foreground detection, is marginalized as the
product of each individual probabilities. In addition, Song et al. [499] also incor-
porate a scheme that handles noise in depth images to improve the accuracy and
robustness of foreground detection.

7.2.2 Depth from ToF Cameras

Silvestre [494] proposed to used both the grey-scale (I) and the depth information pro-
vided by a ToF camera (SwissRanger). The background was modeled by the MOG
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[512] applied on (I,D) features. Then, the distance between the samples has been
considered in a two-dimensional grayscale-depth space. Thus, the depth and the grey-
scale information are considered dependent. In the same way, Silvestre [494] adapted
the KDE [142]. The probability to belong to the foreground is then given to each
pixel according to the difference between the current and background pixel depth and
brightness.

Langmann et al. [308][307] modeled the background using a mixture of Gaus-
sians with the (Y,Cr,Cb, D, a) features where a is an amplitude modulation value.
Thus, the 2D/3D camera produced a full size color image, low resolution depth and
amplitude modulation images which are resized to match to color images by the near-
est neighbor method. The matching function assumed that observations in the color,
depth and amplitude modulation dimensions are in practice not independent. Indeed,
a foreground object has most likely only a different depth, and also at least a slightly
different color. Other reasons concern the limitations of ToF cameras as the infrared
reflectance of an object has an influence on the depth measurement. Therefore, a
linkage between the dimensions reduces the noise level in the foreground mask, the
amount of misclassification due to shadows and block artifacts which occur when
only depth measurements are inappropriate.

Stormer et al. [514] used also a MoG model [512], where depth and infrared
features are combined to detect foreground objects in case of close or overlapping
objects. Two independent background models are built. Each pixel is classified as
background or foreground only if the two models matching conditions agree. But a
failure of one of the models affects the final pixel classification.

Leens et al. [317] combined color and depth features, obtained with a low resolu-
tion ToF camera in a multi-camera system. The ViBe algorithm [32] is applied inde-
pendently to the color and the depth features. Then, the obtained foreground masks
are then combined with logical operations and then post processed with morphologi-
cal operations.

Hu et al. [217] realized the foreground detection by using a weighted average on
the probabilities obtained from the MOG model [512]. The different weights are up-
dated adaptively for each output of the classifier by considering foreground detections
in the previous frames and the depth feature. Experimental results [217] show that the
proposed approach can effectively solve the limitations of color-based or depth-based
detection.

7.2.3 Depth from RGB-D Cameras

Camplani et Salgado [66] proposed a combination of classifiers by jointly consider-
ing color and depth features. This combination is based on a weighted average that
allows to adaptively modifying the support of each classifier in the ensemble by using
the foreground detections in the previous frames and the depth and color edges. Thus,
Camplani et al. [66] developed a weights selection scheme. For all those pixels for
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which the depth measurements is not available, the depth-based classifier weight is
set to 0, and the color-based classifier weight is set to 1. So, when depth data is not
available in the current frame or in the background model, only the color feature is
considered for the final pixel classification. For the pixels that do not belong to the
nmd set, the weights are assigned following a function of the depth-image edges as
depth data guarantee compact detection of moving object regions except that for the
very noisy depth values at object boundaries. To reduce this effect, the influence of
the color based classifiers is increased in these regions. For all those pixels that have
valid depth data, the weights are assigned following a function of the depth-image
edges to limit the effect of noisy depth values at object boundaries by using the color
information in these zones. On the contrary, the depth information is more reliable
in the regions far from depth-edges, since it guarantees compact foreground and it is
resilient to shadows and illumination changes. This method reduced false detections
due to challenges such as noise in depth measurements, moved background objects,
color and depth camouflage, illumination changes and shadows.

Camplani et al. [65] proposed a foreground detection that combines depth and
color information and reduces the noise present in the depth maps to improve their
accuracy. Indeed, this method reduced the distance-dependent spatial noise and the
nmd pixel effect while accurately preserving object depth boundaries, thanks to an
adaptive filtering strategy. Temporal fluctuations are reduced by iteratively building a
reliable color/depth model of the static elements in the scene. The parameters of the
proposed filtering process and the temporal model are continuously adapted to the
distance-dependent noise. The background model is based on two independent MoG
models in color and depth, respectively. Binary image operations are used to com-
bine foreground detection results in depth and color to obtain a binary mask which
preserves depth-based compactness and color-based accuracy in the final detection.
A real-time implementation on GPU architecture was developed by Camplani et al.
[64].

Camplani et al. [62] used a multiple region-based classifiers in a mixture of ex-
perts fashion to improve the final foreground detection. It is based on multiple back-
ground models that provide a description at region and pixel level by considering the
color and depth features. As Camplani et Salgado [66], the combination of the four
models (pixel-color, region-color, pixel-depth, region-depth) is based on a weighted
average to efficiently adapt the contribution of each classifier to the final classifica-
tion.

Camplani et al. [63] used also a weighted average scheme in a Bayesian frame-
work. Thus, probabilities from color and depth features are combined. The weights
are chosen as a function of the each input to increase the support of the most reliable
classifier as in [66].

Camplani et al. [45] proposed a combination of two algorithms to obtain a high-
quality foreground detection using only depth feature acquired by the first generation
of Microsoft Kinect. The first algorithm is the original MOG algorithm [512] adapted
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for depth feature. The second algorithm is based on a Bayesian network, which ex-
plicitly exploits the spatial characteristic of the depth feature. This Bayesian network
is able to accurately predict the foreground/background regions between consecutive
frame using two dynamic models, which encode the spatial and depth evolution of
the foreground/background regions regions.

Fernandez-Sanchez et al. [148] used the Codebook model [288], which has been
extended to integrate depth features. This method is called Depth-Extended Code-
book (DECB). To combine depth and color information, depth cues are used to bias
the foreground detection based on color. The inclusion of depth information is made
in two different ways: 1) the first one considers depth as the fourth channel of the
codebook, which has an independent mechanism from color and brightness, and 2)
the second one biases the distance in chromaticity associated to a pixel according to
the depth distance. The first approach called 4D-DECB improved the robustness of
the color-based algorithm to sudden illumination changes, highlighted regions and
shadows. As depth features are more robust to lighting artifacts and shadows, depen-
dence between RGB and depth have been used in the second approach which can be
interpreted in the following way: if an input pixel is considered to be foreground, but
it is close enough to the threshold, the classification will take into account the knowl-
edge about the depth value for that pixel. This modification produced less false posi-
tive detections than 4D-DECB without biasing the color threshold. In the same idea,
Fernandez-Sanchez et al. [149] improved this approach called DECB-LF (DECB-
Late Fusion) by refining the foreground mask obtained from DECB (with biasing the
color threshold) using the output of the color-based algorithm. Since depth images
tend to have more noise than color ones, Fernandez-Sanchez et al. [149] evaluated
a fusion method that reduces the impact of that noise in the resultant segmentation
without using erosion or small region suppression.

Gallego and Pardas [153] combined color and depth features to perform a more
complete Bayesian segmentation between foreground and background classes. For
the background, the model consists of two independent Gaussians per pixel, one
in the RGB domain and the second one in the depth domain. For the foreground,
two parametric region-based foreground models combined color, space and depth
domains, called Spatial Color Gaussian Mixture Model (SCGMM) and the Spatial
Depth Gaussian Mixture Model (SDGMM), respectively. Then, the method combined
the spatial-color and spatial-depth region-based models for the foreground as well as
color and depth pixel-wise models for the background in a Logarithmic Opinion Pool
fusion framework used to correctly combine the likelihoods of each model. A poste-
rior enhancement step based on a trimap analysis is also proposed in order to correct
the precision errors that the depth sensor introduces.

Greff et al. [173] provided a comparison of background models with only the
depth feature. These models are the following ones: First frame without foreground
objects, single Gaussian [589] and Codebook model [288]. The best performance is
obtained by the Codebook model which eliminates the errors of uncertain and alter-
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nating regions without missing the true foreground.

Ottonelli et al. [410][411] used a logical operations to fuse the results coming
from the color and depth, respectively. For each features, the background model is
the original MOG [512]. A depth-based compensation factor is computed using a
logical AND applied on the depth mask, and the difference mask between the depth
mask and the RGB mask. Then, the final mask is obtained by using a logical OR
between the RGB mask and the depth-based compensation factor.

To make the background and foreground models more robust to effects such as
camouflage and illumination changes, Spampinato et al. [503] explicitly models the
scene’s background and foreground with a Kernel Density Estimation approach in
a quantized x-y-hue-saturation-depth space after a preprocessing stage for aligning
color and depth data and for filtering/filling noisy depth measurements. Experimen-
tal results in three different indoor environments, with different lighting conditions,
showed that this approach achieves an accuracy in foreground segmentation over 90%
that the combination of depth data and illumination-independent color space proved
to be very robust against noise and illumination changes.

Song et al. [500] used the original MOG [512] with color and depth information.
For combining color and depth information, Song et al. [500] did not add depth to
a color vector but designed two probabilistic background models corresponding to
color and depth based on MOG and denoised depth image. Thus, they address solv-
ing the color camouflage problem and depth denoising. Experimental datasets made
on their own dataset [500] show robustness in case of camouflage in color and depth.

Liang et al. [331] developed a refinement framework based on LUV color space
and depth. As the foreground detection may be very inaccurate in some cases such as
shadowing and color camouflage, Liang et al. [331] refined the inaccurate results by
a supervised learning way. Thus, features are re-extracted from the source when it is
detected. Since the depth data is not accuracy especially at the edge region, the edge
of color map is used to detect the pixel wrongly classified as foreground by depth
data. The re-extrated features with the initial detection results are fed to classifiers
to obtain a better foreground detection. Experimental results on the RGB-D Object
Detection Dataset [66] show that the refinement method outperforms the following
color-depth methods: Camplani and Salgado [66], Camplani et al. [62] and Nguyen et
al. [401][400] in presence of color camouflage and shadowing. The code is available
at Github4.

Amamra et al. [9] designed on the GPU a GMMM based background subtrac-
tion algorithm for joint RGB and depth. This parallel algorithm benefits from asyn-
chronous data exchange between the host (CPU) and the device (GPU). In addition,
the data structures are organized in the GPU to permit a higher memory coalescing.

4https://github.com/leonzfa/RBGS
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Practically, this algorithm works at 30 fps.

Liu et al. [343] used only the depth feature to efficiently remove the background
from depth data. According to the distance from the camera, the background is clas-
sified into far-field background and near-field background. If the distance of the far-
field background is beyond the sensing range of the camera, the depth value cannot
be obtained. In the depth map provided by the Kinect device, the depth value of the
far-field background is set to zero. Then, Liu et al. [343] developed the concept of
a probability map used to describe the probability of each pixel position belonging
to the far-field background. For each position, the number of times that the depth
value is equal to zero is counted. Then, the percentage of zero values is used as the
probability. If the probability is large, the location most likely belongs to the far-field
background. Note that the non-zero depth values indicate presence of foreground
objects. Since the near-field background is within the sensing range of the camera,
the depth value of the near-field background is also non-zero. However, the distance
between the camera and the near-field background is longer than the distance be-
tween the camera and the foreground. Thus, the depth value in any position of the
near-field background is larger than those of the foreground objects. Based on this
observation, Liu et al. [343] designed a maximum depth map, which is used to record
the maximum depth value of each position in a depth sequence. Finally, the far-field
and near-field background are combined to obtain one background model used for
foreground detection. Experiments [343] show that this method outperforms both the
average model and ViBe [32].

7.3 Discussion on Stereo Features

Stereo features can not be used alone and need to be carefully used following their
properties as developed in Nghiem and Bremond [398]. There is no study about the
influence on how the depth is acquired (Stereo cameras, ToF Cameras, RGB-D Cam-
eras) and the robustness in the foreground detection.

8 Motion Features

The motion features provide temporal information and are usually obtained via op-
tical flow to deal with irrelevant motion in the background. Theoretically, the most
robust optical flow strategy should be employed to obtain the best performance. But
most of the optical flow algorithms are computationally slow. Three alternative ap-
proaches are then used to introduce temporal attributes: 1) the ones based only on the
difference between consecutive frames. Then, the background model is only com-
puted in stationary regions of the scene, 2) optical flow (computed on all the pixels)
which is used to detect moving areas. As in the previous approaches, the background
model is only computed in stationary areas, and 3) optical flow is only computed on
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moving areas after foreground detection. In this case, optical flow allows the algo-
rithm to distinguish the unimportant moving areas from the moving objects. Some
fast optical flow algorithms such as the fast nearest neighbor field based optical flow
algorithms EPPM [31] run in near real-time on state-of-the-art GPU. We review in
the following paragraphs the different exiting approaches and the reader can see how
the motion features are fused with other features in Section 17.

Tang et al. [532] used the motion speed value in addition to the intensity in the
MOG model [512]. The motion speed value at each pixel is obtained through saliency
motion filtering. First, a motion map is obtained by consecutive frame difference of
Gaussian from each frame, from which a number of feature points are extracted with
Monte Carlo importance sampling. Their corresponding velocities are computed us-
ing an optical flow algorithm. The consecutive frame difference allows to detect slow
moving objects, and speed up the algorithm by only applying the optical flow to the
regions of change which are detected by consecutive frame differenc. In that region,
for each pixel, the motion is considered as salient motion if the pixel and its neigh-
borhood move in the same direction in a period of time.

