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Abstract
We study Parametric Petri Nets (PPNs), i.e., Petri nets for which some arc weights can be
parameters. In that setting, we address a problem of parameter synthesis, which consists in
computing the exact set of values for the parameters such that a given marking is coverable in
the instantiated net.

Since the emptiness of that solution set is already undecidable for general PPNs, we address a
special case where parameters are used only as input weights (preT-PPNs), and consequently for
which the solution set is downward-closed. To this end, we invoke a result for the representation
of upward closed set from Valk and Jantzen. To use this procedure, we show we need to decide
universal coverability, that is decide if some marking is coverable for every possible values of
the parameters. We therefore provide a proof of its ExpSpace-completeness, thus settling the
previously open problem of its decidability.

We also propose an adaptation of this reasoning to the case of parameters used only as output
weights (postT-PPNs). In this case, the condition to use this procedure can be reduced to the
decidability of the existential coverability, that is decide if there exists values of the parameters
making a given marking coverable. This problem is known decidable but we provide here a
cleaner proof, providing its ExpSpace-completeness, by reduction to ω-Petri Nets.
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1 Introduction

The introduction of parameters in models aims to improve genericity. It also allows the
designer to leave unspecified aspects, such as those related to the modeling of the environment.
This increase in modeling power usually results in greater complexity in the analysis and
verification of the model. Beyond verification of properties, the use of parameters opens
the way to very relevant issues in design, such as the computation of the parameters values
ensuring satisfaction of the expected properties. This is the synthesis problem: given a
property, compute the exact set of all parameter values such that, instantiated with these
values, the system satisfies this property. This notably permits an estimation of the robustness
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10:2 Coverability Synthesis in PPNs

of a given instance of a model. Indeed, in full knowledge of “good values” for the parameters,
we may be able to quantify the distance from a “bad value” providing an idea of how
reliable is the system. Thus parameterised systems are of particular interest both in allowing
the handling of more realistic classes of models and addressing more realistic verification
issues. We therefore address here the case of parameterised concurrent systems modelled as
parametric Petri nets.

Related work. The study of parameterised models and more specifically the synthesis
has been studied in different parametrics settings. Parameters representing delays in timed
systems modeled as timed automata have been particularly studied, but with very few
decidability results [1]. Synthesis for such systems is only possible in very particular settings,
such as bounded integer parameters computed symbolically in timed automata [15] or integer
parameters in timed automata with parameters used only as upper bounds, or only as
lower bounds, in timing constraints [4]. We focus here on a different type of parameters
which represent discrete values. In Petri nets, this corresponds to parameterising the initial
marking [5, 17] and the weights of the arcs in transitions [7]. The latter work deals with two
decidability problems induced by the use of parameters: The existential coverability: does
there exists an integer valuation v on the set of parameters such that m is coverable in the
marked Petri net where parameters are replaced by the value given by v? And the universal
coverability: is m is coverable in such a net for every possible valuation v? Those problems
are both undecidable in the most general case, and syntactic subclasses restricting the use of
parameters have been introduced, for which the different problems are decidable.

Contributions. We focus on computing the exact solution set to the synthesis problem
for coverability in parametric Petri nets, i.e., the set of all parameter values such that in the
net instantiated with these values, a given marking is coverable.

The emptiness and universality of the solution set being undecidable in general, computing
this set can only be done in a restricted setting. We thus focus on the case when parameters
are used only as input weights (preT-PPNs) or only as output weights (postT-PPNs). These
assumptions give some structure to the solution set: we prove that it is then downward-closed
wrt. the usual order on integer vectors for preT-PPNs, and upward-closed for postT-PPNs.

We show how a procedure by Valk and Jantzen from [20] can be used for computing a
finite minimal basis of the solution set for postT-PPNs or its complement for preT-PPNs.
This requires deciding universal coverability in preT-PPNs and existential coverability in
postT-PPNs. The former is an open problem: our main result is it is ExpSpace-complete,
which we prove by considering the more generic property of simultaneous unboundedness
studied by Demri in [8]. The latter is known decidable but we provide a cleaner proof and
additionally prove its ExpSpace-completeness. These results interestingly allow us to carry
over a Rackoff upper bound into this parametric setting.

Finally, we prove that in what is called distinctT-PPNs in [7], i.e., when the set of
parameters appearing as input weights, and the set of parameters appearing as output
weights are disjoint, the solution set cannot be represented using any formalism for which
the emptiness of the intersection with equality constraints is decidable.

Organization of the Paper. Section 2 gives basic notations and recalls useful mathem-
atical results on orders and Petri nets. Section 3 presents Parametric Petri Nets and recalls
some decidability problems. There, we also study the structure of the solution sets for preT-
and postT-PPNs and show under which condition Valk and Jantzen’s algorithm can be used
to construct finite representation of those sets. In section 4 we give our construction for
proving the ExpSpace-completeness of the universal coverability for preT-PPNs. Section 5
revisits the proof of the decidability of existential coverability in postT-PPNs and proves its
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ExpSpace-completeness. We also discuss the case of distinctT-PPNs. Finally, in Section 6,
we conclude and present future work. Due to space contraints, all proofs can be found in
appendix.

2 Background

2.1 Notations
We denote by Z the set of integers, and by N the set of natural numbers. As usual, Nω is
the union N ∪ {ω} where for each n ∈ N, n + ω = ω, ω − n = ω and ω ≤ ω. Moreover, if
n ∈ N, n < ω. Let X be a finite set. We denote by 2X the powerset of X and |X| the size
of X. If X ⊆ Nk, ¬X denotes its complement in Nk. Given a finite set X, SX denotes the
symmetric group on X (i.e. the set of all permutations of elements of X). Given a set X,
we define a linear expression on X by the following grammar: λ ::= k | k ∗ x | λ+ λ where
k ∈ Z, x ∈ X. We denote by L (X) the set of linear expressions on X.

Let V ⊆ N, a V-valuation for X is a function from X to V . We denote by V X the set of
V-valuations on X. Considering v ∈ V X , we write dom(v) the domain of v (X in this case)
and im(v) its image. We refer to Nω-valuations as extended valuations and to N-valuations
simply as valuations. The set V ∅ is reduced to a singleton {∅V } where ∅V is the empty
function. If X is finite, considering some arbitrary order on X, an (extended) valuation can
be seen as a vector of size |X|. For any subset X ′ ⊆ X and valuation v ∈ V X , we define
the restriction v|X′ of v to X ′ as the unique V-valuation on X ′ such that v|X′(x) = v(x) for
all x ∈ X ′. We extend this notation to sets of valuations: given Y ⊆ V X , Y|X′ denotes its
projection on X ′ that is to say Y|X′ = {v|X′ | v ∈ Y }. Given a value a of Nω, we denote as a
the uniform (extended) valuation that maps every element of X to a. Given an extended
valuation v, we write ω(v) for the subset of X such that x ∈ ω(v) iff v(x) = ω. We write
N(v) for the subset of X such that x ∈ N(v) iff v(x) ∈ N.

Given a linear expression λ on X and an extended valuation v on X ′ ⊆ X, v(λ) is
the linear expression obtained when substituting each element x in X ′ from λ, by the
corresponding value v(x). If X ′ = X we obtain an element of Nω.

Given a set R, finite sets S,A,B such that S = A ∪ B and A ∩ B = ∅, and functions
f ∈ RA and g ∈ RB, we write f ∪ g ∈ RS the function defined by (f ∪ g)|A = f and
(f ∪ g)|B = g. We call f ∪ g the union of f and g. Note that given x in A, y = f(x) is called
the image of x and when there is no ambiguity (i.e. when f is injective), x is called the fiber
of y by f .

Finally, let A be an alphabet and A∗ be the free monoid over A. Let w ∈ A∗ be a word.
We write |w| the length of w. Given a ∈ A, |w|a is the number of occurrences of a in w. We
define ε as the identity element of A∗. We write t v s when t is a prefix of s. We denote by
Pref(L) the prefix closure of a langage L, i.e. Pref(L) =

⋃
s∈L{t | t v s}.

2.2 Order
A quasi order (qo for short) . on some set S is a reflexive and transitive binary relation on
S. The pair (S,.) is then called a quasiordered set. For x, y ∈ S and given a qo . on S, x
and y are said comparable if either x . y or y . x. A relation < is a strict order on a set S
if it is irreflexive and transitive (which implies asymmetry).

Given any quasi order . on a set S we can define: (i) a strict order < given by x < y iff
x . y∧¬(y . x), (ii) an equivalence relation ∼ given by x ∼ y iff x . y∧ y . x, (iii) its dual
quasi order & given by y & x iff x . y. A well-quasi-ordering (wqo for short) is a qo . on a
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10:4 Coverability Synthesis in PPNs

set S such that, for any infinite sequence s = x0, x1, x2, ... in S, there exists indexes i < j

with xi . xj . Now consider ≤, the qo on Nk component-wise. Formally, for every x, y ∈ Nk,
we write that x ≤ y iff for every component i of x and y, x(i) ≤ y(i). Dickson’s Lemma [9]
states that (Nk,≤) is a well-quasi-ordered set. Let us also recall the following lemma1:

I Lemma 1 ([9]). Let p0, p1, ..., pn, ... be an infinite sequence of elements of (Nω)k. Then,
there is an infinite sequence pi1 , pi2 , ..., pin , ... such that pi1 ≤ pi2 ≤ ... ≤ pin ≤ .... (with
i1 < i2 < · · · < in < . . . ).