Huang et al. [229][227][226][225] used dense optical flow for describing motion
vectors. Regions with coherent motion are then extracted as initial motion markers.
Pixels not assigned to any region are labelled uncertain ones. Finally, a watershed
algorithm based on motion and color is utilized to associate uncertain pixels to the
nearest similar mark. Further, MRFs are used to formulate foreground detection as
a labelling problem. The optimization over the MRF model is then performed. The
posterior probabilities initialized with the ones computed with the MOG model [512]
are maximized to obtain the final classification result. Finally, regions which have
the same classification label and similar colors are merged to derive a more consis-
tent foreground mask. Experimental results [227] on gradual illumination changes
and shadows demonstrate the robustness of this method, but the computational com-
plexity of the technique has not been mentioned. In similar studies, Huang et al.
[230][228][231] used motion information captured through the difference of consec-
utive frames to model the background in stationary areas.

Zhou and Zhang in [690] used Lucas-Kanade gradient-based method for com-
puting optical flow. As this method can only be applied for small displacements and
as the displacements of moving objects between consecutive frames is anticipated
to be more than 15 pixels, Zhou and Zhang [690] used a hierarchical coarse-to-fine
warping technique based on a Gaussian pyramid decomposition. The original MOG
[512] with the color features is used to model the background. Then, in the fusion
step, Zhou and Zhang [690] only considered those foreground objects as moving ob-
jects, where the amplitude and direction of the optical flow are within the ranges of
consideration.

Using EPPM [31], Chen et al. [78] ensured temporally-consistent background
subtraction with optical flow estimation by tracking the foreground pixels. Here, mo-
tion information is integrated with a temporal M -smoother. A similarity measure-
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ment is obtained directly from optical flow estimation with the assumption that the
background estimate for the same object appearing in the difference video frames
should be identical. As the direct implementation of EPPM [31] is extremely slow as
optical flow estimation is required between any two video frames, Chen et al. [690]
developed a recursive implementation so that optical flow estimation is required only
between every two successive frames. As described in previous approaches, the back-
ground model is initially obtained using the MOG model [512]. Then, a spatial and a
temporal M -smoother are employed to obtain a spatially-temporally-consistent fore-
ground mask. Experimental results [78] on the ChangeDetection.net dataset [169]
and SABS dataset [61] show that this algorithm outperforms most of state- of-the-art
algorithms.

In an other approach, Dou and Li [133] proposed a moving object detection
method based on SIFT flow [341]. SIFT flow addressed the problem of image reg-
istration by aligning a query image to a target image at the scene level by spatially
warping the query image to match the target image. This alignment is achieved by
using dense pixel-wise SIFT descriptors. One aim of this algorithm is to counteract
object motion between two scenes. This allows SIFT flow to be well suited to cor-
recting object plane motion. Thus, Dou and Li [133] proposed to tp model each pixel
with a pixel-wise SIFT descriptor and facilitate dynamically updating the model. The
background model is a K histogram of the SIFT flow. Experimental results on the
I2R dataset [326] demonstrate that the proposed approach provides an effective and
efficient way for background modeling and foreground detection.

Using multiple features, Zhong et al. [682] proposed to fuse texture (LBP[207])
and motion patterns. A temporal operator to obtain the motion pattern is formulated
as follows:

Tmotion(x, y) =

7∑
i=0

bti(x, y)2
i (8)

where the function bti(x, y) keeps the sign of the difference between the central pixel
at location (x, y) attime t and its ith neighboring pixel in previous (t− 1)th frame as
follows:

bti(x, y) = 1 if It−1(xi, yui) > It(x, y)bti(x, y) = 0 otherwise (9)

where It(x, y) is the intensity value at pixel location (x, y) at time t. For each pixel,
its probability to be either a background or foreground is computed from the his-
togram of each feature. Then, the results are combined using a weighted average
mechanism. Experimental results [682] show that the combination of LBP and mo-
tion pattern outperforms the original LBP [207] in presence of dynamic backgrounds.

Martins et al. [362] used a bio-inspired feature called Magno channel in addition
with color features. Thus, this approach merges information from two inherently dif-
ferent methods: (1) bio-inspired motion detection method using the Magno channel,
and (2) a background subtraction algorithm based on pixel color information. Thus,
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the background subtraction can be any one existing algorithms such as MOG [512],
Flux Tensor with Split Gaussian model (FTSG) [571], KDE [142], AMBER [561]
and SuBSENSE [508]. The foreground detection is obtained by merging the detec-
tion of the two methods. Experimental results [362] on the CD.net 2014 dataset show
that the hybrid approach always substantially improves the performance of the origi-
nal background subtraction methods.

9 Local Histogram Features

9.1 Local Histogram of Color

Local histograms on intensity or color provides color information about the neighbor-
hood of the pixel that the one color value do not give. In addition to their invariance
to image rotation and translation, histograms are easy to compute. However, without
data quantization to reduce size, histograms need more time to compute. Furthermore,
histograms are sensitive to quantization errors and require a more complex similarity
measure for the comparison. The different local histograms of color developed in the
literature can be classified as crisp and fuzzy local histograms.

9.1.1 Crisp Local Color Histograms

– Local Color/Edge Histograms: First, Mason and Duric [363] used local color
histograms in the RGB color space with local edge features. First, a depth reduc-
tion formula is applied to transform 24-bit color to 12-bit color to reduce com-
putation time, and to reduce the complexity because 24-bit histograms are more
hard to compare since 1-bit change color value places the corresponding pixel into
a different histogram bin. Furthermore, the lower four bits obtained by low-cost
cameras that capture 24-bit video are often very noisy, and 12-bit pixel represen-
tations only require 4096 bins for each histogram. Thus, Mason and Duric [363]
obtained smaller histograms which are much easier to build and compare. Then,
edge histograms are composed of 36 bins. For each edge pixel, the bin index is
computed using the edge orientation (100 per bin). When the bin index is derter-
mined, the bin is incremented with the dege magnitude. Finally, the histograms
in color are compared by using an intersection measure while the histograms in
edge are computed with a chi-squared measure. Experimental results [363] show
that the Local Gradient Histogram (LGH) with edge allow the method a better
outline of the objects than the Local Color Histograms (LCH).

– Local Kernel Color Histograms: Noriega et al. [406] proposed Local Kernel
Color Histograms (LK-CH) to keep the advantages of histograms avoiding their
drawbacks. First, each image is segmented into overlapped local squares with
a histogram for each one to collect spatial information. To reduce the amount
of data, the color space is quantized according to the most representative colors
extracted from the scene. Second, Noriega et al. [406] used a double Gaussian
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kernel, that are one in the image space and one in the color space, to be robust
against noise. Then, local kernel histograms are computed from image overlapped
regions using the two Gaussian kernels. Finally, a pixel scale probability map is
obtained by using the Bhattacharyya distance. Experimental results [406] on the
Wallflower dataset show that LK-CH is less affected by noise, camera vibrations
and swaying trees than the mean, the median and the LCH [363]. But, local kernel
histograms with color features cannot handle illumination changes.

– Estimated Local Kernel Histograms: Li et al. [318] developed a nonparametric
Estimated Local Kernel Histogram (ELKH) for moving objects detection in pres-
ence of dynamic backgrounds. First, Local Kernel Histogram (LKH) are built by
using the correlation and texture of spatially proximal pixels. Then, the probabil-
ity distribution of LKH is estimated with a nonparametric technique. The Bhat-
tacharyya distance is used to measure the similarity of LKH between the esti-
mated background model and the current frame. Practically, Li et al. [318] used
the Estimated LKH which is a block-wise version of the LKH, and in which there
are only several nonzero bins, and the others are all zero. That means intensity
of color is congregative in a pixel block. The EKLH contains some texture infor-
mation, and it is more robust to disturbing noise than LKH. Experimental results
[318] show that ELKH reduced false detections due to dynamic texture robustly,
but also allow to detect the small moving objects.

– Local Color Difference Histograms: Li [324] used histograms in the YUV color
space to obtain difference image of color distance. Histograms are obtained by
statistics of the difference image. According to the mono-modal feature of his-
togram of the difference image, Ji [324] employed an adaptive clustering method,
and removed noise with morphological filtering. Finally, an updating scheme is
used to adapt the model to the illumination changes and environmental condi-
tions. Experimental results [324] show that LCH with the YUV color space offer
robustnees in presence of illumination changes.

– Local Dependency Histograms: Zhang et al. [660] [661] proposed the Local De-
pendency Histograms (LDH) to model the spatial dependencies between a pixel
and its neighboring pixels for dynamic background subtraction. LDH is computed
using the direct neighbors and the indirect neighbors. The direct dependencies can
be along any directions. The indirect spatial dependencies are confined to be only
along the horizontal or vertical direction. Based on LDH, Zhang et al. [660] [661]
developed a dynamic background subtraction in which each pixel is modeled as
a group of weighted LDHs. Foreground detection is obtained by comparing the
LDH computed in current frame against its model LDHs with a histogram inter-
section measure and an adaptive thresholding method. Then, The model LDHs
are adaptively updated by the new LDH. Experimental results [660] [661] on
the I2R dataset [326] and CMU dataset [480] show that LDH is more robust in
presence of dynamic backgrounds and camera jitter than the original MOG [512].
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– Spatiotemporal Condition Information: First, Wang et al. [562] built a spa-
tiotemporal neighborhood based on the center surround visual saliency model.
To reduce the false detection in the foreground mask, a neighborhood weighted
spatiotemporal condition information (NWSCI) is used to classify pixel based
on the similarity of neighborhood pixels. Second, a joint cascade and hierarchical
framework reduced computational cost by rejecting the unchanged regions before
foreground detection. Experimental results [562] show that NWSCI based back-
ground subtraction effectively outperforms the original MOG [512], the original
KDE [142] and ViBe [32], and gives similar performance than [297] and [662].

9.1.2 Fuzzy Local Color Histograms

– Local Fuzzy Color Histograms: Kim and Kim [290] adopted a clustering-based
feature called Fuzzy Color Histogram (FCH) (FCH) to attenuate color variations
due to background motions and still highlight moving objects. FCH [198] is a
fuzzy version of the conventional color histogram. In CCH, the quantized color
feature is assumed to be into exactly one color bin and it often lead to abrupt
changes even though color variations are actually small. On the other hand, FCH
uses the fuzzy membership [135] to relax this crisp condition. Kim and Kim [290]
computed FCH on the CIELab color space arguing that CIELab color correctly
quantifies the perceptual color similarity. Then, the colors in the CIELab color
space are classified into clusters using the FCM clustering technique [38]. The
foreground detection is made by thresholding the difference between the local
FCH in the background and the background. The similarity measure used is the
normalized histogram intersection for simple computation. Then, the background
model is updated an online procedure. Experimental results [290] on the I2R
dataset [326] show that the Local FCH (LFCH) outperforms the original MOG
[512], the generalized MoG (g-MoG) [110], STLBP [659] and the local CCH. In
other works, Kanna and Murthy [272], and Gutti and Shankar [190] employed the
local FCH too while Kumar et al. [299] used it in an automated surveillance sys-
tem. In an other approach, Yang et al. [624] added to local FCH spatial coherence
and temporal consistency in a Markov random field statistical (MRF) framework.

– Local Fuzzy Color Difference Histograms: First, Panda et al. [416] presented
a background subtraction algorithm based on color difference histogram (CDH)
by measuring the color difference between a pixel and its neighbors in a small lo-
cal neighborhood. CDH reduced false detections due to the non-stationary back-
ground, illumination variations and camouflage. Secondly, the color difference
is fuzzified with a Gaussian membership function. Finally, Panda et al. [416]
proposed a Fuzzy Color Difference Histogram (FCDH) by using fuzzy c-means
(FCM) clustering [38] and exploiting the CDH. FCM clustering algorithm applied
to CDH allow to reduce the large dimensionality of the histogram bins in the com-
putation and also decrease the effect of intensity variation due to the unimportant
motion or illumination changes. Experimental results [416] on the I2R dataset
[326] show that FCDH is more robust than the original MOG [512], the origi-
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nal LBP, STLBP [659] LIBS [203], FBS [22], FST [89], MKFC [91], and LFCH
[290].

9.2 Local Histogram of Gradient

– Local Gradient Histograms: Please see the item ”Local Color/Edge Histograms”
in Section 9.1.

– Local Histogram of Oriented Gradient: Fabian [145] presented a MOG based
background subtraction which exploits Histograms of Oriented Gradients (HoG)
instead of intensity to deal with camera jitter, automatic iris adjustment and ex-
posure control. Thus, Fabian [145] avoided false detections of foreground mask.
Practically, the brightness value is replaced by a local image gradient because im-
age gradient and its orientation are invariant against changes in brightness. This
scheme applied only to a certain extent given by limited range of pixel values.
In practice, this assumption is quite suitable and allow the method to reduce the
effects of automatic control. Furthermore, to deal with camera jitter, Fabian [145]
handled small image movements. For this, the gradient is measured for squared
area of size 8 × 8 called cell. Finally, an on-line spatial rearrangement of cells
minimized the variance of dominant gradient for every cell. Practically, the most
significant orientation bin for every cell in the image is extracted and the mean
HOG (MHOG) is computed to provide the reference values for minimizing the
variance of gradients and especially resulting bins. To measure the distance be-
tween two different bins, Fabian [145] defined a metric in a discrete metric space
to obtain difference between two different bins, and such that a decision can be
made when a same bin doesnt exist. Then, the HOG feature ares used in the MOG
model. Experimental results [145] on traffic surveillance videos show the perti-
nence of the HOG against the intensity. In an other approach, Mukherjee et al.
[386] used both RGB and HOG in the MOG model. First, a modified distance
based on support weight is developed to compare RGB features, and a HOG dis-
tance is presented to compare HOG features in order to provide distinct cluster
values. Second, a multi-layers model is employed to obtain the foreground mask.
Experimental results [386] on five datasets show that this method is more robust
in presence of illumination changes and dynamic backgrounds than the original
MOG [512], CRF-based MOG [580], self-adaptive MOG [82], the Type-2 Fuzzy
MOG (T2-FMOG) [25], T2-FMOG with MRF [679] and SOBS [356]. Javed et al.
[252]. In an other work, Panda et al. [415] combined HOG and LBP for complex
dynamic scenes. Experimental results [415] on the I2R dataset show that LBP-
HOG is more robust than LBP, STLBP [659], the Choquet integral with RGB
features [22] MKFC [91] in presence of dynamic backgrounds.

– Local Adaptive HOG: Hu et al. [218] proposed to use HOG in a coarse-to-fine
strategy. First, a HOG-based background model is constructed with a group of
adaptive HOG. Then, the foreground detection is achieved by comparing HOG
of each pixel in the current frame and the background model. To deal with some
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missing foreground regions, the foreground mask is is improved by using the
pixel-wise detection provided by MOG algorithm and morphological operations.
In the refinement step, the foreground maskis refined based on the distinction in
color feature to eliminate errors such as noises and shadows. In the experimental
results [218] on the Wallflower dataset [218], this method outperforms the origi-
nal MOG [512] and the codebook model [287].

– Local Orientation Histograms: Orientation histograms were applied with suc-
cess for visual tracking, and keep the probability density function of local gra-
dients which is robust against illumination changes and easy to compute. In this
context, Jang et al. [247] developed Local Orientation Histograms (LOH) with
Gaussian kernel, thus obtaining 1D orientation histograms to reduce the quanti-
zation error. LOHs allow to compared the background and the foreground by di-
viding each frame into small local regions. Each local region has the foreground
probability given by comparing LOH between background and foreground im-
age. In a multi-scaled approach, Jang et al. [247] used an foreground detection
algorithm that dynamically partition and compare regions with a recursive par-
titioning algorithm. Because it requires multiple extractions of histograms from
multiple rectangular cells, Jang et al. [247] used the integral histogram [434] to
provide fast extraction of histogram over the multiple overlapped cells. Experi-
mental results [247] show that LOH suppress local false detection in presence of
illumination changes.

– Local Kernel Histograms of Oriented Gradient: Noriega and Bernier [407]
proposed Local Kernel Histograms of Oriented Gradient (LK-HOG). First, contour-
based features are extracted for local kernel histograms. Experimental results
[407] on the Wallflower dataset show that LK-HOG is more robust to illumi-
nation changes than the mean, the median, the LCH [363], LK-CH [406], LGH
[363], and local HOG. In all the videos, Gaussian kernels improved the quantiza-
tion error rate to reduce both false positives and negatives.

9.3 Local Histograms of Figure/Ground

Zhong et al. [687] represented each pixel as a local histogram of figure/ground seg-
mentations, which combines several prospective solutions that are generated with
simple background algorithms to get a more reliable and robust feature for back-
ground subtraction. The background model of each pixel is constructed as a group of
weighted adaptive local histograms of figure/ground segmentations, which describe
the structure properties of the surrounding region. The goal of using LH-FGs is to
make up for deficiencies each individual algorithm, thus achieving a better overall
performance than each single algorithm. First, a local histogram of figure/ground
segmentations is computed over a squared fixed-size N ×N neighborhood for each
algorithm with integral histogram [434]. Then, LH-FGs of each algorithm are con-
catenated together to provide the final representation of each pixel. The feature ex-
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traction step thus yields to S (2-bins) histograms where S denote the number of
foreground detection maps. Finally, the S histograms are concatenated together to
give a final 2S-bins histogram, which is normalized to sum to one, so that it is also a
probability distribution. The similarity between two histograms is computed with the
Bhattacharya distance.

10 Local Histon Features

Histon and its associated measure Histon Roughness Index (HRI) were applied to
still image segmentation with good performance. In this context, Chiranjeevi and
Sengupta [90] introduced histon and rough set theory for foreground detection, ex-
tended the histon concept to a 3D histon, and incorporated fuzziness into the 3D HRI
measure, and thus obtained 3D Fuzzy Histon. Then, the labeling decision is based
on Bhattacharyya distance between the model HRI and the corresponding measure in
the current frame. Practically, histon and these variants are defined as follows:

– Histon: Histon allows to visualize the color information for the evaluation of
similar colored regions. For each intensity value in the histogram, the number of
pixels which are in the similar color sphere is computed, and this value is added to
the histogram value, to obtain the histon value of the corresponding intensity. His-
togram and histon distributions give color information and spatial information.
Identical distributions of both the histogram and the histon in a region indicate
that the region present lacks in its spatial homogeneity or its spatial similarity.
So, Chiranjeevi and Sengupta [90] used this property to model the pixel in the
center of the region which is formulated by Histon Roughness Index (HRI), after
correlating the histon concepts with the rough set theory. Finally, HRI incorpo-
rates both the color and the spatial information, and it is used for comparison
between the background model and the current frame.

– 3D Histon: In the original formulation of histon, each color channel is considered
separately, rather independently, to obtain the histon for each color channel. But,
exploiting the three color component values of each pixel with a 3D spatial distri-
bution is better to get more information than exploiting the spatial distribution of
the three independent color planes. So, Chiranjeevi and Sengupta [90] proposed
an integrated 3D histon, where the histon distribution is computed by using the
color value on three channels jointly. Then, the 3D HRI distribution for a region,
centered at a pixel, is calculated using the 3D histon and the 3D histogram. Ex-
perimental results [90] show the effectiveness of 3D histon compared to the basic
histon.

– 3D Fuzzy Histon: In 3D histon, whether a pixel is similar to its neighbors or
not, is determined crisply. By determining the extent of similarity using Gaussian
membership function, Chiranjeevi and Sengupta [90] proposed the 3D fuzzy his-
ton as an extension of the basic fuzzy histon. 3D Fuzzy histon is subsequently
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used to compute 3D Fuzzy Histon Roughness Index (3D FHRI). Experimental
results [90] on the I2R dataset [326] show the effectiveness of 3D Fuzzy his-
ton compared to the 3D histon. In a further work, Giveki et al.[164] employed
Atanassovs Intuitionistic Fuzzy Sets (A-IFS) theory to the concept of histon or
constructing Atanassovs Intuitionistic 3D Fuzzy Histon Roughness Index.

11 Local Correlogram Features

Correlogram is an image of correlation statistics, and it can also be used as feature as
follows:

– Correlogram: Correlogram captures inter-pixel relationships in a block or a re-
gion, and alleviates the drawbacks of histogram, which only considers the pixel
intensities for calculating the distribution [676]. So, it is suitable for modeling
dynamic backgrounds as developed in Chiranjeevi and Sengupta [87]. But, com-
putation of correlogram for RGB color components involves huge computations
as the correlogram size is 2563×2563. Even with single color channel, it requires
significant computations as the correlogram size then becomes 256×256. Hence,
the single channel is quantized to a finite number of levels l. Due to this, the cor-
relogram size is further reduced l × l with l� l.

– Fuzzy correlogram: Crisp assignment of quantized intensity pair to a particular
correlogram bin is sensitive to quantization noise [87]. To reduce computational
time and to address the crisp assignment limitations, Chiranjeevi and Sengupta
[87] developed fuzzy correlogram, composed by applying fuzzy c-means (FCM)
algorithm [38] on correlogram. Thus, each intensity pair is related to all the bins
by their respective membership values. The membership matrix is obtained by
using fuzzy c-mean algorithm where the Euclidean distance is used as a mea-
sure between the cluster centers and the data points. Fuzzy correlogram greatly
reduces the number of correlogram bins and the quantization noise. Experimen-
tal results [87] on the I2R dataset [326] show that fuzzy correlogram can handle
multi-modal distributions better that approaches which used multiple model fea-
tures.

– Multi-channel fuzzy correlogram: In Chiranjeevi and Sengupta [87], correlo-
gram was obtained from a single color channel, and thus the color information is
loosed. The dependency across the color components was also ignored. Because
there is more information in the color distribution than a single monochrome
distribution, Chiranjeevi and Sengupta [91] proposed a inter-channel correlo-
gram, which captures both the color information and the dependency across the
color planes. However, inter-channel correlograms exclude the inter-pixel rela-
tions within the same color plane. To use this information too, Chiranjeevi and
Sengupta [91] combined both inter-channel and intra-channel correlograms, called
multi-channel correlogram which exploits both the color information by taking
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into account the color dependencies and the inter-pixel relations across and within
the color planes, unlike the correlogram proposed in Chiranjeevi and Sengupta
[87] that captures only the inter-pixel relations on a single color plane. Then, the
correlograms are mapped to a space of reduced dimensionality by using a trans-
formation based on a fuzzy membership matrix, whose elements indicate the be-
longingness of each intensity pair to the new bins. Instead of fuzzy correlogram
which used FCM to computed membership values with the disavandages that Eu-
clidian distance is only suitable for spherical clusters and that FCM is sensitive to
the outliers, Chiranjeevi and Sengupta [91] obtained the membership values by
using Kernel Fuzzy C-Mean (KFCM) algorithm [651]. The membership values
applied over multi-channel correlogram results in a feature called Multi-channel
Kernel Fuzzy Correlogram (MKFC). KFCM uses a kernel which is based on a
metric distance in place of Euclidean distance, which made it more robust than
FCM. Furthermore, MKFC involves less number of bins (k � l2) than the orig-
inal correlogram of dimensionality l2 and this significantly reduces the computa-
tional complexity in distance computation for foreground detection.

11.1 Discussion on Histogram/Correlogram Features

Local histograms/correlograms on color or edge gives color or edge information
about the neighborhood of the pixel that the one color or edge value do not give.
Thus, these features allow the background model to be more robust in presence of
dynamic backgrounds and illumination changes, and their main drawback is the num-
ber of bins. Furthermore, several approaches were developed to address this problem.
Furthermore, fuzzy Histogram/Correlograms allow to avoid crisp assignments in the
clustering step. Practically, LFCH [290] and FCDH [416] provide good performances
in the case of histograms while MKFC [91] appears as the best descriptor in the case
of correlograms.

12 Haar-like Features

Haar-like features [557] have been used in different approaches in background mod-
eling and foreground detection as follows:

– Haar-like Features in hierarchical approaches: Zhao et al. [675] used Haar-
like features in a hierarchical codebook approach. In the block-based level, four
Haar-like features and a block average value are used to represent a block. These
features are computed using integral image to reduce computation time and are
less sensitive to dynamic backgrounds. Thus, most of the background blocks are
removed at this step without reducing the true positive rate. n the block that has
been detected as foreground, a pixel-based codebook is applied to increase the
precision. Experiment results show [675] on the I2R dataset show that the Haar-
like feature allow to be more robust in presence of dynamic backgrounds.
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– Haar-like Features in multi-features approaches: In an other approach, Klare
[293] and Klare and Sarkar [294] used the Haar-like features in an extended fea-
ture set. In a similar way, Han and Davis [195] employed Haar-like features
in a multi-feature approach with density based background subtraction. In an
other way, Lopez-Rubio and Lopez-Rubio [349] employed Haar-like features in
a method based on stochastic optimization [348]. Please see Section 17 for details.

– Haar-like Features in feature selection approaches: Grabner and Bischof [170],
Grabner et al. [171] and Lee et al. [316] used Haar-like features in an online boost-
ing algorithms which select the best combination of features. Please see Section
18 for details.

13 Haralick Features

Subudhi et al. [516] used Haralick features [199].