2.3 Downward and Upward closed sets
We reuse definitions and concepts from [10, 11] which are summed up in [12]. An upward
closed set of the well quasi ordered set (Nk,≤) is a subset U of Nk such that if x ∈ U ,
y ∈ Nk and x ≤ y then y ∈ U . The upward closure of a vector u, written ↑ u is the set
{m ∈ Nk | u ≤ m}. Given a set U , we write ↑U for the upward closure of U , defined as
↑U =

⋃
u∈U ↑u. This implies that ↑U is the least upward closed set in which U is included.

Any upward closed set U can be represented by a finite set F , called basis, such that U =↑F .
The minimal elements of F still form a basis of U independently of F . This basis is minimal
for inclusion among all bases and is thus called the minimal upward basis of F .

A downward closed set of the well quasi ordered set (Nk,≤) is a subset D of Nk such
that if x ∈ D, y ∈ Nk and y ≤ x then y ∈ D. The downward closure of a vector d, written
↓ d is the set {m ∈ Nk | m ≤ d}. Given a set D, we write ↓D the downward closure of
D, defined as ↓D =

⋃
d∈D ↓ d. This implies that ↓D is the least downward closed set in

which D is included. Moreover, the downward closure of a finite set is finite. To symbolically
represent downward closed sets, we use the extension Nkω. The definitions remain otherwise
the same. If D is a downward closed set, we can write D = Nk∩ ↓F where F is a finite set
of Nkω. We call F a downward basis of D. The maximal elements of F still form a basis of
D independently of F . This basis is minimal for the inclusion among all bases and is thus
called the minimal downward basis of D.

We also recall results from [3]: the union and the intersection of two upward (resp.
downward) closed sets is an upward (resp. downward) closed set. The complement of an
upward closed set is a downward closed set and vice-versa. Given the basis of an upward
closed set, it is possible to compute the basis of its complement using for instance the
procedure suggested in Example 5 of [14], and vice versa by adapting this procedure.

Finally, Valk and Jantzen proposed in [20] a necessary and sufficient condition, recalled
in Lemma 2, to ensure that a finite basis of an upward closed set is effectively computable.

I Lemma 2 ([20]). Given an upward closed set U ⊆ Nk, a finite basis of U is effectively
computable iff for each v ∈ Nkω, the emptiness of ↓v ∩U is decidable, which is also equivalent
to ask whether for all element v ∈ Nkω, it is decidable to answer whether ↓v ∩ Nk ⊆ ¬U .

2.4 Petri Nets
I Definition 3 (Marked Petri Net). A marked Petri Net (PN) is a pair S = (N ,m0) where
N = (P, T, Pre, Post) is a Petri net such that P is a finite set of places of S, T is a finite
set of transitions of S, Pre and Post are functions from P × T to N. A marking of N is an
N-valuation on P and m0 ∈ NP is the initial marking of N .

1The existence of such increasing subsequences can also be used as a definition for wqo, which leads to
an equivalent notion. Note that a proof can also be found in [16].
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Given a transition t of T , we define Pre(t) as the univariate function on P at the point t
which associates to each p of P the weight Pre(p, t). We define Post(t) in a similar way. A
transition t ∈ T is said enabled by a marking m when m ≥ Pre(t).

I Definition 4 (PN Semantics). The semantics of a PN is a transition system ST = (Q, q0,→)
where, Q = NP , q0 = m0, →⊆ Q × T × Q such that for all t ∈ T , m t→ m′ ⇔
m ≥ Pre(t) and m′ = m− Pre(t) + Post(t)

This relation can be extended to sequences of transitions as follows: (i) m ε→ m′ if m = m′

(ii) m wt→ m′ if ∃m′′,m w→ m′′ ∧m′′ t→ m′ where w ∈ T ∗ and t ∈ T . We write ∗→ the reflexive
transitive closure of →, i.e., m ∗→ m′ when there exists w ∈ T ∗ such that m w→ m′.

I Definition 5 (Reachability). Let S = (N ,m0), where N = (P, T, Pre, Post), a marking m
of NP is reachable in S iff m0

∗→ m.

The reachability set RS(S) of S is the set of all reachable markings of S.

I Definition 6 (Coverability). Let S = (N ,m0), where N = (P, T, Pre, Post), and m a
marking of NP , m is coverable in S iff ∃m′ ∈ RS(S),m′ ≥ m.

The coverability set CS(S) of S is the set of markings coverable in S. Coverability is
decidable in marked Petri nets [16]. The coverability set is an over approximation of the
reachability set in the sense that CS(S) =↓RS(S). Given a marked PN S, and a marking
m, we denote by cov(S,m) ∈ {True, False} the coverability of m in S. In Petri nets,
coverability allows to verify safety properties. We recall that the coverability set of a marked
Petri net is computable in the sense that its minimal downward basis is computable (see,
e.g., [12]).

3 Monotonicity in Parametric Petri Nets

3.1 Parametric Petri Nets and Parametric Problems
Following [7], we recall the definitions related to marked Parametric Petri Nets (PPNs). We
omit the case of parametric initial markings which is a subcase of parametric output weights.

I Definition 7 (Parametric Petri Net). A marked parametric Petri Net (PPN) is a pair
S = (N ,m0) where N = (P, T, Pre, Post,P) such that P is a finite set of places of N , T is a
finite set of transitions of N , P is a finite set of parameters of N , Pre and Post are functions
from P × T to N ∪ P, m0 is the initial marking of N belonging to NP .

We define the parametric transitions of S, Θ ⊆ T as the set of transitions with at least one
parameter on an input or output arc: Θ = {t ∈ T | ∃p ∈ P s.t. Pre(p, t) ∈ P∨Post(p, t) ∈ P}.
We refer to T \Θ as the set of plain transitions in echo to the notations of [13].

Considering an arbitrary ordering on places, parametric markings can be represented as
vectors of linear combinations on the set of parameters i.e. from L (P)|P |. Similarly, Pre
and Post can be seen as matrices of (N ∪ P)|P |×|T |.

Given a marked PPN S = (N ,m0), where N = (P, T, Pre, Post,P), for any N-valuation
v on a subset X of P, we define the v-instance of S as the marked PPN v(S) = (v(N ),m0)
where v(N ) = (P, T, v(Pre), v(Post),P\X). By v(Pre) and v(Post) we denote the function-
s/matrices obtained by replacing in their entries each parameter λ in dom(v) by v(λ). If
X = P, v(N ) and v(S) are respectively a Petri net and a marked Petri net. We also recall
subclasses introduced in [7]. Given a PPN, N = (P, T, Pre, Post,P), if Pre ∈ P × T → N,
we call it a postT-PPN, whereas if Post ∈ P × T → N, we call it a preT-PPN.
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10:6 Coverability Synthesis in PPNs

Given a PPN S, and a marking m, we define two basic parametric decision problems:
Does there exist a valuation v such that m is coverable in v(S) (Existential coverability) ?
Is m coverable in v(S) for all valuations v (Universal coverability) ? Those problems were
partly studied in [7]. In particular both Existential coverability and Universal coverability
are proved to be undecidable for the generic class of PPNs. In this paper, we are interested
in a more general question:

I Definition 8 (coverability-Synthesis problem). Compute all the valuations v, such that
cov(v(SP),m) is true.

We call this set of valuations the coverability synthesis set of a marked PPN S and a
marking m, denoted by CV(S,m). We also call it the solution set to the synthesis problem.

I Remark. From any PN S, we can build a PPN S ′ by adding an unused parameter. Then
checking existential or universal coverability on S ′ is equivalent to checking coverability on
S. Those parametric problems are therefore ExpSpace-hard. The same reasoning applies
for other properties such as (simultaneous) unboundedness.

3.2 Special Structure of the Coverability Synthesis Set for PreT-PPNs
and PostT-PPNs

When we restrict the use of parameters to input arcs, we ensure that any marking coverable
in a v-instance remains coverable for any v′-instance such that v′ ≤ v. Intuitively, decreasing
the valuation leads to a more permissive firing condition. Symmetrically, when we restrict
the use of parameters to output arcs, we ensure that any marking coverable in a v-instance,
remains coverable for any v′-instance such that v ≤ v′. Intuitively, firing the same parametric
transition while increasing the valuation leads to greater (and thus more permissive) markings.
Those results are formalized in Lemma 9.

I Lemma 9. Let Spre and Spost be respectively a marked preT-PPN and postT-PPN of
initial marking m0 and s0.

For every transitions sequence w of Spre and for every valuation v, if m0
w→ m in v(Spre),

then for every valuation v′ ≤ v, there exists m′ ≥ m such that m0
w→ m′ in v′(Spre).

For every transitions sequence w of Spost and for every valuation v, if s0
w→ s in v(Spost),

then for every valuation v′ ≥ v, there exists s′ ≥ s such that s0
w→ s′ in v′(Spost).

Note that those properties of monotonicity directly provide a notable structure for the
solution set of the synthesis for those two subclasses presented in Corollary 10.

I Corollary 10. Given Spre, Spost a marked preT-PPN and a marked postT-PPN respectively
and goal markings m and s for each of those nets,
CV(Spre,m) is downward closed.
CV(Spost, s) is upward closed.