14 Location Features

Pixel-wise models ignore the dependencies between proximal pixels and it is asserted
here that these dependencies are important. Thus, several authors proposed to use the
location (x, y) of the pixel to add to the spatial information. This location informa-
tion is used directly in a pixel manner [481][479] or indirectly via invariant moments
in a region manner [361]:

– Location (x,y): First, Sheikh and Shah [481][479] used the location (x,y) in ad-
dition to the color features (Normalized RGB) in a joint representation called
”domain-range representation” that provides a direct means to model and exploit
the dependency between the pixels. Thus, a kernel density estimation (KDE)
model represents the background and foreground processes by combining the
three color dimensions and two spatial dimensions into a five-dimensional joint
space. But, this method was found to be dependent on the size of the image.
Indeed, the classification criterion, based on the ratio of likelihoods in this five-
dimensional space, has an undesirable dependence on the size of the image. Sim-
ilar to the work of Sheikh and Shah [481][479], Narayana et al. [394] modeled
the foreground and background likelihoods with a KDE using pixel samples from
previous video frames but by building an explicit model of the prior probability
of the background and the foreground at each pixel. Moreover, Narayana et al.
[394] modeled the processes using a three-dimensional color distribution at each
pixel. In addition, Narayana et al. [394] incorporated spatial priors for the back-
ground and foreground processes by using classification labels from the previous
frame. Large spatial covariance allows neighboring pixels to contribute more to
the score at a given pixel location. Color covariance allows for some color ap-
pearance changes at a given pixel location. In this framework, the distributions
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are conditioned on spatial location, rather than being joint distributions over loca-
tion and color. So, the model of Narayana et al. [394] avoids the dependence on
the image size and yields better results. Furthermore, Narayana et al. [394] used
Lab and SILTP [332] as color and spatial features respectively. Furthermore, in-
stead of an uniform kernel [481][479], an adaptive kernel scheme is used and
is nearly as accurate as the full procedure but runs much faster. Narayana et al.
[395][396] improved this scheme by using a separation of the foreground pro-
cess into ”previously seen” and ”previously unseen” foreground processes, and
by using explicit spatial priors for the three processes - background, previously
seen foreground, and previously unseen foreground. The probabilistic formula-
tion with likelihoods and a spatially dependent prior for each process leads to a
posterior distribution over the processes. Instead of a constant kernel bandwidth
as in Sheikh and Shah [481][479], Antic and Crnojevic [13] adapted the kernel
bandwidth according to the local image structure. Thus, image gradient is used
to adaptively change the orientation and dimensions of the kernel at the borders
of the region. This adaptive scheme provides more accurate modeling of non-
stationary background containing regions with different texture and illumination
and suppress structural artifacts present in detection results when the kernel den-
sity estimation with constant bandwidth is used. In an other work, Zhou et al.
[691] used the normalized RGB and the intensity with the location features to be
robust against illumination changes and shadows.

– Moments: Marie et al. [361] used invariant moments based on the Hu set mo-
ments [219]). Each pixel is modeled as a set of moments computed from its neigh-
borhood and stored using a codebook model [287]. Hu [219] defined 7 invariants,
but their complexity increases dramatically. Moreover, the results obtained us-
ing the three first are very similar than the one with all the moments. Practically,
Marie et al. [361] retained only the moment named ”I1”, which is computation-
ally the fastest. Experimental results [361] on the Sheikh sequence [480] demon-
strate that the codebook with moment outperforms the original codebook [287],
the original MOG [512], and approximated median [364].

15 Tranform Domain Features

15.1 Features from Frequency Domain Transform

Transform domain features obtained through frequency analysis can provide valuable
spectral and spatial information that can in-turn lead to better background modeling
and foreground detection. Some of the frequency domain features include:

– Fourier Transform Features: Fourier transform features encapsulate spectral
information which are suitable for scenes that contain periodic patterns. That is,
scene where is significant correlation between structures in the scene and the ob-
servations across time. For example, a tree swaying in the wind or a wave lapping
on a beach is not just a collection of randomly shuffled appearances, but a physical
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system that has characteristic frequency responses associated with its dynamics.
In this context, Wren and Porikli [591] estimated the background model that cap-
tures spectral signatures of multi-modal backgrounds using Fast Fourier Trans-
form (FFT) features through a method called Waviz. Here, FFT features are then
used to detect changes in the scene that are inconsistent over time. Experimen-
tal results [591] show robustness to low-contrast foreground objects in dynamic
scenes. In an other work, Tsai and Chiu [547] presented a background subtraction
method using two-dimensional (2D) discrete Fourier transform (DFT). This 2D-
DFT based method first converts input frames to gradient images, and then Tsai
and Chiu [547] applied the 2D-DFT on each spatial-temporal slice of the gradient
image sequence and removed the vertical line pattern of the static backgrounds.
In this way, this 2D-DFT based method can detect foreground objects without a
training phase. However, the foreground masks contain only boundaries of mov-
ing objects and also present ringing around object boundaries.

– Discrete Cosine Transform (DCT) Features: Porikli and Wren [437] developed
an algorithm called Wave-Back that generated a representation of the background
using the frequency decompositions of pixel history. The Discrete Cosine Trans-
form (DCT) coefficients are used as features are computed for the background
and the current images. Then, the coefficients of the current image are compared
to the background coefficients to obtain a distance map for the image. Then, the
distance maps are fused in the same temporal window of the DCT to improve the
robustness against noise. Finally, the distance maps are thresholded to achieve
foreground detection. This algorithm is efficient in the presence of waving trees.
An other approach developed by Zhu et al. [693] used a set of DCT-based features
to exploit spatial and temporal correlation using a single Gaussian model. Thus,
Zhu et al. [693] used two features: the DC and the low frequency AC parameters.
Each of which focuses on intensity and texture information, respectively. The AC
feature parameter consists of the sum of the low frequency coefficients. The high
frequency coefficients are not used because they are more sensitive to noise and
they concern fine details that are more susceptible to small illumination changes.
The use of these two features is equivalent to using both intensity and texture
information, and produces more robust and reliable foreground detection masks.
In an other approach, Wang et al. [574] used only the information from DCT
coefficients at block level to construct background models at pixel level. Wang
et al. [574] reports the implementation of running average, median and MOG in
the DCT domain. Evaluation results show that these algorithms have much lower
computational complexity in the DCT domain than in the spatial domain with the
same accuracy. In an other work, Amith et al. [11] proposed an algorithm based
on the combination of DCT and PCA. The elementary frequency components are
obtained from separable property of DCT and the dimensionality of these com-
ponents is usually high. In order to reduce dimensionality and to extract effective
features of the elementary frequencies, PCA approach is used. Experimental re-
sults [11] on the PETS dataset and other real time video sequences show that the
relevance of the approach.
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– Wavelet Transform Features: First, Huang and Hsieh [221][223] proposed the
use of Discrete Wavelet Transform (DWT) to obtain features that are used in a
change detection based method for interframe-difference but DWT is not suit-
able for video applications as the use of DWT makes the method shift sensi-
tive [278]. In an other work, Gao et al. [158][159][160][161] proposed a Marr
wavelet kernel and a background subtraction technique based on Binary Dis-
crete Wavelet Transforms (BDWT). Thus, the background and current frames
are transformed in the binary discrete wavelet domain, and background subtrac-
tion is performed in each sub-band. Experiments results [158] on several traffic
video sequences show that this BDWT method produces better results with much
lower computational complexity than the original MOG. To detect the moving
objects more accurately, Hsia and Guo [215] proposed to use a modified direc-
tional lifting-based 9/7 discrete wavelet transform (MDLDWT), which is based
on the coefficient of lifting-based 9/7 discrete wavelet transform (LDWT). Fur-
thermore, to overcome that clear shape information of moving objects may not
be available from multiple-level decomposition image such as LL3, Hsia and
Guo [215] preserved the shape of objects in the low resolution image. Thus, the
MDLDWT detects foreground moving objects in spatial domain. DLDWT not
only retains the features of the flexibilities for multiresolution, but also achieves
low computing cost when it is applied for LL-band images. MDLDWT based
method presents the advantages of low critical path and fast computational speed.
Moreover, the LL3-band is used solely to reduce the image transform comput-
ing cost and to remove noise. Experimental results [215] show that MDLDWT
based method better retains slow motion of objects than DWT based method
[221][223]. In an other approach, Gao et al. [156] used orthogonal non-separable
wavelet transformation for background modeling, and extracted the approximate
information to reconstruct information frames. If the background present grad-
ual changes, weighted superposition of multi background modeling images with
time is applied to update the background. If the background presents sudden
changes, the background is remodeled from this frame. In an other approach,
Guan et al. [175][177][176][179][178] used wavelet multi-scale transform for
detecting foreground moving objects and suppressing shadows. Practically, 2-D
dyadic WT coefficients are obtained. Experimental results [175] show that the
2-D dyadic WT approach gives less false detections than the original MOG. Al-
though, these wavelet based methods shown promising results [453][445], they
are not adaptive in nature and tested against simple scenarios. Indeed, it ad-
dressed moving objects detection in presence of static backgrounds, but not ef-
fectively in presence of dynamic background changes. Practically, these previ-
ous wavelet based methods present various problems such as ghost like appear-
ance, object shadows, and noise. Also discrete real wavelet transform (DWT)
presents shift-sensitivity [245]. To alleviate these weaknesses, Jalal and Singh
[245][244][246] used Daubechies complex wavelet transform which is approx-
imately shift-invariant and presents better directionality information compared
with DWT. Thus, the noise resilience nature of wavelet domain is addressed, as
the lower frequency sub-band of the wavelet transform presents the ability of a
low-pass filter. So, Jalal and Singh [245][244][246] developed a background sub-
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traction based on the low frequency sub-band characteristics of the object image,
and exploited the local spatial coherence of the foreground objects to achieve
a more robust foreground detection in presence camera jitter and illumination
changes. In a similar way, Khare et al. [277] used a single change detection
method based on Daubechies complex wavelet while Kushwaha and Srivastava
[305] used a median filter to model the background. In a further work, Khare
et al. [276] used a double change detection method based on Daubechies com-
plex wavelet coefficients of three consecutive frames. In an othe work, Kushwah
and Srivastava [303][302][304] proposed a framework for dynamic background
modeling based on Daubechies complex wavelet domain. First, wavelet decom-
position of frame is obtained using the Daubechies complex wavelet transform.
The change detection is then achieved by using detail coefficients (LH, HL, and
HH), and the dynamic background model is obtained by an improved Gaussian
mixture-based model applied on the approximate coefficient (LL subband). Ex-
perimental results [304] show that the Daubechies complex wavelet based method
outperforms in presence of dynamic backgrounds the original codebook model
[287], the single change detection method based on Daubechies complex wavelet
[277] and MDLDWT [215].In an other approach, Mendizabal and Salgado [365]
proposed to model the background at the region-levelin a wavelet based multi-
resolution framework. Practically, the background model is obtained for each
region independently as a mixture of K Gaussian modes, by considering both
the model of the approximation coefficients and the model of the detail coef-
ficients at the different decomposition levels. Experimental results [365] show
the robustness of this approach in presence of sudden illumination changes and
strong shadows. All of the previous wavelet based methods are based on the same
well-established moving object detection framework in which foreground objects
are detected according to the differences of features between adjacent frames or
between the current frame and background models. Furthermore, the previous
works only use various two-dimensional (2D) WTs to extract approximate coef-
ficients and wavelet coefficients as features, in order to calculate differences be-
tween adjacent frames [15][104][14][215][276][305][277] or between the current
frame and background models [158][159][160][161] [175][245][244][246][365].
In this context, Han et al. [197] proposed a completely different method from the
above mentioned framework of the other works and developed a background sub-
traction based on Three-Dimensional Discrete Wavelet Transform (3D-DWT).
After analyzing frequency domain characteristics of the intensity temporal con-
sistency of static backgrounds, the 3D-DWT based method decomposes the data
cube built with a set of consecutive frames into multiple 3D DWT sub-bands, and
then the relationship between static backgrounds and certain 3D-DWT sub-bands
is established. Thus, the background and the foreground are separated in different
3D-DWT sub-bands. Practically, the 3D-DWT based method directly removes
the background and retains the foreground by discarding sub-bands correspond-
ing to the backgrounds. 3D-DWT presents the advantage of the frequency domain
characteristics of intensity temporal consistency. Experimental results [197] show
that the 3D-DWT based method rapidly produces accurate foreground masks in
challenging situations lacking training opportunities and outperforms ViBe [32],
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2D-DFT [547] and 2D-UWT [15].

– Curvelet Transform Features: Because the wavelet transform can not describe
curve discontinuities and can present inaccurate segmentation of moving object
due to non-removal of noise in consecutive frames, Khare et al. [278] proposed to
use curvelet transform. Thus, moving objects are detected with a change detection
applied on curvelet coefficients of two consecutive frames. Experimental results
[278] show that the change detection based on curvelet transform is more robust
to noise than the change detection with Discrete Wavelet Transform (DWT) [221].

– Walsh Transform Features: Tezuka and Nishitani [534][536][535] modelled the
background using the original MOG [512] applied on multiple block sizes ob-
tained through the Walsh transform (WT). Walsh spectrum feature parameters
are determined by using a set of coefficients from vertical, horizontal and diago-
nal directions, exhibiting strong spatial correlation among them. By using WT of
the luminance component, four features are computed. The spectral nature of WT
also reduces the computational steps required in feature extraction. Furthermore,
Tezuka and Nishitani [534][536][535] developed a Selective Fast Walsh Trans-
form (SFWT) with WT parameters consisting of only the low frequency coeffi-
cients. Experimental results [534] show that the MOG with the Walsh Transform
Features outperforms the MOG with RGB features [512] and the single Gaussian
with DCT features [693].

– Hadamard Transform Features: Baltieri et al. [30] proposed a fast background
initialization method designed at the block-level in a non-recursive manner to ob-
tain the best background model using the least number of frames as possible. For
this, each frame is split into blocks, producing a history of blocks and searching
among them for the most reliable ones. In this last phase, the method works at a
super-block level evaluating and comparing the spectral signatures of each block
component. These spectral signatures are obtained using the Hadamard Trans-
form which is faster than DCT. Experimental results [30] demonstrate that this
method outperforms its DCT counterpart [447].

– Slant Transform Features: Haberdar and Shah [193][192] proposed a frame-
work for detecting relevant changes in dynamic background scenes. Practically,
the changes are classified into two main classes called ordinary changes and rel-
evant changes. Thus, this framework is based on a set of orthogonal linear trans-
forms which allow to capture spatio-temporal features of local ordinary change
patterns and subsequently employ them in the detection of relevant changes.
Three orthogonal linear transforms as the base transforms are used: 1) discrete co-
sine transform (DCT), 2) Walsh-Hadamard transform (WHT) and 3) Slant trans-
form (ST). Because DCT, WHT, and ST provide complementary basis vectors,
their combination allows to capture different types of ordinary change patterns.
DCT is a sinusoidal transform that is widely used to obtain compact representa-
tions. WHT is a non-sinusoidal transform providing basis vectors that are rect-
angular or square wave. WHT can represent patterns with sharp discontinuities
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more accurately with fewer values than DCT. ST provided basis vectors derived
from sawtooth wave-forms and are a good complement to WHT. Depending on
the ordinary change patterns in each set, elements of the data sequence are as-
signed to one of these three base transforms. Experimental results [193][192] on
the ChangeDetection.net 2012 dataset that this approach is more robust in the dy-
namic background category than DPGMM [194], Spectral-360 [470], and [380].

– Gabor Features: In the works of Xue et al. [607][609], the input image is first
convolved with local Gabor filters so that each pixel has a group of features con-
taining multiple amplitudes and corresponding phase values. Then, the features
with the most effective phase information is selected according to the criteria that
higher amplitude value in the feature group means more accurate local structure
information has been captured, and its corresponding phase information is more
representative. This phase feature is then defined as the sum of the selected phase
values. This phase feature presents several advantages for background modeling
and foreground detection. First, it is insensitive to illumination changes as it is
an inherent property of phase information. Second, the feature is relatively sta-
ble. Although noise exists in real videos, such feature change very little. Third, the
wide value range makes it more suitable for background modeling and foreground
detection. Finally, the feature is discriminative. When the true foreground appears
in the scene, its value changes rapidly and drastically. For the bagkround model,
Xue et al. [607][609] used the original MOG [512] and refined the foreground
mask with blob aggregation using the Euclidean distance transform. Experimen-
tal results [607][609] on I2R dataset [326] that the MOG with the phase feature
is more robust in presence of dynamic backgrounds and illumination changes
than the original MOG [512], KDE [142] and LBP [207]. In an other approach,
considering the advantages of Gabor filters which include the robustness to illu-
mination changes, Wei et al. [588] adopted Gabor filters at multi-scale and multi-
orientation to decompose an input video for sequential spatial feature extraction.
Thus, a spatial feature vector (SFV) is computed for each pixel. Then, Wei et al.
[588] used the MOG model [512] on the SFVs. Experimental results [588] on the
Wallflower dataset [545] show that this feature is more robust than the RGB one
in the presence of illumination changes.

15.2 Features from Video Domain Transform

The primary purpose of pixel-level background modeling is to detect moving objects.
However, in video coding and transmission applications, its use is to compress video
data without degrading image quality and to transmit as less data as possible (only
the data that have changed [425][71][72][665][673][666]). Although features from
the pixel domain are not effective for compression, several features from the video
compressed domain are efficient for background/foreground separation. Furthermore,
motion information is directly available without incurring cost of estimating a motion
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field. This set of features include:

– Features in MPEG Domain: Babu et al. [18] proposed to extract moving objects
from MPEG compressed video by using motion vectors (MVs) which are sparse
in MPEG. Thus, MVs are used for automatically estimating the number of objects
and extracting independently moving objects. Thus, MVs are accumulated over
few frames to enhance the motion information, and are further spatially interpo-
lated to get dense motion vectors. The foreground mask is obtained by using an
expectation maximization (EM) algorithm. To determine the number of motion
models used in the EM step, Babu et al. [18] used a block-based affine clustering
method, and the segmented objects are temporally tracked. Finally, precise object
boundaries are obtained with an edge refinement. In an other approach, Zeng et
al. [645] proposed a moving object extraction which discriminated background
and moving objects by means of the higher-order statistics applied on the inter-
frame differences of Discrete Cosinus Transform (DCT) image. Thus, the DCT
image is partially decoded from the compressed video for a rapid reconstruction
of image data. The background is detected by the moment preserving thresh-
olding technique. Based on the background statistic, an optimal threshold based
on the background variance allows to extract the final object mask by compari-
son the fourth moment measure and the variance. In a further work, Wang et al.
[436] presented three algorithms (running average, median, MOG) which model
the background directly from compressed video. Each algorithm used DCT co-
efficients including AC coefficients at block level to represent background, and
adapted the background by updating DCT coefficients. The foreground mask is
obtained with pixel accuracy through two-stage approach. Thus, the block regions
fully or partially occupied by moving objects are identified in the DCT domain,
and then pixels from these foreground blocks are further classified in the spatial
domain. Experimental results [436] show the three algorithms achieved compa-
rable accuracy to their counterparts in the spatial domain. Furthermore, the com-
putational cost of the proposed median and MoG algorithms are only 40.4% and
20.6% of their counterparts in the spatial domain. In an other work, Porikli et al.
[435][436] exploited the macro-block structure to decrease the spatial resolution
of the processed data, which exponentially reduces the computational time. Fur-
thermore, Porikli et al. [435][436] used temporal grouping of the intra-coded and
estimated frames into a single feature layer. To achieve foreground detection, the
DCT coefficients for I-frames and block motion vectors for P-frames are com-
bined and a frequency-temporal data structure is constructed. From the blocks
where the AC-coefficient energy and local inter-block DC-coefficient variance
is small, the homogeneous volumes are enlarged by evaluating the distance of
candidate vectors to the volume characteristics. Affine motion models are fit to
volumes. Finally, the foreground mask is generated with a hierarchical clustering
stage which iteratively merges the most similar parts.

– Features in H.264/AVC Domain: Dey and Kundu [124] used the temporal statis-
tics of feature vectors, describing macroblock (MB) units in each frame. Thus,
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feature vectors are used to select potential candidates containing moving objects.
From the candidate macroblocks, foreground pixels are determined by compar-
ing the colors of corresponding pixels pair-wise with a background model. This
approach allows each macroblock to have a different quantization parameter,
satisfying the requirements of both variable and fixed bit-rate applications. Ad-
ditionally, a low-complexity technique for color comparison is used to obtain
pixel-wise precision at a negligible computational cost as compared to classical
approaches. A similar approach can be found in Pope et al. [433]. But, these
methods [124][433] depend only on the number of encoding bits and fail to de-
tect motion/activity when the bitrate is severely constrained and rate-distortion
optimization is enabled. To solve this problem, Dey and Kundu [125] proposed
enhanced MB features which use both encoding bits as well as the quantization
step-sizes of individual coefficients in a MB. This is particularly important as the
quantization parameters vary widely between simple and complex sections of an
encoded image at lower bitrates. Then, the method is a two-steps hybrid fore-
ground detection where MBs covering prospective foreground regions are first
identified. An adaptive thresholding technique selected the candidate MBs cor-
responding to foreground objects. In the second step, pixels constituting the se-
lected MBs are classified into background or foreground. Because the presence of
shadows usually causes false classification, Dey and Kundu [125] estimated pixel
differences using the Luv color instead of using the YCbCr color space [124].
Experimental results [125] shows that the enhanced MB approach with Luv color
space outperforms both enhanced MB approach with YCrCb and the classical
MB approach [124]. In an other approach, Tong et al. [541] first constructed the
background model using the average MB RDCost over the initial N successive
frames. After the MB mode selection during encoding, each MB RDCost which
is available is compared to the background model. If an MB has RDCost larger
than a pre-defined threshold, it is regarded as motion MB. But, holes may appear
inside large moving objects because MBs with less change in large moving ob-
jects have small RDCost, making those MBs to be misclassified as background.
To solve this problem, Tong et al. [541] used spatial refinement. If more than half
of the eight adjacent MBs of a background MB are moving, then the MB under
consideration is regarded to be in motion. Further, moving objects are subjected
to temporal refinement.

– Features in HEVC Domain: For surveillance video coding, the rate-distortion
analysis shows that a larger Lagrange multiplier should be used if the back-
ground in a coding unit took a larger proportion. An adaptive Lagrange multi-
plier is better for rate distortion optimization. Thus, Zhao et al. [674] developed
a background proportion adaptive Lagrange multiplier selection method based
on HEVC. From the analysis of the relationship between the Lagrange multi-
plier and the background proportion, a Lagrange multiplier selection model for
surveillance video is used. However, there is a large amount of static background
regions which provide motion vectors equal to zero. Because motion search is
very time-consuming in the process of video coding, Zhao et al. [673] proposed
a background-foreground division based search algorithm (BFDS) to accelerate
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the motion search in surveillance video coding by utilizing the background and
foreground information of coding units. The idea is to classify a predicting unit
into a background predicting unit or a foreground predicting unit and then adopt
different search strategies for each unit. In an other work, Chakraborty et al. [73]
proposed an adaptive weighted non-parametric background model for efficient
video coding in the HEVC domain.

15.3 Features from Compressive Cameras

While the previous works performed background subtraction on compressed images,
they do no addressed compressive features from cameras that record MPEG video
directly. Thus, several works have been developed for Compressive Sensing (CS)
imaging, and not compressed video files. Compressive features are then obtained by
using a basis which provides a K-sparse representation. Practically, many different
basis can provide sparse approximations of images such as wavelets, curvelets and
Gabor transformations. So, an image does not result in an exactly K-sparse repre-
sentation and its transform coefficients decay exponentially to zero. In the literature,
several approaches based on compressive features have been used and differ from the
basis, the optimization method and the background model.

First, Cevher et al. [70] used an orthonormal basis and a Basis Pursuit Denoising
(BDP) algorithm for the minimization problem while Cevher et al. [69] used Lat-
tice Matching Pursuit (LaMP) [69] in a further work. This algorithm needs a large
amount of storage and computation for training the object silhouette, which is not
suitable for real-time background/foreground separation. In an other work, Mota et
al. [383][382] proposed a l1-l1 minimization. Needell and Tropp [397] developed
an algorithm called (CoSaMP) while He et al. [204] obtained compressive features
through linear compressive measurements and used an improved CoSAMP algo-
rithm called CoSaMP-Subspace. In an other work, Warnell et al. [585][584] proposed
two methods: one based on cross-validation measurements with an algorithm named
(ARCS-CV), and a second one based low-resolution measurements with an algorithm
named (ARCS-LR). In an other approach, Li et al. [325] employed an orthonormal
wavelet basis, a linear programming technique for the minimization problem and
the running average for the background model. Wang et al. [578] developed a Gra-
dient projection for sparse reconstruction (GPSR). Xu and Lu [602] proposed two
approaches: one based on canonical sparsity basis, and the second based on wavelet
sparsity basis with a K-cluster-valued CoSaMP algorithm. For linear compressive
measurements, Davies et al. [114] compared the Basis Pursuit (BP) and Orthogonal
Matching Pursuit (OMP) algorithms. Wang et al. [581] used wavelets transform to
obtain a sparse representation. Shah et al. [474] used an algorithm called Convex Lat-
tice Matching Pursuit (CoLaMP). For embedded camera networks, Shen et al. [482]
developed two algorithms in the case of random projections basis called CS-MoG
and Colour Space Compressed Sampling (CoSCS)-MoG with YCrCb components,
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respectively. Liu and Pados [345] used Walsh-Hadamard measurements (l1-PCA).

In the Robust Principal Component Analysis (RPCA) framework [67][57], sev-
eral works used compressive sensing features too. Waters et al. [586][587] proposed
to recover the low-rank and sparse matrices from compressive measurements in method
called SpaRCS for SPArse and low Rank decomposition via Compressive Sensing.
In a further work, Kyrillidis and Cevher [587] provided a real-time implementation
for SpaRCS while Ramesh and Shah [441] developed a Regularized version of the
SpaRCS algorithm called R-SpaRCS. In an other approach, Zonoobi and Kassi [696]
proposed a modification to the SpaRCS algorithm in order to incorporate priori-
knowledge of the sparse component. In an other approach, Jiang et al. [260][261]
proposed a background subtraction based on low-rank and sparse decomposition by
using the compressed measurement too. Although this model is suitable to the limited
bandwidth of multimedia sensor networks, it is not enough robust to the movement
turbulences and sudden illumination changes because the wavelet transform coeffi-
cients are not sparse in the case of turbulences. In a further work, Yang et al. [615]
developed an adaptive CS-based algorithm which can exactly and simultaneously re-
construct the video foreground and background by using only 10% of sampled mea-
surements. However, it still uses the wavelet transform as Jiang et al. [260][261]. This
causes false detection in presence of turbulences and sudden illumination changes.
In an other work, Li and Qi [328] proposed a recursive Low-rank and Sparse esti-
mation through Douglas-Rachford splitting (rLSDR) algorithm by recursively esti-
mating low-rank and sparse components in the reconstructed video frames from CS
measurements.