3.3 Reduction of Valk and Jantzen Condition for PreT-PPNs and
PostT-PPNs

Given a preT-PPN S and a marking m, one way to compute CV(S,m) is thus to find its finite
minimal basis. A naive enumeration is not possible however since this set may be infinite.
In particular, the strategy that consists in testing for universality and, in the negative case,
enumerating until a witness of non coverability is found would in general provide only a
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Figure 2 Reduction of coverability to the
place boundedness

subset of CV(S,m). In fact, the main difficulty here resides in the fact that the elements of
the minimal basis have to be found among the complete lattice induced by ≤ on NP

ω.
In order to represent a finite basis of a downward closed set of valuations, we need

to extend valuations to Nω. Given a preT-PPN and an extended valuation v, we ex-
tend the predicate cov(v(S),m) to extended valuations as follows: cov(v(S),m) def⇔ ∀v′ ∈
Nω(v), cov(v′(v|N(v)(S)),m).

Figure 1 presents a preT-PPN with two parameters a and b. If we consider the valuation
v defined by v(a) = 1 and v(b) = ω, cov(v(S),m) is therefore equivalent to the universal
coverability of m in v|{a}(S) where v|{a} is a valuation defined by v(a) = 1, that is to say
“can we cover m in 1|{a}(S) for any value of b ?". Note that this extension of cov(v(S),m) is
consistent with the classic behavior: if N(v) = P, then cov(v(S),m) asks the coverability of
m in the marked Petri Net v(S).

We recall that in postT-PPNs, universal coverability is true iff cov(0(S),m). In a similar
manner to preT-PPN, we extend the notation of cov, as follows: given a postT-PPN and an
extended valuation v, we extend the predicate cov(v(S),m) to extended valuations as follows:
¬cov(v(S),m) def⇔ ∀v′ ∈ Nω(v), ¬cov(v′(v|N(v)(S)),m). This definition is similar to the
definition extended for preT-PPNs where coverability has been replaced by non-coverability.

With those extended notations, we now wonder if it is possible to compute a finite basis
of CV(S,m) where S is a preT-PPN or a postT-PPN and m a goal marking. To this end, we
suggest to use an algorithm by Valk and Jantzen [20] to compute a finite representation of
those sets. Nevertheless, to ensure that this algorithm is suitable to our context and that
those basis are effectively computable, we need to clarify two points:

First, this algorithm is used to compute bases of upward closed sets.
Second, the necessary and sufficient condition recalled in Lemma 2 must be satisfied.

To address the first point, by Corollary 10 notice that in the case of postT-PPNs, the set
CV(S,m) is upward closed, and the procedure could be applied directly on it. In the case of
preT-PPNs, since CV(S,m) is downward closed, we need to consider ¬CV(S,m), which is
upward closed as recalled in Section 2.3. We also recalled in that section that given a finite
basis of an upward closed set, it is possible to compute a finite basis of its complement. It is
therefore equivalent to being able to compute a finite basis of the set of valuations for which
it is not possible to cover m or to be able to compute a finite basis of the set of valuations for
which it is possible to cover m. Thus, a finite basis of ¬CV(S,m) is effectively computable iff
a finite basis of CV(S,m) is computable. Considering this reasoning, we address the second
point through the following Lemma:

I Lemma 11. The Valk and Jantzen condition can be reduced to the following criteria:
1. we can compute a finite representation of the coverability synthesis set in preT-PPNs iff

universal coverability is decidable in preT-PPNs
2. we can compute a finite representation of the coverability synthesis set in postT-PPNs iff
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10:8 Coverability Synthesis in PPNs

existential coverability is decidable in postT-PPNs

We now start by focusing on universal coverability in preT-PPNs.

4 Universal Coverability in preT-PPNs

We address the problem of universal coverability through that of the more general universal
simultaneous unboundedness. We will prove that both are ExpSpace-complete.

4.1 Simultaneous Unboundedness
I Definition 12 (Simultaneous Unboundedness [8]). Given N = (P, T, Pre, Post), and S =
(N ,m0), considering a subset X ⊆ P , S is simultaneous X unbounded if for any B ≥ 0,
there is a run w such that m0

w→ m and for all i ∈ X, we have m(i) ≥ B. If X is reduced to
a singleton {p}, S is said p-unbounded.

I Remark. Notice that coverability can be easily reduced to simultaneous unboundedness by
the use of an observer as depicted in Figure 2. The transition tobs has an input condition
equal to the marking we want to cover m. Its output effect provides a token in a place
pobs, that, once is marked, can become unbounded through the firing of tcumul. With this
construction, m is coverable in the net iff it is simultaneous pobs-unbounded.

Since there exist polynomial translations from VASS to VAS and PN and from PN to
VAS (and VASS) [18, 2], we have the following Theorem, initially stated with VASS in [8].

I Theorem 13 ([8]). Simultaneous unboundedness for PNs is ExpSpace-complete.

4.2 Notion of Incremental Model
To prove the decidability of universal coverability in preT-PPNs, we will prove the decidability
of universal simultaneous unboundedness. We will also prove that the latter belong to
ExpSpace. Together with Remark of Section 3.1, we can then conclude that both problems
are ExpSpace-complete.

Formally, given a parametric Petri net, and a set of places X, the parametric net is
universally simulatenous X unbounded iff for every possible valuation v of its parameters,
the v-instance of this net is simultaneous X unbounded.

We first show that it is sufficient for a net to be simultaneous unbounded on a set of
places in infinitely many instances (under uniform valuations) of the parametric Petri net to
be universally simultaneous unbounded on this set of places. Indeed, for any valuation v, we
can find a uniform valuation k such that v ≤ k and apply Lemma 9.

I Lemma 14. Given a marking m and a marked preT-PPN S and X a subset of places of
S, the two following propositions are equivalent :
1. (S,m0) is universally simultaneous X unbounded
2. {k ∈ N | (k(S),m0) is simultaneous X unbounded} is infinite

Note that this Lemma is not directly used in this paper, but is necessary to proof the
upcoming Lemma 15. It is indeed an important result since it reduces the infinite set of
valuations over which we should investigate to the infinite set of uniform valuation that is
totally ordered i.e. two elements of this set are always comparable.

We can now address the problem of universal simultaneous unboundedness. To solve this
problem, we reduce it to the existence of a classic Petri net built upon our parametric model
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satisfying an adequately chosen simultaneous unboundedness property. The classic Petri net
is in fact obtained by evaluating a preT-PPN, called incremental net, under the uniform
valuation 0. The incremental net has a polynomial size in the original preT-PPN and it
directly depends on the original preT-PPN and a sequence of distinct parametric transitions.
This Section is thus driven by the idea that universal simultaneous X unboundedness on a
preT-PPN S is equivalent to the existence of a sequence σ of distinct parametric transitions
of S, such that the incremental model build on S and σ evaluated under 0 satisfies a
simultaneous unboundedness property depending on X and σ.

Before providing the theoretical definition, let us consider the main intuition of our
construction. If a net is universally simultaneous unbounded on a set of places X, two main
cases are possible: we can either find a path such that the places of X are unbounded without
using any parametric transition, and then the corresponding run works for any valuation, or
we need at least one parametric transition.

In the latter case, since there is an infinite number of valuations and a finite number of
parametric transitions, using the pigeonhole principle, there is at least one such transition
that must be used as the first parametric transition in the run for an infinite number of
valuations. The input places of its parametric arcs are therefore not bounded. Thus, the
valuation of the input parametric arcs of this transition is not limiting anymore since we can
generate an arbitrary large amount of tokens in the corresponding places. Therefore, we will
later evaluate2 those parameters to 0 in order to perform the verification on a classic Petri
net.

Nevertheless, we need to ensure that the set of input places of the parametric arcs are not
bounded (without using that transition). This is exactly the goal of this incremental model.
Indeed, once fired, we could then consider a new net where the first parametric transition can
be involved as well as non parametric transitions and investigate for the newly unbounded
places. Either we can unbound the places of the goal set X or we can reuse previous reasoning
and choose a new parametric transition that has to be involved in infinitely many instances.
What is important to note here is that at each firing of a new parametric transition, that
never occurred in the run, we need to ensure that its input places of parametric input arcs
were unbounded using only previous transitions of the run and to remember what are the
new places that can be unbounded through the use of this new transition. We will now
formalize how it is possible to remember the boundedness of the input places of parametric
arcs by presenting exhaustively the model of incremental nets.

Given a preT-PPN N = (P, T ′, P re, Post,P) and a partition of its transitions T ′ = T ∪Θ
between its plain and parametric transition, we denote by Np the Petri Net obtained from
N by removing all transitions of Θ from N . An example is given in Figure 3. Let us now
consider a finite sequence σ ∈ Pref(SΘ) where SΘ is the symmetric group over Θ seen as
a language. Let |T | = m, |P | = n and |σ| = k. We define the incremental model I of N
along σ. We write I = incr(N , σ) to denote this preT-PPN. This model is illustrated by
the example3 at the right hand side of Figure 3. Its construction consists of the following
main steps:
(i) Consider Np and k copies of Np, where to each of those k + 1 subnets is associated a

global lock place, ensuring that exactly one copy is active at any given instant. The

2Note that any other finite valuation would be suitable since the input places of the parametric arcs
are unbounded.