In a low-rank minimization (LRM) framework, Shu et al. [487][488] proposed a
three-dimensional compressive sampling (3DCS) approach to decrease the required
sampling rate of the CI camera. So, a generic three-dimensional sparsity measure(3DSM)
is decoded a video from incomplete samples by exploiting its 3D piecewise smooth-
ness and temporal low-rank property. Furthermore, a decoding algorithm is used for
this 3DSM with guaranteed convergence. Experimental results [487][488] show that
the 3DCS based method requires a much lower sampling rate than the existing CS
methods with the same accuracy. In an other work, Kang et al. [271][270] used a
three-dimensional circulant compressive sampling method to obtain sampled mea-
surement, based on which the video foreground and background are reconstructed by
solving an optimization problem. Experimental results [271][270] on the I2R dataset
demonstrate that this method outperforms both the original RPCA [67] and the orig-
inal MOG [512] in presence of dynamic backgrounds.

16 Multiple Characteristics

The use of multiple characteristics consists to use additional values of the directed
value of the concerned feature such as the mean, the median or high-order statis-
tics. For example, Thongkamwitoon et al. [539][540] and Amnuaykanjanasin et al.
[12] used four tuples which contains the expected color vector, the color covariance
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matrix, the brightness distortion and the color distortion. An other representative ap-
proach is the codebook model in which minimum brightness, maximum brightness,
frequency with which the code word has occurred and maximum negative run-length
(MNRL) defined as the longest interval during the training period that the codeword
has not recurred, and the first and last access times, respectively, that the codeword
has occurred. So, the codebook model contains color (RGB [287], YUV [123] and
HSV [108] in the cylinder color model, YUV [216] in the spherical color model, and
HSV in the hybrid cone cylinder color model [131][132]), brightness and temporal
information even if it uses color features.

17 Multiple Features

The use of multiple features (also called Bag-of-Features (BoF) [632][327][517]) for
background modeling has become a promising solution to improving robustness in
real applications. The fundamental idea is to add spatial and/or temporal dimensions
to the already existing spectral information available from the visual scene. The dif-
ferent features can be obtained from the same sensor (that is one camera) or from
different sensors such as IR cameras or RGB-D cameras. Table 9, Table 10 and Table
11 summarize different strategies based on multiple features in terms of number of
features, fusion operators and background models.

17.1 Two features

One of the popular choice of multiple features has been the combination of an alter-
native spatial feature to the already existing color features. Some common extensions
of the color features to multiple features include:

– Color-Gradient: As the gradients of an image are relatively less sensitive to
changes in illumination, some previous works have added it to the color feature
to obtain quasi illumination invariant foreground detection. Jabri et al. [240] were
the first authors who combined the intensity with the gradient features. The fore-
ground detection mask was obtained by an union operator and the features were
considered as independent. Holtzhausen et al. [210] used the same fusion scheme
but with RGB features instead of intensity features. In an other way, Javed et al.
[249] used the RGB features with the gradient but with the AND operator. To
take into account that the dependence within the features, Zang and Xu [654]
used Ohta and gradient with the Sugeno integral, and Ding et al. [128] YCrCb
and gradient with the Choquet integral which is more suitable than the Sugeno
integral for the application of foreground detection. Approaches with fuzzy inte-
grals are more robust than approaches with AND or OR operators as can be seen
in [654][128].

– Color-Texture: An other and one of the more common approaches of extend-
ing the feature space beyond color is the addition of texture features. It has been
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shown that the addition of texture to the color feature could improve robustness
towards illumination changes and shadows as in [95]. For texture features, most of
the authors used 1) the LBP [95][306] or one of its variants (ULBP [636],DLBP
[600]), 2) the LTP [670][669] or one of its variants (SILTP [394][258]), or 3)
statistical feature [92][162] or fuzzy statistical features [89][93]. In literature,
different fusions scheme were used such as AND operator [333], weighted aver-
age [95][259][636][669] [258], and fuzzy integrals (Sugeno integral [655], Cho-
quet integral [21][23][352][29][92][351][162][89], Interval valued Choquet Inte-
gral [93]). Even if there is no rigorous study of the best combination and fusion
scheme, the YCrCb color space and LBP features aggregated with the Choquet
integral [21], and intensity and FST features aggregated with the Interval valued
Choquet Integral [93] seem to be the more suitable and robust solutions for fore-
ground detection in presence of illumination changes and dynamic backgrounds.

– Color-Depth: With the increased use of RGB-D types of sensor, the combination
of color together with depth information has emerged as a popular strategy for
improved foreground detection. This combination of color and depth features has
proven to deal with the camouflage in color and in some specific studies stereo
features (disparity, depth) have also been used. Because depth features are dif-
ferent of color features as its distribution is different, the fusion scheme needs
to be suitably chosen as the independence aspect [398]. The most representative
works in color-depth are the ones of Camplani et al. [66][65][62][63], Fernandez-
Sanchez [148][149], and Gallego and Pardas [545]. More generally, different fu-
sions scheme were used in literature as AND or OR operator [148][149], weighted
average [66][62][63] and logarithmic opinion pools [153]. Most of the time, the
color space is the RGB one [217][66][65][62][63][148][149][153][410] but HSV
and LUV color spaces can be found in [503] and [331], respectively.

– Color-Motion: In addition to color information, the use of motion can allow the
foreground detection to deal with unimportant movements such as in dynamic
backgrounds. Zhou and Zhang [690] combined intensity with optical flow infor-
mation. Gong and Chen [165] used both RGB color components and 2D motion
vector obtained by optical flow in a 1-SVMs background model. The GPU im-
plementation processes QVGA-sized video sequences at 39.3 fps on a laptop. Lin
et al. [335][336] used the optical flow value and the mean of inter-frame image
difference as features in a probabilistic SVM approach for background initializa-
tion. Martins et al.[362] used a bio-inspired hybrid segmentation which merges
information from two inherently different methods: (1) bio-inspired motion de-
tection method using a feature called Magno channel based from the modeling
of the human visual system, and a background subtraction algorithm based on
pixel color information. The foreground detection is obtained by merging with a
logical AND the detection of the two methods.

– Color-Location: Sheikh and Shah [481] proposed to use the location in addition
to normalized RGB to exploit the dependency between pixel and thus spatial co-
herence can be taken into account with the KDE model. In an other work, Dickin-
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son et al. [126] used an adaptive MOG in 5-dimensional feature space (2D image
coordinates, and RGB color coordinates).

– Texture-Motion: Zhong et al. [682] used LBP and motion information obtained
by a temporal operator (See Section 8).

17.2 More than two features

The combination of multiple features, beyond two, seems useful particularly if the
combination exploits spectral, spatial and temporal information. However, such larger
combination of features requires careful consideration to avoid redundancy that could
impact computational demand and also preserve discriminative ability of features to
ensure wide range of adaptation capabilities. In literature, there are different com-
bination of three features: 1) color-edge-texture [17], 2) color-edge location [632],
3) color-texture-motion [327], and 4) color-texture-location [504]. Thus, Azab et al.
[17] aggregated three features, i.e color (RGB), edge (obtained with the Sobel oper-
ator) and texture (LBP) using the Choquet integral to deal with illumination changes
and dynamic backgrounds. The Choquet integral is used in aggregating color, edge
and texture confidence maps. Experimental results of [17] on the PETS 2006 dataset
showed that the addition of the edge feature increases the performance of the similar
method [21] which used only the color and the texture features.

More than three features can be found in ensemble of features based approaches
[294][195][349], feature selection schemes (See Section 18) or bag-of-features ap-
proaches [632][327][517]. For example, Klare and Sarkar [294] proposed an algo-
rithm that incorporates multiple instantiations of the MOG algorithm with 13 features
including: 1) color features (RGB), and 2) edge features which are the gradient and
magnitude obtained with a Canny edge detector, eight texture feature (Haar features).
The fusion method used is the average rule. Similarly, Han and Davis [195] performed
background subtraction using a Support Vector Machine over background likelihood
vectors for a set of features which consist of 11 features: color featurees (RGB), gra-
dient (horizontal and vertical) and six Haar-like features. Then, Han and Davis [195]
used a SVM classifier over the background probability vectors for the feature set. The
aim of integrating the classifier for foreground/background segmentation is the selec-
tion of the discriminative features. Moreover, it also reduced the feature dependency
problem. Otherwise, highly correlated non-discriminative features may dominate the
classification process regardless of the states of other features. A radial basis function
kernel is used to deal with non-linear input data. As Han and Davis [195] trained the
classifier based on probability vectors rather than feature vectors directly, a universal
SVM is used for all sequences and not a separate SVM for each pixel nor for each
sequence.

Lopez-Rubio and Lopez-Rubio [349] developed a method based on stochastic op-
timization [348] which overcomes the limitations of some features along with a set
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of relevant features that yields adequate results. Thus, a probabilistic model, in addi-
tion to handling any number of pixel features, could also account for the correlations
among the features, so that a more realistic model is obtained. This method is called
Multiple Feature Background Model (MFBM). Since the number of features Nf is
not restricted, a fast and numerically stable implementation is of great importance to
the practical applicability of MFBM. The slowest part of MFBM is the computation
of the Gaussian probability density. It is O(Nf ) due to the inversion of the covari-
ance matrix, and the computation of its determinant [349]. The other equations are
O(Nf ) or lower. The following 24 features are used: 1) Normalized RGB are used
due to their robustness with respect to illumination changes, 2) six Haar-like fea-
tures which are robust features that convey texture information, 3) previous features
1 to 9 processed with the bidimensional median filter of window size 5 × 5 pixels,
4) Gradient features estimated with Sobel operator are less affected by illumination
changes while they provide local texture information, 5) two features which consider
both color information and a pixel adjacent to the pixel at hand, as a local indication
of color texture, and 6) two small filters of size 3 × 3 pixels to extract the texture
information. Experimental results [349] on several large scale dataset (I2R dataset
[326], ChangeDetection.net [169], BMC 2012 dataset [552]) tested all possible com-
binations of pairs of features and triples of the 24 features. The conclusion is that
Haar-like features are not well suited for MFBM which needs few features with the
best possible discriminative power. The performance of MFBM increases as more
relevant features are added, but the improvement decreases until a point where insert-
ing more features is useless (Nf = 5). Normalized color channels and median filtered
feature present particularly good results. This is due to their robustness against illu-
mination changes for normalized features and their ability to filter the background
noise for median filtered features. State-of-the-art background modeling approaches
are outperformed by MFBM method but it seems that is due to the number and kind
of features and not due to the model itself. In a further work, Molina-Cabello et al.
[377] used the same set of features with a background subtraction method called Fea-
tures based FSOM (FFSOM) which is an extension of Foreground Self-Organizing
Maps (FSOM) [347].

In Subudhi et al. [517], six local features are taken into consideration: 1) Three
existing features: brightness (Bs), inverse contrast ratio (ICR) and average sharp-
ness (AS)), and 2) three proposed features: absolute relative height (ARH), local
weighted variance (LWV) and integrated modal variability (IMV)). As most of the
background subtraction methods consider non bi-unique model (which is the fact
that local changes corresponding to the moving objects are obtained by making a
combination of multiple features rather than combination of decision on individual
features), Subudhi et al. [517] suggested the use of a bi-unique model as in Bovolo
et al. [58] where individual spectral properties are combined or results of the spectral
channels are fused to obtain better results. Experimental results on the ChangeDetec-
tion.net dataset [169] show the robustness of this method in the categories ”Dynamic
Backgrounds”, ”Camera Jitter” and ”Thermal”.
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Wang and Wan [579] used 10 features: three in color (RGB components), six in
gradient computed via Prewitt operator, and one in Gabor filter [268]. Then, Wang
and Wan [579] proposed a Multi-Task Robust Principal Component Analysis (MTR-
PCA) model which integrate multi-feature jointly into the RPCA framework [67].
Experimental results on the ChangeDetection.net dataset [169] show that the MTR-
PCA with all the features outperforms MTRPCA with color and gradient, RPCA with
color, and RPCA with gradient. Gan et al. [154] proposed a similar method called
Multi-feature Robust Principal Component Analysis (MFRPCA).