3The exact meaning of the notations used to refer to the different components of this example will be
provided after this informal intuition on the construction.
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10:10 Coverability Synthesis in PPNs

copies correspond to the black subnet of this example, whereas the global locks pi0’s are
depicted in blue and dotted arcs.

(ii) Add a copy of the first i transitions of σ to each ith copy of Np, for 1 ≤ i ≤ k.
(iii) Between the i− 1th and ith subnets, add a copy of the i+ 1th transition of σ, depicted

in plain green arcs in Figure 3, for 1 ≤ i ≤ k. Notice that this copy presents a special
behaviour: its input effect impacts the i− 1th subnet and its lock pi−1

0 whereas its output
effect impacts the ith subnet and its lock pi0. This ensures that we change of active subnet
only after the firing of a the first occurrence of a precise parametric transition.

(iv) Finally, we ensure that given every copy of a transition, including the intermediate
copies that allow to change the active copy, it modifies simultaneously the places in the
associated copy as explained above, but also all copies of greater index (i.e. those that
have not been activated yet). Those arcs ensure that every later subnet always has the
“same” marking as the active copy. They are depicted by dashed red arcs in Figure 3.
Note that we synchronise the different copies and do not merge them because we use
them to remember the order in which the different input places to parametric transitions
become unbounded.

Let us suppose we evaluated this incremental model in order to perform an execution. At the
beginning of any execution, given a precise subnet, let us say the ith subnet, it follows the
behavior of the subnets with lower index because of synchronisations introduced in item (iv).
Then, once this copy become active, after the firing of a given parametric transition introduced
in item (iii), it will dictate the behavior of the global net (and thus of the subnets with
greater index through synchronisations). Once the next copy becomes active, our original ith
subnet cannot change its state anymore. It is now literally an historic state of the global run
of the incremental net.

p1

p2

p3

t1

θ1

a

N

p1

p2

p3

t1

Np

p0
1

p0
2

p0
3

p0
0

p1
1

p1
2

p1
3

p1
0

t11

θ1
1

a

t01

θ0
1

aa

f0(N ) f1(N )
Incremental Net I of N along σ = θ1

Figure 3 Construction of an Incremental Net3

More formally, the incremental net incr(N , σ) is the preT-PPN (P, T ,Pre,Post,P)
such that P =

{
pij | 0 ≤ i ≤ k ∧ 0 ≤ j ≤ n

}
where pi0 represents the lock related to the ith

copy of N whereas pij with j > 0 represents the copy of the place pj of P in the ith subnet
and T =

{
tij | 0 ≤ i ≤ k ∧ 1 ≤ j ≤ m

}
∪
{
θij | 1 ≤ j ≤ i ≤ k

}
∪
(
∪1≤i≤k {θ0

i }
)
where tij

represents the copy of the transition tj of T in the ith subnet, θij represents the copy of the
transition θj of Θ in the ith subnet, θ0

i represents a copy of the transition θi from σ which is
used to change the active copy (from the i− 1th to the ith).

We define with this construction a net mapping to relate places and transitions from both
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models. Given the two nets N and I defined as above, considering previous notations, for
each 0 ≤ i ≤ |σ| we define the application f iN→I that links the original net N to its ith copy
in I (except the corresponding lock). We define f iN→I : T ∪ {θj ∈ σ | j ≤ i} ∪ P → T ∪ P
such that for tj ∈ T (resp. θj ∈ σ and pj ∈ P ), f iN→I(tj) = tij (resp. f iN→I(θj) = θij and
f iN→I(pj) = pij). We can then define f−1 the function that maps components of the copies
of N in I to their original fiber by the previous application. Formally, f−1 is defined by:
f−1 : ∪0≤i≤kim(f iN→I) → T ∪ P ∪ Θ and associates to tij ∈ T (resp. θij ∈ T and pij ∈ P)
f−1(tij) = tj (resp. f−1(θij) = θj and f−1(pij) = pj). Finally, we define the application
hI→N : ∪1≤i≤k{θ0

i } ⊆ T → Θ that maps the intermediate parametric transitions between
each copies of N in I, θ0

i to their original fiber from N and occuring in σ, that is to say the
ith transition of σ.

Those applications allow us to define formally the functions Pre and Post. Given i′ and
j′, let xi′j′ denote either tij or θij from

{
tij | 0 ≤ i ≤ k ∧ 1 ≤ j ≤ m

}
∪
{
θij | 1 ≤ j ≤ i ≤ k

}
in

the following expressions:

Pre(pij , xi
′

j′)(resp. Post(pij , xi
′

j′)) =


0 if (i < i′) or (i > i′ and j = 0)
1 if i = i′ and j = 0
Pre(f−1(pij), f−1(xi′j′)) otherwise
(resp. Post(f−1(pij), f−1(xi′j′))) otherwise

Pre(pij , θ0
i′) =


0 if (i+ 1 < i′) or (i+ 1 > i′ and j = 0)
1 if i+ 1 = i′ and j = 0
Pre(f−1(pij), h−1(θ0

i′)) otherwise

Post(pij , θ0
i′) =


0 if (i < i′) or (i > i′ and j = 0)
1 if i = i′ and j = 0
Post(f−1(pij), h−1(θ0

i′)) otherwise
Given a net N and the function f iN→I we extend the definition of f iN→I to sets by

f iN→I(X) = {f i(x) | x ∈ X} and nets by defining f iN→I(N ) as (f i(P ), f i(T ),Prefi(P )×fi(T ),

Postfi(P )×fi(T ),P). When the context is clear, we omit the subscript N → I. As examples,
f0(N ) and f1(N ) are provided in Figure 3. Finally, we associate to a marking m of N the
marking f(m) defined by for all p of ∪0≤i≤k(f i(P )), f(m)(p) = m(f−1(p)). Notice that this
ignores the locks introduced in the net. Given the initial marking m0, we thus define the
initial marking of the incremental net µ0 as f(m0) for the copies of the places, and 0 in all
locks except the first one which receives 1. Formally, µ0(pij) = m0(pj) if j 6= 0, 1 if i = j = 0
and 0 otherwise.

The idea behind this construction is double. First, we can enforce the order of the first
occurrence of a parametric transition which is dictated by the sequence σ. Second, we can
access the exact amount of tokens stored in a place before the firing of the first occurrence
of a parametric transition and thus keep an historic of the state of a run, just before the
firing of this parametric transition, through the copies of the original net. Based on those
two observations, we will be able to observe if the input places of the parametric arcs of the
first occurrence of a parametric transition in a run are bounded or not.

4.3 Complexity of Universal Simultaneous Unboundedness
We will now see that universal simultaneous unboundedness can be reduced to the existence
of a sequence σ of distinct parametric transitions such that the incremental net built upon
this sequence is simultaneous unbounded on an adequately defined set of places. We first
provide the intuition behind this statement before providing its formal version. We must
ensure that each input place of a parametric arc of the first occurrence of a parametric
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10:12 Coverability Synthesis in PPNs

transition is unbounded. Based on the previous construction, one can notice that given a
parametric transition θi occurring in σ, its input places are only impacted by the transitions
occurring in the first i copies of the net. Thus, once θi is fired in the incremental net, the new
feasible transitions will not impact the amount of tokens stored in the i first subnets. We will
thus be able to verify if the input places were bounded or not before its firing, by observing
the places of the copy that occurs just before the first firing of this transition. For each
parametric transition of σ, we should thus verify that the input places in the corresponding
copies are unbounded, and finally verify that the places that should be unbounded as part
of the original property are indeed unbounded in the last copy of the net and that for
each instance of the incremental net under a uniform valuation. Nevertheless, since the
corresponding input places of parametric transitions are unbounded, it is sufficient to verify
this property for only one instance of the incremental net, and in particular we will later
choose the 0-instance. Indeed, if such a property is verified for any k-instance, then, it could
be verified for any k′-instance (with k′ > k) by exhibiting the witness run and performing
more loops.

I Lemma 15. Let N = (P, T ′, P re, Post,P) be a preT-PPN, such that T ′ = T ∪Θ where Θ
represents the parametric transitions of N and T its plain transitions. For every a set of
places of X ⊆ P , the following propositions are equivalent:
1. (N ,m0) is universally simultaneous X unbounded
2. ∃σ = t1, ..., tl ∈ Pref(SΘ), considering the incremental model I of N along σ, I =

incr(N , σ), ∃k ∈ N, (k(I), µ0) is simultaneous f lN→I(X) ∪
(⋃

ti∈σ f
i−1
N→I(Π(ti))

)
un-

bounded.
3. ∃σ = t1, ..., tl ∈ Pref(SΘ), considering the incremental model I of N along σ, I =

incr(N , σ), ∀k ∈ N, (k(I), µ0) is simultaneous f lN→I(X) ∪
(⋃

ti∈σ f
i−1
N→I(Π(ti))

)
un-

bounded.

Following the notations, Pref(SΘ) corresponds to the finite set of sequences of distinct
parametric transitions. Remark that f lN→I(X) represents the copy of the places of X in
the last subnet of the I. Set

⋃
ti∈σ f

i−1
N→I(Π(ti)) is a bit more complex: for each transition

ti ∈ σ, Π(ti) represents the input places of the parametric arcs. We therefore address here the
unboundedness of the copies of those places in the corresponding subnet of the incremental
net.

Proof. We provide here the sketch of the direct implication (1)⇒ (3) proof. The goal is to
find the sequence of parametric transitions along which we construct a Petri net, called the
incremental model, handling the universal simultaneous X unboundedness all at once. This
proof is done by induction on the number of parametric transitions in the preT-PPN N .