Exploiting multiple cues, Huerta et al. [234] first combined both intensity and
color (chromatic and brightness distortion) features in order to solve some of the
color motion segmentation problems such as saturation or the lack of the color when
the background model is constructed. Nonetheless, some colors problems are still
unsolved such as dark and light camouflage. Then, to solve these problems, Huerta
et al. [234] used edge features obtained with the Sobel operator. Finally, intensity,
color and edge cues are combined using the logical operators AND and OR. In a
further work, Huerta et al. [232] improved these multiple cues approach by using a
chromatic-invariant cone model for the color features.
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18 Feature Selection

Commonly, the background subtraction methods do not take into account the prop-
erties of each features, and the same feature is used globally for the whole scene.
Indeed, all existing background subtraction methods operate with a uniform feature
map in the sense that the features used to model the background and perform the
detection are the same for all pixels of the image, thus ignoring the non-uniformity
of the spatial distribution of background properties and neglecting the foreground
properties. But in practice for complex scene comprising of several elements such as
waving trees, sky, soil and car, the most discriminant features for these elements are
probably different, and therefore a single-feature background subtraction algorithm
may not be appropriate.

Despite the choice of the best features for each region is not an easy task as it
requires a deep knowledge of the scene, it is possible to automatically select the most
relevant feature to improve the foreground segmentation in complex scenes thanks
to their capability to select a subset of highly discriminant features removing irrele-
vant and redundant ones. One can find ensemble-based approaches, minimizing the
use of traditional feature selection methods (filters, wrappers and embedded) [511].
The objective of such approaches is to generate multiple feature selectors and then
aggregating their outputs, producing a more robust classification. The main known
re-sampling ensemble methods that generate and combine a diversity of learners
are: bagging, boosting and random subspace [409]. The boosting approach and its
variants for feature selection has been used in [170][172][171][316][417]. However,
usually only exemplars of one-class elements are available (i.e. the background com-
ponent is always present), whereas the other classes are unknown (i.e. foreground
objects can appear/disappear several times in the scene). This is known as the one-
class classification (OCC) problem, which specific nature is not taken into account
in boosting approaches. The OCC approach has been used by Silva et al. [491][492].
Practically, the different feature selection scheme applied to background modeling
and foreground detection can be classified as follows:

– Predetermined feature selection: Li et al. [326] were the first to express the need
for modeling distinct part of the image with different features, and described the
background image as consisting of two pixel categories, static pixels and dynamic
pixels. Unfortunately, this method lacks of generality as 1) the cardinality of the
feature set, i.e. the number of candidate features or group of features that are pre-
determined, is limited to two (one group of features for static pixels and one other
for dynamic pixels), and 2) the choice of features is not made dynamically but
only the type of pixels.

– Feature selection via AdaBoost: Grabner and Bischof [170][172] introduced
an on-line boosting based feature selection framework using the Adaboost algo-
rithm[150]. This method was enabled to tackle a large variety of challenges and
used large feature pools at reduced computational costs. This gives the feasibil-
ity to achieve real-time computational complexity. The feature set contained 1)
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Fusion Scheme Categories Authors

Classical Operators AND Foreground: Javed et al. [249], Lin et al. [333]
Ivanov et al. [237], Ivanov et al. [238], Ivanov et al. [239]
Distances: Silvestre [494]
Background: Fernandez-Sanchez et al. [148], Fernandez-Sanchez et al. [149]

OR Foreground: Gordon et al. [167], Harville et al. [202]
Harville et al. [201], Harville [200]
Langmann et al. [308], Leens et al [317]

Combination OR-AND-Morphological Operators: Camplani et al. [65]
Ottonelli et al. [410], Ottonelli et al. [411]

Conditions Boundaries: (Edge) Javed et al. [249], (Edge) Guo and Yu [181]
(Texture) Shang et al. [476], (Depth) Stormer et al. [514]
Weak/Strong Pixels: Lai et al. [306]
Weak/Strong Motion Vectors: Zhou and Zhang [690]

Weigthed Average Similarities: Chua et al. [95], Chua et al. [96]
Ji and Wang [258]
Distances: Zhang et al. [669], Yuan et al. [636]
Jian and Odobez (2007) [259]
Gong and Cheng (2011) [165]

Statistical Operators Product of the likelihoods Zhang et al. [670]
Weighted average of the likelihoods Hu et al. [217], Camplani and Salgado [66]

Camplani et al. [62], Camplani et al. [63]
Klare and Sarkar [294]
Zhong et al. [682]

Logarithm Opinion Pool Gallego and Pardas [153]
SVM Classifier Han and Davis [195]

Fuzzy Operators Sugeno Integral Zhang and Xu [654], Zhang and Xu (2006) [654]
Choquet Integral El Baf et al. [21], El Baf et al. [24]

El Baf et al. [23], El Baf et al. [22]
Ding et al. [130], Ding et al. [127]
Ding et al. [128], Li et al. [329]
Ding et al. [129], Azab et al. [17]
Lu et al. [352], Lu et al. [351]
Balcilar et al. [29], Chiranjeevi and Sengupta [92]
Gayathri and Srinivasan [162], Chiranjeevi and Sengupta [89]

Interval valued Choquet integral Chiranjeevi and Sengupta [93]

Table 12 Features Fusion: An Overview.

the Haar-like features [557], 2) orientation histograms with 16 bins similar to
Dalal and Triggs [109], and 3) a simple version with 4th neighborhood of LBP
[207]. Grabner and Bischof [170][172] computed integral images and integral
histograms [434] as efficient data structures for fast calculation of all features.
The current image is divided into overlapping patches, and the patches are used
as training data for foreground/background classifiers. As only background parts
of the current image can be used as training data, Grabner and Bischof [170][172]
generated an arbitrary image patch, of which the mean pixel value is 128 and the
variance is 2562/12, as a foreground patch for initial training. As a new current
image is given to the classifiers, the image is divided into patches and each patch
is classified as either foreground or background using the trained classifiers. After
classification, the patches classified as background with high confidence are used
as training data to update the classifiers. The main advantage of this scheme is
that it is robust to illumination changes and dynamic backgrounds since the clas-
sifiers are consistently updated. However, as it is an off-line learning algorithm,
all labeled training samples are required to be available a-priori. In most real ap-
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plications, training data should not always be sampled from one fixed distribution
as it may not encapsulate all the complexities in real-scenes. However, since the
method is based on self-learning (i.e. classifier predictions feed model updates),
the background model can end up in catastrophic state, as mentioned by Grab-
ner and Bischof [171]. Therefore, Grabner and Bischof [171] proposed a time-
dependent on-line boosting algorithm using exponential forgetting of the sam-
ples over time. Nevetherless, these two algorithms naturally lose the advantage
of color information and still suffers from large computational complexity [316].
Thus, Lee et al. [316] proposed a hierarchical on-line boosting which uses block
based Opponent Color Local Binary Pattern (OC-LBP). Thus, Lee et al. [316]
divided a patch into three layers of R,G, and B, and then each layer into 3 blocks.
9 different block based OC-LBP are generated by placing different colors to the
center block and the surrounding blocks. For each block based OC-LBP, 8 classi-
fiers are constructed. Then, Lee et al. [316] considered 9 classifier pools, each of
which includes 8 classifiers. While the original on-line boosting [170][172][171]
should generate arbitrary foreground patches, the hierarchical on-line boosting
[316] only needs background patches. The computational time is shortened sig-
nificantly by making the process of training and classification simple. As pointed
out by Braham et al. [59], the drawbacks of these approaches are unrealistic as-
sumptions about the statistical distributions of foreground features that are used,
i.e. a uniform distribution is assumed for the gray value of foreground objects and
serves as a basis for computing other feature distributions.

– Feature selection via RealBoost: Parag et al. [417] proposed a generic model
that is capable of automatically selecting the features that obtain the best invari-
ance to the background changes while maintaining a high detection rate for the
foreground detection. In this study, Parag et al. [417] proposed the use of a Re-
alboost algorithm. Unlike Adaboost algorithm which combines weak hypotheses
having outputs in {−1,+1}, RealBoost algorithm computes real-valued weak
classifiers given real numbered feature values, and generates a linear combination
of these weak classifiers that minimizes the training error. To generate the back-
ground model, Elgammal et al. [417] used the Kernel Density estimation (KDE).
Using the density estimates, the Realboost algorithm [467] is able to select the
features most appropriate for any pixel. In the implementation phase, Parag et al.
[417] used 9 types of features, namely three color values R,G,B and spatial deriva-
tives for each of these color channels in both x and y directions for each pixel of a
color image. For intensity images, 3 features are used, that are the pixel intensity
value and its spatial gradients in horizontal and vertical directions. Experimen-
tal results [417] show that this approach outperforms the original KDE [142] by
a slight margin. While this framework can be used with an arbitrary number of
candidate features, it has a serious drawback as pointed out by Braham et al. [59].
Indeed, the synthetic foreground examples used for boosting are generated ran-
domly from a uniform distribution. Indeed, all candidate features are assumed to
be uniformly distributed for foreground objects. This assumption is not valid be-
cause of the wide variety of foreground statistical distributions among different
features [59]. For example, gradient has a foreground probability density func-
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tion concentrated around low values while RGB color components have a wider
foreground probability density function. This may explain why the classification
performance of this framework decreases when gradient features are added to the
feature set. This limitation can be addressed by means of global statistical fore-
ground models.

– Dynamic feature selection strategy: Javed et al. [254] used a dynamic feature
selection strategy with Online Robust Principal Component Analysis (OR-PCA)
framework. Feature statistics, in terms of means and variances, are used as a selec-
tion criterion. Unlike aforementioned purely spatial or spatio-temporal selection
approaches, this method is exclusively temporal-based, which means that all pix-
els use the same features for the foreground segmentation. The non-uniformity of
the spatial distribution of background properties is thus ignored.

– Feature selection via a generic method: Like in Parag et al. [417], Braham et
al. [59] proposed that the feature selection process only occurs during the training
phase, to avoid extra computations during normal background subtraction opera-
tions. Thus, the training phase is divided into three parts: 1) The first part consists
to accumulate images free of foreground objects which are further processed to
build local background statistical models, 2) The second part uses an other se-
quence of images, which include foreground objects and use to build a global
foreground statistical model for each candidate feature of the feature set, and 3)
the third part selects the best feature/threshold combination which is a local pro-
cess, meaning that it is performed for each pixel individually. The goal of the
selection process consists to detect which feature is most appropriate to discrimi-
nate between the local background and the foreground at the frame level. Unlike
previous approaches, the foreground feature statistical distributions are estimated
at the frame level. Features are selected locally depending on their capability to
discriminate between local background samples and global foreground samples
for a specific background model and for a chosen performance metric. Experi-
ments results [59] show that this feature selection scheme significantly improves
the performance of ViBe [32].

– Feature selection via One-class SVM: Silva et al. [491] used an Incremental
Weighted One-Class Support Vector Machine (IWOC-SVM) which select suit-
able features for each pixel to distinguish the foreground objects from the back-
ground. In addition, an Online and Weighted version of the Random Subspace
(OW-RS) [491] is used to assign a degree of importance to each feature set,
and these weights are used directly in the training step of IWOC-SVM. More-
over, a heuristic approach is used to reduce the complexity of the background
model maintenance while maintaining the robustness of the background model.
Practically, the features were chosen to have at least one feature in the five type
of features: color feature (R,G,B, H,S,V and gray-scale), texture feature (XCS-
LBP [490]), color-texture (OC-LBP [366]), edge feature (gradient orientation and
magnitude), and motion feature (optical flow). In addition, multispectral bands (a
total of 7 spectral narrow bands) are also used. Experimental results [491] on mul-
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Algorithms Background Model Number Features Authors-Dates

Off-line feature selection
Predetermined Bayesian framework [326] 5 Static Background Pixels: RGB-Gradients Li et al. (2004) [326]

6 Dynamic Background Pixels: Color co-occurrences
Feature selection in the training step
Realboost [467] KDE [142] 3 Intensity-Gradients (Horizontal/Vertical) Parag et al. (2006) [417]
Realboost [467] KDE [142] 9 RGB-Gradients (Horizontal/Vertical) Parag et al. (2006) [417]
Generic method ViBe [32] 9 RGB-HSV-YCbCr Braham et al. (2015) [59]
On-line feature selection
Adaboost [150] Single Gaussian [589] 9 Haar Features, HoG [109], LBP [207] Grabner and Bischof (2006) [170]
Adaboost [150] Single Gaussian [589] 9 Haar Features, HoG [109], LBP [207] Grabner et al. (2006) [172]
Time dependent Adaboost [150] Single Gaussian [589] 9 Haar Features, HoG [109], LBP [207] Grabner et al. (2008) [171]
Hierarchical Adaboost [150] Single Gaussian [589] 9 Haar Features, HoG [109], OCLBP [366] Lee et al. (2011) [316]
Selection criterion OR-PCA [254] 7 Color-Gradient-HOG-LBP [207] Javed et al. (2015) [254]
IWOC-SVM [491] SVM 19 R,G,B, H,S,V, gray-scale, XCS-LBP, OC-LBP Silva et al. (2016) [491]

gradient orientation and magnitude, optical flow
7 spectral narrow bands

Superpixel-OWAOC [492] SVM 19 R,G,B, H,S,V, gray-scale, XCS-LBP, OC-LBP Silva et al. (2017) [492]
gradient orientation and magnitude, optical flow
7 spectral narrow bands

Table 13 Features Selection: An Overview.

tispectral video sequences from the MSVS dataset [35] show the pertinence of
this selection scheme. In a further work, Silva et al. [492] improved IWOC-SVM
by using a best methodology to select the best features based on wagging, by us-
ing a superpixel segmentation strategy, and by adding Ensemble Pruning (EP) to
suitably update the importance of each feature. This method is named Superpixel-
based Online WAgging One-Class Ensemble(Superpixel-OWAOC). Experimen-
tal results [492] on the MSVS dataset [35] and the RGB-D dataset [66] show that
Superpixel-OWAOC outperforms IWOC-SVM (also called OWOC-RS).