In the base case, N is a PN. Therefore the incremental model considered is isomorphic to
N and the property is immediate.
In the inductive step, we filter the case where it is possible that the places from X are
unbounded without using parametric transitions. Then, we show that for an infinity
of uniform valuation k, there is a parametric transition θ that can be used as the first
parametric transition occurring in a run leading to some simultaneous X unbounded
markings in the coverability tree of (k(N ),m0).
1. We then prove that the input places of the parametric input arcs of θ must be

unbounded in (Np,m0), that is to say, there is a marking z with some ω’s on those
components in the basis of the coverability set of this net.

2. We now consider the net where those places have been removed. The transition θ is
now a plain transition and it is possible to call the induction assumption. We can thus
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build an incremental model J along a sequence σ for this reduced net.
3. The remaining work is now to build the incremental model I along the sequence θσ

using several mappings and to construct the set Y accordingly.
J

From Lemma 15 we can observe that answering the universal simultaneous X unbounded-
ness on a preT-PPN can be reduced to guessing an element σ of the finite set Pref(SΘ) such
that (0(I), µ0) is simultaneous Y unbounded. Since checking simultaneous X unboundedness
can be done in ExpSpace as recalled in Theorem 13, we obtain a NExpSpace procedure.
Then, a well-known theorem by Savitch [19] stating that there is therefore a ExpSpace
deterministic procedure answering this problem and the Remark from Section 3.1 allow us
to deduce Theorem 16. Note that following Corollary directly comes from Theorem 16 and
Theorem 11.

I Theorem 16. The Universal Simultaneous Unboundedness problem for preT-PPNs is
ExpSpace-complete.

I Corollary 17. Given a marked preT-PPN S and a marking m, we can compute a finite
representation of CV(S,m).

5 Synthesis in postT-PPNs and distinctT-PPNs

5.1 Complexity of Existential Coverability in postT-PPNs
We propose here a cleaner proof for the decidability of the existential coverability in postT-
PPNs, and provide its complexity. We use a polynomial time transformation4 from postT-PPN
to ωPN (see [13]) which preserves existential coverability and invoke a transformation from
ωPN to PN underlined in [13]. First, we recall definitions and results from [13].

I Definition 18 (ω-Petri Net [13]). An ω-Petri Net (ωPN) is a tuple (P, T, Pre, Post) where
P and T are respectively a finite set of places and transitions. Pre (resp. Post) is a function
of P × T to Nω that gives the input (resp. output) effect of a transition t on a place p.

I Definition 19 (ωPN Semantics). Given a marking m, and a transition t such that m ≥
Pre(t), firing t from m gives a new marking m′ s.t. ∀p ∈ P,m′(p) = m(p) − Pre(p, t) + o

where o = Post(t, p) if Post(p, t) ∈ N and o ≥ 0 if Post(p, t) = ω. We denote this by m t→ m′.
Thus Post(p, t) = ω means that an arbitrary number of tokens are generated in p.

From this semantics, we can notice that ω’s play a role not unlike output parameters,
with the crucial difference that their “value” can change along the execution of the net. Let
consider a postT-PPN N and let us associate to this model the ωOPN N ′ such that we
replace each parametric arc of N by an ω arc.

I Lemma 20 (postT-PPNs to ωOPNs). Let N be a postT-PPN (which involves parameters of
a set P) and let N ′ be its corresponding ωOPN (with the same set of places and transitions)
and let m0 be their common initial marking. Given a marking m ∈ RS(N ′,m0), there exists
a valuation v such that there exists a marking m′ ≥ m with m′ ∈ RS(v(N ),m0). Moreover5,
∪v∈NPRS(v(N ),m0) ⊆ RS(N ′,m0).

4More specifically we obtain an ω-output-PN or ωOPN for short, which corresponds to the natural
subclass of ωPNs where Pre ∈ P × T 7→ N.

5Notice that this is only an inclusion. Indeed, contrarily to postT-PPNs, in ωPNs, the effect of an arc
can change along the same execution.
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We can thus directly deduce Theorem 21 by reducing existential coverability in postT-PPNs
to coverability in ωPN which belongs to ExpSpaceby [13]. Note that following Corollary
comes from Theorem 21 and Theorem 11.

I Theorem 21 (Complexity of Existential Coverability). The existential coverability problem
on postT-PPNs is ExpSpace-complete.

I Corollary 22. Given a marked postT-PPN S and a marking m, we can compute a finite
representation of CV(S,m).

5.2 Representing the Coverability Synthesis Set for DistinctT-PPNs
Let us finally consider the case of PPNs in which the set of parameters used as input
weights, and the set of parameters used as output weights, are disjoint. For this class, called
distinctT-PPNs, the emptiness of the solution set to the synthesis problem for coverability is
decidable [7]. Interestingly, we can adapt an idea originally used for L/U-automata in [15] to
prove that the structure of this set is however much more complex than for preT-PPNs or
postT-PPNs. In particular, one cannot represent this set with a finite set, a finite union of
downward and/or upward closed sets or a finite union of convex polyhedra.

I Lemma 23. If it can be computed, the solution of the synthesis of coverability in distinctT-
PPN cannot, in general, be represented using any formalism for which emptiness of the
intersection with equality constraints is decidable.

6 Conclusion

It can be challenging to find meaningful parametric infinite state systems with decidable
decision problems. We achieved here to prove a powerful result for two strict syntactical
subclasses of parametric Petri nets: interestingly, the set of all valid valuations of parameters,
allowing to cover a given marking, is effectively computable for parametric Petri nets where
parameters are restricted to only input arcs or only output arcs.

Indeed, we have shown how the computability of the synthesis set for coverability in
preT-PPNs and postT-PPNs can be reduced to a decision problem, respectively, universal
coverability and existential coverability, which is then used in Valk and Jantzen’s procedure.
We proved that these two decision problems are both ExpSpace-complete. Putting the two
types of parameters together while forbidding any parameter to be used as both an input and
output weight preserves the decidability of the emptiness of the solution set. However, we
have proved that, even with this restriction, the solution set can in general not be represented
using any formalism for which emptiness of the intersection with equality constraints is
decidable, which seems a big restriction in practice.

Future work includes studying (simultaneous) unboundedness for classes other than preT-
PPNs that is to say postT-PPNs and distinctT-PPNs. Most problems (such as universal
simultaneous unboundedness for postT-PPNs and distincT-PPNs) can be settled easily by
adapting the proofs of [7], except for existential simultaneous unboundedness for postT-PPNs.
The translation to ωPNs proposed here is not sufficient to conclude its decidability either
since we have to ensure that the increasing markings are all reached for a common parameter
valuation.
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In the sequel, given a marked Petri net S, we write KM(S) to denote its coverability
graph obtained by a procedure à la Karp and Miller. We write BCS(S) for the minimal
downward basis of CS(S).

A Proof of Lemma 9

We only provide the proof for the preT-PPN. The case of postT-PPN can be adapted easily.
Let N = (P, T, Pre, Post,P) be a preT-PPN and S = (N ,m0) be a marked preT-PPN.

Let w ∈ T ∗ be a transitions sequence such that m0
w→ m in v(S). Then for any valuation

v′ ≤ v, m0
w→ m′ in v′(S) with m′ ≥ m.

Proof. Given wv = t1, t2, ..., ti, ..., tn, we proceed by induction on the length of wv
Base case: n=0
If the sequence is empty, then m0 ≥ m0 and by definition m0 is reachable in v and v′
instances.
Inductive step: Let us assume it is true for a sequence of length n
Given w = t1, t2, ..., ti, ..., tn, tn+1 We apply the induction hypothesis on wn = t1, t2, ..., tn

such that m0
wn→ mn

tn+1→ mn+1 in v(S). By the induction hypothesis, for v′ ≤ v we have
m0

wn→ m′n ≥ mn in v′(S). Moreover tn+1 is firable in v(S) so mn ≥ v(Pre(tn+1)) ≥
v′(Pre(tn+1)). So m′n ≥ v′(Pre(tn+1)) and m0

w→ m′n+1 in v′(S).
Moreover as v(Pre(tn+1)) ≥ v′(Pre(tn+1)) and Post(tn+1) ≥ 0, then m′n+1 ≥ mn+1, so
the proposition is true at rank n+ 1.

By induction, it is true for every sequence of length n which proves Lemma 9. J

B Proof of Lemma 11

B.1 Proof of Lemma 11 for PreT-PPNs
The two following propositions are equivalent
1. we can compute a finite representation of the coverability synthesis set in preT-PPNs
2. universal coverability is decidable in preT-PPNs

Proof. (1) ⇒ (2): Let us consider a marked preT-PPN S and a marking m. We assume a
finite basis of CV(S,m) is effectively computable. Thus, we can get a representation of its
complement, ¬CV(S,m) using a procedure similar to the one of Example 5 in [14]. Since
¬CV(S,m) is upward closed, as the complement of the downward closed set CV(S,m) from
Lemma 10, we can invoke the result of Valk and Jantzen from [20] which implies that for all
element v ∈ Nkω, it is decidable to answer whether ↓v ∩¬CV(S,m) 6= ∅. This is equivalent to
decide whether ↓ v ∩ Nk ⊆ CV(S,m). Let us consider v = ωωω, ↓ v ∩ Nk = Nk. This exactly
means that universal coverability of m in S is decidable.

(2) ⇒ (1): We suppose universal coverability in preT-PPNs is decidable. Let us consider
a preT-PPN S and a marking m. Then, for any valuation v ∈ Nkω, coverability of m in v(S)
is decidable. Indeed, if v ∈ Nk it is trivially decidable, otherwise, it means that universal
coverability of m in v|N(v)(S) is decidable, which is true by assumption. Thus, for any
v ∈ Nkω, it is decidable to answer whether cov(v(S),m) is true, which directly gives whether
↓v ∩ Nk ⊆ CV(S,m) by Lemma 9. This is equivalent to answering for all element v ∈ Nkω
whether ↓v ∩ ¬CV(S,m) 6= ∅ which is exactly the condition given by Lemma 2 to use Valk
and Jantzen algorithm to compute a finite basis of ¬CV(S,m). Now, as recalled in the paper,
we can use a procedure adapted from the one in Example 5 of [14], to compute a finite basis
of ¬(¬CV(S,m)), that is to say CV(S,m).
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J

B.2 Proof of Lemma 11 for PostT-PPNs
The two following propositions are equivalent
1. we can compute a finite representation of the coverability synthesis set in postT-PPNs
2. existential coverability is decidable in postT-PPNs

For the case of PostT-PPNs, we can carry out a dual development, by directly considering
Lemma 2 with the synthesis set as U and noticing that universal non coverability is equivalent
to non existential coverability.

Proof. (1) ⇒ (2): Let us consider a marked postT-PPN S and a marking m. Set CV(S,m)
being upward closed, we can invoke Valk and Jantzen’s result and deduce that for all v ∈ Nkω,
it is decidable to answer whether ↓ v ∩ Nk ⊆ ¬CV(S,m). Let us now notice that non
coverability is monotonic in postT-PPNs in the sense that if m is not coverable in v(S),
then it is not coverable in any v′(S) for all valuation v′ ≤ v. This is indeed exactly the
contrapositive of Lemma 9. Thus ↓v ∩ Nk ⊆ ¬CV(S,m) is equivalent to ¬cov(v(S),m). In
particular, ¬cov(ωωω(S),m) is decidable, that is to say universal non coverability is decidable in
postT-PPNs. We can now conclude by remarking that universal non coverability is equivalent
to non existential coverability.

(2)⇒ (1): We suppose existential coverability in postT-PPNs is decidable. Since universal
non coverability is equivalent to non existential coverability, we can now directly adapt the
proof of Lemma 11 to get this result. J

C Proof of Lemma 14

Given a marking m and a marked preT-PPN S, the two following propositions are equivalent:
1. (S,m0) is universally simultaneous X unbounded
2. {k ∈ N | (k(S),m0) is simultaneous X unbounded} is infinite

Proof. (1) ⇒ (2): Let V = {v ∈ NP | ∃k ∈ N, v = k}. Set V is infinite. Suppose that for
all valuations v ∈ NP, v(S) is simultaneous X unbounded. As V ⊆ NP, we have in particular
that for any v ∈ V , v(S) is simultaneous X unbounded i.e. (2).

(2) ⇒ (1): Let V = {k | k ∈ N and (k(S),m0) is simultaneous X unbounded}. Suppose
V is infinite. Let us consider v ∈ NP. We define k1 = maxλ∈P(v(λ)) i.e. the maximum of v
componentwise. Clearly the number of elements in V that are less or equal to k1 is finite
(they form a bounded subset of NP ), so there exists k2 ∈ V such that k2 ≥ k1. So k2(S)
is simultaneous X unbounded. This means that, for every value B > 0 we can consider
a transitions sequence w s.t. in k2(S), m0

w→ mk2 such that for all p ∈ X, mk2(p) ≥ B.
Therefore by Lemma 9, in v(S), m0

w→ mv ≥ mk2 ≥ B. So v(S) is simultaneousX unbounded
and we have (1). J

D Proof of Lemma 15

Let N = (P, T ′, P re, Post,P) be a preT-PPN, such that T ′ = T ∪Θ where Θ represents the
parametric transitions of N and T its plain transitions. For every a set of places of X ⊆ P ,
the following propositions are equivalent:
1. (N ,m0) is universally simultaneous X unbounded

CONCUR 2017
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2. ∃σ = t1, ..., tl ∈ Pref(SΘ), considering the incremental model I of N along σ, I =
incr(N , σ), ∃k ∈ N, (k(I), µ0) is simultaneous Y unbounded where Y = f lN→I(X) ∪(⋃

ti∈σ f
i−1
N→I(Π(ti))

)
.

3. ∃σ = t1, ..., tl ∈ Pref(SΘ), considering the incremental model I of N along σ, I =
incr(N , σ), ∀k ∈ N, (k(I), µ0) is simultaneous Y unbounded where Y = f lN→I(X) ∪(⋃

ti∈σ f
i−1
N→I(Π(ti))

)
.

Let us first introduce a few definitions. In the course of the proof we will relate parts of
the construction using isomorphisms.

IDefinition 24 (extension of [6]). LetN = (P, T, Pre, Post,P) andN ′ = (P ′, T ′, P re′, Post′,P)
be two PPNs and m0,m

′
0 their respective initial markings. Let h : P ∪ T → P ′ ∪ T ′ be a

mapping such that h(P ) ⊆ P ′ and h(T ) ⊆ T ′. We say that h is a isomorphism (of structure)
from N to N ′ if h is a bijection and for each transition t ∈ T , we have Pre′(h(t)) = h(Pre(t))
and Post′(h(t)) = h(Post(t)).

We extend h to markings as follows: for all p ∈ im(h), h(m)(p) = m(h−1(p)). If
m′0 = h(m0) we call it an isomorphism of net.

Considering the notations of Section 4.2, (f0
N→I(N ), f0

N→I(m0)) and (Np,m0) are iso-
morphic, which is immediate by construction.

Given t ∈ Θ, Π(t) ⊆ P is used to represent the places p of P such that Pre(p, t) or
Post(p, t) belongs to P.

Finally, note that the notion of simultaneous unboundedness can be easily related to the
notion of Coverability Set through the following Lemma:

I Lemma 25 ([16, 8]). Given a marked Petri Net S, the following propositions are equivalent:
1. S is simultaneous X unbounded
2. KM(S) contains a node labelled by a marking z such that X ⊆ ω(z)
3. BCS(S) contains a marking z such that X ⊆ ω(z)

Proof. (1) ⇒ (3): We proceed by strong induction on the number |Θ| of parametric
transitions in N .

base case: if |Θ| = 0, N is a classic Petri Net, which means (N ,m0) is simultaneous X
unbounded. We recall that I denotes the incremental model of N along a sequence σ of
parametric transitions. and µ0 its associated marking. Since |Θ| = 0, σ must be ε. Thus,
I only contains f0(N ), which is isomorphic to Np, plus a lock. So for all k, k(f0

N→I(X))
is simultaneous f0

N→I(X) unbounded. Thus (3) holds.
inductive step: we consider n ∈ N and we assume that given a preT-PPN with i ≤ n

parametric transitions, (3) holds. Let us assume |Θ| = n+ 1. Since (N ,m0) is universally
simultaneous X unbounded, two cases arise:

either (Np,m0) is simultaneous X unbounded. Thus σ = ε satisfies the property (3)
as explained in the base case.
otherwise, (Np,m0) is not simultaneous X unbounded. Nevertheless, by definition
of universal simultaneous unboundedness, for every integer k ≥ 0, (k(N ),m0) is
simultaneous X unbounded. Then, using Lemma 25, there exists a marking zk
reachable in KM(k(N ),m0) such that X ⊆ ω(zk). This means that, in the coverability
graph of (k(N ),m0), there is a run ρk leading to a node labelled by zk. This run
contains at least one parametric transition, otherwise (Np,m0) would be simultaneous
X unbounded. We can thus decompose ρk as

m0
∗→ mk

θk→ m′k
∗→ zk
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N ,m
f0, f1, . . . , f |σ

′|

f(m) is a marking of I
α

ι

g0, g1, . . . , g|σ|

g(α(m)) is a marking of J

β

α

For the sake of clarity, remark that we do not most of the arcs of
the incremental net detailed in Figure 3.