In these different methods, the feature selection is made at a different step: 1) in off-
line step in a predetermined way (as in Li et al. [326]) which is less adaptive over
time because the set of features for each category of pixel is fixed over time and it
only requires additional computation for the detection of the category of each pixel ,
2) in the training step only (as in Parag et al. [417] and in Braham et al. [59]) which is
more robust than the off-line way with a set of selected features more flexible and thus
more diverse for each pixel, or 3) in an online way all over the process (as in Grabner
and Bischof [170], Javed et al. [254], Silva et al. [491], and Silva et al. [492]) which
is the most adaptive scheme but it requires additional computation time.

19 Resources, datasets and codes

19.1 Features Website

This website contains a full list of references in the field, links to available datasets
and codes. In each case, the list is regularly updated and classified following the type
of features as in this paper. An overview of the content of the Feature Website is
given at the home page. In addition to the sections which concern the type of fea-
tures, this website gives references and links to available implementations, datasets,
conferences, workshops and websites.



107

19.2 Datasets

Several datasets available to evaluate and compare background subtraction algorithms
have been developed in the last decade. We classified them in terms of IR datasets,
color datasets and RGB-D datasets. IR and color datasets provide videos from one
camera in IR or color space. On the other hand, RGB-D datasets provide color+depth
videos obtained by stereo cameras or the Microsoft Kinect RGB-D camera or the
Asus Xtion Pro Live camera. All these datasets are publicly available and their links
are provided on the Features Web Site in the section Available Datasets.

19.2.1 IR dataset

The OTCBVS 2006 Dataset is related to the conference ”Object Tracking and Clas-
sification in and Beyond the Visible Spectrum” (OTCVBVS28) contains sequences
for person detection and face detection. Three sequences are then interesting for
background subtraction: (1) Dataset 01 (OSU Thermal Pedestrian) which concerns
person detection in thermal imagery, (2) Dataset 03 (OSU Color-Thermal Database)
on fusion-based object detection in color and thermal imagery and (3) Dataset 05
(Terravic Motion IR Database ) which focus on detection and tracking with thermal
imagery.

19.2.2 Color datasets

Color datasets are the majority in the available datasets and the reader can find the
full list in Bouwmans [51]. Here, we focus on the recent large-scale datasets and the
datasets in aquatic environments.

1. Large-scale datasets: These datasets are realistic large-scale datasets with ac-
curate ground-truth providing a balanced coverage of the range of challenges
present in the real world. Three large-scale datasets are available and very in-
teresting:

– ChangeDetection.net Dataset: The CDW5 2012 dataset [169] presents a re-
alistic, large-scale video dataset consisting of nearly 90,000 frames in 31
video sequences representing 6 categories selected to cover a wide range
of challenges in 2 modalities (color and thermal IR). The main character-
istic of this dataset is that each frame is annotated for ground-truth fore-
ground, background, and shadow area boundaries. This allows an objective
and precise quantitative comparison of background subtraction algorithms.
This dataset was extended in 2014 to the CDW6 2014 dataset which con-
tains all the 2012 videos plus additional ones with the following challenges:
challenging weather, low frame-rate, acquisition at night, PTZ capture and air
turbulence.
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– BMC 2012 Dataset: The BMC7 (Background Models Challenge) [552][497]
is a workshop organized within ACCV (Asian Conference in Computer Vi-
sion) about the comparison of background subtraction techniques with both
synthetic and real videos. This benchmark is first composed of a set of 20 syn-
thetic video sequences with the corresponding ground truth, frame by frame,
for each video (at 25 fps). The first part of 10 synthetic videos are devoted to
the learning phase of the proposed algorithms, while the 10 others are used
for evaluation. BMC also contains 9 real videos acquired from static cameras
in video-surveillance contexts for evaluation. This dataset has been built in
order to test the algorithms’ reliability during a certain time and in difficult
situations such as outdoor scenes. Furthermore, this dataset allows us to test
the influence of some difficulties encountered during the foreground detection
step, as the presence of waving trees, cast shadows or sudden illumination
changes in the scene.

– SABS Dataset: The SABS8 (Stuttgart Artificial Background Subtraction)
dataset [61] represents an artificial dataset for pixel-wise evaluation of back-
ground models. Synthetic image data generated by modern ray-tracing makes
realistic high quality ground-truth data available. The dataset consists of video
sequences for nine different challenges of background subtraction for video
surveillance. These sequences are further split into training and test data.
For every frame of each test sequence ground-truth annotation is provided as
color-coded foreground masks. This way, several foreground objects can be
distinguished and the ground-truth annotation could also be used for tracking
evaluation. The dataset contains additional shadow annotation that represents
for each pixel the absolute luminance distance between the frame with and
without foreground objects. The sequences have a resolution of 800 × 600
pixels and are captured from a fixed viewpoint.

2. Datasets in aquatic environments These datasets are very interesting to test
and evaluate illumination invariant color features and texture features due to the
dynamic background changes and illumination changes particular to aquatic en-
vironments. Three datasets are publicly available:

– Fish4knowledge Dataset: The Fish4knowledge 9 dataset [274][502][501] is
an underwater benchmark dataset for target detection against complex back-
ground which consists of 14 videos categorized into seven different classes
representing complex challenges in background modeling.

– Aqu@theque Dataset: The Aqu@theque10 dataset [427][20][19] contains
four different image sequences from the ”Aqu@thque” project [68], and one
sequence from the experimental study of turbulent flow. The fish need to be
well detected in order to allow features extraction which are used to recog-
nize the species of the fish. One sequence is used for the experimental study
of turbulent flow in vertical slot fishways to optimize their protection. Each
of the five sequences shows different situations and challenges such as boot-
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strapping, occlusion, camouflage, light changes and dynamic background.

– MAR Dataset: Maritime Activity Recognition (MAR11) [46] is a dataset con-
taining data coming from different video sources (fixed and Pan-Tilt-Zoom
cameras) and from different scenarios. There are 10 videos from fixed cam-
eras with ground-truth images and 15 form PTZ cameras. The aim of this
dataset is to provide a set of videos that can be used to develop intelligent
surveillance system for maritime environment.

19.2.3 RGB-D datasets

Three RGB-D datasets are publicly available and can be described as follows:

– RGB-D Object Detection Dataset: The RGB-D12 dataset [66][65] provides five
sequences of indoor environments, acquired with the Microsoft Kinect RGB-D
camera. Each sequence contains different challenges such as cast shadows, color
and depth camouflage. For each sequence a hand-labeled ground truth is provided.

– CITIC RGB-D Dataset: The CITIC13 dataset [148][149] contains sequences
recorded with rectified stereo cameras, and some frames have been hand-segmented
to provide ground-truth information.

– RGB-D Rigid Multi-Body Dataset: The RGB-D Rigid Multi-Body 14 dataset
[515] consists of 3 RGB-D videos of objects with different sizes (chairs, box/watering
can, small box/teacan). The datasets have been recorded using an Asus Xtion Pro
Live camera in a resolution of 640x480 at 30 Hz frame rate. Ground truth for the
camera pose has been obtained with an OptiTrack Motion Capture system. The
moving objects are also manually annotated in frames at every 5 seconds.

19.3 Libraries

Several codes for texture features are provided in Matlab by the Center for Machine
Vision (CMV15) at University of Oulu: as follows: LBP, LBP Histogram Fourier Fea-

5http://www.changedetection.net/
6http://www.changedetection.net/
7http://bmc.univ-bpclermont.fr
8http://www.vis.uni-stuttgart.de/index.php?id=sabs
9http://www.fish4knowledge.eu

10http://sites.google.com/site/thierrybouwmans/recherche—aqu-theque-dataset
11http://labrococo.dis.uniroma1.it/MAR/
12http://www.gti.ssr.upm.es/ mac/
13http://atcproyectos.ugr.es/mvision/
14http://www.ais.uni-bonn.de/download/rigidmultibody/
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tures [8], spatio-temporal LBP [672], discriminative features of LBP variants [189]
and Local Configuration Pattern [188]. These codes do not specifically address the
application of background modeling and foreground detection. In an other way, the
LBP Library provided by Caroline Silva, Cristina Lazar and Andrews Sobral is a col-
lection of eleven Local Binary Patterns (LBP) algorithms developed for background
subtraction problem. The algorithms were implemented in C++ based on OpenCV. A
CMake file is provided and the library is complatible with Windows, Linux and Mac
OS X. The library was tested successfully with OpenCV 2.4.10. The local texture
pattern available are the following ones: original LBP [207], CS-LBP [523], SCS-
LBP [608], ε-LBP [568], HCS-LBP [606], OCLBP [316], VARLBP [408], BG-LBP
[111], XCS-LBP [490], SILTP [332] and CS-SILTP [592].

20 Features and Evaluation

Fig. 5 shows the relation between the type of features used in each method, and the
evaluation metrics that are used to evaluate each of them according to the reviewed
papers. Here we can see that for each category there are no dominant evaluation
metrics. Also, it is observed that a decent number of papers are using qualitative
evaluation only, without providing quantitative results related to their accuracy and
performance, especially when compared between older and more recent papers. Thus,
it is a need to develop a rigorous quantitive evaluation of influence of each feature
with the same measure metrics.

21 Conclusion

In conclusion, this review on the role and the importance of features for background
modeling and foreground detection highlights the following points:

– Features can be classified following their size, their type in a specific domain,
their intrinsic properties and their mathematical concepts. Each type of features
presents different robustness against challenges met in videos taken by a fixed
cameras. For the color feature, YCrCb color space seems to be the more suitable
feature [24][350]. For the texture feature, Silva et al. [491] provided a study on
the LBP and its variants that show that XCS-LBP is the best LBP feature for
this application in presence of illumination changes and dynamic backgrounds.
Although this study covered texture features, it is restricted to LBP features and
then there is not a full study on the different texture features. For the depth fea-
ture, it needs to carefully used them following their properties as developed in
Nghiem and Bremond [398]. Features in a domain transform are very useful to
reduce computation times as in the case of compressive sensing features.

15http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
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Fig. 5 Metrics used to evaluate the performance of background modeling and foreground detection fol-
lowing the type of features used.

– Several features have been used in other applications and none in background
modeling and foreground detection such several variants of LBP (Multi-scale Re-
gion Perpendicular LBP (MRP-LBP) [399], Scale-and Orientation Adaptive LBP
(SOA-LBP) [205]). Furthermore, statistical or fuzzy version of crisp feature could
be investigated such as histograms of fuzzy oriented gradients [455]. It would be
interesting to evaluate them for this application.

– Because each feature has its strengths and weaknesses against each challenge,
multiple features schemes are used to combine the advantages of their different
robustness. Most of the time, gradient, texture, motion and stereo features are
used in addition to the color feature to deal with camouflage in color, illumi-
nation changes, dynamic backgrounds and shadows. Different fusion operators
can be used to combine these different features but fuzzy integrals such as the
Choquet integral [21] and interval-valued Choquet [93] seem the best way to ag-
gregate different features because dependency between features can be taken into
account.

– Because there is not a unique feature that performs better than any other feature
independently of the background and foreground properties, feature selection al-
lows to use the best feature or the best combination of features. Experimental
results provided by the existing approaches show the pertinence of feature se-
lection in background modeling and foreground detection. However, basic algo-
rithms such as Adaboost and Realboost have been used most of the time. The
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most advanced scheme is the IWOC-SVM algorithm developed by Silva et al.
[491], but more advanced selection schemes can be used such as statistical or
fuzzy feature selection.

To summarize, the most interesting approach seems to fuse multiple features with the
intervalued fuzzy Choquet integral. The best set of features seems to beillumination
invariant color features combined with spatio-temporal texture features and depth
features. Future research should concern 1) a full evaluation of texture features, 2)
a full comparison of feature fusion schemes, 3) feature selection schemes and 4)
reliability of features because it has been less investigated. Finally, features learned
by deep learning methods such as Stacked Denoising Auto-Encoder (SDAE) [667]
and Convolutional Neural Networks (CNN) [60][582]. are surely the features that will
outperforms all the other features because deep learning methods have the sole ability
of learning features that best fit a given set of data. Furthermore, unlike conventional
hand-crafted features, learned features come from multiple layers which focus on
various level of details in the video. Thus, learned feature representation allows to
well capture the intrinsic structural properties of a scene and adaptively discover a set
of filter patterns that are robust to complicated factors such as noise and illumination
variation.
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