α(N )f0(N ) f1(N )

. . .

f |σ
′|(N )

h−1(θ1)

I

f1(N )

. . .

f |σ
′|(N )

β(I)

f1(N )

. . .

f |σ
′|(N )

α(β(I))

g0(α(N ))

. . .

g|σ|(α(N ))
J

Figure 4 Operations

where θk is a parametric transition and the prefix m0
∗→ mk contains no parametric

transition. Therefore, mk belongs to CS(Np,m0). Moreover, we know that its basis
BCS(Np,m0) is finite. Thus, using the pigeon hole’s principle, there exists z in
BCS(Np,m0) such that z ≥ mk for infinitely many k. We define V = {k | z ≥ mk}.
This set is infinite. To each k of V , we can associate a parametric transition θk which
is the first parametric transition involved in the run ρk. Nevertheless, there is a finite
number of parametric transitions. We can thus invoke again the pigeon hole’s principle
and define an infinite subset of V , called V1, such that for all k ∈ V1, the θk’s are equal,
and without loss of genericity, we assume they are all equal to θ1. For every k of V1,
for every p ∈ P , we know that z(p) ≥ mk(p). In particular, we can now assert that, for
every p ∈ Π(θ1), z(p) ≥ mk(p) ≥ k(Pre(p, θ1)) = k by definition of Π(θ1). Therefore,
Π(θ1) ⊆ ω(z). Notice that since θ1 ∈ Θ, Π(θ1) 6= ∅.
Let α be the projection that associates to N the Petri net where the places of ω(z)
have been removed. Through this operation6, every arc that start or ends in a place

6The relations between the different nets involved in this proof: N , α(N ), I, J , etc. are summarized
in Figure 4.
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of ω(z) is also removed. This projection can be extended to markings in the sense
that given m, α(m) = m|N(z). We now consider the new preT-PPN α(N ). It is in fact
equal to (N(z), T ′, P re|N(z)×T ′ , Post|N(z)×T ′ ,P).
In this setting, we can partition T ′ into the set of plain and parametric transitions:
T ′ = T1 ∪ Θ1. Remark that θ1 is now an element of T1 since its parametric arcs
have been removed through the restriction to N(z). Thus, α(N ) has strictly less than
n+ 1 parametric transitions. We also define the operation inverse α−1

ω operating on a
marking of α(N ) which reintroduces the places removed and valuate them to ω. The
result is thus an extended marking of N .
Let α(y) be the marking obtained by firing θ1 from α(z). This operation is well defined
since θ1 is a plain transition in α(N ). We can define y such that y = α−1

ω (α(y)).
Moreover, for every k ∈ V1, y ≥ m′k by construction and we can fire the suffix of ρk,
and obtain by monotonicity, in the coverability graph of (k(N ), y), that there is a run
such that y ∗→ yk ≥ zk. Thus X ⊆ ω(yk), and X ∩ N(z) ⊆ ω(α(yk)). Therefore by
Lemma 25 for every uniform valuation k of V1, (k(α(N )), y) is simultaneous X ∩ N(z)
unbounded. We can invoke Lemma 14 to deduce that (α(N ), α(y)) is universally
simultaneous X ∩ N(z) unbounded.
As explained previously, this preT-PPN α(N ) has at most n parametric transitions. By
applying the induction hypothesis, there exists a sequence σ of parametric transitions
from Θ1 ⊆ (Θ \ {θ1}) satisfying item (3). We define the associated incremental net
as J and its initial marking ζ0. Following the definition of Section 4.2 we define
g0, g1, . . . , g|σ| from α(N ) to J and given a marking m of α(N ), we denote by g(m)
the marking of J which corresponds to duplicate m on each copies of α(N ). Note that
since we start from α(N ) with an initial marking equal to α(y), the initial marking ζ0
of J coincides with g(α(y)) on the copies of the places of α(N ) (i.e. , if we omit the
locks).
Now, let us consider the sequence σ′ = θ1σ. We can define the incremental model I of
N along σ′ and its associated marking µ0 which coincide with f(m0) on the copies
of the places of N . Following the definition of Section 4.2 we define f0, f1, . . . , f |σ

′|

from N to I and given a marking m of N , we denote by f(m) the marking of I which
corresponds to duplicate m on each copies of N . We also define h that maps the
intermediate parametric transitions of I that allows to change the active subnet to the
original ones of σ′. Remark that h−1 is well defined.
Given 0 ≤ i ≤ |σ′|, f i(N ) is isomorphic to a subnet of N (indeed, only some parametric
transitions are being removed). We can thus extend the definition of α to each of
those nets. We now extend this projection to I as the union of the projections on each
subnets of I. By abuse of notation, we keep calling this operation α. We also extend
its inverse α−1

ω operating on a marking of α(I) which reintroduces the places removed
and valuate them to ω. The result is thus a marking of I.
We define β as the projection that associates to I a copy of this net where the following
components have been removed:

∗ the places and transitions of f0(N )
∗ the lock corresponding to f0(N )
∗ the parametric transition that changes the active subnet from f0(N ) to f1(N ).

As previously we define its inverse β−1
0 operating on a marking of β(I) which reintro-

duces the places removed by β and valuate them to 0, including the lock.
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Let us now consider α(β(I)). This net is isomorphic7 to J . Indeed, given 0 ≤ i ≤ |σ|,
gi(α(N )) is isomorphic to α(f i+1(N )). In particular for i = 0, notice that θ1 belongs
to α(N ) and therein is not a parametric transition since all its parametric arcs have
been removed through α. Therefore, by construction this transition has a copy in
g0(α(N )). Moreover, for i > 1 it also has a copy in every f i(N ) by construction of
I. Now remark that f0(N ), the only subnet that is not isomorphic to one of the
gi(α(N )), has been removed in β(I). Then through α the subset ω(z) of places of N
that were copied in I (and therefore β(I)) are removed in α(β(I)) to match the set of
places of J , which is built upon α(N ).
We can thus denote by ι the isomorphism between α(β(I)) and J . Given a marking
m of N , we thus have that:

ι ◦ α ◦ β ◦ f(m) = g ◦ α(m)

Let us now study the markings of those nets. Given a valuation k, we consider
(k(J ), ζ0). It is simultaneous g|σ|(X)∪

(⋃
ti∈σ g

i−1(Π(ti))
)
unbounded by the induction

hypothesis. Thus, there exists a sequence of transitions w in its coverability graph
leading to a marking η such that g|σ|(X) ∪

(⋃
ti∈σ g

i−1(Π(ti))
)
⊆ ω(η). Let us

consider (α(β(I)), ι−1(ζ0)), then ι−1(w) leads to a marking ι−1(η) with ι−1
(
g|σ|(X)∪(⋃

ti∈σ g
i−1(Π(ti))

))
⊆ ω(ι−1(η)) by definition of ι−1.

Now let us consider (k(I), β−1
0 (α−1

ω (ι−1(ζ0)))). Sequence ι−1(w) is still firable. Indeed,
α−1
ω consists in adding ω’s which are not blocking for the firing of a transition and

will stay unchanged through the firing of the sequence. Moreover β−1
0 adds some zeros

in the places of f0(N ) but no transitions of f0(N ) are used in this sequence, thus
no places of f0(N ) are inputs to a transition of ι−1(w). From those facts, we can
conclude that the marking obtained in the coverability graph of k(I) after firing ι−1(w)
is exactly β−1

0 (α−1
ω (ι−1(η))).

Let us now focus on ζ0. It can be divided in two parts, first the locks, and second the
copies of the places of α(N ). On this second part, it is exactly equal to g(α(y)). Thus
the marking β−1

0 (α−1
ω (ι−1(ζ0))) can be as well divided in two parts: the locks and the

copies of the places of N . On the first part, it is equal to ζ0 completed with 0 in the
initial lock. On the second part, it is exactly equal to β−1

0 (α−1
ω (ι−1(g(α(y))))).

Now, let u = β−1
0 (α−1

ω (ι−1(g(α(y))))) and recall that g ◦ α = ι ◦ α ◦ β ◦ f . We have:

u = β−1
0 (α−1

ω (ι−1(ι(α(β(f(y)))))))
= β−1

0 (α−1
ω (α(β(f(y))))))) Because ι ◦ ι−1 is the identity function

= β−1
0 ((β(f(y))))))) Because α−1

ω (α((x)) = x iff x equal ω on every
place removed by α. Here y|ω(z) = ωωω thus f(y)
is equal to ω on every copy of ω(z).

≤f(y) Because β−1
0 (β((x)) ≤ x since β−1

0 replaces by
0 the values of the places affected by β.

Now, recall that f0 is an isomorphism between Np and f0(N ). In KM(Np,m0), there
is a run to a marking z′ greater than z since z ∈ BCS(Np,m0). Therefore, there exists

7Informally, considering the notation of the Section 4.2, the application between J and α(β(I)) is
defined by increasing all superscript of places and transitions by 1.
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a run in f0(N ) starting from f0(m0) leading to a marking f0(z′). This run can also
be seen as a run w1 of k(I), going from the initial marking µ0 to a marking ψ0 equal
to f(z′) completed with zeros on the locks corresponding to the subnets f i(N ) for
1 ≤ i ≤ |σ′| and 1 on the lock corresponding to f0(N ). From this marking, we can

fire h−1(θ1) since f0(Π(θ1)) ⊆ ω(ψ0) and thus have µ0
w1→ ψ0

h−1(θ1)→ ψ1 where ψ1 can
be decomposed in two parts, first the locks, and second the copies of the places of N .
This second part is greater or equal to f(y) by construction. Thus, ψ1 ≥ u. We can
thus consider monotonicity, and conclude that ι−1(w) is firable from ψ1 such that in

the coverability graph of k(I): ψ0
w1→ ψ0

h−1(θ1)→ ψ1
ι−1(w)→ ψ2 where ψ2 ≥ ι−1(η).

Therefore, f |σ′|(X) ⊆ ω(ψ2) and
(⋃

ti∈σ f
i−1(Π(ti))

)
⊆ ω(ψ2). Moreover, f0(Π(θ1)) ⊆

ω(ψ2) since f0(Π(θ1)) ⊆ ω(ψ0) and ψ2 is a successor of ψ0. Thus, since σ′ = θ1σ

we obtain exactly that f |σ′|(X) ∪
(⋃

ti∈σ′ f
i−1
N→I(Π(ti))

)
⊆ ω(γ) which concludes the

induction.
(3) ⇒ (1): Intuitively, the last copy f |σ|(N ) of the incremental net I of N along σ is

synchronized with every previous copy. So every sequence performed on I can be folded
into the last copy of this net. Moreover, this last copy is isomorphic to a subnet of N itself.
Therefore, the run will be firable in N itself. In the sequel, we omit the subscript N → I of
the functions f iN→I and hI→N . We denote by P the places of N .

More formally, we reason on the coverability graph and reuse the notations introduced in
Section 4.2. From (3) we can deduce that, given k, we can exhibit a run

µ0 = y0
π0→ z0

τ1→ y1
π1→ z1

τ2→ y2
π2→ z2 . . . zl−1

τl→ yl
πl→ zl where


∀1 ≤ i ≤ l, τi ∈ h−1(Θ)
∀0 ≤ i ≤ l, πi ∈ f i(T ∪Θ)
f l(X) ∪

(⋃
ti∈σ f

i−1(Π(ti))
)
⊆ ω(zl)

Moreover, by construction of the incremental net, the tokens in places f j(P ) are created by
transitions of the set ∪i≤j(f i(T )). Since for each parametric transition θj , f j−1(Π(θj)) is
equal to ω, the ω’s of f j−1(Π(θj)) have to appear between π0 and πj−1. We can thus deduce
that

∀1 ≤ j ≤ l, f j−1(Π(θj)) ⊆ ω(zj−1)

Each time a new parametric transition is involved in the run, the input places of its
parametric arcs already contain ω in this run in the coverability graph. Since f |σ|(N ) is
synchronized on all the previous copies to mimic their behaviour along the run, it is possible
to simply consider the run folded into f |σ|(N ):

f l(m0) = y0|f l(P )
f l(f−1(π0))→ z0|f l(P )

f l(h(τ1))→ y1|f l(P ) . . . zl−1|f l(P )
f l(h(τl))→ yl|f l(P )

f l(f−1(πl))→ zl|f l(P )

Where ω((zl)|f l(P )) contains f l(X) and, as explained above, before each first occurrence of a
parametric transition, f l(h(τi)), f l(Π(h(τi))) ⊆ ω((zi−1)|f l(N )).

Now let us recall that f l is an isomorphism between a subnet of N and f l(N ). Therefore,
there exists an isomorphic run in the coverability graph of (k(N ),m0) which provides that
same set of places equal to ω. In particular, since X is included in this set, we can deduce
that k(N ) is simultaneous X unbounded. Moreover, by invoking Lemma 14, we can conclude
that N is universally simultaneous X unbounded.

(3)⇒ (2): trivial
(2)⇒ (3): We reuse here the decomposition used in (3)⇒ (1) but push it a bit further.

Indeed, since the input places of parametric transitions are unbounded, it is sufficient to
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verify this property for only one instance of the incremental net. If such a property is verified
for any k-instance, then, it could be verified for any k′′-instance (with k′′ > k) by exhibiting
the witness run and performing more loops.

Formally, from (3) we know that, there exists k, such that we can exhibit a run

µ0 = y0
π0→ z0

τ1→ y1
π1→ z1

τ2→ y2
π2→ z2 . . . zl−1

τl→ yl
πl→ zl where


∀1 ≤ i ≤ l, τi ∈ h−1(Θ)
∀0 ≤ i ≤ l, πi ∈ f i(T ∪Θ)
f l(X) ∪

(⋃
ti∈σ f

i−1(Π(ti))
)
⊆ ω(zl)

Moreover, as explained in (3)⇒ (1), by construction of the incremental net, the tokens in
places f j(P ) are created by transitions of the set ∪i≤j(f i(T )), which was summed up as:

∀1 ≤ j ≤ l, f j−1(Π(θj)) ⊆ ω(zj−1)

Each time a new parametric transition is involved in the run, the input places of its
parametric arcs already contain ω in this run in the coverability graph (for the active copy
and for all the following one, thus for all the input places of this transition if we consider
the synchronisations). Therefore, if we consider the same run under a different valuation
k′′ > k, we can assert that there will be no difference for the coverability graph since the only
effect of the valuation would be to consume more tokens from places that already contains
ω. Using Lemma 25 we thus directly obtain that ∀k′′ > k, (k′′(I), µ0) is simultaneous
f lN→I(X) ∪

(⋃
ti∈σ f

i−1
N→I(Π(ti))

)
unbounded.

Finally, supposing that ∃k ∈ N, (k(I), µ0) is simultaneous f lN→I(X)∪
(⋃

ti∈σ f
i−1
N→I(Π(ti))

)
unbounded, we can easily adapt the result of Lemma 9 to prove that ∀k′ ≤ k, (k′(I), µ0) is
simultaneous f lN→I(X) ∪

(⋃
ti∈σ f

i−1
N→I(Π(ti))

)
unbounded.

We have thus proved that (2)⇒ (3). J

E Proof of Theorem 16

The Universal Simultaneous Unboundedness problem for preT-PPNs is ExpSpace-complete.

Proof. The size of N is defined as usual, plus the number of parameters. The input consists
of N plus a subset of its places X. The ExpSpace-hardness lower bound is a consequence of
Remark from Section 3.1.

We now establish the upper bound for the universal simultaneous unboundedness problem.
Given a preT-PPN N , we construct a non-deterministic Turing machine which guesses an
element σ of Pref(SΘ). Note that there are 2|P|+1 elements possible in Pref(SΘ).

We then ask whether given I = incr(N , σ) and µ0 its associated initial marking, (0(I), µ0)
is simultaneous Y unbounded, where I is the incremental net of N along σ with the initial
marking associated µ0, and Y is a set8 of size at most polynomial in the size of the input.

Constructing the incremental net can be done in polynomial time because it consists
only in filling matrices of size polynomial in the size of the input. It is therefore also only
polynomially larger than N .

Checking simultaneous X unboundedness can be done in ExpSpace as recalled in
Theorem 13.

We thus obtain a NExpSpace procedure. By a well-known theorem by Savitch [19], there is
therefore a ExpSpace deterministic algorithm for the universal simultaneous unboundedness
problem. This problem is thus ExpSpace-complete. J

8The exact formula of Y is given in Lemma 15.
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F Proof of Lemma 20

Let N be a postT-PPN let N ′ be its corresponding ωOPN (with the same set of places
and transitions) and let m0 be their initial marking. Given a marking m ∈ RS(N ′,m0),
there exists a valuation v such that there exists a marking m′ ≥ m with m′ ∈ RS(v(N ),m0).
Moreover, ∪v∈NPRS(v(N ),m0) ⊆ RS(N ′,m0).

Proof. We provide here a simple sketch of this proof.
The first point comes directly from the semantics of ω Petri nets. Given m ∈ RS(N ′,m0),

there exists a run m0
w→ m. If w does not contain any ω-transition, then m ∈ RS(Np,m0)

thus m ∈ RS(N ,m0). Otherwise, we consider all ω-transitions involved in w and compute
their output effect on this particular run. We can then consider the valuation v setting all
parameters to the maximum of those effects. In v(N ), the effect of w is greater or equal than
the effect of w observed previously, by definition of v. Thus, m0

w→ m′ ≥ m in v(N ).
For the second point, given a valuation and a marking reachable within v(N ) through a

run w, it is easy to construct a run w′ composed of the same transitions in the same order
in N ′ with the same effect. Indeed, each time an ω transition is fired in w′, the effect of
the ω output arc should be equal to the value associate through v to the parameter of the
corresponding parametric output arc.

J

G Proof of Lemma 21

The existential coverability problem on postT-PPNs is ExpSpace-complete.

Proof. Given N a postT-PPN we construct N ′ its translation (in polynomial time) in
an ωOPN, by replacing each parametric arc by an ω arc. By Lemma 20 we can deduce
that m coverable in N ′ iff m is existentially coverable in N : if m is coverable in N ′
then there exists a valuation v such that m is coverable in v(N ) by the first point of
Lemma 20. If m is existentially coverable in N , there exists a valuation v such that there
exists m′ ∈ RS(v(N ),m0) with m′ ≥ m. Thus, m′ ∈ RS(N ,m0) by the second point of
Lemma 20..

So we need only answer coverability of m in N ′ which is in ExpSpace. It follows that
existential coverability for postT-PPNs is in ExpSpace.

Moreover, Remark of Section 3.1 provides the ExpSpace-hardness of this problem, so it
is ExpSpace-complete. J

H Proof of Lemma 23

If it can be computed, the solution of the synthesis of coverability in distinctT-PPN cannot,
in general, be represented using any formalism for which emptiness of the intersection with
equality constraints is decidable.

Proof. We adapt an idea originally used for L/U-automata in [15]. We recall that following [7]
existential coverability is undecidable for PPNs. Let us suppose we can compute the set of
valuations under which a given marking of NP is coverable in a distinctT-PPN. Then, let
us consider a general PPN S. For each parameter λ used on both input and output arcs,
we replace its occurrence on input arcs by λi and on output arcs by λo. We have therefore
constructed a distinctT-PPN. We then solve the synthesis problem and compute the set of
valuations Good. Let K be the set of equality constraints λi = λo for each parameter λ that
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was replaced. Clearly deciding whether there exists a valuation v such that m is coverable in
v(S) is equivalent to deciding wether Good ∩K is empty or not. J
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